sched: debug, improve migration statistics
[linux-2.6/linux-2.6-openrd.git] / kernel / sched.c
blob3b27c3a553aa3a0b20a7e78248d6795d60ad6ff0
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
66 #include <asm/tlb.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak)) sched_clock(void)
75 return (unsigned long long)jiffies * (1000000000 / HZ);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
113 #ifdef CONFIG_SMP
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 #endif
134 static inline int rt_policy(int policy)
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
141 static inline int task_has_rt_policy(struct task_struct *p)
143 return rt_policy(p->policy);
147 * This is the priority-queue data structure of the RT scheduling class:
149 struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
154 #ifdef CONFIG_FAIR_GROUP_SCHED
156 struct cfs_rq;
158 /* task group related information */
159 struct task_group {
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
169 /* Default task group's sched entity on each cpu */
170 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171 /* Default task group's cfs_rq on each cpu */
172 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
174 static struct sched_entity *init_sched_entity_p[NR_CPUS];
175 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
177 /* Default task group.
178 * Every task in system belong to this group at bootup.
180 struct task_group init_task_group = {
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
185 #ifdef CONFIG_FAIR_USER_SCHED
186 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
187 #else
188 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
189 #endif
191 static int init_task_group_load = INIT_TASK_GRP_LOAD;
193 /* return group to which a task belongs */
194 static inline struct task_group *task_group(struct task_struct *p)
196 struct task_group *tg;
198 #ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200 #else
201 tg = &init_task_group;
202 #endif
204 return tg;
207 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208 static inline void set_task_cfs_rq(struct task_struct *p)
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
214 #else
216 static inline void set_task_cfs_rq(struct task_struct *p) { }
218 #endif /* CONFIG_FAIR_GROUP_SCHED */
220 /* CFS-related fields in a runqueue */
221 struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
225 u64 exec_clock;
226 u64 min_vruntime;
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
234 struct sched_entity *curr;
236 unsigned long nr_spread_over;
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249 struct task_group *tg; /* group that "owns" this runqueue */
250 struct rcu_head rcu;
251 #endif
254 /* Real-Time classes' related field in a runqueue: */
255 struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
262 * This is the main, per-CPU runqueue data structure.
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
268 struct rq {
269 spinlock_t lock; /* runqueue lock */
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
275 unsigned long nr_running;
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278 unsigned char idle_at_tick;
279 #ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281 #endif
282 struct load_weight load; /* capture load from *all* tasks on this cpu */
283 unsigned long nr_load_updates;
284 u64 nr_switches;
286 struct cfs_rq cfs;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
289 #endif
290 struct rt_rq rt;
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
298 unsigned long nr_uninterruptible;
300 struct task_struct *curr, *idle;
301 unsigned long next_balance;
302 struct mm_struct *prev_mm;
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
307 unsigned int clock_warps, clock_overflows;
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
310 u64 tick_timestamp;
312 atomic_t nr_iowait;
314 #ifdef CONFIG_SMP
315 struct sched_domain *sd;
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
320 int cpu; /* cpu of this runqueue */
322 struct task_struct *migration_thread;
323 struct list_head migration_queue;
324 #endif
326 #ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
334 unsigned long yld_count;
336 /* schedule() stats */
337 unsigned long sched_switch;
338 unsigned long sched_count;
339 unsigned long sched_goidle;
341 /* try_to_wake_up() stats */
342 unsigned long ttwu_count;
343 unsigned long ttwu_local;
345 /* BKL stats */
346 unsigned long bkl_count;
347 #endif
348 struct lock_class_key rq_lock_key;
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352 static DEFINE_MUTEX(sched_hotcpu_mutex);
354 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
356 rq->curr->sched_class->check_preempt_curr(rq, p);
359 static inline int cpu_of(struct rq *rq)
361 #ifdef CONFIG_SMP
362 return rq->cpu;
363 #else
364 return 0;
365 #endif
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
372 static void __update_rq_clock(struct rq *rq)
374 u64 prev_raw = rq->prev_clock_raw;
375 u64 now = sched_clock();
376 s64 delta = now - prev_raw;
377 u64 clock = rq->clock;
379 #ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
381 #endif
383 * Protect against sched_clock() occasionally going backwards:
385 if (unlikely(delta < 0)) {
386 clock++;
387 rq->clock_warps++;
388 } else {
390 * Catch too large forward jumps too:
392 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
393 if (clock < rq->tick_timestamp + TICK_NSEC)
394 clock = rq->tick_timestamp + TICK_NSEC;
395 else
396 clock++;
397 rq->clock_overflows++;
398 } else {
399 if (unlikely(delta > rq->clock_max_delta))
400 rq->clock_max_delta = delta;
401 clock += delta;
405 rq->prev_clock_raw = now;
406 rq->clock = clock;
409 static void update_rq_clock(struct rq *rq)
411 if (likely(smp_processor_id() == cpu_of(rq)))
412 __update_rq_clock(rq);
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417 * See detach_destroy_domains: synchronize_sched for details.
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
422 #define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
425 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426 #define this_rq() (&__get_cpu_var(runqueues))
427 #define task_rq(p) cpu_rq(task_cpu(p))
428 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
433 #ifdef CONFIG_SCHED_DEBUG
434 # define const_debug __read_mostly
435 #else
436 # define const_debug static const
437 #endif
440 * Debugging: various feature bits
442 enum {
443 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
444 SCHED_FEAT_START_DEBIT = 2,
445 SCHED_FEAT_TREE_AVG = 4,
446 SCHED_FEAT_APPROX_AVG = 8,
447 SCHED_FEAT_WAKEUP_PREEMPT = 16,
448 SCHED_FEAT_PREEMPT_RESTRICT = 32,
451 const_debug unsigned int sysctl_sched_features =
452 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
453 SCHED_FEAT_START_DEBIT *1 |
454 SCHED_FEAT_TREE_AVG *0 |
455 SCHED_FEAT_APPROX_AVG *0 |
456 SCHED_FEAT_WAKEUP_PREEMPT *1 |
457 SCHED_FEAT_PREEMPT_RESTRICT *1;
459 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
462 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
463 * clock constructed from sched_clock():
465 unsigned long long cpu_clock(int cpu)
467 unsigned long long now;
468 unsigned long flags;
469 struct rq *rq;
471 local_irq_save(flags);
472 rq = cpu_rq(cpu);
473 update_rq_clock(rq);
474 now = rq->clock;
475 local_irq_restore(flags);
477 return now;
479 EXPORT_SYMBOL_GPL(cpu_clock);
481 #ifndef prepare_arch_switch
482 # define prepare_arch_switch(next) do { } while (0)
483 #endif
484 #ifndef finish_arch_switch
485 # define finish_arch_switch(prev) do { } while (0)
486 #endif
488 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
489 static inline int task_running(struct rq *rq, struct task_struct *p)
491 return rq->curr == p;
494 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
498 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
500 #ifdef CONFIG_DEBUG_SPINLOCK
501 /* this is a valid case when another task releases the spinlock */
502 rq->lock.owner = current;
503 #endif
505 * If we are tracking spinlock dependencies then we have to
506 * fix up the runqueue lock - which gets 'carried over' from
507 * prev into current:
509 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
511 spin_unlock_irq(&rq->lock);
514 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
515 static inline int task_running(struct rq *rq, struct task_struct *p)
517 #ifdef CONFIG_SMP
518 return p->oncpu;
519 #else
520 return rq->curr == p;
521 #endif
524 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
526 #ifdef CONFIG_SMP
528 * We can optimise this out completely for !SMP, because the
529 * SMP rebalancing from interrupt is the only thing that cares
530 * here.
532 next->oncpu = 1;
533 #endif
534 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
535 spin_unlock_irq(&rq->lock);
536 #else
537 spin_unlock(&rq->lock);
538 #endif
541 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
543 #ifdef CONFIG_SMP
545 * After ->oncpu is cleared, the task can be moved to a different CPU.
546 * We must ensure this doesn't happen until the switch is completely
547 * finished.
549 smp_wmb();
550 prev->oncpu = 0;
551 #endif
552 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 local_irq_enable();
554 #endif
556 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
559 * __task_rq_lock - lock the runqueue a given task resides on.
560 * Must be called interrupts disabled.
562 static inline struct rq *__task_rq_lock(struct task_struct *p)
563 __acquires(rq->lock)
565 for (;;) {
566 struct rq *rq = task_rq(p);
567 spin_lock(&rq->lock);
568 if (likely(rq == task_rq(p)))
569 return rq;
570 spin_unlock(&rq->lock);
575 * task_rq_lock - lock the runqueue a given task resides on and disable
576 * interrupts. Note the ordering: we can safely lookup the task_rq without
577 * explicitly disabling preemption.
579 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
580 __acquires(rq->lock)
582 struct rq *rq;
584 for (;;) {
585 local_irq_save(*flags);
586 rq = task_rq(p);
587 spin_lock(&rq->lock);
588 if (likely(rq == task_rq(p)))
589 return rq;
590 spin_unlock_irqrestore(&rq->lock, *flags);
594 static void __task_rq_unlock(struct rq *rq)
595 __releases(rq->lock)
597 spin_unlock(&rq->lock);
600 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
601 __releases(rq->lock)
603 spin_unlock_irqrestore(&rq->lock, *flags);
607 * this_rq_lock - lock this runqueue and disable interrupts.
609 static struct rq *this_rq_lock(void)
610 __acquires(rq->lock)
612 struct rq *rq;
614 local_irq_disable();
615 rq = this_rq();
616 spin_lock(&rq->lock);
618 return rq;
622 * We are going deep-idle (irqs are disabled):
624 void sched_clock_idle_sleep_event(void)
626 struct rq *rq = cpu_rq(smp_processor_id());
628 spin_lock(&rq->lock);
629 __update_rq_clock(rq);
630 spin_unlock(&rq->lock);
631 rq->clock_deep_idle_events++;
633 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
636 * We just idled delta nanoseconds (called with irqs disabled):
638 void sched_clock_idle_wakeup_event(u64 delta_ns)
640 struct rq *rq = cpu_rq(smp_processor_id());
641 u64 now = sched_clock();
643 rq->idle_clock += delta_ns;
645 * Override the previous timestamp and ignore all
646 * sched_clock() deltas that occured while we idled,
647 * and use the PM-provided delta_ns to advance the
648 * rq clock:
650 spin_lock(&rq->lock);
651 rq->prev_clock_raw = now;
652 rq->clock += delta_ns;
653 spin_unlock(&rq->lock);
655 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
658 * resched_task - mark a task 'to be rescheduled now'.
660 * On UP this means the setting of the need_resched flag, on SMP it
661 * might also involve a cross-CPU call to trigger the scheduler on
662 * the target CPU.
664 #ifdef CONFIG_SMP
666 #ifndef tsk_is_polling
667 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
668 #endif
670 static void resched_task(struct task_struct *p)
672 int cpu;
674 assert_spin_locked(&task_rq(p)->lock);
676 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
677 return;
679 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
681 cpu = task_cpu(p);
682 if (cpu == smp_processor_id())
683 return;
685 /* NEED_RESCHED must be visible before we test polling */
686 smp_mb();
687 if (!tsk_is_polling(p))
688 smp_send_reschedule(cpu);
691 static void resched_cpu(int cpu)
693 struct rq *rq = cpu_rq(cpu);
694 unsigned long flags;
696 if (!spin_trylock_irqsave(&rq->lock, flags))
697 return;
698 resched_task(cpu_curr(cpu));
699 spin_unlock_irqrestore(&rq->lock, flags);
701 #else
702 static inline void resched_task(struct task_struct *p)
704 assert_spin_locked(&task_rq(p)->lock);
705 set_tsk_need_resched(p);
707 #endif
709 #if BITS_PER_LONG == 32
710 # define WMULT_CONST (~0UL)
711 #else
712 # define WMULT_CONST (1UL << 32)
713 #endif
715 #define WMULT_SHIFT 32
718 * Shift right and round:
720 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
722 static unsigned long
723 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
724 struct load_weight *lw)
726 u64 tmp;
728 if (unlikely(!lw->inv_weight))
729 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
731 tmp = (u64)delta_exec * weight;
733 * Check whether we'd overflow the 64-bit multiplication:
735 if (unlikely(tmp > WMULT_CONST))
736 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
737 WMULT_SHIFT/2);
738 else
739 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
741 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
744 static inline unsigned long
745 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
747 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
750 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
752 lw->weight += inc;
755 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
757 lw->weight -= dec;
761 * To aid in avoiding the subversion of "niceness" due to uneven distribution
762 * of tasks with abnormal "nice" values across CPUs the contribution that
763 * each task makes to its run queue's load is weighted according to its
764 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
765 * scaled version of the new time slice allocation that they receive on time
766 * slice expiry etc.
769 #define WEIGHT_IDLEPRIO 2
770 #define WMULT_IDLEPRIO (1 << 31)
773 * Nice levels are multiplicative, with a gentle 10% change for every
774 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
775 * nice 1, it will get ~10% less CPU time than another CPU-bound task
776 * that remained on nice 0.
778 * The "10% effect" is relative and cumulative: from _any_ nice level,
779 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
780 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
781 * If a task goes up by ~10% and another task goes down by ~10% then
782 * the relative distance between them is ~25%.)
784 static const int prio_to_weight[40] = {
785 /* -20 */ 88761, 71755, 56483, 46273, 36291,
786 /* -15 */ 29154, 23254, 18705, 14949, 11916,
787 /* -10 */ 9548, 7620, 6100, 4904, 3906,
788 /* -5 */ 3121, 2501, 1991, 1586, 1277,
789 /* 0 */ 1024, 820, 655, 526, 423,
790 /* 5 */ 335, 272, 215, 172, 137,
791 /* 10 */ 110, 87, 70, 56, 45,
792 /* 15 */ 36, 29, 23, 18, 15,
796 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
798 * In cases where the weight does not change often, we can use the
799 * precalculated inverse to speed up arithmetics by turning divisions
800 * into multiplications:
802 static const u32 prio_to_wmult[40] = {
803 /* -20 */ 48388, 59856, 76040, 92818, 118348,
804 /* -15 */ 147320, 184698, 229616, 287308, 360437,
805 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
806 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
807 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
808 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
809 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
810 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
813 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
816 * runqueue iterator, to support SMP load-balancing between different
817 * scheduling classes, without having to expose their internal data
818 * structures to the load-balancing proper:
820 struct rq_iterator {
821 void *arg;
822 struct task_struct *(*start)(void *);
823 struct task_struct *(*next)(void *);
826 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
827 unsigned long max_nr_move, unsigned long max_load_move,
828 struct sched_domain *sd, enum cpu_idle_type idle,
829 int *all_pinned, unsigned long *load_moved,
830 int *this_best_prio, struct rq_iterator *iterator);
832 #include "sched_stats.h"
833 #include "sched_idletask.c"
834 #include "sched_fair.c"
835 #include "sched_rt.c"
836 #ifdef CONFIG_SCHED_DEBUG
837 # include "sched_debug.c"
838 #endif
840 #define sched_class_highest (&rt_sched_class)
843 * Update delta_exec, delta_fair fields for rq.
845 * delta_fair clock advances at a rate inversely proportional to
846 * total load (rq->load.weight) on the runqueue, while
847 * delta_exec advances at the same rate as wall-clock (provided
848 * cpu is not idle).
850 * delta_exec / delta_fair is a measure of the (smoothened) load on this
851 * runqueue over any given interval. This (smoothened) load is used
852 * during load balance.
854 * This function is called /before/ updating rq->load
855 * and when switching tasks.
857 static inline void inc_load(struct rq *rq, const struct task_struct *p)
859 update_load_add(&rq->load, p->se.load.weight);
862 static inline void dec_load(struct rq *rq, const struct task_struct *p)
864 update_load_sub(&rq->load, p->se.load.weight);
867 static void inc_nr_running(struct task_struct *p, struct rq *rq)
869 rq->nr_running++;
870 inc_load(rq, p);
873 static void dec_nr_running(struct task_struct *p, struct rq *rq)
875 rq->nr_running--;
876 dec_load(rq, p);
879 static void set_load_weight(struct task_struct *p)
881 if (task_has_rt_policy(p)) {
882 p->se.load.weight = prio_to_weight[0] * 2;
883 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
884 return;
888 * SCHED_IDLE tasks get minimal weight:
890 if (p->policy == SCHED_IDLE) {
891 p->se.load.weight = WEIGHT_IDLEPRIO;
892 p->se.load.inv_weight = WMULT_IDLEPRIO;
893 return;
896 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
897 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
900 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
902 sched_info_queued(p);
903 p->sched_class->enqueue_task(rq, p, wakeup);
904 p->se.on_rq = 1;
907 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
909 p->sched_class->dequeue_task(rq, p, sleep);
910 p->se.on_rq = 0;
914 * __normal_prio - return the priority that is based on the static prio
916 static inline int __normal_prio(struct task_struct *p)
918 return p->static_prio;
922 * Calculate the expected normal priority: i.e. priority
923 * without taking RT-inheritance into account. Might be
924 * boosted by interactivity modifiers. Changes upon fork,
925 * setprio syscalls, and whenever the interactivity
926 * estimator recalculates.
928 static inline int normal_prio(struct task_struct *p)
930 int prio;
932 if (task_has_rt_policy(p))
933 prio = MAX_RT_PRIO-1 - p->rt_priority;
934 else
935 prio = __normal_prio(p);
936 return prio;
940 * Calculate the current priority, i.e. the priority
941 * taken into account by the scheduler. This value might
942 * be boosted by RT tasks, or might be boosted by
943 * interactivity modifiers. Will be RT if the task got
944 * RT-boosted. If not then it returns p->normal_prio.
946 static int effective_prio(struct task_struct *p)
948 p->normal_prio = normal_prio(p);
950 * If we are RT tasks or we were boosted to RT priority,
951 * keep the priority unchanged. Otherwise, update priority
952 * to the normal priority:
954 if (!rt_prio(p->prio))
955 return p->normal_prio;
956 return p->prio;
960 * activate_task - move a task to the runqueue.
962 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
964 if (p->state == TASK_UNINTERRUPTIBLE)
965 rq->nr_uninterruptible--;
967 enqueue_task(rq, p, wakeup);
968 inc_nr_running(p, rq);
972 * deactivate_task - remove a task from the runqueue.
974 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible++;
979 dequeue_task(rq, p, sleep);
980 dec_nr_running(p, rq);
984 * task_curr - is this task currently executing on a CPU?
985 * @p: the task in question.
987 inline int task_curr(const struct task_struct *p)
989 return cpu_curr(task_cpu(p)) == p;
992 /* Used instead of source_load when we know the type == 0 */
993 unsigned long weighted_cpuload(const int cpu)
995 return cpu_rq(cpu)->load.weight;
998 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1000 #ifdef CONFIG_SMP
1001 task_thread_info(p)->cpu = cpu;
1002 #endif
1003 set_task_cfs_rq(p);
1006 #ifdef CONFIG_SMP
1009 * Is this task likely cache-hot:
1011 static inline int
1012 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1014 s64 delta;
1016 if (p->sched_class != &fair_sched_class)
1017 return 0;
1019 delta = now - p->se.exec_start;
1021 return delta < (s64)sysctl_sched_migration_cost;
1025 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1027 int old_cpu = task_cpu(p);
1028 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1029 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1030 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1031 u64 clock_offset;
1033 clock_offset = old_rq->clock - new_rq->clock;
1035 #ifdef CONFIG_SCHEDSTATS
1036 if (p->se.wait_start)
1037 p->se.wait_start -= clock_offset;
1038 if (p->se.sleep_start)
1039 p->se.sleep_start -= clock_offset;
1040 if (p->se.block_start)
1041 p->se.block_start -= clock_offset;
1042 if (old_cpu != new_cpu) {
1043 schedstat_inc(p, se.nr_migrations);
1044 if (task_hot(p, old_rq->clock, NULL))
1045 schedstat_inc(p, se.nr_forced2_migrations);
1047 #endif
1048 p->se.vruntime -= old_cfsrq->min_vruntime -
1049 new_cfsrq->min_vruntime;
1051 __set_task_cpu(p, new_cpu);
1054 struct migration_req {
1055 struct list_head list;
1057 struct task_struct *task;
1058 int dest_cpu;
1060 struct completion done;
1064 * The task's runqueue lock must be held.
1065 * Returns true if you have to wait for migration thread.
1067 static int
1068 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1070 struct rq *rq = task_rq(p);
1073 * If the task is not on a runqueue (and not running), then
1074 * it is sufficient to simply update the task's cpu field.
1076 if (!p->se.on_rq && !task_running(rq, p)) {
1077 set_task_cpu(p, dest_cpu);
1078 return 0;
1081 init_completion(&req->done);
1082 req->task = p;
1083 req->dest_cpu = dest_cpu;
1084 list_add(&req->list, &rq->migration_queue);
1086 return 1;
1090 * wait_task_inactive - wait for a thread to unschedule.
1092 * The caller must ensure that the task *will* unschedule sometime soon,
1093 * else this function might spin for a *long* time. This function can't
1094 * be called with interrupts off, or it may introduce deadlock with
1095 * smp_call_function() if an IPI is sent by the same process we are
1096 * waiting to become inactive.
1098 void wait_task_inactive(struct task_struct *p)
1100 unsigned long flags;
1101 int running, on_rq;
1102 struct rq *rq;
1104 for (;;) {
1106 * We do the initial early heuristics without holding
1107 * any task-queue locks at all. We'll only try to get
1108 * the runqueue lock when things look like they will
1109 * work out!
1111 rq = task_rq(p);
1114 * If the task is actively running on another CPU
1115 * still, just relax and busy-wait without holding
1116 * any locks.
1118 * NOTE! Since we don't hold any locks, it's not
1119 * even sure that "rq" stays as the right runqueue!
1120 * But we don't care, since "task_running()" will
1121 * return false if the runqueue has changed and p
1122 * is actually now running somewhere else!
1124 while (task_running(rq, p))
1125 cpu_relax();
1128 * Ok, time to look more closely! We need the rq
1129 * lock now, to be *sure*. If we're wrong, we'll
1130 * just go back and repeat.
1132 rq = task_rq_lock(p, &flags);
1133 running = task_running(rq, p);
1134 on_rq = p->se.on_rq;
1135 task_rq_unlock(rq, &flags);
1138 * Was it really running after all now that we
1139 * checked with the proper locks actually held?
1141 * Oops. Go back and try again..
1143 if (unlikely(running)) {
1144 cpu_relax();
1145 continue;
1149 * It's not enough that it's not actively running,
1150 * it must be off the runqueue _entirely_, and not
1151 * preempted!
1153 * So if it wa still runnable (but just not actively
1154 * running right now), it's preempted, and we should
1155 * yield - it could be a while.
1157 if (unlikely(on_rq)) {
1158 schedule_timeout_uninterruptible(1);
1159 continue;
1163 * Ahh, all good. It wasn't running, and it wasn't
1164 * runnable, which means that it will never become
1165 * running in the future either. We're all done!
1167 break;
1171 /***
1172 * kick_process - kick a running thread to enter/exit the kernel
1173 * @p: the to-be-kicked thread
1175 * Cause a process which is running on another CPU to enter
1176 * kernel-mode, without any delay. (to get signals handled.)
1178 * NOTE: this function doesnt have to take the runqueue lock,
1179 * because all it wants to ensure is that the remote task enters
1180 * the kernel. If the IPI races and the task has been migrated
1181 * to another CPU then no harm is done and the purpose has been
1182 * achieved as well.
1184 void kick_process(struct task_struct *p)
1186 int cpu;
1188 preempt_disable();
1189 cpu = task_cpu(p);
1190 if ((cpu != smp_processor_id()) && task_curr(p))
1191 smp_send_reschedule(cpu);
1192 preempt_enable();
1196 * Return a low guess at the load of a migration-source cpu weighted
1197 * according to the scheduling class and "nice" value.
1199 * We want to under-estimate the load of migration sources, to
1200 * balance conservatively.
1202 static unsigned long source_load(int cpu, int type)
1204 struct rq *rq = cpu_rq(cpu);
1205 unsigned long total = weighted_cpuload(cpu);
1207 if (type == 0)
1208 return total;
1210 return min(rq->cpu_load[type-1], total);
1214 * Return a high guess at the load of a migration-target cpu weighted
1215 * according to the scheduling class and "nice" value.
1217 static unsigned long target_load(int cpu, int type)
1219 struct rq *rq = cpu_rq(cpu);
1220 unsigned long total = weighted_cpuload(cpu);
1222 if (type == 0)
1223 return total;
1225 return max(rq->cpu_load[type-1], total);
1229 * Return the average load per task on the cpu's run queue
1231 static inline unsigned long cpu_avg_load_per_task(int cpu)
1233 struct rq *rq = cpu_rq(cpu);
1234 unsigned long total = weighted_cpuload(cpu);
1235 unsigned long n = rq->nr_running;
1237 return n ? total / n : SCHED_LOAD_SCALE;
1241 * find_idlest_group finds and returns the least busy CPU group within the
1242 * domain.
1244 static struct sched_group *
1245 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1247 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1248 unsigned long min_load = ULONG_MAX, this_load = 0;
1249 int load_idx = sd->forkexec_idx;
1250 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1252 do {
1253 unsigned long load, avg_load;
1254 int local_group;
1255 int i;
1257 /* Skip over this group if it has no CPUs allowed */
1258 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1259 continue;
1261 local_group = cpu_isset(this_cpu, group->cpumask);
1263 /* Tally up the load of all CPUs in the group */
1264 avg_load = 0;
1266 for_each_cpu_mask(i, group->cpumask) {
1267 /* Bias balancing toward cpus of our domain */
1268 if (local_group)
1269 load = source_load(i, load_idx);
1270 else
1271 load = target_load(i, load_idx);
1273 avg_load += load;
1276 /* Adjust by relative CPU power of the group */
1277 avg_load = sg_div_cpu_power(group,
1278 avg_load * SCHED_LOAD_SCALE);
1280 if (local_group) {
1281 this_load = avg_load;
1282 this = group;
1283 } else if (avg_load < min_load) {
1284 min_load = avg_load;
1285 idlest = group;
1287 } while (group = group->next, group != sd->groups);
1289 if (!idlest || 100*this_load < imbalance*min_load)
1290 return NULL;
1291 return idlest;
1295 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1297 static int
1298 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1300 cpumask_t tmp;
1301 unsigned long load, min_load = ULONG_MAX;
1302 int idlest = -1;
1303 int i;
1305 /* Traverse only the allowed CPUs */
1306 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1308 for_each_cpu_mask(i, tmp) {
1309 load = weighted_cpuload(i);
1311 if (load < min_load || (load == min_load && i == this_cpu)) {
1312 min_load = load;
1313 idlest = i;
1317 return idlest;
1321 * sched_balance_self: balance the current task (running on cpu) in domains
1322 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1323 * SD_BALANCE_EXEC.
1325 * Balance, ie. select the least loaded group.
1327 * Returns the target CPU number, or the same CPU if no balancing is needed.
1329 * preempt must be disabled.
1331 static int sched_balance_self(int cpu, int flag)
1333 struct task_struct *t = current;
1334 struct sched_domain *tmp, *sd = NULL;
1336 for_each_domain(cpu, tmp) {
1338 * If power savings logic is enabled for a domain, stop there.
1340 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1341 break;
1342 if (tmp->flags & flag)
1343 sd = tmp;
1346 while (sd) {
1347 cpumask_t span;
1348 struct sched_group *group;
1349 int new_cpu, weight;
1351 if (!(sd->flags & flag)) {
1352 sd = sd->child;
1353 continue;
1356 span = sd->span;
1357 group = find_idlest_group(sd, t, cpu);
1358 if (!group) {
1359 sd = sd->child;
1360 continue;
1363 new_cpu = find_idlest_cpu(group, t, cpu);
1364 if (new_cpu == -1 || new_cpu == cpu) {
1365 /* Now try balancing at a lower domain level of cpu */
1366 sd = sd->child;
1367 continue;
1370 /* Now try balancing at a lower domain level of new_cpu */
1371 cpu = new_cpu;
1372 sd = NULL;
1373 weight = cpus_weight(span);
1374 for_each_domain(cpu, tmp) {
1375 if (weight <= cpus_weight(tmp->span))
1376 break;
1377 if (tmp->flags & flag)
1378 sd = tmp;
1380 /* while loop will break here if sd == NULL */
1383 return cpu;
1386 #endif /* CONFIG_SMP */
1389 * wake_idle() will wake a task on an idle cpu if task->cpu is
1390 * not idle and an idle cpu is available. The span of cpus to
1391 * search starts with cpus closest then further out as needed,
1392 * so we always favor a closer, idle cpu.
1394 * Returns the CPU we should wake onto.
1396 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1397 static int wake_idle(int cpu, struct task_struct *p)
1399 cpumask_t tmp;
1400 struct sched_domain *sd;
1401 int i;
1404 * If it is idle, then it is the best cpu to run this task.
1406 * This cpu is also the best, if it has more than one task already.
1407 * Siblings must be also busy(in most cases) as they didn't already
1408 * pickup the extra load from this cpu and hence we need not check
1409 * sibling runqueue info. This will avoid the checks and cache miss
1410 * penalities associated with that.
1412 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1413 return cpu;
1415 for_each_domain(cpu, sd) {
1416 if (sd->flags & SD_WAKE_IDLE) {
1417 cpus_and(tmp, sd->span, p->cpus_allowed);
1418 for_each_cpu_mask(i, tmp) {
1419 if (idle_cpu(i)) {
1420 if (i != task_cpu(p)) {
1421 schedstat_inc(p,
1422 se.nr_wakeups_idle);
1424 return i;
1427 } else {
1428 break;
1431 return cpu;
1433 #else
1434 static inline int wake_idle(int cpu, struct task_struct *p)
1436 return cpu;
1438 #endif
1440 /***
1441 * try_to_wake_up - wake up a thread
1442 * @p: the to-be-woken-up thread
1443 * @state: the mask of task states that can be woken
1444 * @sync: do a synchronous wakeup?
1446 * Put it on the run-queue if it's not already there. The "current"
1447 * thread is always on the run-queue (except when the actual
1448 * re-schedule is in progress), and as such you're allowed to do
1449 * the simpler "current->state = TASK_RUNNING" to mark yourself
1450 * runnable without the overhead of this.
1452 * returns failure only if the task is already active.
1454 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1456 int cpu, orig_cpu, this_cpu, success = 0;
1457 unsigned long flags;
1458 long old_state;
1459 struct rq *rq;
1460 #ifdef CONFIG_SMP
1461 struct sched_domain *sd, *this_sd = NULL;
1462 unsigned long load, this_load;
1463 int new_cpu;
1464 #endif
1466 rq = task_rq_lock(p, &flags);
1467 old_state = p->state;
1468 if (!(old_state & state))
1469 goto out;
1471 if (p->se.on_rq)
1472 goto out_running;
1474 cpu = task_cpu(p);
1475 orig_cpu = cpu;
1476 this_cpu = smp_processor_id();
1478 #ifdef CONFIG_SMP
1479 if (unlikely(task_running(rq, p)))
1480 goto out_activate;
1482 new_cpu = cpu;
1484 schedstat_inc(rq, ttwu_count);
1485 if (cpu == this_cpu) {
1486 schedstat_inc(rq, ttwu_local);
1487 goto out_set_cpu;
1490 for_each_domain(this_cpu, sd) {
1491 if (cpu_isset(cpu, sd->span)) {
1492 schedstat_inc(sd, ttwu_wake_remote);
1493 this_sd = sd;
1494 break;
1498 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1499 goto out_set_cpu;
1502 * Check for affine wakeup and passive balancing possibilities.
1504 if (this_sd) {
1505 int idx = this_sd->wake_idx;
1506 unsigned int imbalance;
1508 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1510 load = source_load(cpu, idx);
1511 this_load = target_load(this_cpu, idx);
1513 new_cpu = this_cpu; /* Wake to this CPU if we can */
1515 if (this_sd->flags & SD_WAKE_AFFINE) {
1516 unsigned long tl = this_load;
1517 unsigned long tl_per_task;
1519 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1520 tl_per_task = cpu_avg_load_per_task(this_cpu);
1523 * If sync wakeup then subtract the (maximum possible)
1524 * effect of the currently running task from the load
1525 * of the current CPU:
1527 if (sync)
1528 tl -= current->se.load.weight;
1530 if ((tl <= load &&
1531 tl + target_load(cpu, idx) <= tl_per_task) ||
1532 100*(tl + p->se.load.weight) <= imbalance*load) {
1534 * This domain has SD_WAKE_AFFINE and
1535 * p is cache cold in this domain, and
1536 * there is no bad imbalance.
1538 schedstat_inc(this_sd, ttwu_move_affine);
1539 schedstat_inc(p, se.nr_wakeups_affine);
1540 goto out_set_cpu;
1545 * Start passive balancing when half the imbalance_pct
1546 * limit is reached.
1548 if (this_sd->flags & SD_WAKE_BALANCE) {
1549 if (imbalance*this_load <= 100*load) {
1550 schedstat_inc(this_sd, ttwu_move_balance);
1551 schedstat_inc(p, se.nr_wakeups_passive);
1552 goto out_set_cpu;
1557 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1558 out_set_cpu:
1559 new_cpu = wake_idle(new_cpu, p);
1560 if (new_cpu != cpu) {
1561 set_task_cpu(p, new_cpu);
1562 task_rq_unlock(rq, &flags);
1563 /* might preempt at this point */
1564 rq = task_rq_lock(p, &flags);
1565 old_state = p->state;
1566 if (!(old_state & state))
1567 goto out;
1568 if (p->se.on_rq)
1569 goto out_running;
1571 this_cpu = smp_processor_id();
1572 cpu = task_cpu(p);
1575 out_activate:
1576 #endif /* CONFIG_SMP */
1577 schedstat_inc(p, se.nr_wakeups);
1578 if (sync)
1579 schedstat_inc(p, se.nr_wakeups_sync);
1580 if (orig_cpu != cpu)
1581 schedstat_inc(p, se.nr_wakeups_migrate);
1582 if (cpu == this_cpu)
1583 schedstat_inc(p, se.nr_wakeups_local);
1584 else
1585 schedstat_inc(p, se.nr_wakeups_remote);
1586 update_rq_clock(rq);
1587 activate_task(rq, p, 1);
1589 * Sync wakeups (i.e. those types of wakeups where the waker
1590 * has indicated that it will leave the CPU in short order)
1591 * don't trigger a preemption, if the woken up task will run on
1592 * this cpu. (in this case the 'I will reschedule' promise of
1593 * the waker guarantees that the freshly woken up task is going
1594 * to be considered on this CPU.)
1596 if (!sync || cpu != this_cpu)
1597 check_preempt_curr(rq, p);
1598 success = 1;
1600 out_running:
1601 p->state = TASK_RUNNING;
1602 out:
1603 task_rq_unlock(rq, &flags);
1605 return success;
1608 int fastcall wake_up_process(struct task_struct *p)
1610 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1611 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1613 EXPORT_SYMBOL(wake_up_process);
1615 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1617 return try_to_wake_up(p, state, 0);
1621 * Perform scheduler related setup for a newly forked process p.
1622 * p is forked by current.
1624 * __sched_fork() is basic setup used by init_idle() too:
1626 static void __sched_fork(struct task_struct *p)
1628 p->se.exec_start = 0;
1629 p->se.sum_exec_runtime = 0;
1630 p->se.prev_sum_exec_runtime = 0;
1632 #ifdef CONFIG_SCHEDSTATS
1633 p->se.wait_start = 0;
1634 p->se.sum_sleep_runtime = 0;
1635 p->se.sleep_start = 0;
1636 p->se.block_start = 0;
1637 p->se.sleep_max = 0;
1638 p->se.block_max = 0;
1639 p->se.exec_max = 0;
1640 p->se.slice_max = 0;
1641 p->se.wait_max = 0;
1642 #endif
1644 INIT_LIST_HEAD(&p->run_list);
1645 p->se.on_rq = 0;
1647 #ifdef CONFIG_PREEMPT_NOTIFIERS
1648 INIT_HLIST_HEAD(&p->preempt_notifiers);
1649 #endif
1652 * We mark the process as running here, but have not actually
1653 * inserted it onto the runqueue yet. This guarantees that
1654 * nobody will actually run it, and a signal or other external
1655 * event cannot wake it up and insert it on the runqueue either.
1657 p->state = TASK_RUNNING;
1661 * fork()/clone()-time setup:
1663 void sched_fork(struct task_struct *p, int clone_flags)
1665 int cpu = get_cpu();
1667 __sched_fork(p);
1669 #ifdef CONFIG_SMP
1670 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1671 #endif
1672 set_task_cpu(p, cpu);
1675 * Make sure we do not leak PI boosting priority to the child:
1677 p->prio = current->normal_prio;
1678 if (!rt_prio(p->prio))
1679 p->sched_class = &fair_sched_class;
1681 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1682 if (likely(sched_info_on()))
1683 memset(&p->sched_info, 0, sizeof(p->sched_info));
1684 #endif
1685 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1686 p->oncpu = 0;
1687 #endif
1688 #ifdef CONFIG_PREEMPT
1689 /* Want to start with kernel preemption disabled. */
1690 task_thread_info(p)->preempt_count = 1;
1691 #endif
1692 put_cpu();
1696 * wake_up_new_task - wake up a newly created task for the first time.
1698 * This function will do some initial scheduler statistics housekeeping
1699 * that must be done for every newly created context, then puts the task
1700 * on the runqueue and wakes it.
1702 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1704 unsigned long flags;
1705 struct rq *rq;
1707 rq = task_rq_lock(p, &flags);
1708 BUG_ON(p->state != TASK_RUNNING);
1709 update_rq_clock(rq);
1711 p->prio = effective_prio(p);
1713 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
1714 activate_task(rq, p, 0);
1715 } else {
1717 * Let the scheduling class do new task startup
1718 * management (if any):
1720 p->sched_class->task_new(rq, p);
1721 inc_nr_running(p, rq);
1723 check_preempt_curr(rq, p);
1724 task_rq_unlock(rq, &flags);
1727 #ifdef CONFIG_PREEMPT_NOTIFIERS
1730 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1731 * @notifier: notifier struct to register
1733 void preempt_notifier_register(struct preempt_notifier *notifier)
1735 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1737 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1740 * preempt_notifier_unregister - no longer interested in preemption notifications
1741 * @notifier: notifier struct to unregister
1743 * This is safe to call from within a preemption notifier.
1745 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1747 hlist_del(&notifier->link);
1749 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1751 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753 struct preempt_notifier *notifier;
1754 struct hlist_node *node;
1756 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1757 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1760 static void
1761 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1762 struct task_struct *next)
1764 struct preempt_notifier *notifier;
1765 struct hlist_node *node;
1767 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1768 notifier->ops->sched_out(notifier, next);
1771 #else
1773 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1777 static void
1778 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1779 struct task_struct *next)
1783 #endif
1786 * prepare_task_switch - prepare to switch tasks
1787 * @rq: the runqueue preparing to switch
1788 * @prev: the current task that is being switched out
1789 * @next: the task we are going to switch to.
1791 * This is called with the rq lock held and interrupts off. It must
1792 * be paired with a subsequent finish_task_switch after the context
1793 * switch.
1795 * prepare_task_switch sets up locking and calls architecture specific
1796 * hooks.
1798 static inline void
1799 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1800 struct task_struct *next)
1802 fire_sched_out_preempt_notifiers(prev, next);
1803 prepare_lock_switch(rq, next);
1804 prepare_arch_switch(next);
1808 * finish_task_switch - clean up after a task-switch
1809 * @rq: runqueue associated with task-switch
1810 * @prev: the thread we just switched away from.
1812 * finish_task_switch must be called after the context switch, paired
1813 * with a prepare_task_switch call before the context switch.
1814 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1815 * and do any other architecture-specific cleanup actions.
1817 * Note that we may have delayed dropping an mm in context_switch(). If
1818 * so, we finish that here outside of the runqueue lock. (Doing it
1819 * with the lock held can cause deadlocks; see schedule() for
1820 * details.)
1822 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1823 __releases(rq->lock)
1825 struct mm_struct *mm = rq->prev_mm;
1826 long prev_state;
1828 rq->prev_mm = NULL;
1831 * A task struct has one reference for the use as "current".
1832 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1833 * schedule one last time. The schedule call will never return, and
1834 * the scheduled task must drop that reference.
1835 * The test for TASK_DEAD must occur while the runqueue locks are
1836 * still held, otherwise prev could be scheduled on another cpu, die
1837 * there before we look at prev->state, and then the reference would
1838 * be dropped twice.
1839 * Manfred Spraul <manfred@colorfullife.com>
1841 prev_state = prev->state;
1842 finish_arch_switch(prev);
1843 finish_lock_switch(rq, prev);
1844 fire_sched_in_preempt_notifiers(current);
1845 if (mm)
1846 mmdrop(mm);
1847 if (unlikely(prev_state == TASK_DEAD)) {
1849 * Remove function-return probe instances associated with this
1850 * task and put them back on the free list.
1852 kprobe_flush_task(prev);
1853 put_task_struct(prev);
1858 * schedule_tail - first thing a freshly forked thread must call.
1859 * @prev: the thread we just switched away from.
1861 asmlinkage void schedule_tail(struct task_struct *prev)
1862 __releases(rq->lock)
1864 struct rq *rq = this_rq();
1866 finish_task_switch(rq, prev);
1867 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1868 /* In this case, finish_task_switch does not reenable preemption */
1869 preempt_enable();
1870 #endif
1871 if (current->set_child_tid)
1872 put_user(current->pid, current->set_child_tid);
1876 * context_switch - switch to the new MM and the new
1877 * thread's register state.
1879 static inline void
1880 context_switch(struct rq *rq, struct task_struct *prev,
1881 struct task_struct *next)
1883 struct mm_struct *mm, *oldmm;
1885 prepare_task_switch(rq, prev, next);
1886 mm = next->mm;
1887 oldmm = prev->active_mm;
1889 * For paravirt, this is coupled with an exit in switch_to to
1890 * combine the page table reload and the switch backend into
1891 * one hypercall.
1893 arch_enter_lazy_cpu_mode();
1895 if (unlikely(!mm)) {
1896 next->active_mm = oldmm;
1897 atomic_inc(&oldmm->mm_count);
1898 enter_lazy_tlb(oldmm, next);
1899 } else
1900 switch_mm(oldmm, mm, next);
1902 if (unlikely(!prev->mm)) {
1903 prev->active_mm = NULL;
1904 rq->prev_mm = oldmm;
1907 * Since the runqueue lock will be released by the next
1908 * task (which is an invalid locking op but in the case
1909 * of the scheduler it's an obvious special-case), so we
1910 * do an early lockdep release here:
1912 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1913 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1914 #endif
1916 /* Here we just switch the register state and the stack. */
1917 switch_to(prev, next, prev);
1919 barrier();
1921 * this_rq must be evaluated again because prev may have moved
1922 * CPUs since it called schedule(), thus the 'rq' on its stack
1923 * frame will be invalid.
1925 finish_task_switch(this_rq(), prev);
1929 * nr_running, nr_uninterruptible and nr_context_switches:
1931 * externally visible scheduler statistics: current number of runnable
1932 * threads, current number of uninterruptible-sleeping threads, total
1933 * number of context switches performed since bootup.
1935 unsigned long nr_running(void)
1937 unsigned long i, sum = 0;
1939 for_each_online_cpu(i)
1940 sum += cpu_rq(i)->nr_running;
1942 return sum;
1945 unsigned long nr_uninterruptible(void)
1947 unsigned long i, sum = 0;
1949 for_each_possible_cpu(i)
1950 sum += cpu_rq(i)->nr_uninterruptible;
1953 * Since we read the counters lockless, it might be slightly
1954 * inaccurate. Do not allow it to go below zero though:
1956 if (unlikely((long)sum < 0))
1957 sum = 0;
1959 return sum;
1962 unsigned long long nr_context_switches(void)
1964 int i;
1965 unsigned long long sum = 0;
1967 for_each_possible_cpu(i)
1968 sum += cpu_rq(i)->nr_switches;
1970 return sum;
1973 unsigned long nr_iowait(void)
1975 unsigned long i, sum = 0;
1977 for_each_possible_cpu(i)
1978 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1980 return sum;
1983 unsigned long nr_active(void)
1985 unsigned long i, running = 0, uninterruptible = 0;
1987 for_each_online_cpu(i) {
1988 running += cpu_rq(i)->nr_running;
1989 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1992 if (unlikely((long)uninterruptible < 0))
1993 uninterruptible = 0;
1995 return running + uninterruptible;
1999 * Update rq->cpu_load[] statistics. This function is usually called every
2000 * scheduler tick (TICK_NSEC).
2002 static void update_cpu_load(struct rq *this_rq)
2004 unsigned long this_load = this_rq->load.weight;
2005 int i, scale;
2007 this_rq->nr_load_updates++;
2009 /* Update our load: */
2010 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2011 unsigned long old_load, new_load;
2013 /* scale is effectively 1 << i now, and >> i divides by scale */
2015 old_load = this_rq->cpu_load[i];
2016 new_load = this_load;
2018 * Round up the averaging division if load is increasing. This
2019 * prevents us from getting stuck on 9 if the load is 10, for
2020 * example.
2022 if (new_load > old_load)
2023 new_load += scale-1;
2024 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2028 #ifdef CONFIG_SMP
2031 * double_rq_lock - safely lock two runqueues
2033 * Note this does not disable interrupts like task_rq_lock,
2034 * you need to do so manually before calling.
2036 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2037 __acquires(rq1->lock)
2038 __acquires(rq2->lock)
2040 BUG_ON(!irqs_disabled());
2041 if (rq1 == rq2) {
2042 spin_lock(&rq1->lock);
2043 __acquire(rq2->lock); /* Fake it out ;) */
2044 } else {
2045 if (rq1 < rq2) {
2046 spin_lock(&rq1->lock);
2047 spin_lock(&rq2->lock);
2048 } else {
2049 spin_lock(&rq2->lock);
2050 spin_lock(&rq1->lock);
2053 update_rq_clock(rq1);
2054 update_rq_clock(rq2);
2058 * double_rq_unlock - safely unlock two runqueues
2060 * Note this does not restore interrupts like task_rq_unlock,
2061 * you need to do so manually after calling.
2063 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2064 __releases(rq1->lock)
2065 __releases(rq2->lock)
2067 spin_unlock(&rq1->lock);
2068 if (rq1 != rq2)
2069 spin_unlock(&rq2->lock);
2070 else
2071 __release(rq2->lock);
2075 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2077 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2078 __releases(this_rq->lock)
2079 __acquires(busiest->lock)
2080 __acquires(this_rq->lock)
2082 if (unlikely(!irqs_disabled())) {
2083 /* printk() doesn't work good under rq->lock */
2084 spin_unlock(&this_rq->lock);
2085 BUG_ON(1);
2087 if (unlikely(!spin_trylock(&busiest->lock))) {
2088 if (busiest < this_rq) {
2089 spin_unlock(&this_rq->lock);
2090 spin_lock(&busiest->lock);
2091 spin_lock(&this_rq->lock);
2092 } else
2093 spin_lock(&busiest->lock);
2098 * If dest_cpu is allowed for this process, migrate the task to it.
2099 * This is accomplished by forcing the cpu_allowed mask to only
2100 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2101 * the cpu_allowed mask is restored.
2103 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2105 struct migration_req req;
2106 unsigned long flags;
2107 struct rq *rq;
2109 rq = task_rq_lock(p, &flags);
2110 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2111 || unlikely(cpu_is_offline(dest_cpu)))
2112 goto out;
2114 /* force the process onto the specified CPU */
2115 if (migrate_task(p, dest_cpu, &req)) {
2116 /* Need to wait for migration thread (might exit: take ref). */
2117 struct task_struct *mt = rq->migration_thread;
2119 get_task_struct(mt);
2120 task_rq_unlock(rq, &flags);
2121 wake_up_process(mt);
2122 put_task_struct(mt);
2123 wait_for_completion(&req.done);
2125 return;
2127 out:
2128 task_rq_unlock(rq, &flags);
2132 * sched_exec - execve() is a valuable balancing opportunity, because at
2133 * this point the task has the smallest effective memory and cache footprint.
2135 void sched_exec(void)
2137 int new_cpu, this_cpu = get_cpu();
2138 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2139 put_cpu();
2140 if (new_cpu != this_cpu)
2141 sched_migrate_task(current, new_cpu);
2145 * pull_task - move a task from a remote runqueue to the local runqueue.
2146 * Both runqueues must be locked.
2148 static void pull_task(struct rq *src_rq, struct task_struct *p,
2149 struct rq *this_rq, int this_cpu)
2151 deactivate_task(src_rq, p, 0);
2152 set_task_cpu(p, this_cpu);
2153 activate_task(this_rq, p, 0);
2155 * Note that idle threads have a prio of MAX_PRIO, for this test
2156 * to be always true for them.
2158 check_preempt_curr(this_rq, p);
2162 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2164 static
2165 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2166 struct sched_domain *sd, enum cpu_idle_type idle,
2167 int *all_pinned)
2170 * We do not migrate tasks that are:
2171 * 1) running (obviously), or
2172 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2173 * 3) are cache-hot on their current CPU.
2175 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2176 schedstat_inc(p, se.nr_failed_migrations_affine);
2177 return 0;
2179 *all_pinned = 0;
2181 if (task_running(rq, p)) {
2182 schedstat_inc(p, se.nr_failed_migrations_running);
2183 return 0;
2187 * Aggressive migration if:
2188 * 1) task is cache cold, or
2189 * 2) too many balance attempts have failed.
2192 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2193 #ifdef CONFIG_SCHEDSTATS
2194 if (task_hot(p, rq->clock, sd)) {
2195 schedstat_inc(sd, lb_hot_gained[idle]);
2196 schedstat_inc(p, se.nr_forced_migrations);
2198 #endif
2199 return 1;
2202 if (task_hot(p, rq->clock, sd)) {
2203 schedstat_inc(p, se.nr_failed_migrations_hot);
2204 return 0;
2206 return 1;
2209 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2210 unsigned long max_nr_move, unsigned long max_load_move,
2211 struct sched_domain *sd, enum cpu_idle_type idle,
2212 int *all_pinned, unsigned long *load_moved,
2213 int *this_best_prio, struct rq_iterator *iterator)
2215 int pulled = 0, pinned = 0, skip_for_load;
2216 struct task_struct *p;
2217 long rem_load_move = max_load_move;
2219 if (max_nr_move == 0 || max_load_move == 0)
2220 goto out;
2222 pinned = 1;
2225 * Start the load-balancing iterator:
2227 p = iterator->start(iterator->arg);
2228 next:
2229 if (!p)
2230 goto out;
2232 * To help distribute high priority tasks accross CPUs we don't
2233 * skip a task if it will be the highest priority task (i.e. smallest
2234 * prio value) on its new queue regardless of its load weight
2236 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2237 SCHED_LOAD_SCALE_FUZZ;
2238 if ((skip_for_load && p->prio >= *this_best_prio) ||
2239 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2240 p = iterator->next(iterator->arg);
2241 goto next;
2244 pull_task(busiest, p, this_rq, this_cpu);
2245 pulled++;
2246 rem_load_move -= p->se.load.weight;
2249 * We only want to steal up to the prescribed number of tasks
2250 * and the prescribed amount of weighted load.
2252 if (pulled < max_nr_move && rem_load_move > 0) {
2253 if (p->prio < *this_best_prio)
2254 *this_best_prio = p->prio;
2255 p = iterator->next(iterator->arg);
2256 goto next;
2258 out:
2260 * Right now, this is the only place pull_task() is called,
2261 * so we can safely collect pull_task() stats here rather than
2262 * inside pull_task().
2264 schedstat_add(sd, lb_gained[idle], pulled);
2266 if (all_pinned)
2267 *all_pinned = pinned;
2268 *load_moved = max_load_move - rem_load_move;
2269 return pulled;
2273 * move_tasks tries to move up to max_load_move weighted load from busiest to
2274 * this_rq, as part of a balancing operation within domain "sd".
2275 * Returns 1 if successful and 0 otherwise.
2277 * Called with both runqueues locked.
2279 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2280 unsigned long max_load_move,
2281 struct sched_domain *sd, enum cpu_idle_type idle,
2282 int *all_pinned)
2284 const struct sched_class *class = sched_class_highest;
2285 unsigned long total_load_moved = 0;
2286 int this_best_prio = this_rq->curr->prio;
2288 do {
2289 total_load_moved +=
2290 class->load_balance(this_rq, this_cpu, busiest,
2291 ULONG_MAX, max_load_move - total_load_moved,
2292 sd, idle, all_pinned, &this_best_prio);
2293 class = class->next;
2294 } while (class && max_load_move > total_load_moved);
2296 return total_load_moved > 0;
2300 * move_one_task tries to move exactly one task from busiest to this_rq, as
2301 * part of active balancing operations within "domain".
2302 * Returns 1 if successful and 0 otherwise.
2304 * Called with both runqueues locked.
2306 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2307 struct sched_domain *sd, enum cpu_idle_type idle)
2309 const struct sched_class *class;
2310 int this_best_prio = MAX_PRIO;
2312 for (class = sched_class_highest; class; class = class->next)
2313 if (class->load_balance(this_rq, this_cpu, busiest,
2314 1, ULONG_MAX, sd, idle, NULL,
2315 &this_best_prio))
2316 return 1;
2318 return 0;
2322 * find_busiest_group finds and returns the busiest CPU group within the
2323 * domain. It calculates and returns the amount of weighted load which
2324 * should be moved to restore balance via the imbalance parameter.
2326 static struct sched_group *
2327 find_busiest_group(struct sched_domain *sd, int this_cpu,
2328 unsigned long *imbalance, enum cpu_idle_type idle,
2329 int *sd_idle, cpumask_t *cpus, int *balance)
2331 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2332 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2333 unsigned long max_pull;
2334 unsigned long busiest_load_per_task, busiest_nr_running;
2335 unsigned long this_load_per_task, this_nr_running;
2336 int load_idx;
2337 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2338 int power_savings_balance = 1;
2339 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2340 unsigned long min_nr_running = ULONG_MAX;
2341 struct sched_group *group_min = NULL, *group_leader = NULL;
2342 #endif
2344 max_load = this_load = total_load = total_pwr = 0;
2345 busiest_load_per_task = busiest_nr_running = 0;
2346 this_load_per_task = this_nr_running = 0;
2347 if (idle == CPU_NOT_IDLE)
2348 load_idx = sd->busy_idx;
2349 else if (idle == CPU_NEWLY_IDLE)
2350 load_idx = sd->newidle_idx;
2351 else
2352 load_idx = sd->idle_idx;
2354 do {
2355 unsigned long load, group_capacity;
2356 int local_group;
2357 int i;
2358 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2359 unsigned long sum_nr_running, sum_weighted_load;
2361 local_group = cpu_isset(this_cpu, group->cpumask);
2363 if (local_group)
2364 balance_cpu = first_cpu(group->cpumask);
2366 /* Tally up the load of all CPUs in the group */
2367 sum_weighted_load = sum_nr_running = avg_load = 0;
2369 for_each_cpu_mask(i, group->cpumask) {
2370 struct rq *rq;
2372 if (!cpu_isset(i, *cpus))
2373 continue;
2375 rq = cpu_rq(i);
2377 if (*sd_idle && rq->nr_running)
2378 *sd_idle = 0;
2380 /* Bias balancing toward cpus of our domain */
2381 if (local_group) {
2382 if (idle_cpu(i) && !first_idle_cpu) {
2383 first_idle_cpu = 1;
2384 balance_cpu = i;
2387 load = target_load(i, load_idx);
2388 } else
2389 load = source_load(i, load_idx);
2391 avg_load += load;
2392 sum_nr_running += rq->nr_running;
2393 sum_weighted_load += weighted_cpuload(i);
2397 * First idle cpu or the first cpu(busiest) in this sched group
2398 * is eligible for doing load balancing at this and above
2399 * domains. In the newly idle case, we will allow all the cpu's
2400 * to do the newly idle load balance.
2402 if (idle != CPU_NEWLY_IDLE && local_group &&
2403 balance_cpu != this_cpu && balance) {
2404 *balance = 0;
2405 goto ret;
2408 total_load += avg_load;
2409 total_pwr += group->__cpu_power;
2411 /* Adjust by relative CPU power of the group */
2412 avg_load = sg_div_cpu_power(group,
2413 avg_load * SCHED_LOAD_SCALE);
2415 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2417 if (local_group) {
2418 this_load = avg_load;
2419 this = group;
2420 this_nr_running = sum_nr_running;
2421 this_load_per_task = sum_weighted_load;
2422 } else if (avg_load > max_load &&
2423 sum_nr_running > group_capacity) {
2424 max_load = avg_load;
2425 busiest = group;
2426 busiest_nr_running = sum_nr_running;
2427 busiest_load_per_task = sum_weighted_load;
2430 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2432 * Busy processors will not participate in power savings
2433 * balance.
2435 if (idle == CPU_NOT_IDLE ||
2436 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2437 goto group_next;
2440 * If the local group is idle or completely loaded
2441 * no need to do power savings balance at this domain
2443 if (local_group && (this_nr_running >= group_capacity ||
2444 !this_nr_running))
2445 power_savings_balance = 0;
2448 * If a group is already running at full capacity or idle,
2449 * don't include that group in power savings calculations
2451 if (!power_savings_balance || sum_nr_running >= group_capacity
2452 || !sum_nr_running)
2453 goto group_next;
2456 * Calculate the group which has the least non-idle load.
2457 * This is the group from where we need to pick up the load
2458 * for saving power
2460 if ((sum_nr_running < min_nr_running) ||
2461 (sum_nr_running == min_nr_running &&
2462 first_cpu(group->cpumask) <
2463 first_cpu(group_min->cpumask))) {
2464 group_min = group;
2465 min_nr_running = sum_nr_running;
2466 min_load_per_task = sum_weighted_load /
2467 sum_nr_running;
2471 * Calculate the group which is almost near its
2472 * capacity but still has some space to pick up some load
2473 * from other group and save more power
2475 if (sum_nr_running <= group_capacity - 1) {
2476 if (sum_nr_running > leader_nr_running ||
2477 (sum_nr_running == leader_nr_running &&
2478 first_cpu(group->cpumask) >
2479 first_cpu(group_leader->cpumask))) {
2480 group_leader = group;
2481 leader_nr_running = sum_nr_running;
2484 group_next:
2485 #endif
2486 group = group->next;
2487 } while (group != sd->groups);
2489 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2490 goto out_balanced;
2492 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2494 if (this_load >= avg_load ||
2495 100*max_load <= sd->imbalance_pct*this_load)
2496 goto out_balanced;
2498 busiest_load_per_task /= busiest_nr_running;
2500 * We're trying to get all the cpus to the average_load, so we don't
2501 * want to push ourselves above the average load, nor do we wish to
2502 * reduce the max loaded cpu below the average load, as either of these
2503 * actions would just result in more rebalancing later, and ping-pong
2504 * tasks around. Thus we look for the minimum possible imbalance.
2505 * Negative imbalances (*we* are more loaded than anyone else) will
2506 * be counted as no imbalance for these purposes -- we can't fix that
2507 * by pulling tasks to us. Be careful of negative numbers as they'll
2508 * appear as very large values with unsigned longs.
2510 if (max_load <= busiest_load_per_task)
2511 goto out_balanced;
2514 * In the presence of smp nice balancing, certain scenarios can have
2515 * max load less than avg load(as we skip the groups at or below
2516 * its cpu_power, while calculating max_load..)
2518 if (max_load < avg_load) {
2519 *imbalance = 0;
2520 goto small_imbalance;
2523 /* Don't want to pull so many tasks that a group would go idle */
2524 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2526 /* How much load to actually move to equalise the imbalance */
2527 *imbalance = min(max_pull * busiest->__cpu_power,
2528 (avg_load - this_load) * this->__cpu_power)
2529 / SCHED_LOAD_SCALE;
2532 * if *imbalance is less than the average load per runnable task
2533 * there is no gaurantee that any tasks will be moved so we'll have
2534 * a think about bumping its value to force at least one task to be
2535 * moved
2537 if (*imbalance < busiest_load_per_task) {
2538 unsigned long tmp, pwr_now, pwr_move;
2539 unsigned int imbn;
2541 small_imbalance:
2542 pwr_move = pwr_now = 0;
2543 imbn = 2;
2544 if (this_nr_running) {
2545 this_load_per_task /= this_nr_running;
2546 if (busiest_load_per_task > this_load_per_task)
2547 imbn = 1;
2548 } else
2549 this_load_per_task = SCHED_LOAD_SCALE;
2551 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2552 busiest_load_per_task * imbn) {
2553 *imbalance = busiest_load_per_task;
2554 return busiest;
2558 * OK, we don't have enough imbalance to justify moving tasks,
2559 * however we may be able to increase total CPU power used by
2560 * moving them.
2563 pwr_now += busiest->__cpu_power *
2564 min(busiest_load_per_task, max_load);
2565 pwr_now += this->__cpu_power *
2566 min(this_load_per_task, this_load);
2567 pwr_now /= SCHED_LOAD_SCALE;
2569 /* Amount of load we'd subtract */
2570 tmp = sg_div_cpu_power(busiest,
2571 busiest_load_per_task * SCHED_LOAD_SCALE);
2572 if (max_load > tmp)
2573 pwr_move += busiest->__cpu_power *
2574 min(busiest_load_per_task, max_load - tmp);
2576 /* Amount of load we'd add */
2577 if (max_load * busiest->__cpu_power <
2578 busiest_load_per_task * SCHED_LOAD_SCALE)
2579 tmp = sg_div_cpu_power(this,
2580 max_load * busiest->__cpu_power);
2581 else
2582 tmp = sg_div_cpu_power(this,
2583 busiest_load_per_task * SCHED_LOAD_SCALE);
2584 pwr_move += this->__cpu_power *
2585 min(this_load_per_task, this_load + tmp);
2586 pwr_move /= SCHED_LOAD_SCALE;
2588 /* Move if we gain throughput */
2589 if (pwr_move > pwr_now)
2590 *imbalance = busiest_load_per_task;
2593 return busiest;
2595 out_balanced:
2596 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2597 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2598 goto ret;
2600 if (this == group_leader && group_leader != group_min) {
2601 *imbalance = min_load_per_task;
2602 return group_min;
2604 #endif
2605 ret:
2606 *imbalance = 0;
2607 return NULL;
2611 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2613 static struct rq *
2614 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2615 unsigned long imbalance, cpumask_t *cpus)
2617 struct rq *busiest = NULL, *rq;
2618 unsigned long max_load = 0;
2619 int i;
2621 for_each_cpu_mask(i, group->cpumask) {
2622 unsigned long wl;
2624 if (!cpu_isset(i, *cpus))
2625 continue;
2627 rq = cpu_rq(i);
2628 wl = weighted_cpuload(i);
2630 if (rq->nr_running == 1 && wl > imbalance)
2631 continue;
2633 if (wl > max_load) {
2634 max_load = wl;
2635 busiest = rq;
2639 return busiest;
2643 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2644 * so long as it is large enough.
2646 #define MAX_PINNED_INTERVAL 512
2649 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2650 * tasks if there is an imbalance.
2652 static int load_balance(int this_cpu, struct rq *this_rq,
2653 struct sched_domain *sd, enum cpu_idle_type idle,
2654 int *balance)
2656 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2657 struct sched_group *group;
2658 unsigned long imbalance;
2659 struct rq *busiest;
2660 cpumask_t cpus = CPU_MASK_ALL;
2661 unsigned long flags;
2664 * When power savings policy is enabled for the parent domain, idle
2665 * sibling can pick up load irrespective of busy siblings. In this case,
2666 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2667 * portraying it as CPU_NOT_IDLE.
2669 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2670 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2671 sd_idle = 1;
2673 schedstat_inc(sd, lb_count[idle]);
2675 redo:
2676 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2677 &cpus, balance);
2679 if (*balance == 0)
2680 goto out_balanced;
2682 if (!group) {
2683 schedstat_inc(sd, lb_nobusyg[idle]);
2684 goto out_balanced;
2687 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2688 if (!busiest) {
2689 schedstat_inc(sd, lb_nobusyq[idle]);
2690 goto out_balanced;
2693 BUG_ON(busiest == this_rq);
2695 schedstat_add(sd, lb_imbalance[idle], imbalance);
2697 ld_moved = 0;
2698 if (busiest->nr_running > 1) {
2700 * Attempt to move tasks. If find_busiest_group has found
2701 * an imbalance but busiest->nr_running <= 1, the group is
2702 * still unbalanced. ld_moved simply stays zero, so it is
2703 * correctly treated as an imbalance.
2705 local_irq_save(flags);
2706 double_rq_lock(this_rq, busiest);
2707 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2708 imbalance, sd, idle, &all_pinned);
2709 double_rq_unlock(this_rq, busiest);
2710 local_irq_restore(flags);
2713 * some other cpu did the load balance for us.
2715 if (ld_moved && this_cpu != smp_processor_id())
2716 resched_cpu(this_cpu);
2718 /* All tasks on this runqueue were pinned by CPU affinity */
2719 if (unlikely(all_pinned)) {
2720 cpu_clear(cpu_of(busiest), cpus);
2721 if (!cpus_empty(cpus))
2722 goto redo;
2723 goto out_balanced;
2727 if (!ld_moved) {
2728 schedstat_inc(sd, lb_failed[idle]);
2729 sd->nr_balance_failed++;
2731 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2733 spin_lock_irqsave(&busiest->lock, flags);
2735 /* don't kick the migration_thread, if the curr
2736 * task on busiest cpu can't be moved to this_cpu
2738 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2739 spin_unlock_irqrestore(&busiest->lock, flags);
2740 all_pinned = 1;
2741 goto out_one_pinned;
2744 if (!busiest->active_balance) {
2745 busiest->active_balance = 1;
2746 busiest->push_cpu = this_cpu;
2747 active_balance = 1;
2749 spin_unlock_irqrestore(&busiest->lock, flags);
2750 if (active_balance)
2751 wake_up_process(busiest->migration_thread);
2754 * We've kicked active balancing, reset the failure
2755 * counter.
2757 sd->nr_balance_failed = sd->cache_nice_tries+1;
2759 } else
2760 sd->nr_balance_failed = 0;
2762 if (likely(!active_balance)) {
2763 /* We were unbalanced, so reset the balancing interval */
2764 sd->balance_interval = sd->min_interval;
2765 } else {
2767 * If we've begun active balancing, start to back off. This
2768 * case may not be covered by the all_pinned logic if there
2769 * is only 1 task on the busy runqueue (because we don't call
2770 * move_tasks).
2772 if (sd->balance_interval < sd->max_interval)
2773 sd->balance_interval *= 2;
2776 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2777 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2778 return -1;
2779 return ld_moved;
2781 out_balanced:
2782 schedstat_inc(sd, lb_balanced[idle]);
2784 sd->nr_balance_failed = 0;
2786 out_one_pinned:
2787 /* tune up the balancing interval */
2788 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2789 (sd->balance_interval < sd->max_interval))
2790 sd->balance_interval *= 2;
2792 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2793 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2794 return -1;
2795 return 0;
2799 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2800 * tasks if there is an imbalance.
2802 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2803 * this_rq is locked.
2805 static int
2806 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2808 struct sched_group *group;
2809 struct rq *busiest = NULL;
2810 unsigned long imbalance;
2811 int ld_moved = 0;
2812 int sd_idle = 0;
2813 int all_pinned = 0;
2814 cpumask_t cpus = CPU_MASK_ALL;
2817 * When power savings policy is enabled for the parent domain, idle
2818 * sibling can pick up load irrespective of busy siblings. In this case,
2819 * let the state of idle sibling percolate up as IDLE, instead of
2820 * portraying it as CPU_NOT_IDLE.
2822 if (sd->flags & SD_SHARE_CPUPOWER &&
2823 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2824 sd_idle = 1;
2826 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2827 redo:
2828 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2829 &sd_idle, &cpus, NULL);
2830 if (!group) {
2831 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2832 goto out_balanced;
2835 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2836 &cpus);
2837 if (!busiest) {
2838 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2839 goto out_balanced;
2842 BUG_ON(busiest == this_rq);
2844 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2846 ld_moved = 0;
2847 if (busiest->nr_running > 1) {
2848 /* Attempt to move tasks */
2849 double_lock_balance(this_rq, busiest);
2850 /* this_rq->clock is already updated */
2851 update_rq_clock(busiest);
2852 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2853 imbalance, sd, CPU_NEWLY_IDLE,
2854 &all_pinned);
2855 spin_unlock(&busiest->lock);
2857 if (unlikely(all_pinned)) {
2858 cpu_clear(cpu_of(busiest), cpus);
2859 if (!cpus_empty(cpus))
2860 goto redo;
2864 if (!ld_moved) {
2865 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2866 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2867 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2868 return -1;
2869 } else
2870 sd->nr_balance_failed = 0;
2872 return ld_moved;
2874 out_balanced:
2875 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2876 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2877 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2878 return -1;
2879 sd->nr_balance_failed = 0;
2881 return 0;
2885 * idle_balance is called by schedule() if this_cpu is about to become
2886 * idle. Attempts to pull tasks from other CPUs.
2888 static void idle_balance(int this_cpu, struct rq *this_rq)
2890 struct sched_domain *sd;
2891 int pulled_task = -1;
2892 unsigned long next_balance = jiffies + HZ;
2894 for_each_domain(this_cpu, sd) {
2895 unsigned long interval;
2897 if (!(sd->flags & SD_LOAD_BALANCE))
2898 continue;
2900 if (sd->flags & SD_BALANCE_NEWIDLE)
2901 /* If we've pulled tasks over stop searching: */
2902 pulled_task = load_balance_newidle(this_cpu,
2903 this_rq, sd);
2905 interval = msecs_to_jiffies(sd->balance_interval);
2906 if (time_after(next_balance, sd->last_balance + interval))
2907 next_balance = sd->last_balance + interval;
2908 if (pulled_task)
2909 break;
2911 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2913 * We are going idle. next_balance may be set based on
2914 * a busy processor. So reset next_balance.
2916 this_rq->next_balance = next_balance;
2921 * active_load_balance is run by migration threads. It pushes running tasks
2922 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2923 * running on each physical CPU where possible, and avoids physical /
2924 * logical imbalances.
2926 * Called with busiest_rq locked.
2928 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2930 int target_cpu = busiest_rq->push_cpu;
2931 struct sched_domain *sd;
2932 struct rq *target_rq;
2934 /* Is there any task to move? */
2935 if (busiest_rq->nr_running <= 1)
2936 return;
2938 target_rq = cpu_rq(target_cpu);
2941 * This condition is "impossible", if it occurs
2942 * we need to fix it. Originally reported by
2943 * Bjorn Helgaas on a 128-cpu setup.
2945 BUG_ON(busiest_rq == target_rq);
2947 /* move a task from busiest_rq to target_rq */
2948 double_lock_balance(busiest_rq, target_rq);
2949 update_rq_clock(busiest_rq);
2950 update_rq_clock(target_rq);
2952 /* Search for an sd spanning us and the target CPU. */
2953 for_each_domain(target_cpu, sd) {
2954 if ((sd->flags & SD_LOAD_BALANCE) &&
2955 cpu_isset(busiest_cpu, sd->span))
2956 break;
2959 if (likely(sd)) {
2960 schedstat_inc(sd, alb_count);
2962 if (move_one_task(target_rq, target_cpu, busiest_rq,
2963 sd, CPU_IDLE))
2964 schedstat_inc(sd, alb_pushed);
2965 else
2966 schedstat_inc(sd, alb_failed);
2968 spin_unlock(&target_rq->lock);
2971 #ifdef CONFIG_NO_HZ
2972 static struct {
2973 atomic_t load_balancer;
2974 cpumask_t cpu_mask;
2975 } nohz ____cacheline_aligned = {
2976 .load_balancer = ATOMIC_INIT(-1),
2977 .cpu_mask = CPU_MASK_NONE,
2981 * This routine will try to nominate the ilb (idle load balancing)
2982 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2983 * load balancing on behalf of all those cpus. If all the cpus in the system
2984 * go into this tickless mode, then there will be no ilb owner (as there is
2985 * no need for one) and all the cpus will sleep till the next wakeup event
2986 * arrives...
2988 * For the ilb owner, tick is not stopped. And this tick will be used
2989 * for idle load balancing. ilb owner will still be part of
2990 * nohz.cpu_mask..
2992 * While stopping the tick, this cpu will become the ilb owner if there
2993 * is no other owner. And will be the owner till that cpu becomes busy
2994 * or if all cpus in the system stop their ticks at which point
2995 * there is no need for ilb owner.
2997 * When the ilb owner becomes busy, it nominates another owner, during the
2998 * next busy scheduler_tick()
3000 int select_nohz_load_balancer(int stop_tick)
3002 int cpu = smp_processor_id();
3004 if (stop_tick) {
3005 cpu_set(cpu, nohz.cpu_mask);
3006 cpu_rq(cpu)->in_nohz_recently = 1;
3009 * If we are going offline and still the leader, give up!
3011 if (cpu_is_offline(cpu) &&
3012 atomic_read(&nohz.load_balancer) == cpu) {
3013 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3014 BUG();
3015 return 0;
3018 /* time for ilb owner also to sleep */
3019 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3020 if (atomic_read(&nohz.load_balancer) == cpu)
3021 atomic_set(&nohz.load_balancer, -1);
3022 return 0;
3025 if (atomic_read(&nohz.load_balancer) == -1) {
3026 /* make me the ilb owner */
3027 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3028 return 1;
3029 } else if (atomic_read(&nohz.load_balancer) == cpu)
3030 return 1;
3031 } else {
3032 if (!cpu_isset(cpu, nohz.cpu_mask))
3033 return 0;
3035 cpu_clear(cpu, nohz.cpu_mask);
3037 if (atomic_read(&nohz.load_balancer) == cpu)
3038 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3039 BUG();
3041 return 0;
3043 #endif
3045 static DEFINE_SPINLOCK(balancing);
3048 * It checks each scheduling domain to see if it is due to be balanced,
3049 * and initiates a balancing operation if so.
3051 * Balancing parameters are set up in arch_init_sched_domains.
3053 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3055 int balance = 1;
3056 struct rq *rq = cpu_rq(cpu);
3057 unsigned long interval;
3058 struct sched_domain *sd;
3059 /* Earliest time when we have to do rebalance again */
3060 unsigned long next_balance = jiffies + 60*HZ;
3061 int update_next_balance = 0;
3063 for_each_domain(cpu, sd) {
3064 if (!(sd->flags & SD_LOAD_BALANCE))
3065 continue;
3067 interval = sd->balance_interval;
3068 if (idle != CPU_IDLE)
3069 interval *= sd->busy_factor;
3071 /* scale ms to jiffies */
3072 interval = msecs_to_jiffies(interval);
3073 if (unlikely(!interval))
3074 interval = 1;
3075 if (interval > HZ*NR_CPUS/10)
3076 interval = HZ*NR_CPUS/10;
3079 if (sd->flags & SD_SERIALIZE) {
3080 if (!spin_trylock(&balancing))
3081 goto out;
3084 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3085 if (load_balance(cpu, rq, sd, idle, &balance)) {
3087 * We've pulled tasks over so either we're no
3088 * longer idle, or one of our SMT siblings is
3089 * not idle.
3091 idle = CPU_NOT_IDLE;
3093 sd->last_balance = jiffies;
3095 if (sd->flags & SD_SERIALIZE)
3096 spin_unlock(&balancing);
3097 out:
3098 if (time_after(next_balance, sd->last_balance + interval)) {
3099 next_balance = sd->last_balance + interval;
3100 update_next_balance = 1;
3104 * Stop the load balance at this level. There is another
3105 * CPU in our sched group which is doing load balancing more
3106 * actively.
3108 if (!balance)
3109 break;
3113 * next_balance will be updated only when there is a need.
3114 * When the cpu is attached to null domain for ex, it will not be
3115 * updated.
3117 if (likely(update_next_balance))
3118 rq->next_balance = next_balance;
3122 * run_rebalance_domains is triggered when needed from the scheduler tick.
3123 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3124 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3126 static void run_rebalance_domains(struct softirq_action *h)
3128 int this_cpu = smp_processor_id();
3129 struct rq *this_rq = cpu_rq(this_cpu);
3130 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3131 CPU_IDLE : CPU_NOT_IDLE;
3133 rebalance_domains(this_cpu, idle);
3135 #ifdef CONFIG_NO_HZ
3137 * If this cpu is the owner for idle load balancing, then do the
3138 * balancing on behalf of the other idle cpus whose ticks are
3139 * stopped.
3141 if (this_rq->idle_at_tick &&
3142 atomic_read(&nohz.load_balancer) == this_cpu) {
3143 cpumask_t cpus = nohz.cpu_mask;
3144 struct rq *rq;
3145 int balance_cpu;
3147 cpu_clear(this_cpu, cpus);
3148 for_each_cpu_mask(balance_cpu, cpus) {
3150 * If this cpu gets work to do, stop the load balancing
3151 * work being done for other cpus. Next load
3152 * balancing owner will pick it up.
3154 if (need_resched())
3155 break;
3157 rebalance_domains(balance_cpu, CPU_IDLE);
3159 rq = cpu_rq(balance_cpu);
3160 if (time_after(this_rq->next_balance, rq->next_balance))
3161 this_rq->next_balance = rq->next_balance;
3164 #endif
3168 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3170 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3171 * idle load balancing owner or decide to stop the periodic load balancing,
3172 * if the whole system is idle.
3174 static inline void trigger_load_balance(struct rq *rq, int cpu)
3176 #ifdef CONFIG_NO_HZ
3178 * If we were in the nohz mode recently and busy at the current
3179 * scheduler tick, then check if we need to nominate new idle
3180 * load balancer.
3182 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3183 rq->in_nohz_recently = 0;
3185 if (atomic_read(&nohz.load_balancer) == cpu) {
3186 cpu_clear(cpu, nohz.cpu_mask);
3187 atomic_set(&nohz.load_balancer, -1);
3190 if (atomic_read(&nohz.load_balancer) == -1) {
3192 * simple selection for now: Nominate the
3193 * first cpu in the nohz list to be the next
3194 * ilb owner.
3196 * TBD: Traverse the sched domains and nominate
3197 * the nearest cpu in the nohz.cpu_mask.
3199 int ilb = first_cpu(nohz.cpu_mask);
3201 if (ilb != NR_CPUS)
3202 resched_cpu(ilb);
3207 * If this cpu is idle and doing idle load balancing for all the
3208 * cpus with ticks stopped, is it time for that to stop?
3210 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3211 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3212 resched_cpu(cpu);
3213 return;
3217 * If this cpu is idle and the idle load balancing is done by
3218 * someone else, then no need raise the SCHED_SOFTIRQ
3220 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3221 cpu_isset(cpu, nohz.cpu_mask))
3222 return;
3223 #endif
3224 if (time_after_eq(jiffies, rq->next_balance))
3225 raise_softirq(SCHED_SOFTIRQ);
3228 #else /* CONFIG_SMP */
3231 * on UP we do not need to balance between CPUs:
3233 static inline void idle_balance(int cpu, struct rq *rq)
3237 /* Avoid "used but not defined" warning on UP */
3238 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3239 unsigned long max_nr_move, unsigned long max_load_move,
3240 struct sched_domain *sd, enum cpu_idle_type idle,
3241 int *all_pinned, unsigned long *load_moved,
3242 int *this_best_prio, struct rq_iterator *iterator)
3244 *load_moved = 0;
3246 return 0;
3249 #endif
3251 DEFINE_PER_CPU(struct kernel_stat, kstat);
3253 EXPORT_PER_CPU_SYMBOL(kstat);
3256 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3257 * that have not yet been banked in case the task is currently running.
3259 unsigned long long task_sched_runtime(struct task_struct *p)
3261 unsigned long flags;
3262 u64 ns, delta_exec;
3263 struct rq *rq;
3265 rq = task_rq_lock(p, &flags);
3266 ns = p->se.sum_exec_runtime;
3267 if (rq->curr == p) {
3268 update_rq_clock(rq);
3269 delta_exec = rq->clock - p->se.exec_start;
3270 if ((s64)delta_exec > 0)
3271 ns += delta_exec;
3273 task_rq_unlock(rq, &flags);
3275 return ns;
3279 * Account user cpu time to a process.
3280 * @p: the process that the cpu time gets accounted to
3281 * @hardirq_offset: the offset to subtract from hardirq_count()
3282 * @cputime: the cpu time spent in user space since the last update
3284 void account_user_time(struct task_struct *p, cputime_t cputime)
3286 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3287 cputime64_t tmp;
3289 p->utime = cputime_add(p->utime, cputime);
3291 /* Add user time to cpustat. */
3292 tmp = cputime_to_cputime64(cputime);
3293 if (TASK_NICE(p) > 0)
3294 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3295 else
3296 cpustat->user = cputime64_add(cpustat->user, tmp);
3300 * Account system cpu time to a process.
3301 * @p: the process that the cpu time gets accounted to
3302 * @hardirq_offset: the offset to subtract from hardirq_count()
3303 * @cputime: the cpu time spent in kernel space since the last update
3305 void account_system_time(struct task_struct *p, int hardirq_offset,
3306 cputime_t cputime)
3308 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3309 struct rq *rq = this_rq();
3310 cputime64_t tmp;
3312 p->stime = cputime_add(p->stime, cputime);
3314 /* Add system time to cpustat. */
3315 tmp = cputime_to_cputime64(cputime);
3316 if (hardirq_count() - hardirq_offset)
3317 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3318 else if (softirq_count())
3319 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3320 else if (p != rq->idle)
3321 cpustat->system = cputime64_add(cpustat->system, tmp);
3322 else if (atomic_read(&rq->nr_iowait) > 0)
3323 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3324 else
3325 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3326 /* Account for system time used */
3327 acct_update_integrals(p);
3331 * Account for involuntary wait time.
3332 * @p: the process from which the cpu time has been stolen
3333 * @steal: the cpu time spent in involuntary wait
3335 void account_steal_time(struct task_struct *p, cputime_t steal)
3337 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3338 cputime64_t tmp = cputime_to_cputime64(steal);
3339 struct rq *rq = this_rq();
3341 if (p == rq->idle) {
3342 p->stime = cputime_add(p->stime, steal);
3343 if (atomic_read(&rq->nr_iowait) > 0)
3344 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3345 else
3346 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3347 } else
3348 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3352 * This function gets called by the timer code, with HZ frequency.
3353 * We call it with interrupts disabled.
3355 * It also gets called by the fork code, when changing the parent's
3356 * timeslices.
3358 void scheduler_tick(void)
3360 int cpu = smp_processor_id();
3361 struct rq *rq = cpu_rq(cpu);
3362 struct task_struct *curr = rq->curr;
3363 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3365 spin_lock(&rq->lock);
3366 __update_rq_clock(rq);
3368 * Let rq->clock advance by at least TICK_NSEC:
3370 if (unlikely(rq->clock < next_tick))
3371 rq->clock = next_tick;
3372 rq->tick_timestamp = rq->clock;
3373 update_cpu_load(rq);
3374 if (curr != rq->idle) /* FIXME: needed? */
3375 curr->sched_class->task_tick(rq, curr);
3376 spin_unlock(&rq->lock);
3378 #ifdef CONFIG_SMP
3379 rq->idle_at_tick = idle_cpu(cpu);
3380 trigger_load_balance(rq, cpu);
3381 #endif
3384 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3386 void fastcall add_preempt_count(int val)
3389 * Underflow?
3391 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3392 return;
3393 preempt_count() += val;
3395 * Spinlock count overflowing soon?
3397 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3398 PREEMPT_MASK - 10);
3400 EXPORT_SYMBOL(add_preempt_count);
3402 void fastcall sub_preempt_count(int val)
3405 * Underflow?
3407 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3408 return;
3410 * Is the spinlock portion underflowing?
3412 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3413 !(preempt_count() & PREEMPT_MASK)))
3414 return;
3416 preempt_count() -= val;
3418 EXPORT_SYMBOL(sub_preempt_count);
3420 #endif
3423 * Print scheduling while atomic bug:
3425 static noinline void __schedule_bug(struct task_struct *prev)
3427 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3428 prev->comm, preempt_count(), prev->pid);
3429 debug_show_held_locks(prev);
3430 if (irqs_disabled())
3431 print_irqtrace_events(prev);
3432 dump_stack();
3436 * Various schedule()-time debugging checks and statistics:
3438 static inline void schedule_debug(struct task_struct *prev)
3441 * Test if we are atomic. Since do_exit() needs to call into
3442 * schedule() atomically, we ignore that path for now.
3443 * Otherwise, whine if we are scheduling when we should not be.
3445 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3446 __schedule_bug(prev);
3448 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3450 schedstat_inc(this_rq(), sched_count);
3451 #ifdef CONFIG_SCHEDSTATS
3452 if (unlikely(prev->lock_depth >= 0)) {
3453 schedstat_inc(this_rq(), bkl_count);
3454 schedstat_inc(prev, sched_info.bkl_count);
3456 #endif
3460 * Pick up the highest-prio task:
3462 static inline struct task_struct *
3463 pick_next_task(struct rq *rq, struct task_struct *prev)
3465 const struct sched_class *class;
3466 struct task_struct *p;
3469 * Optimization: we know that if all tasks are in
3470 * the fair class we can call that function directly:
3472 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3473 p = fair_sched_class.pick_next_task(rq);
3474 if (likely(p))
3475 return p;
3478 class = sched_class_highest;
3479 for ( ; ; ) {
3480 p = class->pick_next_task(rq);
3481 if (p)
3482 return p;
3484 * Will never be NULL as the idle class always
3485 * returns a non-NULL p:
3487 class = class->next;
3492 * schedule() is the main scheduler function.
3494 asmlinkage void __sched schedule(void)
3496 struct task_struct *prev, *next;
3497 long *switch_count;
3498 struct rq *rq;
3499 int cpu;
3501 need_resched:
3502 preempt_disable();
3503 cpu = smp_processor_id();
3504 rq = cpu_rq(cpu);
3505 rcu_qsctr_inc(cpu);
3506 prev = rq->curr;
3507 switch_count = &prev->nivcsw;
3509 release_kernel_lock(prev);
3510 need_resched_nonpreemptible:
3512 schedule_debug(prev);
3515 * Do the rq-clock update outside the rq lock:
3517 local_irq_disable();
3518 __update_rq_clock(rq);
3519 spin_lock(&rq->lock);
3520 clear_tsk_need_resched(prev);
3522 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3523 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3524 unlikely(signal_pending(prev)))) {
3525 prev->state = TASK_RUNNING;
3526 } else {
3527 deactivate_task(rq, prev, 1);
3529 switch_count = &prev->nvcsw;
3532 if (unlikely(!rq->nr_running))
3533 idle_balance(cpu, rq);
3535 prev->sched_class->put_prev_task(rq, prev);
3536 next = pick_next_task(rq, prev);
3538 sched_info_switch(prev, next);
3540 if (likely(prev != next)) {
3541 rq->nr_switches++;
3542 rq->curr = next;
3543 ++*switch_count;
3545 context_switch(rq, prev, next); /* unlocks the rq */
3546 } else
3547 spin_unlock_irq(&rq->lock);
3549 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3550 cpu = smp_processor_id();
3551 rq = cpu_rq(cpu);
3552 goto need_resched_nonpreemptible;
3554 preempt_enable_no_resched();
3555 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3556 goto need_resched;
3558 EXPORT_SYMBOL(schedule);
3560 #ifdef CONFIG_PREEMPT
3562 * this is the entry point to schedule() from in-kernel preemption
3563 * off of preempt_enable. Kernel preemptions off return from interrupt
3564 * occur there and call schedule directly.
3566 asmlinkage void __sched preempt_schedule(void)
3568 struct thread_info *ti = current_thread_info();
3569 #ifdef CONFIG_PREEMPT_BKL
3570 struct task_struct *task = current;
3571 int saved_lock_depth;
3572 #endif
3574 * If there is a non-zero preempt_count or interrupts are disabled,
3575 * we do not want to preempt the current task. Just return..
3577 if (likely(ti->preempt_count || irqs_disabled()))
3578 return;
3580 do {
3581 add_preempt_count(PREEMPT_ACTIVE);
3584 * We keep the big kernel semaphore locked, but we
3585 * clear ->lock_depth so that schedule() doesnt
3586 * auto-release the semaphore:
3588 #ifdef CONFIG_PREEMPT_BKL
3589 saved_lock_depth = task->lock_depth;
3590 task->lock_depth = -1;
3591 #endif
3592 schedule();
3593 #ifdef CONFIG_PREEMPT_BKL
3594 task->lock_depth = saved_lock_depth;
3595 #endif
3596 sub_preempt_count(PREEMPT_ACTIVE);
3599 * Check again in case we missed a preemption opportunity
3600 * between schedule and now.
3602 barrier();
3603 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3605 EXPORT_SYMBOL(preempt_schedule);
3608 * this is the entry point to schedule() from kernel preemption
3609 * off of irq context.
3610 * Note, that this is called and return with irqs disabled. This will
3611 * protect us against recursive calling from irq.
3613 asmlinkage void __sched preempt_schedule_irq(void)
3615 struct thread_info *ti = current_thread_info();
3616 #ifdef CONFIG_PREEMPT_BKL
3617 struct task_struct *task = current;
3618 int saved_lock_depth;
3619 #endif
3620 /* Catch callers which need to be fixed */
3621 BUG_ON(ti->preempt_count || !irqs_disabled());
3623 do {
3624 add_preempt_count(PREEMPT_ACTIVE);
3627 * We keep the big kernel semaphore locked, but we
3628 * clear ->lock_depth so that schedule() doesnt
3629 * auto-release the semaphore:
3631 #ifdef CONFIG_PREEMPT_BKL
3632 saved_lock_depth = task->lock_depth;
3633 task->lock_depth = -1;
3634 #endif
3635 local_irq_enable();
3636 schedule();
3637 local_irq_disable();
3638 #ifdef CONFIG_PREEMPT_BKL
3639 task->lock_depth = saved_lock_depth;
3640 #endif
3641 sub_preempt_count(PREEMPT_ACTIVE);
3644 * Check again in case we missed a preemption opportunity
3645 * between schedule and now.
3647 barrier();
3648 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3651 #endif /* CONFIG_PREEMPT */
3653 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3654 void *key)
3656 return try_to_wake_up(curr->private, mode, sync);
3658 EXPORT_SYMBOL(default_wake_function);
3661 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3662 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3663 * number) then we wake all the non-exclusive tasks and one exclusive task.
3665 * There are circumstances in which we can try to wake a task which has already
3666 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3667 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3669 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3670 int nr_exclusive, int sync, void *key)
3672 wait_queue_t *curr, *next;
3674 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3675 unsigned flags = curr->flags;
3677 if (curr->func(curr, mode, sync, key) &&
3678 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3679 break;
3684 * __wake_up - wake up threads blocked on a waitqueue.
3685 * @q: the waitqueue
3686 * @mode: which threads
3687 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3688 * @key: is directly passed to the wakeup function
3690 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3691 int nr_exclusive, void *key)
3693 unsigned long flags;
3695 spin_lock_irqsave(&q->lock, flags);
3696 __wake_up_common(q, mode, nr_exclusive, 0, key);
3697 spin_unlock_irqrestore(&q->lock, flags);
3699 EXPORT_SYMBOL(__wake_up);
3702 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3704 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3706 __wake_up_common(q, mode, 1, 0, NULL);
3710 * __wake_up_sync - wake up threads blocked on a waitqueue.
3711 * @q: the waitqueue
3712 * @mode: which threads
3713 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3715 * The sync wakeup differs that the waker knows that it will schedule
3716 * away soon, so while the target thread will be woken up, it will not
3717 * be migrated to another CPU - ie. the two threads are 'synchronized'
3718 * with each other. This can prevent needless bouncing between CPUs.
3720 * On UP it can prevent extra preemption.
3722 void fastcall
3723 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3725 unsigned long flags;
3726 int sync = 1;
3728 if (unlikely(!q))
3729 return;
3731 if (unlikely(!nr_exclusive))
3732 sync = 0;
3734 spin_lock_irqsave(&q->lock, flags);
3735 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3736 spin_unlock_irqrestore(&q->lock, flags);
3738 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3740 void fastcall complete(struct completion *x)
3742 unsigned long flags;
3744 spin_lock_irqsave(&x->wait.lock, flags);
3745 x->done++;
3746 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3747 1, 0, NULL);
3748 spin_unlock_irqrestore(&x->wait.lock, flags);
3750 EXPORT_SYMBOL(complete);
3752 void fastcall complete_all(struct completion *x)
3754 unsigned long flags;
3756 spin_lock_irqsave(&x->wait.lock, flags);
3757 x->done += UINT_MAX/2;
3758 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3759 0, 0, NULL);
3760 spin_unlock_irqrestore(&x->wait.lock, flags);
3762 EXPORT_SYMBOL(complete_all);
3764 static inline long __sched
3765 do_wait_for_common(struct completion *x, long timeout, int state)
3767 if (!x->done) {
3768 DECLARE_WAITQUEUE(wait, current);
3770 wait.flags |= WQ_FLAG_EXCLUSIVE;
3771 __add_wait_queue_tail(&x->wait, &wait);
3772 do {
3773 if (state == TASK_INTERRUPTIBLE &&
3774 signal_pending(current)) {
3775 __remove_wait_queue(&x->wait, &wait);
3776 return -ERESTARTSYS;
3778 __set_current_state(state);
3779 spin_unlock_irq(&x->wait.lock);
3780 timeout = schedule_timeout(timeout);
3781 spin_lock_irq(&x->wait.lock);
3782 if (!timeout) {
3783 __remove_wait_queue(&x->wait, &wait);
3784 return timeout;
3786 } while (!x->done);
3787 __remove_wait_queue(&x->wait, &wait);
3789 x->done--;
3790 return timeout;
3793 static long __sched
3794 wait_for_common(struct completion *x, long timeout, int state)
3796 might_sleep();
3798 spin_lock_irq(&x->wait.lock);
3799 timeout = do_wait_for_common(x, timeout, state);
3800 spin_unlock_irq(&x->wait.lock);
3801 return timeout;
3804 void fastcall __sched wait_for_completion(struct completion *x)
3806 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3808 EXPORT_SYMBOL(wait_for_completion);
3810 unsigned long fastcall __sched
3811 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3813 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3815 EXPORT_SYMBOL(wait_for_completion_timeout);
3817 int __sched wait_for_completion_interruptible(struct completion *x)
3819 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3821 EXPORT_SYMBOL(wait_for_completion_interruptible);
3823 unsigned long fastcall __sched
3824 wait_for_completion_interruptible_timeout(struct completion *x,
3825 unsigned long timeout)
3827 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3829 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3831 static long __sched
3832 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3834 unsigned long flags;
3835 wait_queue_t wait;
3837 init_waitqueue_entry(&wait, current);
3839 __set_current_state(state);
3841 spin_lock_irqsave(&q->lock, flags);
3842 __add_wait_queue(q, &wait);
3843 spin_unlock(&q->lock);
3844 timeout = schedule_timeout(timeout);
3845 spin_lock_irq(&q->lock);
3846 __remove_wait_queue(q, &wait);
3847 spin_unlock_irqrestore(&q->lock, flags);
3849 return timeout;
3852 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3854 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3856 EXPORT_SYMBOL(interruptible_sleep_on);
3858 long __sched
3859 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3861 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3863 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3865 void __sched sleep_on(wait_queue_head_t *q)
3867 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3869 EXPORT_SYMBOL(sleep_on);
3871 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3873 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3875 EXPORT_SYMBOL(sleep_on_timeout);
3877 #ifdef CONFIG_RT_MUTEXES
3880 * rt_mutex_setprio - set the current priority of a task
3881 * @p: task
3882 * @prio: prio value (kernel-internal form)
3884 * This function changes the 'effective' priority of a task. It does
3885 * not touch ->normal_prio like __setscheduler().
3887 * Used by the rt_mutex code to implement priority inheritance logic.
3889 void rt_mutex_setprio(struct task_struct *p, int prio)
3891 unsigned long flags;
3892 int oldprio, on_rq, running;
3893 struct rq *rq;
3895 BUG_ON(prio < 0 || prio > MAX_PRIO);
3897 rq = task_rq_lock(p, &flags);
3898 update_rq_clock(rq);
3900 oldprio = p->prio;
3901 on_rq = p->se.on_rq;
3902 running = task_running(rq, p);
3903 if (on_rq) {
3904 dequeue_task(rq, p, 0);
3905 if (running)
3906 p->sched_class->put_prev_task(rq, p);
3909 if (rt_prio(prio))
3910 p->sched_class = &rt_sched_class;
3911 else
3912 p->sched_class = &fair_sched_class;
3914 p->prio = prio;
3916 if (on_rq) {
3917 if (running)
3918 p->sched_class->set_curr_task(rq);
3919 enqueue_task(rq, p, 0);
3921 * Reschedule if we are currently running on this runqueue and
3922 * our priority decreased, or if we are not currently running on
3923 * this runqueue and our priority is higher than the current's
3925 if (running) {
3926 if (p->prio > oldprio)
3927 resched_task(rq->curr);
3928 } else {
3929 check_preempt_curr(rq, p);
3932 task_rq_unlock(rq, &flags);
3935 #endif
3937 void set_user_nice(struct task_struct *p, long nice)
3939 int old_prio, delta, on_rq;
3940 unsigned long flags;
3941 struct rq *rq;
3943 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3944 return;
3946 * We have to be careful, if called from sys_setpriority(),
3947 * the task might be in the middle of scheduling on another CPU.
3949 rq = task_rq_lock(p, &flags);
3950 update_rq_clock(rq);
3952 * The RT priorities are set via sched_setscheduler(), but we still
3953 * allow the 'normal' nice value to be set - but as expected
3954 * it wont have any effect on scheduling until the task is
3955 * SCHED_FIFO/SCHED_RR:
3957 if (task_has_rt_policy(p)) {
3958 p->static_prio = NICE_TO_PRIO(nice);
3959 goto out_unlock;
3961 on_rq = p->se.on_rq;
3962 if (on_rq) {
3963 dequeue_task(rq, p, 0);
3964 dec_load(rq, p);
3967 p->static_prio = NICE_TO_PRIO(nice);
3968 set_load_weight(p);
3969 old_prio = p->prio;
3970 p->prio = effective_prio(p);
3971 delta = p->prio - old_prio;
3973 if (on_rq) {
3974 enqueue_task(rq, p, 0);
3975 inc_load(rq, p);
3977 * If the task increased its priority or is running and
3978 * lowered its priority, then reschedule its CPU:
3980 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3981 resched_task(rq->curr);
3983 out_unlock:
3984 task_rq_unlock(rq, &flags);
3986 EXPORT_SYMBOL(set_user_nice);
3989 * can_nice - check if a task can reduce its nice value
3990 * @p: task
3991 * @nice: nice value
3993 int can_nice(const struct task_struct *p, const int nice)
3995 /* convert nice value [19,-20] to rlimit style value [1,40] */
3996 int nice_rlim = 20 - nice;
3998 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3999 capable(CAP_SYS_NICE));
4002 #ifdef __ARCH_WANT_SYS_NICE
4005 * sys_nice - change the priority of the current process.
4006 * @increment: priority increment
4008 * sys_setpriority is a more generic, but much slower function that
4009 * does similar things.
4011 asmlinkage long sys_nice(int increment)
4013 long nice, retval;
4016 * Setpriority might change our priority at the same moment.
4017 * We don't have to worry. Conceptually one call occurs first
4018 * and we have a single winner.
4020 if (increment < -40)
4021 increment = -40;
4022 if (increment > 40)
4023 increment = 40;
4025 nice = PRIO_TO_NICE(current->static_prio) + increment;
4026 if (nice < -20)
4027 nice = -20;
4028 if (nice > 19)
4029 nice = 19;
4031 if (increment < 0 && !can_nice(current, nice))
4032 return -EPERM;
4034 retval = security_task_setnice(current, nice);
4035 if (retval)
4036 return retval;
4038 set_user_nice(current, nice);
4039 return 0;
4042 #endif
4045 * task_prio - return the priority value of a given task.
4046 * @p: the task in question.
4048 * This is the priority value as seen by users in /proc.
4049 * RT tasks are offset by -200. Normal tasks are centered
4050 * around 0, value goes from -16 to +15.
4052 int task_prio(const struct task_struct *p)
4054 return p->prio - MAX_RT_PRIO;
4058 * task_nice - return the nice value of a given task.
4059 * @p: the task in question.
4061 int task_nice(const struct task_struct *p)
4063 return TASK_NICE(p);
4065 EXPORT_SYMBOL_GPL(task_nice);
4068 * idle_cpu - is a given cpu idle currently?
4069 * @cpu: the processor in question.
4071 int idle_cpu(int cpu)
4073 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4077 * idle_task - return the idle task for a given cpu.
4078 * @cpu: the processor in question.
4080 struct task_struct *idle_task(int cpu)
4082 return cpu_rq(cpu)->idle;
4086 * find_process_by_pid - find a process with a matching PID value.
4087 * @pid: the pid in question.
4089 static struct task_struct *find_process_by_pid(pid_t pid)
4091 return pid ? find_task_by_pid(pid) : current;
4094 /* Actually do priority change: must hold rq lock. */
4095 static void
4096 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4098 BUG_ON(p->se.on_rq);
4100 p->policy = policy;
4101 switch (p->policy) {
4102 case SCHED_NORMAL:
4103 case SCHED_BATCH:
4104 case SCHED_IDLE:
4105 p->sched_class = &fair_sched_class;
4106 break;
4107 case SCHED_FIFO:
4108 case SCHED_RR:
4109 p->sched_class = &rt_sched_class;
4110 break;
4113 p->rt_priority = prio;
4114 p->normal_prio = normal_prio(p);
4115 /* we are holding p->pi_lock already */
4116 p->prio = rt_mutex_getprio(p);
4117 set_load_weight(p);
4121 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4122 * @p: the task in question.
4123 * @policy: new policy.
4124 * @param: structure containing the new RT priority.
4126 * NOTE that the task may be already dead.
4128 int sched_setscheduler(struct task_struct *p, int policy,
4129 struct sched_param *param)
4131 int retval, oldprio, oldpolicy = -1, on_rq, running;
4132 unsigned long flags;
4133 struct rq *rq;
4135 /* may grab non-irq protected spin_locks */
4136 BUG_ON(in_interrupt());
4137 recheck:
4138 /* double check policy once rq lock held */
4139 if (policy < 0)
4140 policy = oldpolicy = p->policy;
4141 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4142 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4143 policy != SCHED_IDLE)
4144 return -EINVAL;
4146 * Valid priorities for SCHED_FIFO and SCHED_RR are
4147 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4148 * SCHED_BATCH and SCHED_IDLE is 0.
4150 if (param->sched_priority < 0 ||
4151 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4152 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4153 return -EINVAL;
4154 if (rt_policy(policy) != (param->sched_priority != 0))
4155 return -EINVAL;
4158 * Allow unprivileged RT tasks to decrease priority:
4160 if (!capable(CAP_SYS_NICE)) {
4161 if (rt_policy(policy)) {
4162 unsigned long rlim_rtprio;
4164 if (!lock_task_sighand(p, &flags))
4165 return -ESRCH;
4166 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4167 unlock_task_sighand(p, &flags);
4169 /* can't set/change the rt policy */
4170 if (policy != p->policy && !rlim_rtprio)
4171 return -EPERM;
4173 /* can't increase priority */
4174 if (param->sched_priority > p->rt_priority &&
4175 param->sched_priority > rlim_rtprio)
4176 return -EPERM;
4179 * Like positive nice levels, dont allow tasks to
4180 * move out of SCHED_IDLE either:
4182 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4183 return -EPERM;
4185 /* can't change other user's priorities */
4186 if ((current->euid != p->euid) &&
4187 (current->euid != p->uid))
4188 return -EPERM;
4191 retval = security_task_setscheduler(p, policy, param);
4192 if (retval)
4193 return retval;
4195 * make sure no PI-waiters arrive (or leave) while we are
4196 * changing the priority of the task:
4198 spin_lock_irqsave(&p->pi_lock, flags);
4200 * To be able to change p->policy safely, the apropriate
4201 * runqueue lock must be held.
4203 rq = __task_rq_lock(p);
4204 /* recheck policy now with rq lock held */
4205 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4206 policy = oldpolicy = -1;
4207 __task_rq_unlock(rq);
4208 spin_unlock_irqrestore(&p->pi_lock, flags);
4209 goto recheck;
4211 update_rq_clock(rq);
4212 on_rq = p->se.on_rq;
4213 running = task_running(rq, p);
4214 if (on_rq) {
4215 deactivate_task(rq, p, 0);
4216 if (running)
4217 p->sched_class->put_prev_task(rq, p);
4220 oldprio = p->prio;
4221 __setscheduler(rq, p, policy, param->sched_priority);
4223 if (on_rq) {
4224 if (running)
4225 p->sched_class->set_curr_task(rq);
4226 activate_task(rq, p, 0);
4228 * Reschedule if we are currently running on this runqueue and
4229 * our priority decreased, or if we are not currently running on
4230 * this runqueue and our priority is higher than the current's
4232 if (running) {
4233 if (p->prio > oldprio)
4234 resched_task(rq->curr);
4235 } else {
4236 check_preempt_curr(rq, p);
4239 __task_rq_unlock(rq);
4240 spin_unlock_irqrestore(&p->pi_lock, flags);
4242 rt_mutex_adjust_pi(p);
4244 return 0;
4246 EXPORT_SYMBOL_GPL(sched_setscheduler);
4248 static int
4249 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4251 struct sched_param lparam;
4252 struct task_struct *p;
4253 int retval;
4255 if (!param || pid < 0)
4256 return -EINVAL;
4257 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4258 return -EFAULT;
4260 rcu_read_lock();
4261 retval = -ESRCH;
4262 p = find_process_by_pid(pid);
4263 if (p != NULL)
4264 retval = sched_setscheduler(p, policy, &lparam);
4265 rcu_read_unlock();
4267 return retval;
4271 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4272 * @pid: the pid in question.
4273 * @policy: new policy.
4274 * @param: structure containing the new RT priority.
4276 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4277 struct sched_param __user *param)
4279 /* negative values for policy are not valid */
4280 if (policy < 0)
4281 return -EINVAL;
4283 return do_sched_setscheduler(pid, policy, param);
4287 * sys_sched_setparam - set/change the RT priority of a thread
4288 * @pid: the pid in question.
4289 * @param: structure containing the new RT priority.
4291 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4293 return do_sched_setscheduler(pid, -1, param);
4297 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4298 * @pid: the pid in question.
4300 asmlinkage long sys_sched_getscheduler(pid_t pid)
4302 struct task_struct *p;
4303 int retval;
4305 if (pid < 0)
4306 return -EINVAL;
4308 retval = -ESRCH;
4309 read_lock(&tasklist_lock);
4310 p = find_process_by_pid(pid);
4311 if (p) {
4312 retval = security_task_getscheduler(p);
4313 if (!retval)
4314 retval = p->policy;
4316 read_unlock(&tasklist_lock);
4317 return retval;
4321 * sys_sched_getscheduler - get the RT priority of a thread
4322 * @pid: the pid in question.
4323 * @param: structure containing the RT priority.
4325 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4327 struct sched_param lp;
4328 struct task_struct *p;
4329 int retval;
4331 if (!param || pid < 0)
4332 return -EINVAL;
4334 read_lock(&tasklist_lock);
4335 p = find_process_by_pid(pid);
4336 retval = -ESRCH;
4337 if (!p)
4338 goto out_unlock;
4340 retval = security_task_getscheduler(p);
4341 if (retval)
4342 goto out_unlock;
4344 lp.sched_priority = p->rt_priority;
4345 read_unlock(&tasklist_lock);
4348 * This one might sleep, we cannot do it with a spinlock held ...
4350 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4352 return retval;
4354 out_unlock:
4355 read_unlock(&tasklist_lock);
4356 return retval;
4359 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4361 cpumask_t cpus_allowed;
4362 struct task_struct *p;
4363 int retval;
4365 mutex_lock(&sched_hotcpu_mutex);
4366 read_lock(&tasklist_lock);
4368 p = find_process_by_pid(pid);
4369 if (!p) {
4370 read_unlock(&tasklist_lock);
4371 mutex_unlock(&sched_hotcpu_mutex);
4372 return -ESRCH;
4376 * It is not safe to call set_cpus_allowed with the
4377 * tasklist_lock held. We will bump the task_struct's
4378 * usage count and then drop tasklist_lock.
4380 get_task_struct(p);
4381 read_unlock(&tasklist_lock);
4383 retval = -EPERM;
4384 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4385 !capable(CAP_SYS_NICE))
4386 goto out_unlock;
4388 retval = security_task_setscheduler(p, 0, NULL);
4389 if (retval)
4390 goto out_unlock;
4392 cpus_allowed = cpuset_cpus_allowed(p);
4393 cpus_and(new_mask, new_mask, cpus_allowed);
4394 retval = set_cpus_allowed(p, new_mask);
4396 out_unlock:
4397 put_task_struct(p);
4398 mutex_unlock(&sched_hotcpu_mutex);
4399 return retval;
4402 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4403 cpumask_t *new_mask)
4405 if (len < sizeof(cpumask_t)) {
4406 memset(new_mask, 0, sizeof(cpumask_t));
4407 } else if (len > sizeof(cpumask_t)) {
4408 len = sizeof(cpumask_t);
4410 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4414 * sys_sched_setaffinity - set the cpu affinity of a process
4415 * @pid: pid of the process
4416 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4417 * @user_mask_ptr: user-space pointer to the new cpu mask
4419 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4420 unsigned long __user *user_mask_ptr)
4422 cpumask_t new_mask;
4423 int retval;
4425 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4426 if (retval)
4427 return retval;
4429 return sched_setaffinity(pid, new_mask);
4433 * Represents all cpu's present in the system
4434 * In systems capable of hotplug, this map could dynamically grow
4435 * as new cpu's are detected in the system via any platform specific
4436 * method, such as ACPI for e.g.
4439 cpumask_t cpu_present_map __read_mostly;
4440 EXPORT_SYMBOL(cpu_present_map);
4442 #ifndef CONFIG_SMP
4443 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4444 EXPORT_SYMBOL(cpu_online_map);
4446 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4447 EXPORT_SYMBOL(cpu_possible_map);
4448 #endif
4450 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4452 struct task_struct *p;
4453 int retval;
4455 mutex_lock(&sched_hotcpu_mutex);
4456 read_lock(&tasklist_lock);
4458 retval = -ESRCH;
4459 p = find_process_by_pid(pid);
4460 if (!p)
4461 goto out_unlock;
4463 retval = security_task_getscheduler(p);
4464 if (retval)
4465 goto out_unlock;
4467 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4469 out_unlock:
4470 read_unlock(&tasklist_lock);
4471 mutex_unlock(&sched_hotcpu_mutex);
4473 return retval;
4477 * sys_sched_getaffinity - get the cpu affinity of a process
4478 * @pid: pid of the process
4479 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4480 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4482 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4483 unsigned long __user *user_mask_ptr)
4485 int ret;
4486 cpumask_t mask;
4488 if (len < sizeof(cpumask_t))
4489 return -EINVAL;
4491 ret = sched_getaffinity(pid, &mask);
4492 if (ret < 0)
4493 return ret;
4495 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4496 return -EFAULT;
4498 return sizeof(cpumask_t);
4502 * sys_sched_yield - yield the current processor to other threads.
4504 * This function yields the current CPU to other tasks. If there are no
4505 * other threads running on this CPU then this function will return.
4507 asmlinkage long sys_sched_yield(void)
4509 struct rq *rq = this_rq_lock();
4511 schedstat_inc(rq, yld_count);
4512 current->sched_class->yield_task(rq);
4515 * Since we are going to call schedule() anyway, there's
4516 * no need to preempt or enable interrupts:
4518 __release(rq->lock);
4519 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4520 _raw_spin_unlock(&rq->lock);
4521 preempt_enable_no_resched();
4523 schedule();
4525 return 0;
4528 static void __cond_resched(void)
4530 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4531 __might_sleep(__FILE__, __LINE__);
4532 #endif
4534 * The BKS might be reacquired before we have dropped
4535 * PREEMPT_ACTIVE, which could trigger a second
4536 * cond_resched() call.
4538 do {
4539 add_preempt_count(PREEMPT_ACTIVE);
4540 schedule();
4541 sub_preempt_count(PREEMPT_ACTIVE);
4542 } while (need_resched());
4545 int __sched cond_resched(void)
4547 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4548 system_state == SYSTEM_RUNNING) {
4549 __cond_resched();
4550 return 1;
4552 return 0;
4554 EXPORT_SYMBOL(cond_resched);
4557 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4558 * call schedule, and on return reacquire the lock.
4560 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4561 * operations here to prevent schedule() from being called twice (once via
4562 * spin_unlock(), once by hand).
4564 int cond_resched_lock(spinlock_t *lock)
4566 int ret = 0;
4568 if (need_lockbreak(lock)) {
4569 spin_unlock(lock);
4570 cpu_relax();
4571 ret = 1;
4572 spin_lock(lock);
4574 if (need_resched() && system_state == SYSTEM_RUNNING) {
4575 spin_release(&lock->dep_map, 1, _THIS_IP_);
4576 _raw_spin_unlock(lock);
4577 preempt_enable_no_resched();
4578 __cond_resched();
4579 ret = 1;
4580 spin_lock(lock);
4582 return ret;
4584 EXPORT_SYMBOL(cond_resched_lock);
4586 int __sched cond_resched_softirq(void)
4588 BUG_ON(!in_softirq());
4590 if (need_resched() && system_state == SYSTEM_RUNNING) {
4591 local_bh_enable();
4592 __cond_resched();
4593 local_bh_disable();
4594 return 1;
4596 return 0;
4598 EXPORT_SYMBOL(cond_resched_softirq);
4601 * yield - yield the current processor to other threads.
4603 * This is a shortcut for kernel-space yielding - it marks the
4604 * thread runnable and calls sys_sched_yield().
4606 void __sched yield(void)
4608 set_current_state(TASK_RUNNING);
4609 sys_sched_yield();
4611 EXPORT_SYMBOL(yield);
4614 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4615 * that process accounting knows that this is a task in IO wait state.
4617 * But don't do that if it is a deliberate, throttling IO wait (this task
4618 * has set its backing_dev_info: the queue against which it should throttle)
4620 void __sched io_schedule(void)
4622 struct rq *rq = &__raw_get_cpu_var(runqueues);
4624 delayacct_blkio_start();
4625 atomic_inc(&rq->nr_iowait);
4626 schedule();
4627 atomic_dec(&rq->nr_iowait);
4628 delayacct_blkio_end();
4630 EXPORT_SYMBOL(io_schedule);
4632 long __sched io_schedule_timeout(long timeout)
4634 struct rq *rq = &__raw_get_cpu_var(runqueues);
4635 long ret;
4637 delayacct_blkio_start();
4638 atomic_inc(&rq->nr_iowait);
4639 ret = schedule_timeout(timeout);
4640 atomic_dec(&rq->nr_iowait);
4641 delayacct_blkio_end();
4642 return ret;
4646 * sys_sched_get_priority_max - return maximum RT priority.
4647 * @policy: scheduling class.
4649 * this syscall returns the maximum rt_priority that can be used
4650 * by a given scheduling class.
4652 asmlinkage long sys_sched_get_priority_max(int policy)
4654 int ret = -EINVAL;
4656 switch (policy) {
4657 case SCHED_FIFO:
4658 case SCHED_RR:
4659 ret = MAX_USER_RT_PRIO-1;
4660 break;
4661 case SCHED_NORMAL:
4662 case SCHED_BATCH:
4663 case SCHED_IDLE:
4664 ret = 0;
4665 break;
4667 return ret;
4671 * sys_sched_get_priority_min - return minimum RT priority.
4672 * @policy: scheduling class.
4674 * this syscall returns the minimum rt_priority that can be used
4675 * by a given scheduling class.
4677 asmlinkage long sys_sched_get_priority_min(int policy)
4679 int ret = -EINVAL;
4681 switch (policy) {
4682 case SCHED_FIFO:
4683 case SCHED_RR:
4684 ret = 1;
4685 break;
4686 case SCHED_NORMAL:
4687 case SCHED_BATCH:
4688 case SCHED_IDLE:
4689 ret = 0;
4691 return ret;
4695 * sys_sched_rr_get_interval - return the default timeslice of a process.
4696 * @pid: pid of the process.
4697 * @interval: userspace pointer to the timeslice value.
4699 * this syscall writes the default timeslice value of a given process
4700 * into the user-space timespec buffer. A value of '0' means infinity.
4702 asmlinkage
4703 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4705 struct task_struct *p;
4706 unsigned int time_slice;
4707 int retval;
4708 struct timespec t;
4710 if (pid < 0)
4711 return -EINVAL;
4713 retval = -ESRCH;
4714 read_lock(&tasklist_lock);
4715 p = find_process_by_pid(pid);
4716 if (!p)
4717 goto out_unlock;
4719 retval = security_task_getscheduler(p);
4720 if (retval)
4721 goto out_unlock;
4723 if (p->policy == SCHED_FIFO)
4724 time_slice = 0;
4725 else if (p->policy == SCHED_RR)
4726 time_slice = DEF_TIMESLICE;
4727 else {
4728 struct sched_entity *se = &p->se;
4729 unsigned long flags;
4730 struct rq *rq;
4732 rq = task_rq_lock(p, &flags);
4733 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4734 task_rq_unlock(rq, &flags);
4736 read_unlock(&tasklist_lock);
4737 jiffies_to_timespec(time_slice, &t);
4738 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4739 return retval;
4741 out_unlock:
4742 read_unlock(&tasklist_lock);
4743 return retval;
4746 static const char stat_nam[] = "RSDTtZX";
4748 static void show_task(struct task_struct *p)
4750 unsigned long free = 0;
4751 unsigned state;
4753 state = p->state ? __ffs(p->state) + 1 : 0;
4754 printk("%-13.13s %c", p->comm,
4755 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4756 #if BITS_PER_LONG == 32
4757 if (state == TASK_RUNNING)
4758 printk(" running ");
4759 else
4760 printk(" %08lx ", thread_saved_pc(p));
4761 #else
4762 if (state == TASK_RUNNING)
4763 printk(" running task ");
4764 else
4765 printk(" %016lx ", thread_saved_pc(p));
4766 #endif
4767 #ifdef CONFIG_DEBUG_STACK_USAGE
4769 unsigned long *n = end_of_stack(p);
4770 while (!*n)
4771 n++;
4772 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4774 #endif
4775 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4777 if (state != TASK_RUNNING)
4778 show_stack(p, NULL);
4781 void show_state_filter(unsigned long state_filter)
4783 struct task_struct *g, *p;
4785 #if BITS_PER_LONG == 32
4786 printk(KERN_INFO
4787 " task PC stack pid father\n");
4788 #else
4789 printk(KERN_INFO
4790 " task PC stack pid father\n");
4791 #endif
4792 read_lock(&tasklist_lock);
4793 do_each_thread(g, p) {
4795 * reset the NMI-timeout, listing all files on a slow
4796 * console might take alot of time:
4798 touch_nmi_watchdog();
4799 if (!state_filter || (p->state & state_filter))
4800 show_task(p);
4801 } while_each_thread(g, p);
4803 touch_all_softlockup_watchdogs();
4805 #ifdef CONFIG_SCHED_DEBUG
4806 sysrq_sched_debug_show();
4807 #endif
4808 read_unlock(&tasklist_lock);
4810 * Only show locks if all tasks are dumped:
4812 if (state_filter == -1)
4813 debug_show_all_locks();
4816 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4818 idle->sched_class = &idle_sched_class;
4822 * init_idle - set up an idle thread for a given CPU
4823 * @idle: task in question
4824 * @cpu: cpu the idle task belongs to
4826 * NOTE: this function does not set the idle thread's NEED_RESCHED
4827 * flag, to make booting more robust.
4829 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4831 struct rq *rq = cpu_rq(cpu);
4832 unsigned long flags;
4834 __sched_fork(idle);
4835 idle->se.exec_start = sched_clock();
4837 idle->prio = idle->normal_prio = MAX_PRIO;
4838 idle->cpus_allowed = cpumask_of_cpu(cpu);
4839 __set_task_cpu(idle, cpu);
4841 spin_lock_irqsave(&rq->lock, flags);
4842 rq->curr = rq->idle = idle;
4843 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4844 idle->oncpu = 1;
4845 #endif
4846 spin_unlock_irqrestore(&rq->lock, flags);
4848 /* Set the preempt count _outside_ the spinlocks! */
4849 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4850 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4851 #else
4852 task_thread_info(idle)->preempt_count = 0;
4853 #endif
4855 * The idle tasks have their own, simple scheduling class:
4857 idle->sched_class = &idle_sched_class;
4861 * In a system that switches off the HZ timer nohz_cpu_mask
4862 * indicates which cpus entered this state. This is used
4863 * in the rcu update to wait only for active cpus. For system
4864 * which do not switch off the HZ timer nohz_cpu_mask should
4865 * always be CPU_MASK_NONE.
4867 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4869 #ifdef CONFIG_SMP
4871 * This is how migration works:
4873 * 1) we queue a struct migration_req structure in the source CPU's
4874 * runqueue and wake up that CPU's migration thread.
4875 * 2) we down() the locked semaphore => thread blocks.
4876 * 3) migration thread wakes up (implicitly it forces the migrated
4877 * thread off the CPU)
4878 * 4) it gets the migration request and checks whether the migrated
4879 * task is still in the wrong runqueue.
4880 * 5) if it's in the wrong runqueue then the migration thread removes
4881 * it and puts it into the right queue.
4882 * 6) migration thread up()s the semaphore.
4883 * 7) we wake up and the migration is done.
4887 * Change a given task's CPU affinity. Migrate the thread to a
4888 * proper CPU and schedule it away if the CPU it's executing on
4889 * is removed from the allowed bitmask.
4891 * NOTE: the caller must have a valid reference to the task, the
4892 * task must not exit() & deallocate itself prematurely. The
4893 * call is not atomic; no spinlocks may be held.
4895 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4897 struct migration_req req;
4898 unsigned long flags;
4899 struct rq *rq;
4900 int ret = 0;
4902 rq = task_rq_lock(p, &flags);
4903 if (!cpus_intersects(new_mask, cpu_online_map)) {
4904 ret = -EINVAL;
4905 goto out;
4908 p->cpus_allowed = new_mask;
4909 /* Can the task run on the task's current CPU? If so, we're done */
4910 if (cpu_isset(task_cpu(p), new_mask))
4911 goto out;
4913 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4914 /* Need help from migration thread: drop lock and wait. */
4915 task_rq_unlock(rq, &flags);
4916 wake_up_process(rq->migration_thread);
4917 wait_for_completion(&req.done);
4918 tlb_migrate_finish(p->mm);
4919 return 0;
4921 out:
4922 task_rq_unlock(rq, &flags);
4924 return ret;
4926 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4929 * Move (not current) task off this cpu, onto dest cpu. We're doing
4930 * this because either it can't run here any more (set_cpus_allowed()
4931 * away from this CPU, or CPU going down), or because we're
4932 * attempting to rebalance this task on exec (sched_exec).
4934 * So we race with normal scheduler movements, but that's OK, as long
4935 * as the task is no longer on this CPU.
4937 * Returns non-zero if task was successfully migrated.
4939 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4941 struct rq *rq_dest, *rq_src;
4942 int ret = 0, on_rq;
4944 if (unlikely(cpu_is_offline(dest_cpu)))
4945 return ret;
4947 rq_src = cpu_rq(src_cpu);
4948 rq_dest = cpu_rq(dest_cpu);
4950 double_rq_lock(rq_src, rq_dest);
4951 /* Already moved. */
4952 if (task_cpu(p) != src_cpu)
4953 goto out;
4954 /* Affinity changed (again). */
4955 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4956 goto out;
4958 on_rq = p->se.on_rq;
4959 if (on_rq)
4960 deactivate_task(rq_src, p, 0);
4962 set_task_cpu(p, dest_cpu);
4963 if (on_rq) {
4964 activate_task(rq_dest, p, 0);
4965 check_preempt_curr(rq_dest, p);
4967 ret = 1;
4968 out:
4969 double_rq_unlock(rq_src, rq_dest);
4970 return ret;
4974 * migration_thread - this is a highprio system thread that performs
4975 * thread migration by bumping thread off CPU then 'pushing' onto
4976 * another runqueue.
4978 static int migration_thread(void *data)
4980 int cpu = (long)data;
4981 struct rq *rq;
4983 rq = cpu_rq(cpu);
4984 BUG_ON(rq->migration_thread != current);
4986 set_current_state(TASK_INTERRUPTIBLE);
4987 while (!kthread_should_stop()) {
4988 struct migration_req *req;
4989 struct list_head *head;
4991 spin_lock_irq(&rq->lock);
4993 if (cpu_is_offline(cpu)) {
4994 spin_unlock_irq(&rq->lock);
4995 goto wait_to_die;
4998 if (rq->active_balance) {
4999 active_load_balance(rq, cpu);
5000 rq->active_balance = 0;
5003 head = &rq->migration_queue;
5005 if (list_empty(head)) {
5006 spin_unlock_irq(&rq->lock);
5007 schedule();
5008 set_current_state(TASK_INTERRUPTIBLE);
5009 continue;
5011 req = list_entry(head->next, struct migration_req, list);
5012 list_del_init(head->next);
5014 spin_unlock(&rq->lock);
5015 __migrate_task(req->task, cpu, req->dest_cpu);
5016 local_irq_enable();
5018 complete(&req->done);
5020 __set_current_state(TASK_RUNNING);
5021 return 0;
5023 wait_to_die:
5024 /* Wait for kthread_stop */
5025 set_current_state(TASK_INTERRUPTIBLE);
5026 while (!kthread_should_stop()) {
5027 schedule();
5028 set_current_state(TASK_INTERRUPTIBLE);
5030 __set_current_state(TASK_RUNNING);
5031 return 0;
5034 #ifdef CONFIG_HOTPLUG_CPU
5036 * Figure out where task on dead CPU should go, use force if neccessary.
5037 * NOTE: interrupts should be disabled by the caller
5039 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5041 unsigned long flags;
5042 cpumask_t mask;
5043 struct rq *rq;
5044 int dest_cpu;
5046 do {
5047 /* On same node? */
5048 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5049 cpus_and(mask, mask, p->cpus_allowed);
5050 dest_cpu = any_online_cpu(mask);
5052 /* On any allowed CPU? */
5053 if (dest_cpu == NR_CPUS)
5054 dest_cpu = any_online_cpu(p->cpus_allowed);
5056 /* No more Mr. Nice Guy. */
5057 if (dest_cpu == NR_CPUS) {
5058 rq = task_rq_lock(p, &flags);
5059 cpus_setall(p->cpus_allowed);
5060 dest_cpu = any_online_cpu(p->cpus_allowed);
5061 task_rq_unlock(rq, &flags);
5064 * Don't tell them about moving exiting tasks or
5065 * kernel threads (both mm NULL), since they never
5066 * leave kernel.
5068 if (p->mm && printk_ratelimit())
5069 printk(KERN_INFO "process %d (%s) no "
5070 "longer affine to cpu%d\n",
5071 p->pid, p->comm, dead_cpu);
5073 } while (!__migrate_task(p, dead_cpu, dest_cpu));
5077 * While a dead CPU has no uninterruptible tasks queued at this point,
5078 * it might still have a nonzero ->nr_uninterruptible counter, because
5079 * for performance reasons the counter is not stricly tracking tasks to
5080 * their home CPUs. So we just add the counter to another CPU's counter,
5081 * to keep the global sum constant after CPU-down:
5083 static void migrate_nr_uninterruptible(struct rq *rq_src)
5085 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5086 unsigned long flags;
5088 local_irq_save(flags);
5089 double_rq_lock(rq_src, rq_dest);
5090 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5091 rq_src->nr_uninterruptible = 0;
5092 double_rq_unlock(rq_src, rq_dest);
5093 local_irq_restore(flags);
5096 /* Run through task list and migrate tasks from the dead cpu. */
5097 static void migrate_live_tasks(int src_cpu)
5099 struct task_struct *p, *t;
5101 write_lock_irq(&tasklist_lock);
5103 do_each_thread(t, p) {
5104 if (p == current)
5105 continue;
5107 if (task_cpu(p) == src_cpu)
5108 move_task_off_dead_cpu(src_cpu, p);
5109 } while_each_thread(t, p);
5111 write_unlock_irq(&tasklist_lock);
5115 * activate_idle_task - move idle task to the _front_ of runqueue.
5117 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5119 update_rq_clock(rq);
5121 if (p->state == TASK_UNINTERRUPTIBLE)
5122 rq->nr_uninterruptible--;
5124 enqueue_task(rq, p, 0);
5125 inc_nr_running(p, rq);
5129 * Schedules idle task to be the next runnable task on current CPU.
5130 * It does so by boosting its priority to highest possible and adding it to
5131 * the _front_ of the runqueue. Used by CPU offline code.
5133 void sched_idle_next(void)
5135 int this_cpu = smp_processor_id();
5136 struct rq *rq = cpu_rq(this_cpu);
5137 struct task_struct *p = rq->idle;
5138 unsigned long flags;
5140 /* cpu has to be offline */
5141 BUG_ON(cpu_online(this_cpu));
5144 * Strictly not necessary since rest of the CPUs are stopped by now
5145 * and interrupts disabled on the current cpu.
5147 spin_lock_irqsave(&rq->lock, flags);
5149 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5151 /* Add idle task to the _front_ of its priority queue: */
5152 activate_idle_task(p, rq);
5154 spin_unlock_irqrestore(&rq->lock, flags);
5158 * Ensures that the idle task is using init_mm right before its cpu goes
5159 * offline.
5161 void idle_task_exit(void)
5163 struct mm_struct *mm = current->active_mm;
5165 BUG_ON(cpu_online(smp_processor_id()));
5167 if (mm != &init_mm)
5168 switch_mm(mm, &init_mm, current);
5169 mmdrop(mm);
5172 /* called under rq->lock with disabled interrupts */
5173 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5175 struct rq *rq = cpu_rq(dead_cpu);
5177 /* Must be exiting, otherwise would be on tasklist. */
5178 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5180 /* Cannot have done final schedule yet: would have vanished. */
5181 BUG_ON(p->state == TASK_DEAD);
5183 get_task_struct(p);
5186 * Drop lock around migration; if someone else moves it,
5187 * that's OK. No task can be added to this CPU, so iteration is
5188 * fine.
5189 * NOTE: interrupts should be left disabled --dev@
5191 spin_unlock(&rq->lock);
5192 move_task_off_dead_cpu(dead_cpu, p);
5193 spin_lock(&rq->lock);
5195 put_task_struct(p);
5198 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5199 static void migrate_dead_tasks(unsigned int dead_cpu)
5201 struct rq *rq = cpu_rq(dead_cpu);
5202 struct task_struct *next;
5204 for ( ; ; ) {
5205 if (!rq->nr_running)
5206 break;
5207 update_rq_clock(rq);
5208 next = pick_next_task(rq, rq->curr);
5209 if (!next)
5210 break;
5211 migrate_dead(dead_cpu, next);
5215 #endif /* CONFIG_HOTPLUG_CPU */
5217 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5219 static struct ctl_table sd_ctl_dir[] = {
5221 .procname = "sched_domain",
5222 .mode = 0555,
5224 {0,},
5227 static struct ctl_table sd_ctl_root[] = {
5229 .ctl_name = CTL_KERN,
5230 .procname = "kernel",
5231 .mode = 0555,
5232 .child = sd_ctl_dir,
5234 {0,},
5237 static struct ctl_table *sd_alloc_ctl_entry(int n)
5239 struct ctl_table *entry =
5240 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5242 BUG_ON(!entry);
5243 memset(entry, 0, n * sizeof(struct ctl_table));
5245 return entry;
5248 static void
5249 set_table_entry(struct ctl_table *entry,
5250 const char *procname, void *data, int maxlen,
5251 mode_t mode, proc_handler *proc_handler)
5253 entry->procname = procname;
5254 entry->data = data;
5255 entry->maxlen = maxlen;
5256 entry->mode = mode;
5257 entry->proc_handler = proc_handler;
5260 static struct ctl_table *
5261 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5263 struct ctl_table *table = sd_alloc_ctl_entry(12);
5265 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5266 sizeof(long), 0644, proc_doulongvec_minmax);
5267 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5268 sizeof(long), 0644, proc_doulongvec_minmax);
5269 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5270 sizeof(int), 0644, proc_dointvec_minmax);
5271 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5272 sizeof(int), 0644, proc_dointvec_minmax);
5273 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5274 sizeof(int), 0644, proc_dointvec_minmax);
5275 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5276 sizeof(int), 0644, proc_dointvec_minmax);
5277 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5278 sizeof(int), 0644, proc_dointvec_minmax);
5279 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5280 sizeof(int), 0644, proc_dointvec_minmax);
5281 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5282 sizeof(int), 0644, proc_dointvec_minmax);
5283 set_table_entry(&table[9], "cache_nice_tries",
5284 &sd->cache_nice_tries,
5285 sizeof(int), 0644, proc_dointvec_minmax);
5286 set_table_entry(&table[10], "flags", &sd->flags,
5287 sizeof(int), 0644, proc_dointvec_minmax);
5289 return table;
5292 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5294 struct ctl_table *entry, *table;
5295 struct sched_domain *sd;
5296 int domain_num = 0, i;
5297 char buf[32];
5299 for_each_domain(cpu, sd)
5300 domain_num++;
5301 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5303 i = 0;
5304 for_each_domain(cpu, sd) {
5305 snprintf(buf, 32, "domain%d", i);
5306 entry->procname = kstrdup(buf, GFP_KERNEL);
5307 entry->mode = 0555;
5308 entry->child = sd_alloc_ctl_domain_table(sd);
5309 entry++;
5310 i++;
5312 return table;
5315 static struct ctl_table_header *sd_sysctl_header;
5316 static void init_sched_domain_sysctl(void)
5318 int i, cpu_num = num_online_cpus();
5319 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5320 char buf[32];
5322 sd_ctl_dir[0].child = entry;
5324 for (i = 0; i < cpu_num; i++, entry++) {
5325 snprintf(buf, 32, "cpu%d", i);
5326 entry->procname = kstrdup(buf, GFP_KERNEL);
5327 entry->mode = 0555;
5328 entry->child = sd_alloc_ctl_cpu_table(i);
5330 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5332 #else
5333 static void init_sched_domain_sysctl(void)
5336 #endif
5339 * migration_call - callback that gets triggered when a CPU is added.
5340 * Here we can start up the necessary migration thread for the new CPU.
5342 static int __cpuinit
5343 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5345 struct task_struct *p;
5346 int cpu = (long)hcpu;
5347 unsigned long flags;
5348 struct rq *rq;
5350 switch (action) {
5351 case CPU_LOCK_ACQUIRE:
5352 mutex_lock(&sched_hotcpu_mutex);
5353 break;
5355 case CPU_UP_PREPARE:
5356 case CPU_UP_PREPARE_FROZEN:
5357 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5358 if (IS_ERR(p))
5359 return NOTIFY_BAD;
5360 kthread_bind(p, cpu);
5361 /* Must be high prio: stop_machine expects to yield to it. */
5362 rq = task_rq_lock(p, &flags);
5363 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5364 task_rq_unlock(rq, &flags);
5365 cpu_rq(cpu)->migration_thread = p;
5366 break;
5368 case CPU_ONLINE:
5369 case CPU_ONLINE_FROZEN:
5370 /* Strictly unneccessary, as first user will wake it. */
5371 wake_up_process(cpu_rq(cpu)->migration_thread);
5372 break;
5374 #ifdef CONFIG_HOTPLUG_CPU
5375 case CPU_UP_CANCELED:
5376 case CPU_UP_CANCELED_FROZEN:
5377 if (!cpu_rq(cpu)->migration_thread)
5378 break;
5379 /* Unbind it from offline cpu so it can run. Fall thru. */
5380 kthread_bind(cpu_rq(cpu)->migration_thread,
5381 any_online_cpu(cpu_online_map));
5382 kthread_stop(cpu_rq(cpu)->migration_thread);
5383 cpu_rq(cpu)->migration_thread = NULL;
5384 break;
5386 case CPU_DEAD:
5387 case CPU_DEAD_FROZEN:
5388 migrate_live_tasks(cpu);
5389 rq = cpu_rq(cpu);
5390 kthread_stop(rq->migration_thread);
5391 rq->migration_thread = NULL;
5392 /* Idle task back to normal (off runqueue, low prio) */
5393 rq = task_rq_lock(rq->idle, &flags);
5394 update_rq_clock(rq);
5395 deactivate_task(rq, rq->idle, 0);
5396 rq->idle->static_prio = MAX_PRIO;
5397 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5398 rq->idle->sched_class = &idle_sched_class;
5399 migrate_dead_tasks(cpu);
5400 task_rq_unlock(rq, &flags);
5401 migrate_nr_uninterruptible(rq);
5402 BUG_ON(rq->nr_running != 0);
5404 /* No need to migrate the tasks: it was best-effort if
5405 * they didn't take sched_hotcpu_mutex. Just wake up
5406 * the requestors. */
5407 spin_lock_irq(&rq->lock);
5408 while (!list_empty(&rq->migration_queue)) {
5409 struct migration_req *req;
5411 req = list_entry(rq->migration_queue.next,
5412 struct migration_req, list);
5413 list_del_init(&req->list);
5414 complete(&req->done);
5416 spin_unlock_irq(&rq->lock);
5417 break;
5418 #endif
5419 case CPU_LOCK_RELEASE:
5420 mutex_unlock(&sched_hotcpu_mutex);
5421 break;
5423 return NOTIFY_OK;
5426 /* Register at highest priority so that task migration (migrate_all_tasks)
5427 * happens before everything else.
5429 static struct notifier_block __cpuinitdata migration_notifier = {
5430 .notifier_call = migration_call,
5431 .priority = 10
5434 int __init migration_init(void)
5436 void *cpu = (void *)(long)smp_processor_id();
5437 int err;
5439 /* Start one for the boot CPU: */
5440 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5441 BUG_ON(err == NOTIFY_BAD);
5442 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5443 register_cpu_notifier(&migration_notifier);
5445 return 0;
5447 #endif
5449 #ifdef CONFIG_SMP
5451 /* Number of possible processor ids */
5452 int nr_cpu_ids __read_mostly = NR_CPUS;
5453 EXPORT_SYMBOL(nr_cpu_ids);
5455 #ifdef CONFIG_SCHED_DEBUG
5456 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5458 int level = 0;
5460 if (!sd) {
5461 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5462 return;
5465 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5467 do {
5468 int i;
5469 char str[NR_CPUS];
5470 struct sched_group *group = sd->groups;
5471 cpumask_t groupmask;
5473 cpumask_scnprintf(str, NR_CPUS, sd->span);
5474 cpus_clear(groupmask);
5476 printk(KERN_DEBUG);
5477 for (i = 0; i < level + 1; i++)
5478 printk(" ");
5479 printk("domain %d: ", level);
5481 if (!(sd->flags & SD_LOAD_BALANCE)) {
5482 printk("does not load-balance\n");
5483 if (sd->parent)
5484 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5485 " has parent");
5486 break;
5489 printk("span %s\n", str);
5491 if (!cpu_isset(cpu, sd->span))
5492 printk(KERN_ERR "ERROR: domain->span does not contain "
5493 "CPU%d\n", cpu);
5494 if (!cpu_isset(cpu, group->cpumask))
5495 printk(KERN_ERR "ERROR: domain->groups does not contain"
5496 " CPU%d\n", cpu);
5498 printk(KERN_DEBUG);
5499 for (i = 0; i < level + 2; i++)
5500 printk(" ");
5501 printk("groups:");
5502 do {
5503 if (!group) {
5504 printk("\n");
5505 printk(KERN_ERR "ERROR: group is NULL\n");
5506 break;
5509 if (!group->__cpu_power) {
5510 printk("\n");
5511 printk(KERN_ERR "ERROR: domain->cpu_power not "
5512 "set\n");
5513 break;
5516 if (!cpus_weight(group->cpumask)) {
5517 printk("\n");
5518 printk(KERN_ERR "ERROR: empty group\n");
5519 break;
5522 if (cpus_intersects(groupmask, group->cpumask)) {
5523 printk("\n");
5524 printk(KERN_ERR "ERROR: repeated CPUs\n");
5525 break;
5528 cpus_or(groupmask, groupmask, group->cpumask);
5530 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5531 printk(" %s", str);
5533 group = group->next;
5534 } while (group != sd->groups);
5535 printk("\n");
5537 if (!cpus_equal(sd->span, groupmask))
5538 printk(KERN_ERR "ERROR: groups don't span "
5539 "domain->span\n");
5541 level++;
5542 sd = sd->parent;
5543 if (!sd)
5544 continue;
5546 if (!cpus_subset(groupmask, sd->span))
5547 printk(KERN_ERR "ERROR: parent span is not a superset "
5548 "of domain->span\n");
5550 } while (sd);
5552 #else
5553 # define sched_domain_debug(sd, cpu) do { } while (0)
5554 #endif
5556 static int sd_degenerate(struct sched_domain *sd)
5558 if (cpus_weight(sd->span) == 1)
5559 return 1;
5561 /* Following flags need at least 2 groups */
5562 if (sd->flags & (SD_LOAD_BALANCE |
5563 SD_BALANCE_NEWIDLE |
5564 SD_BALANCE_FORK |
5565 SD_BALANCE_EXEC |
5566 SD_SHARE_CPUPOWER |
5567 SD_SHARE_PKG_RESOURCES)) {
5568 if (sd->groups != sd->groups->next)
5569 return 0;
5572 /* Following flags don't use groups */
5573 if (sd->flags & (SD_WAKE_IDLE |
5574 SD_WAKE_AFFINE |
5575 SD_WAKE_BALANCE))
5576 return 0;
5578 return 1;
5581 static int
5582 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5584 unsigned long cflags = sd->flags, pflags = parent->flags;
5586 if (sd_degenerate(parent))
5587 return 1;
5589 if (!cpus_equal(sd->span, parent->span))
5590 return 0;
5592 /* Does parent contain flags not in child? */
5593 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5594 if (cflags & SD_WAKE_AFFINE)
5595 pflags &= ~SD_WAKE_BALANCE;
5596 /* Flags needing groups don't count if only 1 group in parent */
5597 if (parent->groups == parent->groups->next) {
5598 pflags &= ~(SD_LOAD_BALANCE |
5599 SD_BALANCE_NEWIDLE |
5600 SD_BALANCE_FORK |
5601 SD_BALANCE_EXEC |
5602 SD_SHARE_CPUPOWER |
5603 SD_SHARE_PKG_RESOURCES);
5605 if (~cflags & pflags)
5606 return 0;
5608 return 1;
5612 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5613 * hold the hotplug lock.
5615 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5617 struct rq *rq = cpu_rq(cpu);
5618 struct sched_domain *tmp;
5620 /* Remove the sched domains which do not contribute to scheduling. */
5621 for (tmp = sd; tmp; tmp = tmp->parent) {
5622 struct sched_domain *parent = tmp->parent;
5623 if (!parent)
5624 break;
5625 if (sd_parent_degenerate(tmp, parent)) {
5626 tmp->parent = parent->parent;
5627 if (parent->parent)
5628 parent->parent->child = tmp;
5632 if (sd && sd_degenerate(sd)) {
5633 sd = sd->parent;
5634 if (sd)
5635 sd->child = NULL;
5638 sched_domain_debug(sd, cpu);
5640 rcu_assign_pointer(rq->sd, sd);
5643 /* cpus with isolated domains */
5644 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5646 /* Setup the mask of cpus configured for isolated domains */
5647 static int __init isolated_cpu_setup(char *str)
5649 int ints[NR_CPUS], i;
5651 str = get_options(str, ARRAY_SIZE(ints), ints);
5652 cpus_clear(cpu_isolated_map);
5653 for (i = 1; i <= ints[0]; i++)
5654 if (ints[i] < NR_CPUS)
5655 cpu_set(ints[i], cpu_isolated_map);
5656 return 1;
5659 __setup("isolcpus=", isolated_cpu_setup);
5662 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5663 * to a function which identifies what group(along with sched group) a CPU
5664 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5665 * (due to the fact that we keep track of groups covered with a cpumask_t).
5667 * init_sched_build_groups will build a circular linked list of the groups
5668 * covered by the given span, and will set each group's ->cpumask correctly,
5669 * and ->cpu_power to 0.
5671 static void
5672 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5673 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5674 struct sched_group **sg))
5676 struct sched_group *first = NULL, *last = NULL;
5677 cpumask_t covered = CPU_MASK_NONE;
5678 int i;
5680 for_each_cpu_mask(i, span) {
5681 struct sched_group *sg;
5682 int group = group_fn(i, cpu_map, &sg);
5683 int j;
5685 if (cpu_isset(i, covered))
5686 continue;
5688 sg->cpumask = CPU_MASK_NONE;
5689 sg->__cpu_power = 0;
5691 for_each_cpu_mask(j, span) {
5692 if (group_fn(j, cpu_map, NULL) != group)
5693 continue;
5695 cpu_set(j, covered);
5696 cpu_set(j, sg->cpumask);
5698 if (!first)
5699 first = sg;
5700 if (last)
5701 last->next = sg;
5702 last = sg;
5704 last->next = first;
5707 #define SD_NODES_PER_DOMAIN 16
5709 #ifdef CONFIG_NUMA
5712 * find_next_best_node - find the next node to include in a sched_domain
5713 * @node: node whose sched_domain we're building
5714 * @used_nodes: nodes already in the sched_domain
5716 * Find the next node to include in a given scheduling domain. Simply
5717 * finds the closest node not already in the @used_nodes map.
5719 * Should use nodemask_t.
5721 static int find_next_best_node(int node, unsigned long *used_nodes)
5723 int i, n, val, min_val, best_node = 0;
5725 min_val = INT_MAX;
5727 for (i = 0; i < MAX_NUMNODES; i++) {
5728 /* Start at @node */
5729 n = (node + i) % MAX_NUMNODES;
5731 if (!nr_cpus_node(n))
5732 continue;
5734 /* Skip already used nodes */
5735 if (test_bit(n, used_nodes))
5736 continue;
5738 /* Simple min distance search */
5739 val = node_distance(node, n);
5741 if (val < min_val) {
5742 min_val = val;
5743 best_node = n;
5747 set_bit(best_node, used_nodes);
5748 return best_node;
5752 * sched_domain_node_span - get a cpumask for a node's sched_domain
5753 * @node: node whose cpumask we're constructing
5754 * @size: number of nodes to include in this span
5756 * Given a node, construct a good cpumask for its sched_domain to span. It
5757 * should be one that prevents unnecessary balancing, but also spreads tasks
5758 * out optimally.
5760 static cpumask_t sched_domain_node_span(int node)
5762 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5763 cpumask_t span, nodemask;
5764 int i;
5766 cpus_clear(span);
5767 bitmap_zero(used_nodes, MAX_NUMNODES);
5769 nodemask = node_to_cpumask(node);
5770 cpus_or(span, span, nodemask);
5771 set_bit(node, used_nodes);
5773 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5774 int next_node = find_next_best_node(node, used_nodes);
5776 nodemask = node_to_cpumask(next_node);
5777 cpus_or(span, span, nodemask);
5780 return span;
5782 #endif
5784 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5787 * SMT sched-domains:
5789 #ifdef CONFIG_SCHED_SMT
5790 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5791 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5793 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5794 struct sched_group **sg)
5796 if (sg)
5797 *sg = &per_cpu(sched_group_cpus, cpu);
5798 return cpu;
5800 #endif
5803 * multi-core sched-domains:
5805 #ifdef CONFIG_SCHED_MC
5806 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5807 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5808 #endif
5810 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5811 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5812 struct sched_group **sg)
5814 int group;
5815 cpumask_t mask = cpu_sibling_map[cpu];
5816 cpus_and(mask, mask, *cpu_map);
5817 group = first_cpu(mask);
5818 if (sg)
5819 *sg = &per_cpu(sched_group_core, group);
5820 return group;
5822 #elif defined(CONFIG_SCHED_MC)
5823 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5824 struct sched_group **sg)
5826 if (sg)
5827 *sg = &per_cpu(sched_group_core, cpu);
5828 return cpu;
5830 #endif
5832 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5833 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5835 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5836 struct sched_group **sg)
5838 int group;
5839 #ifdef CONFIG_SCHED_MC
5840 cpumask_t mask = cpu_coregroup_map(cpu);
5841 cpus_and(mask, mask, *cpu_map);
5842 group = first_cpu(mask);
5843 #elif defined(CONFIG_SCHED_SMT)
5844 cpumask_t mask = cpu_sibling_map[cpu];
5845 cpus_and(mask, mask, *cpu_map);
5846 group = first_cpu(mask);
5847 #else
5848 group = cpu;
5849 #endif
5850 if (sg)
5851 *sg = &per_cpu(sched_group_phys, group);
5852 return group;
5855 #ifdef CONFIG_NUMA
5857 * The init_sched_build_groups can't handle what we want to do with node
5858 * groups, so roll our own. Now each node has its own list of groups which
5859 * gets dynamically allocated.
5861 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5862 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5864 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5865 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5867 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5868 struct sched_group **sg)
5870 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5871 int group;
5873 cpus_and(nodemask, nodemask, *cpu_map);
5874 group = first_cpu(nodemask);
5876 if (sg)
5877 *sg = &per_cpu(sched_group_allnodes, group);
5878 return group;
5881 static void init_numa_sched_groups_power(struct sched_group *group_head)
5883 struct sched_group *sg = group_head;
5884 int j;
5886 if (!sg)
5887 return;
5888 do {
5889 for_each_cpu_mask(j, sg->cpumask) {
5890 struct sched_domain *sd;
5892 sd = &per_cpu(phys_domains, j);
5893 if (j != first_cpu(sd->groups->cpumask)) {
5895 * Only add "power" once for each
5896 * physical package.
5898 continue;
5901 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5903 sg = sg->next;
5904 } while (sg != group_head);
5906 #endif
5908 #ifdef CONFIG_NUMA
5909 /* Free memory allocated for various sched_group structures */
5910 static void free_sched_groups(const cpumask_t *cpu_map)
5912 int cpu, i;
5914 for_each_cpu_mask(cpu, *cpu_map) {
5915 struct sched_group **sched_group_nodes
5916 = sched_group_nodes_bycpu[cpu];
5918 if (!sched_group_nodes)
5919 continue;
5921 for (i = 0; i < MAX_NUMNODES; i++) {
5922 cpumask_t nodemask = node_to_cpumask(i);
5923 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5925 cpus_and(nodemask, nodemask, *cpu_map);
5926 if (cpus_empty(nodemask))
5927 continue;
5929 if (sg == NULL)
5930 continue;
5931 sg = sg->next;
5932 next_sg:
5933 oldsg = sg;
5934 sg = sg->next;
5935 kfree(oldsg);
5936 if (oldsg != sched_group_nodes[i])
5937 goto next_sg;
5939 kfree(sched_group_nodes);
5940 sched_group_nodes_bycpu[cpu] = NULL;
5943 #else
5944 static void free_sched_groups(const cpumask_t *cpu_map)
5947 #endif
5950 * Initialize sched groups cpu_power.
5952 * cpu_power indicates the capacity of sched group, which is used while
5953 * distributing the load between different sched groups in a sched domain.
5954 * Typically cpu_power for all the groups in a sched domain will be same unless
5955 * there are asymmetries in the topology. If there are asymmetries, group
5956 * having more cpu_power will pickup more load compared to the group having
5957 * less cpu_power.
5959 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5960 * the maximum number of tasks a group can handle in the presence of other idle
5961 * or lightly loaded groups in the same sched domain.
5963 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5965 struct sched_domain *child;
5966 struct sched_group *group;
5968 WARN_ON(!sd || !sd->groups);
5970 if (cpu != first_cpu(sd->groups->cpumask))
5971 return;
5973 child = sd->child;
5975 sd->groups->__cpu_power = 0;
5978 * For perf policy, if the groups in child domain share resources
5979 * (for example cores sharing some portions of the cache hierarchy
5980 * or SMT), then set this domain groups cpu_power such that each group
5981 * can handle only one task, when there are other idle groups in the
5982 * same sched domain.
5984 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5985 (child->flags &
5986 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5987 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5988 return;
5992 * add cpu_power of each child group to this groups cpu_power
5994 group = child->groups;
5995 do {
5996 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5997 group = group->next;
5998 } while (group != child->groups);
6002 * Build sched domains for a given set of cpus and attach the sched domains
6003 * to the individual cpus
6005 static int build_sched_domains(const cpumask_t *cpu_map)
6007 int i;
6008 #ifdef CONFIG_NUMA
6009 struct sched_group **sched_group_nodes = NULL;
6010 int sd_allnodes = 0;
6013 * Allocate the per-node list of sched groups
6015 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6016 GFP_KERNEL);
6017 if (!sched_group_nodes) {
6018 printk(KERN_WARNING "Can not alloc sched group node list\n");
6019 return -ENOMEM;
6021 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6022 #endif
6025 * Set up domains for cpus specified by the cpu_map.
6027 for_each_cpu_mask(i, *cpu_map) {
6028 struct sched_domain *sd = NULL, *p;
6029 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6031 cpus_and(nodemask, nodemask, *cpu_map);
6033 #ifdef CONFIG_NUMA
6034 if (cpus_weight(*cpu_map) >
6035 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6036 sd = &per_cpu(allnodes_domains, i);
6037 *sd = SD_ALLNODES_INIT;
6038 sd->span = *cpu_map;
6039 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6040 p = sd;
6041 sd_allnodes = 1;
6042 } else
6043 p = NULL;
6045 sd = &per_cpu(node_domains, i);
6046 *sd = SD_NODE_INIT;
6047 sd->span = sched_domain_node_span(cpu_to_node(i));
6048 sd->parent = p;
6049 if (p)
6050 p->child = sd;
6051 cpus_and(sd->span, sd->span, *cpu_map);
6052 #endif
6054 p = sd;
6055 sd = &per_cpu(phys_domains, i);
6056 *sd = SD_CPU_INIT;
6057 sd->span = nodemask;
6058 sd->parent = p;
6059 if (p)
6060 p->child = sd;
6061 cpu_to_phys_group(i, cpu_map, &sd->groups);
6063 #ifdef CONFIG_SCHED_MC
6064 p = sd;
6065 sd = &per_cpu(core_domains, i);
6066 *sd = SD_MC_INIT;
6067 sd->span = cpu_coregroup_map(i);
6068 cpus_and(sd->span, sd->span, *cpu_map);
6069 sd->parent = p;
6070 p->child = sd;
6071 cpu_to_core_group(i, cpu_map, &sd->groups);
6072 #endif
6074 #ifdef CONFIG_SCHED_SMT
6075 p = sd;
6076 sd = &per_cpu(cpu_domains, i);
6077 *sd = SD_SIBLING_INIT;
6078 sd->span = cpu_sibling_map[i];
6079 cpus_and(sd->span, sd->span, *cpu_map);
6080 sd->parent = p;
6081 p->child = sd;
6082 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6083 #endif
6086 #ifdef CONFIG_SCHED_SMT
6087 /* Set up CPU (sibling) groups */
6088 for_each_cpu_mask(i, *cpu_map) {
6089 cpumask_t this_sibling_map = cpu_sibling_map[i];
6090 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6091 if (i != first_cpu(this_sibling_map))
6092 continue;
6094 init_sched_build_groups(this_sibling_map, cpu_map,
6095 &cpu_to_cpu_group);
6097 #endif
6099 #ifdef CONFIG_SCHED_MC
6100 /* Set up multi-core groups */
6101 for_each_cpu_mask(i, *cpu_map) {
6102 cpumask_t this_core_map = cpu_coregroup_map(i);
6103 cpus_and(this_core_map, this_core_map, *cpu_map);
6104 if (i != first_cpu(this_core_map))
6105 continue;
6106 init_sched_build_groups(this_core_map, cpu_map,
6107 &cpu_to_core_group);
6109 #endif
6111 /* Set up physical groups */
6112 for (i = 0; i < MAX_NUMNODES; i++) {
6113 cpumask_t nodemask = node_to_cpumask(i);
6115 cpus_and(nodemask, nodemask, *cpu_map);
6116 if (cpus_empty(nodemask))
6117 continue;
6119 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6122 #ifdef CONFIG_NUMA
6123 /* Set up node groups */
6124 if (sd_allnodes)
6125 init_sched_build_groups(*cpu_map, cpu_map,
6126 &cpu_to_allnodes_group);
6128 for (i = 0; i < MAX_NUMNODES; i++) {
6129 /* Set up node groups */
6130 struct sched_group *sg, *prev;
6131 cpumask_t nodemask = node_to_cpumask(i);
6132 cpumask_t domainspan;
6133 cpumask_t covered = CPU_MASK_NONE;
6134 int j;
6136 cpus_and(nodemask, nodemask, *cpu_map);
6137 if (cpus_empty(nodemask)) {
6138 sched_group_nodes[i] = NULL;
6139 continue;
6142 domainspan = sched_domain_node_span(i);
6143 cpus_and(domainspan, domainspan, *cpu_map);
6145 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6146 if (!sg) {
6147 printk(KERN_WARNING "Can not alloc domain group for "
6148 "node %d\n", i);
6149 goto error;
6151 sched_group_nodes[i] = sg;
6152 for_each_cpu_mask(j, nodemask) {
6153 struct sched_domain *sd;
6155 sd = &per_cpu(node_domains, j);
6156 sd->groups = sg;
6158 sg->__cpu_power = 0;
6159 sg->cpumask = nodemask;
6160 sg->next = sg;
6161 cpus_or(covered, covered, nodemask);
6162 prev = sg;
6164 for (j = 0; j < MAX_NUMNODES; j++) {
6165 cpumask_t tmp, notcovered;
6166 int n = (i + j) % MAX_NUMNODES;
6168 cpus_complement(notcovered, covered);
6169 cpus_and(tmp, notcovered, *cpu_map);
6170 cpus_and(tmp, tmp, domainspan);
6171 if (cpus_empty(tmp))
6172 break;
6174 nodemask = node_to_cpumask(n);
6175 cpus_and(tmp, tmp, nodemask);
6176 if (cpus_empty(tmp))
6177 continue;
6179 sg = kmalloc_node(sizeof(struct sched_group),
6180 GFP_KERNEL, i);
6181 if (!sg) {
6182 printk(KERN_WARNING
6183 "Can not alloc domain group for node %d\n", j);
6184 goto error;
6186 sg->__cpu_power = 0;
6187 sg->cpumask = tmp;
6188 sg->next = prev->next;
6189 cpus_or(covered, covered, tmp);
6190 prev->next = sg;
6191 prev = sg;
6194 #endif
6196 /* Calculate CPU power for physical packages and nodes */
6197 #ifdef CONFIG_SCHED_SMT
6198 for_each_cpu_mask(i, *cpu_map) {
6199 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6201 init_sched_groups_power(i, sd);
6203 #endif
6204 #ifdef CONFIG_SCHED_MC
6205 for_each_cpu_mask(i, *cpu_map) {
6206 struct sched_domain *sd = &per_cpu(core_domains, i);
6208 init_sched_groups_power(i, sd);
6210 #endif
6212 for_each_cpu_mask(i, *cpu_map) {
6213 struct sched_domain *sd = &per_cpu(phys_domains, i);
6215 init_sched_groups_power(i, sd);
6218 #ifdef CONFIG_NUMA
6219 for (i = 0; i < MAX_NUMNODES; i++)
6220 init_numa_sched_groups_power(sched_group_nodes[i]);
6222 if (sd_allnodes) {
6223 struct sched_group *sg;
6225 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6226 init_numa_sched_groups_power(sg);
6228 #endif
6230 /* Attach the domains */
6231 for_each_cpu_mask(i, *cpu_map) {
6232 struct sched_domain *sd;
6233 #ifdef CONFIG_SCHED_SMT
6234 sd = &per_cpu(cpu_domains, i);
6235 #elif defined(CONFIG_SCHED_MC)
6236 sd = &per_cpu(core_domains, i);
6237 #else
6238 sd = &per_cpu(phys_domains, i);
6239 #endif
6240 cpu_attach_domain(sd, i);
6243 return 0;
6245 #ifdef CONFIG_NUMA
6246 error:
6247 free_sched_groups(cpu_map);
6248 return -ENOMEM;
6249 #endif
6252 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6254 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6256 cpumask_t cpu_default_map;
6257 int err;
6260 * Setup mask for cpus without special case scheduling requirements.
6261 * For now this just excludes isolated cpus, but could be used to
6262 * exclude other special cases in the future.
6264 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6266 err = build_sched_domains(&cpu_default_map);
6268 return err;
6271 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6273 free_sched_groups(cpu_map);
6277 * Detach sched domains from a group of cpus specified in cpu_map
6278 * These cpus will now be attached to the NULL domain
6280 static void detach_destroy_domains(const cpumask_t *cpu_map)
6282 int i;
6284 for_each_cpu_mask(i, *cpu_map)
6285 cpu_attach_domain(NULL, i);
6286 synchronize_sched();
6287 arch_destroy_sched_domains(cpu_map);
6291 * Partition sched domains as specified by the cpumasks below.
6292 * This attaches all cpus from the cpumasks to the NULL domain,
6293 * waits for a RCU quiescent period, recalculates sched
6294 * domain information and then attaches them back to the
6295 * correct sched domains
6296 * Call with hotplug lock held
6298 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6300 cpumask_t change_map;
6301 int err = 0;
6303 cpus_and(*partition1, *partition1, cpu_online_map);
6304 cpus_and(*partition2, *partition2, cpu_online_map);
6305 cpus_or(change_map, *partition1, *partition2);
6307 /* Detach sched domains from all of the affected cpus */
6308 detach_destroy_domains(&change_map);
6309 if (!cpus_empty(*partition1))
6310 err = build_sched_domains(partition1);
6311 if (!err && !cpus_empty(*partition2))
6312 err = build_sched_domains(partition2);
6314 return err;
6317 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6318 static int arch_reinit_sched_domains(void)
6320 int err;
6322 mutex_lock(&sched_hotcpu_mutex);
6323 detach_destroy_domains(&cpu_online_map);
6324 err = arch_init_sched_domains(&cpu_online_map);
6325 mutex_unlock(&sched_hotcpu_mutex);
6327 return err;
6330 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6332 int ret;
6334 if (buf[0] != '0' && buf[0] != '1')
6335 return -EINVAL;
6337 if (smt)
6338 sched_smt_power_savings = (buf[0] == '1');
6339 else
6340 sched_mc_power_savings = (buf[0] == '1');
6342 ret = arch_reinit_sched_domains();
6344 return ret ? ret : count;
6347 #ifdef CONFIG_SCHED_MC
6348 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6350 return sprintf(page, "%u\n", sched_mc_power_savings);
6352 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6353 const char *buf, size_t count)
6355 return sched_power_savings_store(buf, count, 0);
6357 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6358 sched_mc_power_savings_store);
6359 #endif
6361 #ifdef CONFIG_SCHED_SMT
6362 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6364 return sprintf(page, "%u\n", sched_smt_power_savings);
6366 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6367 const char *buf, size_t count)
6369 return sched_power_savings_store(buf, count, 1);
6371 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6372 sched_smt_power_savings_store);
6373 #endif
6375 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6377 int err = 0;
6379 #ifdef CONFIG_SCHED_SMT
6380 if (smt_capable())
6381 err = sysfs_create_file(&cls->kset.kobj,
6382 &attr_sched_smt_power_savings.attr);
6383 #endif
6384 #ifdef CONFIG_SCHED_MC
6385 if (!err && mc_capable())
6386 err = sysfs_create_file(&cls->kset.kobj,
6387 &attr_sched_mc_power_savings.attr);
6388 #endif
6389 return err;
6391 #endif
6394 * Force a reinitialization of the sched domains hierarchy. The domains
6395 * and groups cannot be updated in place without racing with the balancing
6396 * code, so we temporarily attach all running cpus to the NULL domain
6397 * which will prevent rebalancing while the sched domains are recalculated.
6399 static int update_sched_domains(struct notifier_block *nfb,
6400 unsigned long action, void *hcpu)
6402 switch (action) {
6403 case CPU_UP_PREPARE:
6404 case CPU_UP_PREPARE_FROZEN:
6405 case CPU_DOWN_PREPARE:
6406 case CPU_DOWN_PREPARE_FROZEN:
6407 detach_destroy_domains(&cpu_online_map);
6408 return NOTIFY_OK;
6410 case CPU_UP_CANCELED:
6411 case CPU_UP_CANCELED_FROZEN:
6412 case CPU_DOWN_FAILED:
6413 case CPU_DOWN_FAILED_FROZEN:
6414 case CPU_ONLINE:
6415 case CPU_ONLINE_FROZEN:
6416 case CPU_DEAD:
6417 case CPU_DEAD_FROZEN:
6419 * Fall through and re-initialise the domains.
6421 break;
6422 default:
6423 return NOTIFY_DONE;
6426 /* The hotplug lock is already held by cpu_up/cpu_down */
6427 arch_init_sched_domains(&cpu_online_map);
6429 return NOTIFY_OK;
6432 void __init sched_init_smp(void)
6434 cpumask_t non_isolated_cpus;
6436 mutex_lock(&sched_hotcpu_mutex);
6437 arch_init_sched_domains(&cpu_online_map);
6438 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6439 if (cpus_empty(non_isolated_cpus))
6440 cpu_set(smp_processor_id(), non_isolated_cpus);
6441 mutex_unlock(&sched_hotcpu_mutex);
6442 /* XXX: Theoretical race here - CPU may be hotplugged now */
6443 hotcpu_notifier(update_sched_domains, 0);
6445 init_sched_domain_sysctl();
6447 /* Move init over to a non-isolated CPU */
6448 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6449 BUG();
6451 #else
6452 void __init sched_init_smp(void)
6455 #endif /* CONFIG_SMP */
6457 int in_sched_functions(unsigned long addr)
6459 /* Linker adds these: start and end of __sched functions */
6460 extern char __sched_text_start[], __sched_text_end[];
6462 return in_lock_functions(addr) ||
6463 (addr >= (unsigned long)__sched_text_start
6464 && addr < (unsigned long)__sched_text_end);
6467 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6469 cfs_rq->tasks_timeline = RB_ROOT;
6470 #ifdef CONFIG_FAIR_GROUP_SCHED
6471 cfs_rq->rq = rq;
6472 #endif
6473 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6476 void __init sched_init(void)
6478 int highest_cpu = 0;
6479 int i, j;
6481 for_each_possible_cpu(i) {
6482 struct rt_prio_array *array;
6483 struct rq *rq;
6485 rq = cpu_rq(i);
6486 spin_lock_init(&rq->lock);
6487 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6488 rq->nr_running = 0;
6489 rq->clock = 1;
6490 init_cfs_rq(&rq->cfs, rq);
6491 #ifdef CONFIG_FAIR_GROUP_SCHED
6492 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6494 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6495 struct sched_entity *se =
6496 &per_cpu(init_sched_entity, i);
6498 init_cfs_rq_p[i] = cfs_rq;
6499 init_cfs_rq(cfs_rq, rq);
6500 cfs_rq->tg = &init_task_group;
6501 list_add(&cfs_rq->leaf_cfs_rq_list,
6502 &rq->leaf_cfs_rq_list);
6504 init_sched_entity_p[i] = se;
6505 se->cfs_rq = &rq->cfs;
6506 se->my_q = cfs_rq;
6507 se->load.weight = init_task_group_load;
6508 se->load.inv_weight =
6509 div64_64(1ULL<<32, init_task_group_load);
6510 se->parent = NULL;
6512 init_task_group.shares = init_task_group_load;
6513 spin_lock_init(&init_task_group.lock);
6514 #endif
6516 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6517 rq->cpu_load[j] = 0;
6518 #ifdef CONFIG_SMP
6519 rq->sd = NULL;
6520 rq->active_balance = 0;
6521 rq->next_balance = jiffies;
6522 rq->push_cpu = 0;
6523 rq->cpu = i;
6524 rq->migration_thread = NULL;
6525 INIT_LIST_HEAD(&rq->migration_queue);
6526 #endif
6527 atomic_set(&rq->nr_iowait, 0);
6529 array = &rq->rt.active;
6530 for (j = 0; j < MAX_RT_PRIO; j++) {
6531 INIT_LIST_HEAD(array->queue + j);
6532 __clear_bit(j, array->bitmap);
6534 highest_cpu = i;
6535 /* delimiter for bitsearch: */
6536 __set_bit(MAX_RT_PRIO, array->bitmap);
6539 set_load_weight(&init_task);
6541 #ifdef CONFIG_PREEMPT_NOTIFIERS
6542 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6543 #endif
6545 #ifdef CONFIG_SMP
6546 nr_cpu_ids = highest_cpu + 1;
6547 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6548 #endif
6550 #ifdef CONFIG_RT_MUTEXES
6551 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6552 #endif
6555 * The boot idle thread does lazy MMU switching as well:
6557 atomic_inc(&init_mm.mm_count);
6558 enter_lazy_tlb(&init_mm, current);
6561 * Make us the idle thread. Technically, schedule() should not be
6562 * called from this thread, however somewhere below it might be,
6563 * but because we are the idle thread, we just pick up running again
6564 * when this runqueue becomes "idle".
6566 init_idle(current, smp_processor_id());
6568 * During early bootup we pretend to be a normal task:
6570 current->sched_class = &fair_sched_class;
6573 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6574 void __might_sleep(char *file, int line)
6576 #ifdef in_atomic
6577 static unsigned long prev_jiffy; /* ratelimiting */
6579 if ((in_atomic() || irqs_disabled()) &&
6580 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6581 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6582 return;
6583 prev_jiffy = jiffies;
6584 printk(KERN_ERR "BUG: sleeping function called from invalid"
6585 " context at %s:%d\n", file, line);
6586 printk("in_atomic():%d, irqs_disabled():%d\n",
6587 in_atomic(), irqs_disabled());
6588 debug_show_held_locks(current);
6589 if (irqs_disabled())
6590 print_irqtrace_events(current);
6591 dump_stack();
6593 #endif
6595 EXPORT_SYMBOL(__might_sleep);
6596 #endif
6598 #ifdef CONFIG_MAGIC_SYSRQ
6599 static void normalize_task(struct rq *rq, struct task_struct *p)
6601 int on_rq;
6602 update_rq_clock(rq);
6603 on_rq = p->se.on_rq;
6604 if (on_rq)
6605 deactivate_task(rq, p, 0);
6606 __setscheduler(rq, p, SCHED_NORMAL, 0);
6607 if (on_rq) {
6608 activate_task(rq, p, 0);
6609 resched_task(rq->curr);
6613 void normalize_rt_tasks(void)
6615 struct task_struct *g, *p;
6616 unsigned long flags;
6617 struct rq *rq;
6619 read_lock_irq(&tasklist_lock);
6620 do_each_thread(g, p) {
6622 * Only normalize user tasks:
6624 if (!p->mm)
6625 continue;
6627 p->se.exec_start = 0;
6628 #ifdef CONFIG_SCHEDSTATS
6629 p->se.wait_start = 0;
6630 p->se.sleep_start = 0;
6631 p->se.block_start = 0;
6632 #endif
6633 task_rq(p)->clock = 0;
6635 if (!rt_task(p)) {
6637 * Renice negative nice level userspace
6638 * tasks back to 0:
6640 if (TASK_NICE(p) < 0 && p->mm)
6641 set_user_nice(p, 0);
6642 continue;
6645 spin_lock_irqsave(&p->pi_lock, flags);
6646 rq = __task_rq_lock(p);
6648 normalize_task(rq, p);
6650 __task_rq_unlock(rq);
6651 spin_unlock_irqrestore(&p->pi_lock, flags);
6652 } while_each_thread(g, p);
6654 read_unlock_irq(&tasklist_lock);
6657 #endif /* CONFIG_MAGIC_SYSRQ */
6659 #ifdef CONFIG_IA64
6661 * These functions are only useful for the IA64 MCA handling.
6663 * They can only be called when the whole system has been
6664 * stopped - every CPU needs to be quiescent, and no scheduling
6665 * activity can take place. Using them for anything else would
6666 * be a serious bug, and as a result, they aren't even visible
6667 * under any other configuration.
6671 * curr_task - return the current task for a given cpu.
6672 * @cpu: the processor in question.
6674 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6676 struct task_struct *curr_task(int cpu)
6678 return cpu_curr(cpu);
6682 * set_curr_task - set the current task for a given cpu.
6683 * @cpu: the processor in question.
6684 * @p: the task pointer to set.
6686 * Description: This function must only be used when non-maskable interrupts
6687 * are serviced on a separate stack. It allows the architecture to switch the
6688 * notion of the current task on a cpu in a non-blocking manner. This function
6689 * must be called with all CPU's synchronized, and interrupts disabled, the
6690 * and caller must save the original value of the current task (see
6691 * curr_task() above) and restore that value before reenabling interrupts and
6692 * re-starting the system.
6694 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6696 void set_curr_task(int cpu, struct task_struct *p)
6698 cpu_curr(cpu) = p;
6701 #endif
6703 #ifdef CONFIG_FAIR_GROUP_SCHED
6705 /* allocate runqueue etc for a new task group */
6706 struct task_group *sched_create_group(void)
6708 struct task_group *tg;
6709 struct cfs_rq *cfs_rq;
6710 struct sched_entity *se;
6711 struct rq *rq;
6712 int i;
6714 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6715 if (!tg)
6716 return ERR_PTR(-ENOMEM);
6718 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6719 if (!tg->cfs_rq)
6720 goto err;
6721 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6722 if (!tg->se)
6723 goto err;
6725 for_each_possible_cpu(i) {
6726 rq = cpu_rq(i);
6728 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6729 cpu_to_node(i));
6730 if (!cfs_rq)
6731 goto err;
6733 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6734 cpu_to_node(i));
6735 if (!se)
6736 goto err;
6738 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6739 memset(se, 0, sizeof(struct sched_entity));
6741 tg->cfs_rq[i] = cfs_rq;
6742 init_cfs_rq(cfs_rq, rq);
6743 cfs_rq->tg = tg;
6745 tg->se[i] = se;
6746 se->cfs_rq = &rq->cfs;
6747 se->my_q = cfs_rq;
6748 se->load.weight = NICE_0_LOAD;
6749 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6750 se->parent = NULL;
6753 for_each_possible_cpu(i) {
6754 rq = cpu_rq(i);
6755 cfs_rq = tg->cfs_rq[i];
6756 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6759 tg->shares = NICE_0_LOAD;
6760 spin_lock_init(&tg->lock);
6762 return tg;
6764 err:
6765 for_each_possible_cpu(i) {
6766 if (tg->cfs_rq)
6767 kfree(tg->cfs_rq[i]);
6768 if (tg->se)
6769 kfree(tg->se[i]);
6771 kfree(tg->cfs_rq);
6772 kfree(tg->se);
6773 kfree(tg);
6775 return ERR_PTR(-ENOMEM);
6778 /* rcu callback to free various structures associated with a task group */
6779 static void free_sched_group(struct rcu_head *rhp)
6781 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6782 struct task_group *tg = cfs_rq->tg;
6783 struct sched_entity *se;
6784 int i;
6786 /* now it should be safe to free those cfs_rqs */
6787 for_each_possible_cpu(i) {
6788 cfs_rq = tg->cfs_rq[i];
6789 kfree(cfs_rq);
6791 se = tg->se[i];
6792 kfree(se);
6795 kfree(tg->cfs_rq);
6796 kfree(tg->se);
6797 kfree(tg);
6800 /* Destroy runqueue etc associated with a task group */
6801 void sched_destroy_group(struct task_group *tg)
6803 struct cfs_rq *cfs_rq;
6804 int i;
6806 for_each_possible_cpu(i) {
6807 cfs_rq = tg->cfs_rq[i];
6808 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6811 cfs_rq = tg->cfs_rq[0];
6813 /* wait for possible concurrent references to cfs_rqs complete */
6814 call_rcu(&cfs_rq->rcu, free_sched_group);
6817 /* change task's runqueue when it moves between groups.
6818 * The caller of this function should have put the task in its new group
6819 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6820 * reflect its new group.
6822 void sched_move_task(struct task_struct *tsk)
6824 int on_rq, running;
6825 unsigned long flags;
6826 struct rq *rq;
6828 rq = task_rq_lock(tsk, &flags);
6830 if (tsk->sched_class != &fair_sched_class)
6831 goto done;
6833 update_rq_clock(rq);
6835 running = task_running(rq, tsk);
6836 on_rq = tsk->se.on_rq;
6838 if (on_rq) {
6839 dequeue_task(rq, tsk, 0);
6840 if (unlikely(running))
6841 tsk->sched_class->put_prev_task(rq, tsk);
6844 set_task_cfs_rq(tsk);
6846 if (on_rq) {
6847 if (unlikely(running))
6848 tsk->sched_class->set_curr_task(rq);
6849 enqueue_task(rq, tsk, 0);
6852 done:
6853 task_rq_unlock(rq, &flags);
6856 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6858 struct cfs_rq *cfs_rq = se->cfs_rq;
6859 struct rq *rq = cfs_rq->rq;
6860 int on_rq;
6862 spin_lock_irq(&rq->lock);
6864 on_rq = se->on_rq;
6865 if (on_rq)
6866 dequeue_entity(cfs_rq, se, 0);
6868 se->load.weight = shares;
6869 se->load.inv_weight = div64_64((1ULL<<32), shares);
6871 if (on_rq)
6872 enqueue_entity(cfs_rq, se, 0);
6874 spin_unlock_irq(&rq->lock);
6877 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6879 int i;
6881 spin_lock(&tg->lock);
6882 if (tg->shares == shares)
6883 goto done;
6885 tg->shares = shares;
6886 for_each_possible_cpu(i)
6887 set_se_shares(tg->se[i], shares);
6889 done:
6890 spin_unlock(&tg->lock);
6891 return 0;
6894 unsigned long sched_group_shares(struct task_group *tg)
6896 return tg->shares;
6899 #endif /* CONFIG_FAIR_GROUP_SCHED */