2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
14 * Platform initialization for Discontig Memory
17 #include <linux/kernel.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <asm/pgalloc.h>
27 #include <asm/meminit.h>
29 #include <asm/sections.h>
32 * Track per-node information needed to setup the boot memory allocator, the
33 * per-node areas, and the real VM.
35 struct early_node_data
{
36 struct ia64_node_data
*node_data
;
37 unsigned long pernode_addr
;
38 unsigned long pernode_size
;
39 struct bootmem_data bootmem_data
;
40 unsigned long num_physpages
;
41 #ifdef CONFIG_ZONE_DMA
42 unsigned long num_dma_physpages
;
44 unsigned long min_pfn
;
45 unsigned long max_pfn
;
48 static struct early_node_data mem_data
[MAX_NUMNODES
] __initdata
;
49 static nodemask_t memory_less_mask __initdata
;
51 pg_data_t
*pgdat_list
[MAX_NUMNODES
];
54 * To prevent cache aliasing effects, align per-node structures so that they
55 * start at addresses that are strided by node number.
57 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
58 #define NODEDATA_ALIGN(addr, node) \
59 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
60 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
63 * build_node_maps - callback to setup bootmem structs for each node
64 * @start: physical start of range
65 * @len: length of range
66 * @node: node where this range resides
68 * We allocate a struct bootmem_data for each piece of memory that we wish to
69 * treat as a virtually contiguous block (i.e. each node). Each such block
70 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
71 * if necessary. Any non-existent pages will simply be part of the virtual
72 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
73 * memory ranges from the caller.
75 static int __init
build_node_maps(unsigned long start
, unsigned long len
,
78 unsigned long cstart
, epfn
, end
= start
+ len
;
79 struct bootmem_data
*bdp
= &mem_data
[node
].bootmem_data
;
81 epfn
= GRANULEROUNDUP(end
) >> PAGE_SHIFT
;
82 cstart
= GRANULEROUNDDOWN(start
);
84 if (!bdp
->node_low_pfn
) {
85 bdp
->node_boot_start
= cstart
;
86 bdp
->node_low_pfn
= epfn
;
88 bdp
->node_boot_start
= min(cstart
, bdp
->node_boot_start
);
89 bdp
->node_low_pfn
= max(epfn
, bdp
->node_low_pfn
);
96 * early_nr_cpus_node - return number of cpus on a given node
97 * @node: node to check
99 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
100 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
101 * called yet. Note that node 0 will also count all non-existent cpus.
103 static int __meminit
early_nr_cpus_node(int node
)
107 for_each_possible_early_cpu(cpu
)
108 if (node
== node_cpuid
[cpu
].nid
)
115 * compute_pernodesize - compute size of pernode data
116 * @node: the node id.
118 static unsigned long __meminit
compute_pernodesize(int node
)
120 unsigned long pernodesize
= 0, cpus
;
122 cpus
= early_nr_cpus_node(node
);
123 pernodesize
+= PERCPU_PAGE_SIZE
* cpus
;
124 pernodesize
+= node
* L1_CACHE_BYTES
;
125 pernodesize
+= L1_CACHE_ALIGN(sizeof(pg_data_t
));
126 pernodesize
+= L1_CACHE_ALIGN(sizeof(struct ia64_node_data
));
127 pernodesize
+= L1_CACHE_ALIGN(sizeof(pg_data_t
));
128 pernodesize
= PAGE_ALIGN(pernodesize
);
133 * per_cpu_node_setup - setup per-cpu areas on each node
134 * @cpu_data: per-cpu area on this node
135 * @node: node to setup
137 * Copy the static per-cpu data into the region we just set aside and then
138 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
139 * the end of the area.
141 static void *per_cpu_node_setup(void *cpu_data
, int node
)
146 for_each_possible_early_cpu(cpu
) {
147 if (node
== node_cpuid
[cpu
].nid
) {
148 memcpy(__va(cpu_data
), __phys_per_cpu_start
,
149 __per_cpu_end
- __per_cpu_start
);
150 __per_cpu_offset
[cpu
] = (char*)__va(cpu_data
) -
152 cpu_data
+= PERCPU_PAGE_SIZE
;
160 * fill_pernode - initialize pernode data.
161 * @node: the node id.
162 * @pernode: physical address of pernode data
163 * @pernodesize: size of the pernode data
165 static void __init
fill_pernode(int node
, unsigned long pernode
,
166 unsigned long pernodesize
)
169 int cpus
= early_nr_cpus_node(node
);
170 struct bootmem_data
*bdp
= &mem_data
[node
].bootmem_data
;
172 mem_data
[node
].pernode_addr
= pernode
;
173 mem_data
[node
].pernode_size
= pernodesize
;
174 memset(__va(pernode
), 0, pernodesize
);
176 cpu_data
= (void *)pernode
;
177 pernode
+= PERCPU_PAGE_SIZE
* cpus
;
178 pernode
+= node
* L1_CACHE_BYTES
;
180 pgdat_list
[node
] = __va(pernode
);
181 pernode
+= L1_CACHE_ALIGN(sizeof(pg_data_t
));
183 mem_data
[node
].node_data
= __va(pernode
);
184 pernode
+= L1_CACHE_ALIGN(sizeof(struct ia64_node_data
));
186 pgdat_list
[node
]->bdata
= bdp
;
187 pernode
+= L1_CACHE_ALIGN(sizeof(pg_data_t
));
189 cpu_data
= per_cpu_node_setup(cpu_data
, node
);
195 * find_pernode_space - allocate memory for memory map and per-node structures
196 * @start: physical start of range
197 * @len: length of range
198 * @node: node where this range resides
200 * This routine reserves space for the per-cpu data struct, the list of
201 * pg_data_ts and the per-node data struct. Each node will have something like
202 * the following in the first chunk of addr. space large enough to hold it.
204 * ________________________
206 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
207 * | PERCPU_PAGE_SIZE * | start and length big enough
208 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
209 * |------------------------|
210 * | local pg_data_t * |
211 * |------------------------|
212 * | local ia64_node_data |
213 * |------------------------|
215 * |________________________|
217 * Once this space has been set aside, the bootmem maps are initialized. We
218 * could probably move the allocation of the per-cpu and ia64_node_data space
219 * outside of this function and use alloc_bootmem_node(), but doing it here
220 * is straightforward and we get the alignments we want so...
222 static int __init
find_pernode_space(unsigned long start
, unsigned long len
,
226 unsigned long pernodesize
= 0, pernode
, pages
, mapsize
;
227 struct bootmem_data
*bdp
= &mem_data
[node
].bootmem_data
;
229 epfn
= (start
+ len
) >> PAGE_SHIFT
;
231 pages
= bdp
->node_low_pfn
- (bdp
->node_boot_start
>> PAGE_SHIFT
);
232 mapsize
= bootmem_bootmap_pages(pages
) << PAGE_SHIFT
;
235 * Make sure this memory falls within this node's usable memory
236 * since we may have thrown some away in build_maps().
238 if (start
< bdp
->node_boot_start
|| epfn
> bdp
->node_low_pfn
)
241 /* Don't setup this node's local space twice... */
242 if (mem_data
[node
].pernode_addr
)
246 * Calculate total size needed, incl. what's necessary
247 * for good alignment and alias prevention.
249 pernodesize
= compute_pernodesize(node
);
250 pernode
= NODEDATA_ALIGN(start
, node
);
252 /* Is this range big enough for what we want to store here? */
253 if (start
+ len
> (pernode
+ pernodesize
+ mapsize
))
254 fill_pernode(node
, pernode
, pernodesize
);
260 * free_node_bootmem - free bootmem allocator memory for use
261 * @start: physical start of range
262 * @len: length of range
263 * @node: node where this range resides
265 * Simply calls the bootmem allocator to free the specified ranged from
266 * the given pg_data_t's bdata struct. After this function has been called
267 * for all the entries in the EFI memory map, the bootmem allocator will
268 * be ready to service allocation requests.
270 static int __init
free_node_bootmem(unsigned long start
, unsigned long len
,
273 free_bootmem_node(pgdat_list
[node
], start
, len
);
279 * reserve_pernode_space - reserve memory for per-node space
281 * Reserve the space used by the bootmem maps & per-node space in the boot
282 * allocator so that when we actually create the real mem maps we don't
285 static void __init
reserve_pernode_space(void)
287 unsigned long base
, size
, pages
;
288 struct bootmem_data
*bdp
;
291 for_each_online_node(node
) {
292 pg_data_t
*pdp
= pgdat_list
[node
];
294 if (node_isset(node
, memory_less_mask
))
299 /* First the bootmem_map itself */
300 pages
= bdp
->node_low_pfn
- (bdp
->node_boot_start
>>PAGE_SHIFT
);
301 size
= bootmem_bootmap_pages(pages
) << PAGE_SHIFT
;
302 base
= __pa(bdp
->node_bootmem_map
);
303 reserve_bootmem_node(pdp
, base
, size
, BOOTMEM_DEFAULT
);
305 /* Now the per-node space */
306 size
= mem_data
[node
].pernode_size
;
307 base
= __pa(mem_data
[node
].pernode_addr
);
308 reserve_bootmem_node(pdp
, base
, size
, BOOTMEM_DEFAULT
);
312 static void __meminit
scatter_node_data(void)
318 * for_each_online_node() can't be used at here.
319 * node_online_map is not set for hot-added nodes at this time,
320 * because we are halfway through initialization of the new node's
321 * structures. If for_each_online_node() is used, a new node's
322 * pg_data_ptrs will be not initialized. Instead of using it,
323 * pgdat_list[] is checked.
325 for_each_node(node
) {
326 if (pgdat_list
[node
]) {
327 dst
= LOCAL_DATA_ADDR(pgdat_list
[node
])->pg_data_ptrs
;
328 memcpy(dst
, pgdat_list
, sizeof(pgdat_list
));
334 * initialize_pernode_data - fixup per-cpu & per-node pointers
336 * Each node's per-node area has a copy of the global pg_data_t list, so
337 * we copy that to each node here, as well as setting the per-cpu pointer
338 * to the local node data structure. The active_cpus field of the per-node
339 * structure gets setup by the platform_cpu_init() function later.
341 static void __init
initialize_pernode_data(void)
348 /* Set the node_data pointer for each per-cpu struct */
349 for_each_possible_early_cpu(cpu
) {
350 node
= node_cpuid
[cpu
].nid
;
351 per_cpu(cpu_info
, cpu
).node_data
= mem_data
[node
].node_data
;
355 struct cpuinfo_ia64
*cpu0_cpu_info
;
357 node
= node_cpuid
[cpu
].nid
;
358 cpu0_cpu_info
= (struct cpuinfo_ia64
*)(__phys_per_cpu_start
+
359 ((char *)&per_cpu__cpu_info
- __per_cpu_start
));
360 cpu0_cpu_info
->node_data
= mem_data
[node
].node_data
;
362 #endif /* CONFIG_SMP */
366 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
367 * node but fall back to any other node when __alloc_bootmem_node fails
370 * @pernodesize: size of this node's pernode data
372 static void __init
*memory_less_node_alloc(int nid
, unsigned long pernodesize
)
376 int bestnode
= -1, node
, anynode
= 0;
378 for_each_online_node(node
) {
379 if (node_isset(node
, memory_less_mask
))
381 else if (node_distance(nid
, node
) < best
) {
382 best
= node_distance(nid
, node
);
391 ptr
= __alloc_bootmem_node(pgdat_list
[bestnode
], pernodesize
,
392 PERCPU_PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
398 * memory_less_nodes - allocate and initialize CPU only nodes pernode
401 static void __init
memory_less_nodes(void)
403 unsigned long pernodesize
;
407 for_each_node_mask(node
, memory_less_mask
) {
408 pernodesize
= compute_pernodesize(node
);
409 pernode
= memory_less_node_alloc(node
, pernodesize
);
410 fill_pernode(node
, __pa(pernode
), pernodesize
);
417 * find_memory - walk the EFI memory map and setup the bootmem allocator
419 * Called early in boot to setup the bootmem allocator, and to
420 * allocate the per-cpu and per-node structures.
422 void __init
find_memory(void)
428 if (num_online_nodes() == 0) {
429 printk(KERN_ERR
"node info missing!\n");
433 nodes_or(memory_less_mask
, memory_less_mask
, node_online_map
);
437 /* These actually end up getting called by call_pernode_memory() */
438 efi_memmap_walk(filter_rsvd_memory
, build_node_maps
);
439 efi_memmap_walk(filter_rsvd_memory
, find_pernode_space
);
440 efi_memmap_walk(find_max_min_low_pfn
, NULL
);
442 for_each_online_node(node
)
443 if (mem_data
[node
].bootmem_data
.node_low_pfn
) {
444 node_clear(node
, memory_less_mask
);
445 mem_data
[node
].min_pfn
= ~0UL;
448 efi_memmap_walk(filter_memory
, register_active_ranges
);
451 * Initialize the boot memory maps in reverse order since that's
452 * what the bootmem allocator expects
454 for (node
= MAX_NUMNODES
- 1; node
>= 0; node
--) {
455 unsigned long pernode
, pernodesize
, map
;
456 struct bootmem_data
*bdp
;
458 if (!node_online(node
))
460 else if (node_isset(node
, memory_less_mask
))
463 bdp
= &mem_data
[node
].bootmem_data
;
464 pernode
= mem_data
[node
].pernode_addr
;
465 pernodesize
= mem_data
[node
].pernode_size
;
466 map
= pernode
+ pernodesize
;
468 init_bootmem_node(pgdat_list
[node
],
470 bdp
->node_boot_start
>>PAGE_SHIFT
,
474 efi_memmap_walk(filter_rsvd_memory
, free_node_bootmem
);
476 reserve_pernode_space();
478 initialize_pernode_data();
480 max_pfn
= max_low_pfn
;
487 * per_cpu_init - setup per-cpu variables
489 * find_pernode_space() does most of this already, we just need to set
490 * local_per_cpu_offset
492 void __cpuinit
*per_cpu_init(void)
495 static int first_time
= 1;
499 for_each_possible_early_cpu(cpu
)
500 per_cpu(local_per_cpu_offset
, cpu
) = __per_cpu_offset
[cpu
];
503 return __per_cpu_start
+ __per_cpu_offset
[smp_processor_id()];
505 #endif /* CONFIG_SMP */
508 * show_mem - give short summary of memory stats
510 * Shows a simple page count of reserved and used pages in the system.
511 * For discontig machines, it does this on a per-pgdat basis.
515 int i
, total_reserved
= 0;
516 int total_shared
= 0, total_cached
= 0;
517 unsigned long total_present
= 0;
520 printk(KERN_INFO
"Mem-info:\n");
522 printk(KERN_INFO
"Node memory in pages:\n");
523 for_each_online_pgdat(pgdat
) {
524 unsigned long present
;
526 int shared
= 0, cached
= 0, reserved
= 0;
528 pgdat_resize_lock(pgdat
, &flags
);
529 present
= pgdat
->node_present_pages
;
530 for(i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
532 if (unlikely(i
% MAX_ORDER_NR_PAGES
== 0))
533 touch_nmi_watchdog();
534 if (pfn_valid(pgdat
->node_start_pfn
+ i
))
535 page
= pfn_to_page(pgdat
->node_start_pfn
+ i
);
537 i
= vmemmap_find_next_valid_pfn(pgdat
->node_id
,
541 if (PageReserved(page
))
543 else if (PageSwapCache(page
))
545 else if (page_count(page
))
546 shared
+= page_count(page
)-1;
548 pgdat_resize_unlock(pgdat
, &flags
);
549 total_present
+= present
;
550 total_reserved
+= reserved
;
551 total_cached
+= cached
;
552 total_shared
+= shared
;
553 printk(KERN_INFO
"Node %4d: RAM: %11ld, rsvd: %8d, "
554 "shrd: %10d, swpd: %10d\n", pgdat
->node_id
,
555 present
, reserved
, shared
, cached
);
557 printk(KERN_INFO
"%ld pages of RAM\n", total_present
);
558 printk(KERN_INFO
"%d reserved pages\n", total_reserved
);
559 printk(KERN_INFO
"%d pages shared\n", total_shared
);
560 printk(KERN_INFO
"%d pages swap cached\n", total_cached
);
561 printk(KERN_INFO
"Total of %ld pages in page table cache\n",
562 quicklist_total_size());
563 printk(KERN_INFO
"%d free buffer pages\n", nr_free_buffer_pages());
567 * call_pernode_memory - use SRAT to call callback functions with node info
568 * @start: physical start of range
569 * @len: length of range
570 * @arg: function to call for each range
572 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
573 * out to which node a block of memory belongs. Ignore memory that we cannot
574 * identify, and split blocks that run across multiple nodes.
576 * Take this opportunity to round the start address up and the end address
577 * down to page boundaries.
579 void call_pernode_memory(unsigned long start
, unsigned long len
, void *arg
)
581 unsigned long rs
, re
, end
= start
+ len
;
582 void (*func
)(unsigned long, unsigned long, int);
585 start
= PAGE_ALIGN(start
);
592 if (!num_node_memblks
) {
593 /* No SRAT table, so assume one node (node 0) */
595 (*func
)(start
, end
- start
, 0);
599 for (i
= 0; i
< num_node_memblks
; i
++) {
600 rs
= max(start
, node_memblk
[i
].start_paddr
);
601 re
= min(end
, node_memblk
[i
].start_paddr
+
602 node_memblk
[i
].size
);
605 (*func
)(rs
, re
- rs
, node_memblk
[i
].nid
);
613 * count_node_pages - callback to build per-node memory info structures
614 * @start: physical start of range
615 * @len: length of range
616 * @node: node where this range resides
618 * Each node has it's own number of physical pages, DMAable pages, start, and
619 * end page frame number. This routine will be called by call_pernode_memory()
620 * for each piece of usable memory and will setup these values for each node.
621 * Very similar to build_maps().
623 static __init
int count_node_pages(unsigned long start
, unsigned long len
, int node
)
625 unsigned long end
= start
+ len
;
627 mem_data
[node
].num_physpages
+= len
>> PAGE_SHIFT
;
628 #ifdef CONFIG_ZONE_DMA
629 if (start
<= __pa(MAX_DMA_ADDRESS
))
630 mem_data
[node
].num_dma_physpages
+=
631 (min(end
, __pa(MAX_DMA_ADDRESS
)) - start
) >>PAGE_SHIFT
;
633 start
= GRANULEROUNDDOWN(start
);
634 start
= ORDERROUNDDOWN(start
);
635 end
= GRANULEROUNDUP(end
);
636 mem_data
[node
].max_pfn
= max(mem_data
[node
].max_pfn
,
638 mem_data
[node
].min_pfn
= min(mem_data
[node
].min_pfn
,
639 start
>> PAGE_SHIFT
);
645 * paging_init - setup page tables
647 * paging_init() sets up the page tables for each node of the system and frees
648 * the bootmem allocator memory for general use.
650 void __init
paging_init(void)
652 unsigned long max_dma
;
653 unsigned long pfn_offset
= 0;
654 unsigned long max_pfn
= 0;
656 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
658 max_dma
= virt_to_phys((void *) MAX_DMA_ADDRESS
) >> PAGE_SHIFT
;
660 efi_memmap_walk(filter_rsvd_memory
, count_node_pages
);
662 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
665 #ifdef CONFIG_VIRTUAL_MEM_MAP
666 vmalloc_end
-= PAGE_ALIGN(ALIGN(max_low_pfn
, MAX_ORDER_NR_PAGES
) *
667 sizeof(struct page
));
668 vmem_map
= (struct page
*) vmalloc_end
;
669 efi_memmap_walk(create_mem_map_page_table
, NULL
);
670 printk("Virtual mem_map starts at 0x%p\n", vmem_map
);
673 for_each_online_node(node
) {
674 num_physpages
+= mem_data
[node
].num_physpages
;
675 pfn_offset
= mem_data
[node
].min_pfn
;
677 #ifdef CONFIG_VIRTUAL_MEM_MAP
678 NODE_DATA(node
)->node_mem_map
= vmem_map
+ pfn_offset
;
680 if (mem_data
[node
].max_pfn
> max_pfn
)
681 max_pfn
= mem_data
[node
].max_pfn
;
684 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
685 #ifdef CONFIG_ZONE_DMA
686 max_zone_pfns
[ZONE_DMA
] = max_dma
;
688 max_zone_pfns
[ZONE_NORMAL
] = max_pfn
;
689 free_area_init_nodes(max_zone_pfns
);
691 zero_page_memmap_ptr
= virt_to_page(ia64_imva(empty_zero_page
));
694 #ifdef CONFIG_MEMORY_HOTPLUG
695 pg_data_t
*arch_alloc_nodedata(int nid
)
697 unsigned long size
= compute_pernodesize(nid
);
699 return kzalloc(size
, GFP_KERNEL
);
702 void arch_free_nodedata(pg_data_t
*pgdat
)
707 void arch_refresh_nodedata(int update_node
, pg_data_t
*update_pgdat
)
709 pgdat_list
[update_node
] = update_pgdat
;
714 #ifdef CONFIG_SPARSEMEM_VMEMMAP
715 int __meminit
vmemmap_populate(struct page
*start_page
,
716 unsigned long size
, int node
)
718 return vmemmap_populate_basepages(start_page
, size
, node
);