[PATCH] remove many unneeded #includes of sched.h
[linux-2.6/linux-2.6-openrd.git] / drivers / net / fs_enet / fs_enet-main.c
blob4a05c14bf7ec3a4fda1504757e8bd15b62df7936
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/pci.h>
28 #include <linux/init.h>
29 #include <linux/delay.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/spinlock.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/bitops.h>
37 #include <linux/fs.h>
38 #include <linux/platform_device.h>
39 #include <linux/phy.h>
41 #include <linux/vmalloc.h>
42 #include <asm/pgtable.h>
44 #include <asm/pgtable.h>
45 #include <asm/irq.h>
46 #include <asm/uaccess.h>
48 #include "fs_enet.h"
50 /*************************************************/
52 static char version[] __devinitdata =
53 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
55 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
56 MODULE_DESCRIPTION("Freescale Ethernet Driver");
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(DRV_MODULE_VERSION);
60 int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
61 module_param(fs_enet_debug, int, 0);
62 MODULE_PARM_DESC(fs_enet_debug,
63 "Freescale bitmapped debugging message enable value");
66 static void fs_set_multicast_list(struct net_device *dev)
68 struct fs_enet_private *fep = netdev_priv(dev);
70 (*fep->ops->set_multicast_list)(dev);
73 /* NAPI receive function */
74 static int fs_enet_rx_napi(struct net_device *dev, int *budget)
76 struct fs_enet_private *fep = netdev_priv(dev);
77 const struct fs_platform_info *fpi = fep->fpi;
78 cbd_t *bdp;
79 struct sk_buff *skb, *skbn, *skbt;
80 int received = 0;
81 u16 pkt_len, sc;
82 int curidx;
83 int rx_work_limit = 0; /* pacify gcc */
85 rx_work_limit = min(dev->quota, *budget);
87 if (!netif_running(dev))
88 return 0;
91 * First, grab all of the stats for the incoming packet.
92 * These get messed up if we get called due to a busy condition.
94 bdp = fep->cur_rx;
96 /* clear RX status bits for napi*/
97 (*fep->ops->napi_clear_rx_event)(dev);
99 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
101 curidx = bdp - fep->rx_bd_base;
104 * Since we have allocated space to hold a complete frame,
105 * the last indicator should be set.
107 if ((sc & BD_ENET_RX_LAST) == 0)
108 printk(KERN_WARNING DRV_MODULE_NAME
109 ": %s rcv is not +last\n",
110 dev->name);
113 * Check for errors.
115 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
116 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
117 fep->stats.rx_errors++;
118 /* Frame too long or too short. */
119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
120 fep->stats.rx_length_errors++;
121 /* Frame alignment */
122 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
123 fep->stats.rx_frame_errors++;
124 /* CRC Error */
125 if (sc & BD_ENET_RX_CR)
126 fep->stats.rx_crc_errors++;
127 /* FIFO overrun */
128 if (sc & BD_ENET_RX_OV)
129 fep->stats.rx_crc_errors++;
131 skb = fep->rx_skbuff[curidx];
133 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
134 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
135 DMA_FROM_DEVICE);
137 skbn = skb;
139 } else {
141 /* napi, got packet but no quota */
142 if (--rx_work_limit < 0)
143 break;
145 skb = fep->rx_skbuff[curidx];
147 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
148 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
149 DMA_FROM_DEVICE);
152 * Process the incoming frame.
154 fep->stats.rx_packets++;
155 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
156 fep->stats.rx_bytes += pkt_len + 4;
158 if (pkt_len <= fpi->rx_copybreak) {
159 /* +2 to make IP header L1 cache aligned */
160 skbn = dev_alloc_skb(pkt_len + 2);
161 if (skbn != NULL) {
162 skb_reserve(skbn, 2); /* align IP header */
163 memcpy(skbn->data, skb->data, pkt_len);
164 /* swap */
165 skbt = skb;
166 skb = skbn;
167 skbn = skbt;
169 } else
170 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
172 if (skbn != NULL) {
173 skb->dev = dev;
174 skb_put(skb, pkt_len); /* Make room */
175 skb->protocol = eth_type_trans(skb, dev);
176 received++;
177 netif_receive_skb(skb);
178 } else {
179 printk(KERN_WARNING DRV_MODULE_NAME
180 ": %s Memory squeeze, dropping packet.\n",
181 dev->name);
182 fep->stats.rx_dropped++;
183 skbn = skb;
187 fep->rx_skbuff[curidx] = skbn;
188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190 DMA_FROM_DEVICE));
191 CBDW_DATLEN(bdp, 0);
192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
195 * Update BD pointer to next entry.
197 if ((sc & BD_ENET_RX_WRAP) == 0)
198 bdp++;
199 else
200 bdp = fep->rx_bd_base;
202 (*fep->ops->rx_bd_done)(dev);
205 fep->cur_rx = bdp;
207 dev->quota -= received;
208 *budget -= received;
210 if (rx_work_limit < 0)
211 return 1; /* not done */
213 /* done */
214 netif_rx_complete(dev);
216 (*fep->ops->napi_enable_rx)(dev);
218 return 0;
221 /* non NAPI receive function */
222 static int fs_enet_rx_non_napi(struct net_device *dev)
224 struct fs_enet_private *fep = netdev_priv(dev);
225 const struct fs_platform_info *fpi = fep->fpi;
226 cbd_t *bdp;
227 struct sk_buff *skb, *skbn, *skbt;
228 int received = 0;
229 u16 pkt_len, sc;
230 int curidx;
232 * First, grab all of the stats for the incoming packet.
233 * These get messed up if we get called due to a busy condition.
235 bdp = fep->cur_rx;
237 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
239 curidx = bdp - fep->rx_bd_base;
242 * Since we have allocated space to hold a complete frame,
243 * the last indicator should be set.
245 if ((sc & BD_ENET_RX_LAST) == 0)
246 printk(KERN_WARNING DRV_MODULE_NAME
247 ": %s rcv is not +last\n",
248 dev->name);
251 * Check for errors.
253 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
254 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
255 fep->stats.rx_errors++;
256 /* Frame too long or too short. */
257 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
258 fep->stats.rx_length_errors++;
259 /* Frame alignment */
260 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
261 fep->stats.rx_frame_errors++;
262 /* CRC Error */
263 if (sc & BD_ENET_RX_CR)
264 fep->stats.rx_crc_errors++;
265 /* FIFO overrun */
266 if (sc & BD_ENET_RX_OV)
267 fep->stats.rx_crc_errors++;
269 skb = fep->rx_skbuff[curidx];
271 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
272 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
273 DMA_FROM_DEVICE);
275 skbn = skb;
277 } else {
279 skb = fep->rx_skbuff[curidx];
281 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
282 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
283 DMA_FROM_DEVICE);
286 * Process the incoming frame.
288 fep->stats.rx_packets++;
289 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
290 fep->stats.rx_bytes += pkt_len + 4;
292 if (pkt_len <= fpi->rx_copybreak) {
293 /* +2 to make IP header L1 cache aligned */
294 skbn = dev_alloc_skb(pkt_len + 2);
295 if (skbn != NULL) {
296 skb_reserve(skbn, 2); /* align IP header */
297 memcpy(skbn->data, skb->data, pkt_len);
298 /* swap */
299 skbt = skb;
300 skb = skbn;
301 skbn = skbt;
303 } else
304 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
306 if (skbn != NULL) {
307 skb->dev = dev;
308 skb_put(skb, pkt_len); /* Make room */
309 skb->protocol = eth_type_trans(skb, dev);
310 received++;
311 netif_rx(skb);
312 } else {
313 printk(KERN_WARNING DRV_MODULE_NAME
314 ": %s Memory squeeze, dropping packet.\n",
315 dev->name);
316 fep->stats.rx_dropped++;
317 skbn = skb;
321 fep->rx_skbuff[curidx] = skbn;
322 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
323 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
324 DMA_FROM_DEVICE));
325 CBDW_DATLEN(bdp, 0);
326 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
329 * Update BD pointer to next entry.
331 if ((sc & BD_ENET_RX_WRAP) == 0)
332 bdp++;
333 else
334 bdp = fep->rx_bd_base;
336 (*fep->ops->rx_bd_done)(dev);
339 fep->cur_rx = bdp;
341 return 0;
344 static void fs_enet_tx(struct net_device *dev)
346 struct fs_enet_private *fep = netdev_priv(dev);
347 cbd_t *bdp;
348 struct sk_buff *skb;
349 int dirtyidx, do_wake, do_restart;
350 u16 sc;
352 spin_lock(&fep->lock);
353 bdp = fep->dirty_tx;
355 do_wake = do_restart = 0;
356 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
358 dirtyidx = bdp - fep->tx_bd_base;
360 if (fep->tx_free == fep->tx_ring)
361 break;
363 skb = fep->tx_skbuff[dirtyidx];
366 * Check for errors.
368 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
369 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
371 if (sc & BD_ENET_TX_HB) /* No heartbeat */
372 fep->stats.tx_heartbeat_errors++;
373 if (sc & BD_ENET_TX_LC) /* Late collision */
374 fep->stats.tx_window_errors++;
375 if (sc & BD_ENET_TX_RL) /* Retrans limit */
376 fep->stats.tx_aborted_errors++;
377 if (sc & BD_ENET_TX_UN) /* Underrun */
378 fep->stats.tx_fifo_errors++;
379 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
380 fep->stats.tx_carrier_errors++;
382 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
383 fep->stats.tx_errors++;
384 do_restart = 1;
386 } else
387 fep->stats.tx_packets++;
389 if (sc & BD_ENET_TX_READY)
390 printk(KERN_WARNING DRV_MODULE_NAME
391 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
392 dev->name);
395 * Deferred means some collisions occurred during transmit,
396 * but we eventually sent the packet OK.
398 if (sc & BD_ENET_TX_DEF)
399 fep->stats.collisions++;
401 /* unmap */
402 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
403 skb->len, DMA_TO_DEVICE);
406 * Free the sk buffer associated with this last transmit.
408 dev_kfree_skb_irq(skb);
409 fep->tx_skbuff[dirtyidx] = NULL;
412 * Update pointer to next buffer descriptor to be transmitted.
414 if ((sc & BD_ENET_TX_WRAP) == 0)
415 bdp++;
416 else
417 bdp = fep->tx_bd_base;
420 * Since we have freed up a buffer, the ring is no longer
421 * full.
423 if (!fep->tx_free++)
424 do_wake = 1;
427 fep->dirty_tx = bdp;
429 if (do_restart)
430 (*fep->ops->tx_restart)(dev);
432 spin_unlock(&fep->lock);
434 if (do_wake)
435 netif_wake_queue(dev);
439 * The interrupt handler.
440 * This is called from the MPC core interrupt.
442 static irqreturn_t
443 fs_enet_interrupt(int irq, void *dev_id)
445 struct net_device *dev = dev_id;
446 struct fs_enet_private *fep;
447 const struct fs_platform_info *fpi;
448 u32 int_events;
449 u32 int_clr_events;
450 int nr, napi_ok;
451 int handled;
453 fep = netdev_priv(dev);
454 fpi = fep->fpi;
456 nr = 0;
457 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
459 nr++;
461 int_clr_events = int_events;
462 if (fpi->use_napi)
463 int_clr_events &= ~fep->ev_napi_rx;
465 (*fep->ops->clear_int_events)(dev, int_clr_events);
467 if (int_events & fep->ev_err)
468 (*fep->ops->ev_error)(dev, int_events);
470 if (int_events & fep->ev_rx) {
471 if (!fpi->use_napi)
472 fs_enet_rx_non_napi(dev);
473 else {
474 napi_ok = netif_rx_schedule_prep(dev);
476 (*fep->ops->napi_disable_rx)(dev);
477 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
479 /* NOTE: it is possible for FCCs in NAPI mode */
480 /* to submit a spurious interrupt while in poll */
481 if (napi_ok)
482 __netif_rx_schedule(dev);
486 if (int_events & fep->ev_tx)
487 fs_enet_tx(dev);
490 handled = nr > 0;
491 return IRQ_RETVAL(handled);
494 void fs_init_bds(struct net_device *dev)
496 struct fs_enet_private *fep = netdev_priv(dev);
497 cbd_t *bdp;
498 struct sk_buff *skb;
499 int i;
501 fs_cleanup_bds(dev);
503 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
504 fep->tx_free = fep->tx_ring;
505 fep->cur_rx = fep->rx_bd_base;
508 * Initialize the receive buffer descriptors.
510 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
511 skb = dev_alloc_skb(ENET_RX_FRSIZE);
512 if (skb == NULL) {
513 printk(KERN_WARNING DRV_MODULE_NAME
514 ": %s Memory squeeze, unable to allocate skb\n",
515 dev->name);
516 break;
518 fep->rx_skbuff[i] = skb;
519 skb->dev = dev;
520 CBDW_BUFADDR(bdp,
521 dma_map_single(fep->dev, skb->data,
522 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
523 DMA_FROM_DEVICE));
524 CBDW_DATLEN(bdp, 0); /* zero */
525 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
526 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
529 * if we failed, fillup remainder
531 for (; i < fep->rx_ring; i++, bdp++) {
532 fep->rx_skbuff[i] = NULL;
533 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
537 * ...and the same for transmit.
539 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
540 fep->tx_skbuff[i] = NULL;
541 CBDW_BUFADDR(bdp, 0);
542 CBDW_DATLEN(bdp, 0);
543 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
547 void fs_cleanup_bds(struct net_device *dev)
549 struct fs_enet_private *fep = netdev_priv(dev);
550 struct sk_buff *skb;
551 cbd_t *bdp;
552 int i;
555 * Reset SKB transmit buffers.
557 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
558 if ((skb = fep->tx_skbuff[i]) == NULL)
559 continue;
561 /* unmap */
562 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
563 skb->len, DMA_TO_DEVICE);
565 fep->tx_skbuff[i] = NULL;
566 dev_kfree_skb(skb);
570 * Reset SKB receive buffers
572 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
573 if ((skb = fep->rx_skbuff[i]) == NULL)
574 continue;
576 /* unmap */
577 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
578 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
579 DMA_FROM_DEVICE);
581 fep->rx_skbuff[i] = NULL;
583 dev_kfree_skb(skb);
587 /**********************************************************************************/
589 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
591 struct fs_enet_private *fep = netdev_priv(dev);
592 cbd_t *bdp;
593 int curidx;
594 u16 sc;
595 unsigned long flags;
597 spin_lock_irqsave(&fep->tx_lock, flags);
600 * Fill in a Tx ring entry
602 bdp = fep->cur_tx;
604 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
605 netif_stop_queue(dev);
606 spin_unlock_irqrestore(&fep->tx_lock, flags);
609 * Ooops. All transmit buffers are full. Bail out.
610 * This should not happen, since the tx queue should be stopped.
612 printk(KERN_WARNING DRV_MODULE_NAME
613 ": %s tx queue full!.\n", dev->name);
614 return NETDEV_TX_BUSY;
617 curidx = bdp - fep->tx_bd_base;
619 * Clear all of the status flags.
621 CBDC_SC(bdp, BD_ENET_TX_STATS);
624 * Save skb pointer.
626 fep->tx_skbuff[curidx] = skb;
628 fep->stats.tx_bytes += skb->len;
631 * Push the data cache so the CPM does not get stale memory data.
633 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
634 skb->data, skb->len, DMA_TO_DEVICE));
635 CBDW_DATLEN(bdp, skb->len);
637 dev->trans_start = jiffies;
640 * If this was the last BD in the ring, start at the beginning again.
642 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
643 fep->cur_tx++;
644 else
645 fep->cur_tx = fep->tx_bd_base;
647 if (!--fep->tx_free)
648 netif_stop_queue(dev);
650 /* Trigger transmission start */
651 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
652 BD_ENET_TX_LAST | BD_ENET_TX_TC;
654 /* note that while FEC does not have this bit
655 * it marks it as available for software use
656 * yay for hw reuse :) */
657 if (skb->len <= 60)
658 sc |= BD_ENET_TX_PAD;
659 CBDS_SC(bdp, sc);
661 (*fep->ops->tx_kickstart)(dev);
663 spin_unlock_irqrestore(&fep->tx_lock, flags);
665 return NETDEV_TX_OK;
668 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
669 irq_handler_t irqf)
671 struct fs_enet_private *fep = netdev_priv(dev);
673 (*fep->ops->pre_request_irq)(dev, irq);
674 return request_irq(irq, irqf, IRQF_SHARED, name, dev);
677 static void fs_free_irq(struct net_device *dev, int irq)
679 struct fs_enet_private *fep = netdev_priv(dev);
681 free_irq(irq, dev);
682 (*fep->ops->post_free_irq)(dev, irq);
685 static void fs_timeout(struct net_device *dev)
687 struct fs_enet_private *fep = netdev_priv(dev);
688 unsigned long flags;
689 int wake = 0;
691 fep->stats.tx_errors++;
693 spin_lock_irqsave(&fep->lock, flags);
695 if (dev->flags & IFF_UP) {
696 phy_stop(fep->phydev);
697 (*fep->ops->stop)(dev);
698 (*fep->ops->restart)(dev);
699 phy_start(fep->phydev);
702 phy_start(fep->phydev);
703 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
704 spin_unlock_irqrestore(&fep->lock, flags);
706 if (wake)
707 netif_wake_queue(dev);
710 /*-----------------------------------------------------------------------------
711 * generic link-change handler - should be sufficient for most cases
712 *-----------------------------------------------------------------------------*/
713 static void generic_adjust_link(struct net_device *dev)
715 struct fs_enet_private *fep = netdev_priv(dev);
716 struct phy_device *phydev = fep->phydev;
717 int new_state = 0;
719 if (phydev->link) {
721 /* adjust to duplex mode */
722 if (phydev->duplex != fep->oldduplex){
723 new_state = 1;
724 fep->oldduplex = phydev->duplex;
727 if (phydev->speed != fep->oldspeed) {
728 new_state = 1;
729 fep->oldspeed = phydev->speed;
732 if (!fep->oldlink) {
733 new_state = 1;
734 fep->oldlink = 1;
735 netif_schedule(dev);
736 netif_carrier_on(dev);
737 netif_start_queue(dev);
740 if (new_state)
741 fep->ops->restart(dev);
743 } else if (fep->oldlink) {
744 new_state = 1;
745 fep->oldlink = 0;
746 fep->oldspeed = 0;
747 fep->oldduplex = -1;
748 netif_carrier_off(dev);
749 netif_stop_queue(dev);
752 if (new_state && netif_msg_link(fep))
753 phy_print_status(phydev);
757 static void fs_adjust_link(struct net_device *dev)
759 struct fs_enet_private *fep = netdev_priv(dev);
760 unsigned long flags;
762 spin_lock_irqsave(&fep->lock, flags);
764 if(fep->ops->adjust_link)
765 fep->ops->adjust_link(dev);
766 else
767 generic_adjust_link(dev);
769 spin_unlock_irqrestore(&fep->lock, flags);
772 static int fs_init_phy(struct net_device *dev)
774 struct fs_enet_private *fep = netdev_priv(dev);
775 struct phy_device *phydev;
777 fep->oldlink = 0;
778 fep->oldspeed = 0;
779 fep->oldduplex = -1;
780 if(fep->fpi->bus_id)
781 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
782 PHY_INTERFACE_MODE_MII);
783 else {
784 printk("No phy bus ID specified in BSP code\n");
785 return -EINVAL;
787 if (IS_ERR(phydev)) {
788 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
789 return PTR_ERR(phydev);
792 fep->phydev = phydev;
794 return 0;
798 static int fs_enet_open(struct net_device *dev)
800 struct fs_enet_private *fep = netdev_priv(dev);
801 int r;
802 int err;
804 /* Install our interrupt handler. */
805 r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
806 if (r != 0) {
807 printk(KERN_ERR DRV_MODULE_NAME
808 ": %s Could not allocate FS_ENET IRQ!", dev->name);
809 return -EINVAL;
812 err = fs_init_phy(dev);
813 if(err)
814 return err;
816 phy_start(fep->phydev);
818 return 0;
821 static int fs_enet_close(struct net_device *dev)
823 struct fs_enet_private *fep = netdev_priv(dev);
824 unsigned long flags;
826 netif_stop_queue(dev);
827 netif_carrier_off(dev);
828 phy_stop(fep->phydev);
830 spin_lock_irqsave(&fep->lock, flags);
831 (*fep->ops->stop)(dev);
832 spin_unlock_irqrestore(&fep->lock, flags);
834 /* release any irqs */
835 phy_disconnect(fep->phydev);
836 fep->phydev = NULL;
837 fs_free_irq(dev, fep->interrupt);
839 return 0;
842 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
844 struct fs_enet_private *fep = netdev_priv(dev);
845 return &fep->stats;
848 /*************************************************************************/
850 static void fs_get_drvinfo(struct net_device *dev,
851 struct ethtool_drvinfo *info)
853 strcpy(info->driver, DRV_MODULE_NAME);
854 strcpy(info->version, DRV_MODULE_VERSION);
857 static int fs_get_regs_len(struct net_device *dev)
859 struct fs_enet_private *fep = netdev_priv(dev);
861 return (*fep->ops->get_regs_len)(dev);
864 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
865 void *p)
867 struct fs_enet_private *fep = netdev_priv(dev);
868 unsigned long flags;
869 int r, len;
871 len = regs->len;
873 spin_lock_irqsave(&fep->lock, flags);
874 r = (*fep->ops->get_regs)(dev, p, &len);
875 spin_unlock_irqrestore(&fep->lock, flags);
877 if (r == 0)
878 regs->version = 0;
881 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
883 struct fs_enet_private *fep = netdev_priv(dev);
884 return phy_ethtool_gset(fep->phydev, cmd);
887 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
889 struct fs_enet_private *fep = netdev_priv(dev);
890 phy_ethtool_sset(fep->phydev, cmd);
891 return 0;
894 static int fs_nway_reset(struct net_device *dev)
896 return 0;
899 static u32 fs_get_msglevel(struct net_device *dev)
901 struct fs_enet_private *fep = netdev_priv(dev);
902 return fep->msg_enable;
905 static void fs_set_msglevel(struct net_device *dev, u32 value)
907 struct fs_enet_private *fep = netdev_priv(dev);
908 fep->msg_enable = value;
911 static const struct ethtool_ops fs_ethtool_ops = {
912 .get_drvinfo = fs_get_drvinfo,
913 .get_regs_len = fs_get_regs_len,
914 .get_settings = fs_get_settings,
915 .set_settings = fs_set_settings,
916 .nway_reset = fs_nway_reset,
917 .get_link = ethtool_op_get_link,
918 .get_msglevel = fs_get_msglevel,
919 .set_msglevel = fs_set_msglevel,
920 .get_tx_csum = ethtool_op_get_tx_csum,
921 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
922 .get_sg = ethtool_op_get_sg,
923 .set_sg = ethtool_op_set_sg,
924 .get_regs = fs_get_regs,
927 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
929 struct fs_enet_private *fep = netdev_priv(dev);
930 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
931 unsigned long flags;
932 int rc;
934 if (!netif_running(dev))
935 return -EINVAL;
937 spin_lock_irqsave(&fep->lock, flags);
938 rc = phy_mii_ioctl(fep->phydev, mii, cmd);
939 spin_unlock_irqrestore(&fep->lock, flags);
940 return rc;
943 extern int fs_mii_connect(struct net_device *dev);
944 extern void fs_mii_disconnect(struct net_device *dev);
946 static struct net_device *fs_init_instance(struct device *dev,
947 struct fs_platform_info *fpi)
949 struct net_device *ndev = NULL;
950 struct fs_enet_private *fep = NULL;
951 int privsize, i, r, err = 0, registered = 0;
953 fpi->fs_no = fs_get_id(fpi);
954 /* guard */
955 if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
956 return ERR_PTR(-EINVAL);
958 privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
959 (fpi->rx_ring + fpi->tx_ring));
961 ndev = alloc_etherdev(privsize);
962 if (!ndev) {
963 err = -ENOMEM;
964 goto err;
966 SET_MODULE_OWNER(ndev);
968 fep = netdev_priv(ndev);
969 memset(fep, 0, privsize); /* clear everything */
971 fep->dev = dev;
972 dev_set_drvdata(dev, ndev);
973 fep->fpi = fpi;
974 if (fpi->init_ioports)
975 fpi->init_ioports((struct fs_platform_info *)fpi);
977 #ifdef CONFIG_FS_ENET_HAS_FEC
978 if (fs_get_fec_index(fpi->fs_no) >= 0)
979 fep->ops = &fs_fec_ops;
980 #endif
982 #ifdef CONFIG_FS_ENET_HAS_SCC
983 if (fs_get_scc_index(fpi->fs_no) >=0 )
984 fep->ops = &fs_scc_ops;
985 #endif
987 #ifdef CONFIG_FS_ENET_HAS_FCC
988 if (fs_get_fcc_index(fpi->fs_no) >= 0)
989 fep->ops = &fs_fcc_ops;
990 #endif
992 if (fep->ops == NULL) {
993 printk(KERN_ERR DRV_MODULE_NAME
994 ": %s No matching ops found (%d).\n",
995 ndev->name, fpi->fs_no);
996 err = -EINVAL;
997 goto err;
1000 r = (*fep->ops->setup_data)(ndev);
1001 if (r != 0) {
1002 printk(KERN_ERR DRV_MODULE_NAME
1003 ": %s setup_data failed\n",
1004 ndev->name);
1005 err = r;
1006 goto err;
1009 /* point rx_skbuff, tx_skbuff */
1010 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1011 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1013 /* init locks */
1014 spin_lock_init(&fep->lock);
1015 spin_lock_init(&fep->tx_lock);
1018 * Set the Ethernet address.
1020 for (i = 0; i < 6; i++)
1021 ndev->dev_addr[i] = fpi->macaddr[i];
1023 r = (*fep->ops->allocate_bd)(ndev);
1025 if (fep->ring_base == NULL) {
1026 printk(KERN_ERR DRV_MODULE_NAME
1027 ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
1028 err = r;
1029 goto err;
1033 * Set receive and transmit descriptor base.
1035 fep->rx_bd_base = fep->ring_base;
1036 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1038 /* initialize ring size variables */
1039 fep->tx_ring = fpi->tx_ring;
1040 fep->rx_ring = fpi->rx_ring;
1043 * The FEC Ethernet specific entries in the device structure.
1045 ndev->open = fs_enet_open;
1046 ndev->hard_start_xmit = fs_enet_start_xmit;
1047 ndev->tx_timeout = fs_timeout;
1048 ndev->watchdog_timeo = 2 * HZ;
1049 ndev->stop = fs_enet_close;
1050 ndev->get_stats = fs_enet_get_stats;
1051 ndev->set_multicast_list = fs_set_multicast_list;
1052 if (fpi->use_napi) {
1053 ndev->poll = fs_enet_rx_napi;
1054 ndev->weight = fpi->napi_weight;
1056 ndev->ethtool_ops = &fs_ethtool_ops;
1057 ndev->do_ioctl = fs_ioctl;
1059 init_timer(&fep->phy_timer_list);
1061 netif_carrier_off(ndev);
1063 err = register_netdev(ndev);
1064 if (err != 0) {
1065 printk(KERN_ERR DRV_MODULE_NAME
1066 ": %s register_netdev failed.\n", ndev->name);
1067 goto err;
1069 registered = 1;
1072 return ndev;
1074 err:
1075 if (ndev != NULL) {
1077 if (registered)
1078 unregister_netdev(ndev);
1080 if (fep != NULL) {
1081 (*fep->ops->free_bd)(ndev);
1082 (*fep->ops->cleanup_data)(ndev);
1085 free_netdev(ndev);
1088 dev_set_drvdata(dev, NULL);
1090 return ERR_PTR(err);
1093 static int fs_cleanup_instance(struct net_device *ndev)
1095 struct fs_enet_private *fep;
1096 const struct fs_platform_info *fpi;
1097 struct device *dev;
1099 if (ndev == NULL)
1100 return -EINVAL;
1102 fep = netdev_priv(ndev);
1103 if (fep == NULL)
1104 return -EINVAL;
1106 fpi = fep->fpi;
1108 unregister_netdev(ndev);
1110 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1111 fep->ring_base, fep->ring_mem_addr);
1113 /* reset it */
1114 (*fep->ops->cleanup_data)(ndev);
1116 dev = fep->dev;
1117 if (dev != NULL) {
1118 dev_set_drvdata(dev, NULL);
1119 fep->dev = NULL;
1122 free_netdev(ndev);
1124 return 0;
1127 /**************************************************************************************/
1129 /* handy pointer to the immap */
1130 void *fs_enet_immap = NULL;
1132 static int setup_immap(void)
1134 phys_addr_t paddr = 0;
1135 unsigned long size = 0;
1137 #ifdef CONFIG_CPM1
1138 paddr = IMAP_ADDR;
1139 size = 0x10000; /* map 64K */
1140 #endif
1142 #ifdef CONFIG_CPM2
1143 paddr = CPM_MAP_ADDR;
1144 size = 0x40000; /* map 256 K */
1145 #endif
1146 fs_enet_immap = ioremap(paddr, size);
1147 if (fs_enet_immap == NULL)
1148 return -EBADF; /* XXX ahem; maybe just BUG_ON? */
1150 return 0;
1153 static void cleanup_immap(void)
1155 if (fs_enet_immap != NULL) {
1156 iounmap(fs_enet_immap);
1157 fs_enet_immap = NULL;
1161 /**************************************************************************************/
1163 static int __devinit fs_enet_probe(struct device *dev)
1165 struct net_device *ndev;
1167 /* no fixup - no device */
1168 if (dev->platform_data == NULL) {
1169 printk(KERN_INFO "fs_enet: "
1170 "probe called with no platform data; "
1171 "remove unused devices\n");
1172 return -ENODEV;
1175 ndev = fs_init_instance(dev, dev->platform_data);
1176 if (IS_ERR(ndev))
1177 return PTR_ERR(ndev);
1178 return 0;
1181 static int fs_enet_remove(struct device *dev)
1183 return fs_cleanup_instance(dev_get_drvdata(dev));
1186 static struct device_driver fs_enet_fec_driver = {
1187 .name = "fsl-cpm-fec",
1188 .bus = &platform_bus_type,
1189 .probe = fs_enet_probe,
1190 .remove = fs_enet_remove,
1191 #ifdef CONFIG_PM
1192 /* .suspend = fs_enet_suspend, TODO */
1193 /* .resume = fs_enet_resume, TODO */
1194 #endif
1197 static struct device_driver fs_enet_scc_driver = {
1198 .name = "fsl-cpm-scc",
1199 .bus = &platform_bus_type,
1200 .probe = fs_enet_probe,
1201 .remove = fs_enet_remove,
1202 #ifdef CONFIG_PM
1203 /* .suspend = fs_enet_suspend, TODO */
1204 /* .resume = fs_enet_resume, TODO */
1205 #endif
1208 static struct device_driver fs_enet_fcc_driver = {
1209 .name = "fsl-cpm-fcc",
1210 .bus = &platform_bus_type,
1211 .probe = fs_enet_probe,
1212 .remove = fs_enet_remove,
1213 #ifdef CONFIG_PM
1214 /* .suspend = fs_enet_suspend, TODO */
1215 /* .resume = fs_enet_resume, TODO */
1216 #endif
1219 static int __init fs_init(void)
1221 int r;
1223 printk(KERN_INFO
1224 "%s", version);
1226 r = setup_immap();
1227 if (r != 0)
1228 return r;
1230 #ifdef CONFIG_FS_ENET_HAS_FCC
1231 /* let's insert mii stuff */
1232 r = fs_enet_mdio_bb_init();
1234 if (r != 0) {
1235 printk(KERN_ERR DRV_MODULE_NAME
1236 "BB PHY init failed.\n");
1237 return r;
1239 r = driver_register(&fs_enet_fcc_driver);
1240 if (r != 0)
1241 goto err;
1242 #endif
1244 #ifdef CONFIG_FS_ENET_HAS_FEC
1245 r = fs_enet_mdio_fec_init();
1246 if (r != 0) {
1247 printk(KERN_ERR DRV_MODULE_NAME
1248 "FEC PHY init failed.\n");
1249 return r;
1252 r = driver_register(&fs_enet_fec_driver);
1253 if (r != 0)
1254 goto err;
1255 #endif
1257 #ifdef CONFIG_FS_ENET_HAS_SCC
1258 r = driver_register(&fs_enet_scc_driver);
1259 if (r != 0)
1260 goto err;
1261 #endif
1263 return 0;
1264 err:
1265 cleanup_immap();
1266 return r;
1270 static void __exit fs_cleanup(void)
1272 driver_unregister(&fs_enet_fec_driver);
1273 driver_unregister(&fs_enet_fcc_driver);
1274 driver_unregister(&fs_enet_scc_driver);
1275 cleanup_immap();
1278 /**************************************************************************************/
1280 module_init(fs_init);
1281 module_exit(fs_cleanup);