[PATCH] sound/oss/esssolo1: Use the DMA_32BIT_MASK constant
[linux-2.6/linux-2.6-openrd.git] / drivers / net / smc91x.c
blobfd80048f7f7ac6f98e09bf6e0456448e7688ccea
1 /*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 * Arguments:
26 * io = for the base address
27 * irq = for the IRQ
28 * nowait = 0 for normal wait states, 1 eliminates additional wait states
30 * original author:
31 * Erik Stahlman <erik@vt.edu>
33 * hardware multicast code:
34 * Peter Cammaert <pc@denkart.be>
36 * contributors:
37 * Daris A Nevil <dnevil@snmc.com>
38 * Nicolas Pitre <nico@cam.org>
39 * Russell King <rmk@arm.linux.org.uk>
41 * History:
42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
49 * more bus abstraction, big cleanup, etc.
50 * 29/09/03 Russell King - add driver model support
51 * - ethtool support
52 * - convert to use generic MII interface
53 * - add link up/down notification
54 * - don't try to handle full negotiation in
55 * smc_phy_configure
56 * - clean up (and fix stack overrun) in PHY
57 * MII read/write functions
58 * 22/09/04 Nicolas Pitre big update (see commit log for details)
60 static const char version[] =
61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@cam.org>\n";
63 /* Debugging level */
64 #ifndef SMC_DEBUG
65 #define SMC_DEBUG 0
66 #endif
69 #include <linux/config.h>
70 #include <linux/init.h>
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/interrupt.h>
77 #include <linux/errno.h>
78 #include <linux/ioport.h>
79 #include <linux/crc32.h>
80 #include <linux/device.h>
81 #include <linux/spinlock.h>
82 #include <linux/ethtool.h>
83 #include <linux/mii.h>
84 #include <linux/workqueue.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
90 #include <asm/io.h>
91 #include <asm/irq.h>
93 #include "smc91x.h"
95 #ifdef CONFIG_ISA
97 * the LAN91C111 can be at any of the following port addresses. To change,
98 * for a slightly different card, you can add it to the array. Keep in
99 * mind that the array must end in zero.
101 static unsigned int smc_portlist[] __initdata = {
102 0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0,
103 0x300, 0x320, 0x340, 0x360, 0x380, 0x3A0, 0x3C0, 0x3E0, 0
106 #ifndef SMC_IOADDR
107 # define SMC_IOADDR -1
108 #endif
109 static unsigned long io = SMC_IOADDR;
110 module_param(io, ulong, 0400);
111 MODULE_PARM_DESC(io, "I/O base address");
113 #ifndef SMC_IRQ
114 # define SMC_IRQ -1
115 #endif
116 static int irq = SMC_IRQ;
117 module_param(irq, int, 0400);
118 MODULE_PARM_DESC(irq, "IRQ number");
120 #endif /* CONFIG_ISA */
122 #ifndef SMC_NOWAIT
123 # define SMC_NOWAIT 0
124 #endif
125 static int nowait = SMC_NOWAIT;
126 module_param(nowait, int, 0400);
127 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
130 * Transmit timeout, default 5 seconds.
132 static int watchdog = 1000;
133 module_param(watchdog, int, 0400);
134 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
136 MODULE_LICENSE("GPL");
139 * The internal workings of the driver. If you are changing anything
140 * here with the SMC stuff, you should have the datasheet and know
141 * what you are doing.
143 #define CARDNAME "smc91x"
146 * Use power-down feature of the chip
148 #define POWER_DOWN 1
151 * Wait time for memory to be free. This probably shouldn't be
152 * tuned that much, as waiting for this means nothing else happens
153 * in the system
155 #define MEMORY_WAIT_TIME 16
158 * This selects whether TX packets are sent one by one to the SMC91x internal
159 * memory and throttled until transmission completes. This may prevent
160 * RX overruns a litle by keeping much of the memory free for RX packets
161 * but to the expense of reduced TX throughput and increased IRQ overhead.
162 * Note this is not a cure for a too slow data bus or too high IRQ latency.
164 #define THROTTLE_TX_PKTS 0
167 * The MII clock high/low times. 2x this number gives the MII clock period
168 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
170 #define MII_DELAY 1
172 /* store this information for the driver.. */
173 struct smc_local {
175 * If I have to wait until memory is available to send a
176 * packet, I will store the skbuff here, until I get the
177 * desired memory. Then, I'll send it out and free it.
179 struct sk_buff *pending_tx_skb;
180 struct tasklet_struct tx_task;
183 * these are things that the kernel wants me to keep, so users
184 * can find out semi-useless statistics of how well the card is
185 * performing
187 struct net_device_stats stats;
189 /* version/revision of the SMC91x chip */
190 int version;
192 /* Contains the current active transmission mode */
193 int tcr_cur_mode;
195 /* Contains the current active receive mode */
196 int rcr_cur_mode;
198 /* Contains the current active receive/phy mode */
199 int rpc_cur_mode;
200 int ctl_rfduplx;
201 int ctl_rspeed;
203 u32 msg_enable;
204 u32 phy_type;
205 struct mii_if_info mii;
207 /* work queue */
208 struct work_struct phy_configure;
209 int work_pending;
211 spinlock_t lock;
213 #ifdef SMC_CAN_USE_DATACS
214 u32 __iomem *datacs;
215 #endif
217 #ifdef SMC_USE_PXA_DMA
218 /* DMA needs the physical address of the chip */
219 u_long physaddr;
220 #endif
221 void __iomem *base;
224 #if SMC_DEBUG > 0
225 #define DBG(n, args...) \
226 do { \
227 if (SMC_DEBUG >= (n)) \
228 printk(args); \
229 } while (0)
231 #define PRINTK(args...) printk(args)
232 #else
233 #define DBG(n, args...) do { } while(0)
234 #define PRINTK(args...) printk(KERN_DEBUG args)
235 #endif
237 #if SMC_DEBUG > 3
238 static void PRINT_PKT(u_char *buf, int length)
240 int i;
241 int remainder;
242 int lines;
244 lines = length / 16;
245 remainder = length % 16;
247 for (i = 0; i < lines ; i ++) {
248 int cur;
249 for (cur = 0; cur < 8; cur++) {
250 u_char a, b;
251 a = *buf++;
252 b = *buf++;
253 printk("%02x%02x ", a, b);
255 printk("\n");
257 for (i = 0; i < remainder/2 ; i++) {
258 u_char a, b;
259 a = *buf++;
260 b = *buf++;
261 printk("%02x%02x ", a, b);
263 printk("\n");
265 #else
266 #define PRINT_PKT(x...) do { } while(0)
267 #endif
270 /* this enables an interrupt in the interrupt mask register */
271 #define SMC_ENABLE_INT(x) do { \
272 unsigned char mask; \
273 spin_lock_irq(&lp->lock); \
274 mask = SMC_GET_INT_MASK(); \
275 mask |= (x); \
276 SMC_SET_INT_MASK(mask); \
277 spin_unlock_irq(&lp->lock); \
278 } while (0)
280 /* this disables an interrupt from the interrupt mask register */
281 #define SMC_DISABLE_INT(x) do { \
282 unsigned char mask; \
283 spin_lock_irq(&lp->lock); \
284 mask = SMC_GET_INT_MASK(); \
285 mask &= ~(x); \
286 SMC_SET_INT_MASK(mask); \
287 spin_unlock_irq(&lp->lock); \
288 } while (0)
291 * Wait while MMU is busy. This is usually in the order of a few nanosecs
292 * if at all, but let's avoid deadlocking the system if the hardware
293 * decides to go south.
295 #define SMC_WAIT_MMU_BUSY() do { \
296 if (unlikely(SMC_GET_MMU_CMD() & MC_BUSY)) { \
297 unsigned long timeout = jiffies + 2; \
298 while (SMC_GET_MMU_CMD() & MC_BUSY) { \
299 if (time_after(jiffies, timeout)) { \
300 printk("%s: timeout %s line %d\n", \
301 dev->name, __FILE__, __LINE__); \
302 break; \
304 cpu_relax(); \
307 } while (0)
311 * this does a soft reset on the device
313 static void smc_reset(struct net_device *dev)
315 struct smc_local *lp = netdev_priv(dev);
316 void __iomem *ioaddr = lp->base;
317 unsigned int ctl, cfg;
319 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
321 /* Disable all interrupts */
322 spin_lock(&lp->lock);
323 SMC_SELECT_BANK(2);
324 SMC_SET_INT_MASK(0);
325 spin_unlock(&lp->lock);
328 * This resets the registers mostly to defaults, but doesn't
329 * affect EEPROM. That seems unnecessary
331 SMC_SELECT_BANK(0);
332 SMC_SET_RCR(RCR_SOFTRST);
335 * Setup the Configuration Register
336 * This is necessary because the CONFIG_REG is not affected
337 * by a soft reset
339 SMC_SELECT_BANK(1);
341 cfg = CONFIG_DEFAULT;
344 * Setup for fast accesses if requested. If the card/system
345 * can't handle it then there will be no recovery except for
346 * a hard reset or power cycle
348 if (nowait)
349 cfg |= CONFIG_NO_WAIT;
352 * Release from possible power-down state
353 * Configuration register is not affected by Soft Reset
355 cfg |= CONFIG_EPH_POWER_EN;
357 SMC_SET_CONFIG(cfg);
359 /* this should pause enough for the chip to be happy */
361 * elaborate? What does the chip _need_? --jgarzik
363 * This seems to be undocumented, but something the original
364 * driver(s) have always done. Suspect undocumented timing
365 * info/determined empirically. --rmk
367 udelay(1);
369 /* Disable transmit and receive functionality */
370 SMC_SELECT_BANK(0);
371 SMC_SET_RCR(RCR_CLEAR);
372 SMC_SET_TCR(TCR_CLEAR);
374 SMC_SELECT_BANK(1);
375 ctl = SMC_GET_CTL() | CTL_LE_ENABLE;
378 * Set the control register to automatically release successfully
379 * transmitted packets, to make the best use out of our limited
380 * memory
382 if(!THROTTLE_TX_PKTS)
383 ctl |= CTL_AUTO_RELEASE;
384 else
385 ctl &= ~CTL_AUTO_RELEASE;
386 SMC_SET_CTL(ctl);
388 /* Reset the MMU */
389 SMC_SELECT_BANK(2);
390 SMC_SET_MMU_CMD(MC_RESET);
391 SMC_WAIT_MMU_BUSY();
393 /* clear anything saved */
394 if (lp->pending_tx_skb != NULL) {
395 dev_kfree_skb (lp->pending_tx_skb);
396 lp->pending_tx_skb = NULL;
397 lp->stats.tx_errors++;
398 lp->stats.tx_aborted_errors++;
403 * Enable Interrupts, Receive, and Transmit
405 static void smc_enable(struct net_device *dev)
407 struct smc_local *lp = netdev_priv(dev);
408 void __iomem *ioaddr = lp->base;
409 int mask;
411 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
413 /* see the header file for options in TCR/RCR DEFAULT */
414 SMC_SELECT_BANK(0);
415 SMC_SET_TCR(lp->tcr_cur_mode);
416 SMC_SET_RCR(lp->rcr_cur_mode);
418 SMC_SELECT_BANK(1);
419 SMC_SET_MAC_ADDR(dev->dev_addr);
421 /* now, enable interrupts */
422 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
423 if (lp->version >= (CHIP_91100 << 4))
424 mask |= IM_MDINT;
425 SMC_SELECT_BANK(2);
426 SMC_SET_INT_MASK(mask);
429 * From this point the register bank must _NOT_ be switched away
430 * to something else than bank 2 without proper locking against
431 * races with any tasklet or interrupt handlers until smc_shutdown()
432 * or smc_reset() is called.
437 * this puts the device in an inactive state
439 static void smc_shutdown(struct net_device *dev)
441 struct smc_local *lp = netdev_priv(dev);
442 void __iomem *ioaddr = lp->base;
444 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
446 /* no more interrupts for me */
447 spin_lock(&lp->lock);
448 SMC_SELECT_BANK(2);
449 SMC_SET_INT_MASK(0);
450 spin_unlock(&lp->lock);
452 /* and tell the card to stay away from that nasty outside world */
453 SMC_SELECT_BANK(0);
454 SMC_SET_RCR(RCR_CLEAR);
455 SMC_SET_TCR(TCR_CLEAR);
457 #ifdef POWER_DOWN
458 /* finally, shut the chip down */
459 SMC_SELECT_BANK(1);
460 SMC_SET_CONFIG(SMC_GET_CONFIG() & ~CONFIG_EPH_POWER_EN);
461 #endif
465 * This is the procedure to handle the receipt of a packet.
467 static inline void smc_rcv(struct net_device *dev)
469 struct smc_local *lp = netdev_priv(dev);
470 void __iomem *ioaddr = lp->base;
471 unsigned int packet_number, status, packet_len;
473 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
475 packet_number = SMC_GET_RXFIFO();
476 if (unlikely(packet_number & RXFIFO_REMPTY)) {
477 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
478 return;
481 /* read from start of packet */
482 SMC_SET_PTR(PTR_READ | PTR_RCV | PTR_AUTOINC);
484 /* First two words are status and packet length */
485 SMC_GET_PKT_HDR(status, packet_len);
486 packet_len &= 0x07ff; /* mask off top bits */
487 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
488 dev->name, packet_number, status,
489 packet_len, packet_len);
491 back:
492 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
493 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
494 /* accept VLAN packets */
495 status &= ~RS_TOOLONG;
496 goto back;
498 if (packet_len < 6) {
499 /* bloody hardware */
500 printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
501 dev->name, packet_len, status);
502 status |= RS_TOOSHORT;
504 SMC_WAIT_MMU_BUSY();
505 SMC_SET_MMU_CMD(MC_RELEASE);
506 lp->stats.rx_errors++;
507 if (status & RS_ALGNERR)
508 lp->stats.rx_frame_errors++;
509 if (status & (RS_TOOSHORT | RS_TOOLONG))
510 lp->stats.rx_length_errors++;
511 if (status & RS_BADCRC)
512 lp->stats.rx_crc_errors++;
513 } else {
514 struct sk_buff *skb;
515 unsigned char *data;
516 unsigned int data_len;
518 /* set multicast stats */
519 if (status & RS_MULTICAST)
520 lp->stats.multicast++;
523 * Actual payload is packet_len - 6 (or 5 if odd byte).
524 * We want skb_reserve(2) and the final ctrl word
525 * (2 bytes, possibly containing the payload odd byte).
526 * Furthermore, we add 2 bytes to allow rounding up to
527 * multiple of 4 bytes on 32 bit buses.
528 * Hence packet_len - 6 + 2 + 2 + 2.
530 skb = dev_alloc_skb(packet_len);
531 if (unlikely(skb == NULL)) {
532 printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
533 dev->name);
534 SMC_WAIT_MMU_BUSY();
535 SMC_SET_MMU_CMD(MC_RELEASE);
536 lp->stats.rx_dropped++;
537 return;
540 /* Align IP header to 32 bits */
541 skb_reserve(skb, 2);
543 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
544 if (lp->version == 0x90)
545 status |= RS_ODDFRAME;
548 * If odd length: packet_len - 5,
549 * otherwise packet_len - 6.
550 * With the trailing ctrl byte it's packet_len - 4.
552 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
553 data = skb_put(skb, data_len);
554 SMC_PULL_DATA(data, packet_len - 4);
556 SMC_WAIT_MMU_BUSY();
557 SMC_SET_MMU_CMD(MC_RELEASE);
559 PRINT_PKT(data, packet_len - 4);
561 dev->last_rx = jiffies;
562 skb->dev = dev;
563 skb->protocol = eth_type_trans(skb, dev);
564 netif_rx(skb);
565 lp->stats.rx_packets++;
566 lp->stats.rx_bytes += data_len;
570 #ifdef CONFIG_SMP
572 * On SMP we have the following problem:
574 * A = smc_hardware_send_pkt()
575 * B = smc_hard_start_xmit()
576 * C = smc_interrupt()
578 * A and B can never be executed simultaneously. However, at least on UP,
579 * it is possible (and even desirable) for C to interrupt execution of
580 * A or B in order to have better RX reliability and avoid overruns.
581 * C, just like A and B, must have exclusive access to the chip and
582 * each of them must lock against any other concurrent access.
583 * Unfortunately this is not possible to have C suspend execution of A or
584 * B taking place on another CPU. On UP this is no an issue since A and B
585 * are run from softirq context and C from hard IRQ context, and there is
586 * no other CPU where concurrent access can happen.
587 * If ever there is a way to force at least B and C to always be executed
588 * on the same CPU then we could use read/write locks to protect against
589 * any other concurrent access and C would always interrupt B. But life
590 * isn't that easy in a SMP world...
592 #define smc_special_trylock(lock) \
593 ({ \
594 int __ret; \
595 local_irq_disable(); \
596 __ret = spin_trylock(lock); \
597 if (!__ret) \
598 local_irq_enable(); \
599 __ret; \
601 #define smc_special_lock(lock) spin_lock_irq(lock)
602 #define smc_special_unlock(lock) spin_unlock_irq(lock)
603 #else
604 #define smc_special_trylock(lock) (1)
605 #define smc_special_lock(lock) do { } while (0)
606 #define smc_special_unlock(lock) do { } while (0)
607 #endif
610 * This is called to actually send a packet to the chip.
612 static void smc_hardware_send_pkt(unsigned long data)
614 struct net_device *dev = (struct net_device *)data;
615 struct smc_local *lp = netdev_priv(dev);
616 void __iomem *ioaddr = lp->base;
617 struct sk_buff *skb;
618 unsigned int packet_no, len;
619 unsigned char *buf;
621 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
623 if (!smc_special_trylock(&lp->lock)) {
624 netif_stop_queue(dev);
625 tasklet_schedule(&lp->tx_task);
626 return;
629 skb = lp->pending_tx_skb;
630 lp->pending_tx_skb = NULL;
631 packet_no = SMC_GET_AR();
632 if (unlikely(packet_no & AR_FAILED)) {
633 printk("%s: Memory allocation failed.\n", dev->name);
634 lp->stats.tx_errors++;
635 lp->stats.tx_fifo_errors++;
636 smc_special_unlock(&lp->lock);
637 goto done;
640 /* point to the beginning of the packet */
641 SMC_SET_PN(packet_no);
642 SMC_SET_PTR(PTR_AUTOINC);
644 buf = skb->data;
645 len = skb->len;
646 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
647 dev->name, packet_no, len, len, buf);
648 PRINT_PKT(buf, len);
651 * Send the packet length (+6 for status words, length, and ctl.
652 * The card will pad to 64 bytes with zeroes if packet is too small.
654 SMC_PUT_PKT_HDR(0, len + 6);
656 /* send the actual data */
657 SMC_PUSH_DATA(buf, len & ~1);
659 /* Send final ctl word with the last byte if there is one */
660 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG);
663 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
664 * have the effect of having at most one packet queued for TX
665 * in the chip's memory at all time.
667 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
668 * when memory allocation (MC_ALLOC) does not succeed right away.
670 if (THROTTLE_TX_PKTS)
671 netif_stop_queue(dev);
673 /* queue the packet for TX */
674 SMC_SET_MMU_CMD(MC_ENQUEUE);
675 SMC_ACK_INT(IM_TX_EMPTY_INT);
676 smc_special_unlock(&lp->lock);
678 dev->trans_start = jiffies;
679 lp->stats.tx_packets++;
680 lp->stats.tx_bytes += len;
682 SMC_ENABLE_INT(IM_TX_INT | IM_TX_EMPTY_INT);
684 done: if (!THROTTLE_TX_PKTS)
685 netif_wake_queue(dev);
687 dev_kfree_skb(skb);
691 * Since I am not sure if I will have enough room in the chip's ram
692 * to store the packet, I call this routine which either sends it
693 * now, or set the card to generates an interrupt when ready
694 * for the packet.
696 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
698 struct smc_local *lp = netdev_priv(dev);
699 void __iomem *ioaddr = lp->base;
700 unsigned int numPages, poll_count, status;
702 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
704 BUG_ON(lp->pending_tx_skb != NULL);
705 lp->pending_tx_skb = skb;
708 * The MMU wants the number of pages to be the number of 256 bytes
709 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
711 * The 91C111 ignores the size bits, but earlier models don't.
713 * Pkt size for allocating is data length +6 (for additional status
714 * words, length and ctl)
716 * If odd size then last byte is included in ctl word.
718 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
719 if (unlikely(numPages > 7)) {
720 printk("%s: Far too big packet error.\n", dev->name);
721 lp->pending_tx_skb = NULL;
722 lp->stats.tx_errors++;
723 lp->stats.tx_dropped++;
724 dev_kfree_skb(skb);
725 return 0;
728 smc_special_lock(&lp->lock);
730 /* now, try to allocate the memory */
731 SMC_SET_MMU_CMD(MC_ALLOC | numPages);
734 * Poll the chip for a short amount of time in case the
735 * allocation succeeds quickly.
737 poll_count = MEMORY_WAIT_TIME;
738 do {
739 status = SMC_GET_INT();
740 if (status & IM_ALLOC_INT) {
741 SMC_ACK_INT(IM_ALLOC_INT);
742 break;
744 } while (--poll_count);
746 smc_special_unlock(&lp->lock);
748 if (!poll_count) {
749 /* oh well, wait until the chip finds memory later */
750 netif_stop_queue(dev);
751 DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
752 SMC_ENABLE_INT(IM_ALLOC_INT);
753 } else {
755 * Allocation succeeded: push packet to the chip's own memory
756 * immediately.
758 smc_hardware_send_pkt((unsigned long)dev);
761 return 0;
765 * This handles a TX interrupt, which is only called when:
766 * - a TX error occurred, or
767 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
769 static void smc_tx(struct net_device *dev)
771 struct smc_local *lp = netdev_priv(dev);
772 void __iomem *ioaddr = lp->base;
773 unsigned int saved_packet, packet_no, tx_status, pkt_len;
775 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
777 /* If the TX FIFO is empty then nothing to do */
778 packet_no = SMC_GET_TXFIFO();
779 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
780 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
781 return;
784 /* select packet to read from */
785 saved_packet = SMC_GET_PN();
786 SMC_SET_PN(packet_no);
788 /* read the first word (status word) from this packet */
789 SMC_SET_PTR(PTR_AUTOINC | PTR_READ);
790 SMC_GET_PKT_HDR(tx_status, pkt_len);
791 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
792 dev->name, tx_status, packet_no);
794 if (!(tx_status & ES_TX_SUC))
795 lp->stats.tx_errors++;
797 if (tx_status & ES_LOSTCARR)
798 lp->stats.tx_carrier_errors++;
800 if (tx_status & (ES_LATCOL | ES_16COL)) {
801 PRINTK("%s: %s occurred on last xmit\n", dev->name,
802 (tx_status & ES_LATCOL) ?
803 "late collision" : "too many collisions");
804 lp->stats.tx_window_errors++;
805 if (!(lp->stats.tx_window_errors & 63) && net_ratelimit()) {
806 printk(KERN_INFO "%s: unexpectedly large number of "
807 "bad collisions. Please check duplex "
808 "setting.\n", dev->name);
812 /* kill the packet */
813 SMC_WAIT_MMU_BUSY();
814 SMC_SET_MMU_CMD(MC_FREEPKT);
816 /* Don't restore Packet Number Reg until busy bit is cleared */
817 SMC_WAIT_MMU_BUSY();
818 SMC_SET_PN(saved_packet);
820 /* re-enable transmit */
821 SMC_SELECT_BANK(0);
822 SMC_SET_TCR(lp->tcr_cur_mode);
823 SMC_SELECT_BANK(2);
827 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
829 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
831 struct smc_local *lp = netdev_priv(dev);
832 void __iomem *ioaddr = lp->base;
833 unsigned int mii_reg, mask;
835 mii_reg = SMC_GET_MII() & ~(MII_MCLK | MII_MDOE | MII_MDO);
836 mii_reg |= MII_MDOE;
838 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
839 if (val & mask)
840 mii_reg |= MII_MDO;
841 else
842 mii_reg &= ~MII_MDO;
844 SMC_SET_MII(mii_reg);
845 udelay(MII_DELAY);
846 SMC_SET_MII(mii_reg | MII_MCLK);
847 udelay(MII_DELAY);
851 static unsigned int smc_mii_in(struct net_device *dev, int bits)
853 struct smc_local *lp = netdev_priv(dev);
854 void __iomem *ioaddr = lp->base;
855 unsigned int mii_reg, mask, val;
857 mii_reg = SMC_GET_MII() & ~(MII_MCLK | MII_MDOE | MII_MDO);
858 SMC_SET_MII(mii_reg);
860 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
861 if (SMC_GET_MII() & MII_MDI)
862 val |= mask;
864 SMC_SET_MII(mii_reg);
865 udelay(MII_DELAY);
866 SMC_SET_MII(mii_reg | MII_MCLK);
867 udelay(MII_DELAY);
870 return val;
874 * Reads a register from the MII Management serial interface
876 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
878 struct smc_local *lp = netdev_priv(dev);
879 void __iomem *ioaddr = lp->base;
880 unsigned int phydata;
882 SMC_SELECT_BANK(3);
884 /* Idle - 32 ones */
885 smc_mii_out(dev, 0xffffffff, 32);
887 /* Start code (01) + read (10) + phyaddr + phyreg */
888 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
890 /* Turnaround (2bits) + phydata */
891 phydata = smc_mii_in(dev, 18);
893 /* Return to idle state */
894 SMC_SET_MII(SMC_GET_MII() & ~(MII_MCLK|MII_MDOE|MII_MDO));
896 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
897 __FUNCTION__, phyaddr, phyreg, phydata);
899 SMC_SELECT_BANK(2);
900 return phydata;
904 * Writes a register to the MII Management serial interface
906 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
907 int phydata)
909 struct smc_local *lp = netdev_priv(dev);
910 void __iomem *ioaddr = lp->base;
912 SMC_SELECT_BANK(3);
914 /* Idle - 32 ones */
915 smc_mii_out(dev, 0xffffffff, 32);
917 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
918 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
920 /* Return to idle state */
921 SMC_SET_MII(SMC_GET_MII() & ~(MII_MCLK|MII_MDOE|MII_MDO));
923 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
924 __FUNCTION__, phyaddr, phyreg, phydata);
926 SMC_SELECT_BANK(2);
930 * Finds and reports the PHY address
932 static void smc_phy_detect(struct net_device *dev)
934 struct smc_local *lp = netdev_priv(dev);
935 int phyaddr;
937 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
939 lp->phy_type = 0;
942 * Scan all 32 PHY addresses if necessary, starting at
943 * PHY#1 to PHY#31, and then PHY#0 last.
945 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
946 unsigned int id1, id2;
948 /* Read the PHY identifiers */
949 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
950 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
952 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
953 dev->name, id1, id2);
955 /* Make sure it is a valid identifier */
956 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
957 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
958 /* Save the PHY's address */
959 lp->mii.phy_id = phyaddr & 31;
960 lp->phy_type = id1 << 16 | id2;
961 break;
967 * Sets the PHY to a configuration as determined by the user
969 static int smc_phy_fixed(struct net_device *dev)
971 struct smc_local *lp = netdev_priv(dev);
972 void __iomem *ioaddr = lp->base;
973 int phyaddr = lp->mii.phy_id;
974 int bmcr, cfg1;
976 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
978 /* Enter Link Disable state */
979 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
980 cfg1 |= PHY_CFG1_LNKDIS;
981 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
984 * Set our fixed capabilities
985 * Disable auto-negotiation
987 bmcr = 0;
989 if (lp->ctl_rfduplx)
990 bmcr |= BMCR_FULLDPLX;
992 if (lp->ctl_rspeed == 100)
993 bmcr |= BMCR_SPEED100;
995 /* Write our capabilities to the phy control register */
996 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
998 /* Re-Configure the Receive/Phy Control register */
999 SMC_SELECT_BANK(0);
1000 SMC_SET_RPC(lp->rpc_cur_mode);
1001 SMC_SELECT_BANK(2);
1003 return 1;
1007 * smc_phy_reset - reset the phy
1008 * @dev: net device
1009 * @phy: phy address
1011 * Issue a software reset for the specified PHY and
1012 * wait up to 100ms for the reset to complete. We should
1013 * not access the PHY for 50ms after issuing the reset.
1015 * The time to wait appears to be dependent on the PHY.
1017 * Must be called with lp->lock locked.
1019 static int smc_phy_reset(struct net_device *dev, int phy)
1021 struct smc_local *lp = netdev_priv(dev);
1022 unsigned int bmcr;
1023 int timeout;
1025 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
1027 for (timeout = 2; timeout; timeout--) {
1028 spin_unlock_irq(&lp->lock);
1029 msleep(50);
1030 spin_lock_irq(&lp->lock);
1032 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1033 if (!(bmcr & BMCR_RESET))
1034 break;
1037 return bmcr & BMCR_RESET;
1041 * smc_phy_powerdown - powerdown phy
1042 * @dev: net device
1044 * Power down the specified PHY
1046 static void smc_phy_powerdown(struct net_device *dev)
1048 struct smc_local *lp = netdev_priv(dev);
1049 unsigned int bmcr;
1050 int phy = lp->mii.phy_id;
1052 if (lp->phy_type == 0)
1053 return;
1055 /* We need to ensure that no calls to smc_phy_configure are
1056 pending.
1058 flush_scheduled_work() cannot be called because we are
1059 running with the netlink semaphore held (from
1060 devinet_ioctl()) and the pending work queue contains
1061 linkwatch_event() (scheduled by netif_carrier_off()
1062 above). linkwatch_event() also wants the netlink semaphore.
1064 while(lp->work_pending)
1065 schedule();
1067 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1068 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1072 * smc_phy_check_media - check the media status and adjust TCR
1073 * @dev: net device
1074 * @init: set true for initialisation
1076 * Select duplex mode depending on negotiation state. This
1077 * also updates our carrier state.
1079 static void smc_phy_check_media(struct net_device *dev, int init)
1081 struct smc_local *lp = netdev_priv(dev);
1082 void __iomem *ioaddr = lp->base;
1084 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1085 /* duplex state has changed */
1086 if (lp->mii.full_duplex) {
1087 lp->tcr_cur_mode |= TCR_SWFDUP;
1088 } else {
1089 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1092 SMC_SELECT_BANK(0);
1093 SMC_SET_TCR(lp->tcr_cur_mode);
1098 * Configures the specified PHY through the MII management interface
1099 * using Autonegotiation.
1100 * Calls smc_phy_fixed() if the user has requested a certain config.
1101 * If RPC ANEG bit is set, the media selection is dependent purely on
1102 * the selection by the MII (either in the MII BMCR reg or the result
1103 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1104 * is controlled by the RPC SPEED and RPC DPLX bits.
1106 static void smc_phy_configure(void *data)
1108 struct net_device *dev = data;
1109 struct smc_local *lp = netdev_priv(dev);
1110 void __iomem *ioaddr = lp->base;
1111 int phyaddr = lp->mii.phy_id;
1112 int my_phy_caps; /* My PHY capabilities */
1113 int my_ad_caps; /* My Advertised capabilities */
1114 int status;
1116 DBG(3, "%s:smc_program_phy()\n", dev->name);
1118 spin_lock_irq(&lp->lock);
1121 * We should not be called if phy_type is zero.
1123 if (lp->phy_type == 0)
1124 goto smc_phy_configure_exit;
1126 if (smc_phy_reset(dev, phyaddr)) {
1127 printk("%s: PHY reset timed out\n", dev->name);
1128 goto smc_phy_configure_exit;
1132 * Enable PHY Interrupts (for register 18)
1133 * Interrupts listed here are disabled
1135 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1136 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1137 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1138 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1140 /* Configure the Receive/Phy Control register */
1141 SMC_SELECT_BANK(0);
1142 SMC_SET_RPC(lp->rpc_cur_mode);
1144 /* If the user requested no auto neg, then go set his request */
1145 if (lp->mii.force_media) {
1146 smc_phy_fixed(dev);
1147 goto smc_phy_configure_exit;
1150 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1151 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1153 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1154 printk(KERN_INFO "Auto negotiation NOT supported\n");
1155 smc_phy_fixed(dev);
1156 goto smc_phy_configure_exit;
1159 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1161 if (my_phy_caps & BMSR_100BASE4)
1162 my_ad_caps |= ADVERTISE_100BASE4;
1163 if (my_phy_caps & BMSR_100FULL)
1164 my_ad_caps |= ADVERTISE_100FULL;
1165 if (my_phy_caps & BMSR_100HALF)
1166 my_ad_caps |= ADVERTISE_100HALF;
1167 if (my_phy_caps & BMSR_10FULL)
1168 my_ad_caps |= ADVERTISE_10FULL;
1169 if (my_phy_caps & BMSR_10HALF)
1170 my_ad_caps |= ADVERTISE_10HALF;
1172 /* Disable capabilities not selected by our user */
1173 if (lp->ctl_rspeed != 100)
1174 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1176 if (!lp->ctl_rfduplx)
1177 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1179 /* Update our Auto-Neg Advertisement Register */
1180 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1181 lp->mii.advertising = my_ad_caps;
1184 * Read the register back. Without this, it appears that when
1185 * auto-negotiation is restarted, sometimes it isn't ready and
1186 * the link does not come up.
1188 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1190 DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1191 DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1193 /* Restart auto-negotiation process in order to advertise my caps */
1194 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1196 smc_phy_check_media(dev, 1);
1198 smc_phy_configure_exit:
1199 spin_unlock_irq(&lp->lock);
1200 lp->work_pending = 0;
1204 * smc_phy_interrupt
1206 * Purpose: Handle interrupts relating to PHY register 18. This is
1207 * called from the "hard" interrupt handler under our private spinlock.
1209 static void smc_phy_interrupt(struct net_device *dev)
1211 struct smc_local *lp = netdev_priv(dev);
1212 int phyaddr = lp->mii.phy_id;
1213 int phy18;
1215 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1217 if (lp->phy_type == 0)
1218 return;
1220 for(;;) {
1221 smc_phy_check_media(dev, 0);
1223 /* Read PHY Register 18, Status Output */
1224 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1225 if ((phy18 & PHY_INT_INT) == 0)
1226 break;
1230 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1232 static void smc_10bt_check_media(struct net_device *dev, int init)
1234 struct smc_local *lp = netdev_priv(dev);
1235 void __iomem *ioaddr = lp->base;
1236 unsigned int old_carrier, new_carrier;
1238 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1240 SMC_SELECT_BANK(0);
1241 new_carrier = (SMC_GET_EPH_STATUS() & ES_LINK_OK) ? 1 : 0;
1242 SMC_SELECT_BANK(2);
1244 if (init || (old_carrier != new_carrier)) {
1245 if (!new_carrier) {
1246 netif_carrier_off(dev);
1247 } else {
1248 netif_carrier_on(dev);
1250 if (netif_msg_link(lp))
1251 printk(KERN_INFO "%s: link %s\n", dev->name,
1252 new_carrier ? "up" : "down");
1256 static void smc_eph_interrupt(struct net_device *dev)
1258 struct smc_local *lp = netdev_priv(dev);
1259 void __iomem *ioaddr = lp->base;
1260 unsigned int ctl;
1262 smc_10bt_check_media(dev, 0);
1264 SMC_SELECT_BANK(1);
1265 ctl = SMC_GET_CTL();
1266 SMC_SET_CTL(ctl & ~CTL_LE_ENABLE);
1267 SMC_SET_CTL(ctl);
1268 SMC_SELECT_BANK(2);
1272 * This is the main routine of the driver, to handle the device when
1273 * it needs some attention.
1275 static irqreturn_t smc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1277 struct net_device *dev = dev_id;
1278 struct smc_local *lp = netdev_priv(dev);
1279 void __iomem *ioaddr = lp->base;
1280 int status, mask, timeout, card_stats;
1281 int saved_pointer;
1283 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
1285 spin_lock(&lp->lock);
1287 /* A preamble may be used when there is a potential race
1288 * between the interruptible transmit functions and this
1289 * ISR. */
1290 SMC_INTERRUPT_PREAMBLE;
1292 saved_pointer = SMC_GET_PTR();
1293 mask = SMC_GET_INT_MASK();
1294 SMC_SET_INT_MASK(0);
1296 /* set a timeout value, so I don't stay here forever */
1297 timeout = 8;
1299 do {
1300 status = SMC_GET_INT();
1302 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1303 dev->name, status, mask,
1304 ({ int meminfo; SMC_SELECT_BANK(0);
1305 meminfo = SMC_GET_MIR();
1306 SMC_SELECT_BANK(2); meminfo; }),
1307 SMC_GET_FIFO());
1309 status &= mask;
1310 if (!status)
1311 break;
1313 if (status & IM_TX_INT) {
1314 /* do this before RX as it will free memory quickly */
1315 DBG(3, "%s: TX int\n", dev->name);
1316 smc_tx(dev);
1317 SMC_ACK_INT(IM_TX_INT);
1318 if (THROTTLE_TX_PKTS)
1319 netif_wake_queue(dev);
1320 } else if (status & IM_RCV_INT) {
1321 DBG(3, "%s: RX irq\n", dev->name);
1322 smc_rcv(dev);
1323 } else if (status & IM_ALLOC_INT) {
1324 DBG(3, "%s: Allocation irq\n", dev->name);
1325 tasklet_hi_schedule(&lp->tx_task);
1326 mask &= ~IM_ALLOC_INT;
1327 } else if (status & IM_TX_EMPTY_INT) {
1328 DBG(3, "%s: TX empty\n", dev->name);
1329 mask &= ~IM_TX_EMPTY_INT;
1331 /* update stats */
1332 SMC_SELECT_BANK(0);
1333 card_stats = SMC_GET_COUNTER();
1334 SMC_SELECT_BANK(2);
1336 /* single collisions */
1337 lp->stats.collisions += card_stats & 0xF;
1338 card_stats >>= 4;
1340 /* multiple collisions */
1341 lp->stats.collisions += card_stats & 0xF;
1342 } else if (status & IM_RX_OVRN_INT) {
1343 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1344 ({ int eph_st; SMC_SELECT_BANK(0);
1345 eph_st = SMC_GET_EPH_STATUS();
1346 SMC_SELECT_BANK(2); eph_st; }) );
1347 SMC_ACK_INT(IM_RX_OVRN_INT);
1348 lp->stats.rx_errors++;
1349 lp->stats.rx_fifo_errors++;
1350 } else if (status & IM_EPH_INT) {
1351 smc_eph_interrupt(dev);
1352 } else if (status & IM_MDINT) {
1353 SMC_ACK_INT(IM_MDINT);
1354 smc_phy_interrupt(dev);
1355 } else if (status & IM_ERCV_INT) {
1356 SMC_ACK_INT(IM_ERCV_INT);
1357 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT \n", dev->name);
1359 } while (--timeout);
1361 /* restore register states */
1362 SMC_SET_PTR(saved_pointer);
1363 SMC_SET_INT_MASK(mask);
1365 spin_unlock(&lp->lock);
1367 DBG(3, "%s: Interrupt done (%d loops)\n", dev->name, 8-timeout);
1370 * We return IRQ_HANDLED unconditionally here even if there was
1371 * nothing to do. There is a possibility that a packet might
1372 * get enqueued into the chip right after TX_EMPTY_INT is raised
1373 * but just before the CPU acknowledges the IRQ.
1374 * Better take an unneeded IRQ in some occasions than complexifying
1375 * the code for all cases.
1377 return IRQ_HANDLED;
1380 #ifdef CONFIG_NET_POLL_CONTROLLER
1382 * Polling receive - used by netconsole and other diagnostic tools
1383 * to allow network i/o with interrupts disabled.
1385 static void smc_poll_controller(struct net_device *dev)
1387 disable_irq(dev->irq);
1388 smc_interrupt(dev->irq, dev, NULL);
1389 enable_irq(dev->irq);
1391 #endif
1393 /* Our watchdog timed out. Called by the networking layer */
1394 static void smc_timeout(struct net_device *dev)
1396 struct smc_local *lp = netdev_priv(dev);
1397 void __iomem *ioaddr = lp->base;
1398 int status, mask, eph_st, meminfo, fifo;
1400 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1402 spin_lock_irq(&lp->lock);
1403 status = SMC_GET_INT();
1404 mask = SMC_GET_INT_MASK();
1405 fifo = SMC_GET_FIFO();
1406 SMC_SELECT_BANK(0);
1407 eph_st = SMC_GET_EPH_STATUS();
1408 meminfo = SMC_GET_MIR();
1409 SMC_SELECT_BANK(2);
1410 spin_unlock_irq(&lp->lock);
1411 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1412 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1413 dev->name, status, mask, meminfo, fifo, eph_st );
1415 smc_reset(dev);
1416 smc_enable(dev);
1419 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1420 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1421 * which calls schedule(). Hence we use a work queue.
1423 if (lp->phy_type != 0) {
1424 if (schedule_work(&lp->phy_configure)) {
1425 lp->work_pending = 1;
1429 /* We can accept TX packets again */
1430 dev->trans_start = jiffies;
1431 netif_wake_queue(dev);
1435 * This routine will, depending on the values passed to it,
1436 * either make it accept multicast packets, go into
1437 * promiscuous mode (for TCPDUMP and cousins) or accept
1438 * a select set of multicast packets
1440 static void smc_set_multicast_list(struct net_device *dev)
1442 struct smc_local *lp = netdev_priv(dev);
1443 void __iomem *ioaddr = lp->base;
1444 unsigned char multicast_table[8];
1445 int update_multicast = 0;
1447 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1449 if (dev->flags & IFF_PROMISC) {
1450 DBG(2, "%s: RCR_PRMS\n", dev->name);
1451 lp->rcr_cur_mode |= RCR_PRMS;
1454 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1455 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1456 when promiscuous mode is turned on.
1460 * Here, I am setting this to accept all multicast packets.
1461 * I don't need to zero the multicast table, because the flag is
1462 * checked before the table is
1464 else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) {
1465 DBG(2, "%s: RCR_ALMUL\n", dev->name);
1466 lp->rcr_cur_mode |= RCR_ALMUL;
1470 * This sets the internal hardware table to filter out unwanted
1471 * multicast packets before they take up memory.
1473 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1474 * address are the offset into the table. If that bit is 1, then the
1475 * multicast packet is accepted. Otherwise, it's dropped silently.
1477 * To use the 6 bits as an offset into the table, the high 3 bits are
1478 * the number of the 8 bit register, while the low 3 bits are the bit
1479 * within that register.
1481 else if (dev->mc_count) {
1482 int i;
1483 struct dev_mc_list *cur_addr;
1485 /* table for flipping the order of 3 bits */
1486 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1488 /* start with a table of all zeros: reject all */
1489 memset(multicast_table, 0, sizeof(multicast_table));
1491 cur_addr = dev->mc_list;
1492 for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
1493 int position;
1495 /* do we have a pointer here? */
1496 if (!cur_addr)
1497 break;
1498 /* make sure this is a multicast address -
1499 shouldn't this be a given if we have it here ? */
1500 if (!(*cur_addr->dmi_addr & 1))
1501 continue;
1503 /* only use the low order bits */
1504 position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
1506 /* do some messy swapping to put the bit in the right spot */
1507 multicast_table[invert3[position&7]] |=
1508 (1<<invert3[(position>>3)&7]);
1511 /* be sure I get rid of flags I might have set */
1512 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1514 /* now, the table can be loaded into the chipset */
1515 update_multicast = 1;
1516 } else {
1517 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1518 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1521 * since I'm disabling all multicast entirely, I need to
1522 * clear the multicast list
1524 memset(multicast_table, 0, sizeof(multicast_table));
1525 update_multicast = 1;
1528 spin_lock_irq(&lp->lock);
1529 SMC_SELECT_BANK(0);
1530 SMC_SET_RCR(lp->rcr_cur_mode);
1531 if (update_multicast) {
1532 SMC_SELECT_BANK(3);
1533 SMC_SET_MCAST(multicast_table);
1535 SMC_SELECT_BANK(2);
1536 spin_unlock_irq(&lp->lock);
1541 * Open and Initialize the board
1543 * Set up everything, reset the card, etc..
1545 static int
1546 smc_open(struct net_device *dev)
1548 struct smc_local *lp = netdev_priv(dev);
1550 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1553 * Check that the address is valid. If its not, refuse
1554 * to bring the device up. The user must specify an
1555 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1557 if (!is_valid_ether_addr(dev->dev_addr)) {
1558 PRINTK("%s: no valid ethernet hw addr\n", __FUNCTION__);
1559 return -EINVAL;
1562 /* Setup the default Register Modes */
1563 lp->tcr_cur_mode = TCR_DEFAULT;
1564 lp->rcr_cur_mode = RCR_DEFAULT;
1565 lp->rpc_cur_mode = RPC_DEFAULT;
1568 * If we are not using a MII interface, we need to
1569 * monitor our own carrier signal to detect faults.
1571 if (lp->phy_type == 0)
1572 lp->tcr_cur_mode |= TCR_MON_CSN;
1574 /* reset the hardware */
1575 smc_reset(dev);
1576 smc_enable(dev);
1578 /* Configure the PHY, initialize the link state */
1579 if (lp->phy_type != 0)
1580 smc_phy_configure(dev);
1581 else {
1582 spin_lock_irq(&lp->lock);
1583 smc_10bt_check_media(dev, 1);
1584 spin_unlock_irq(&lp->lock);
1587 netif_start_queue(dev);
1588 return 0;
1592 * smc_close
1594 * this makes the board clean up everything that it can
1595 * and not talk to the outside world. Caused by
1596 * an 'ifconfig ethX down'
1598 static int smc_close(struct net_device *dev)
1600 struct smc_local *lp = netdev_priv(dev);
1602 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1604 netif_stop_queue(dev);
1605 netif_carrier_off(dev);
1607 /* clear everything */
1608 smc_shutdown(dev);
1610 smc_phy_powerdown(dev);
1612 if (lp->pending_tx_skb) {
1613 dev_kfree_skb(lp->pending_tx_skb);
1614 lp->pending_tx_skb = NULL;
1617 return 0;
1621 * Get the current statistics.
1622 * This may be called with the card open or closed.
1624 static struct net_device_stats *smc_query_statistics(struct net_device *dev)
1626 struct smc_local *lp = netdev_priv(dev);
1628 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1630 return &lp->stats;
1634 * Ethtool support
1636 static int
1637 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1639 struct smc_local *lp = netdev_priv(dev);
1640 int ret;
1642 cmd->maxtxpkt = 1;
1643 cmd->maxrxpkt = 1;
1645 if (lp->phy_type != 0) {
1646 spin_lock_irq(&lp->lock);
1647 ret = mii_ethtool_gset(&lp->mii, cmd);
1648 spin_unlock_irq(&lp->lock);
1649 } else {
1650 cmd->supported = SUPPORTED_10baseT_Half |
1651 SUPPORTED_10baseT_Full |
1652 SUPPORTED_TP | SUPPORTED_AUI;
1654 if (lp->ctl_rspeed == 10)
1655 cmd->speed = SPEED_10;
1656 else if (lp->ctl_rspeed == 100)
1657 cmd->speed = SPEED_100;
1659 cmd->autoneg = AUTONEG_DISABLE;
1660 cmd->transceiver = XCVR_INTERNAL;
1661 cmd->port = 0;
1662 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1664 ret = 0;
1667 return ret;
1670 static int
1671 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1673 struct smc_local *lp = netdev_priv(dev);
1674 int ret;
1676 if (lp->phy_type != 0) {
1677 spin_lock_irq(&lp->lock);
1678 ret = mii_ethtool_sset(&lp->mii, cmd);
1679 spin_unlock_irq(&lp->lock);
1680 } else {
1681 if (cmd->autoneg != AUTONEG_DISABLE ||
1682 cmd->speed != SPEED_10 ||
1683 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1684 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1685 return -EINVAL;
1687 // lp->port = cmd->port;
1688 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1690 // if (netif_running(dev))
1691 // smc_set_port(dev);
1693 ret = 0;
1696 return ret;
1699 static void
1700 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1702 strncpy(info->driver, CARDNAME, sizeof(info->driver));
1703 strncpy(info->version, version, sizeof(info->version));
1704 strncpy(info->bus_info, dev->class_dev.dev->bus_id, sizeof(info->bus_info));
1707 static int smc_ethtool_nwayreset(struct net_device *dev)
1709 struct smc_local *lp = netdev_priv(dev);
1710 int ret = -EINVAL;
1712 if (lp->phy_type != 0) {
1713 spin_lock_irq(&lp->lock);
1714 ret = mii_nway_restart(&lp->mii);
1715 spin_unlock_irq(&lp->lock);
1718 return ret;
1721 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1723 struct smc_local *lp = netdev_priv(dev);
1724 return lp->msg_enable;
1727 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1729 struct smc_local *lp = netdev_priv(dev);
1730 lp->msg_enable = level;
1733 static struct ethtool_ops smc_ethtool_ops = {
1734 .get_settings = smc_ethtool_getsettings,
1735 .set_settings = smc_ethtool_setsettings,
1736 .get_drvinfo = smc_ethtool_getdrvinfo,
1738 .get_msglevel = smc_ethtool_getmsglevel,
1739 .set_msglevel = smc_ethtool_setmsglevel,
1740 .nway_reset = smc_ethtool_nwayreset,
1741 .get_link = ethtool_op_get_link,
1742 // .get_eeprom = smc_ethtool_geteeprom,
1743 // .set_eeprom = smc_ethtool_seteeprom,
1747 * smc_findirq
1749 * This routine has a simple purpose -- make the SMC chip generate an
1750 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1753 * does this still work?
1755 * I just deleted auto_irq.c, since it was never built...
1756 * --jgarzik
1758 static int __init smc_findirq(void __iomem *ioaddr)
1760 int timeout = 20;
1761 unsigned long cookie;
1763 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
1765 cookie = probe_irq_on();
1768 * What I try to do here is trigger an ALLOC_INT. This is done
1769 * by allocating a small chunk of memory, which will give an interrupt
1770 * when done.
1772 /* enable ALLOCation interrupts ONLY */
1773 SMC_SELECT_BANK(2);
1774 SMC_SET_INT_MASK(IM_ALLOC_INT);
1777 * Allocate 512 bytes of memory. Note that the chip was just
1778 * reset so all the memory is available
1780 SMC_SET_MMU_CMD(MC_ALLOC | 1);
1783 * Wait until positive that the interrupt has been generated
1785 do {
1786 int int_status;
1787 udelay(10);
1788 int_status = SMC_GET_INT();
1789 if (int_status & IM_ALLOC_INT)
1790 break; /* got the interrupt */
1791 } while (--timeout);
1794 * there is really nothing that I can do here if timeout fails,
1795 * as autoirq_report will return a 0 anyway, which is what I
1796 * want in this case. Plus, the clean up is needed in both
1797 * cases.
1800 /* and disable all interrupts again */
1801 SMC_SET_INT_MASK(0);
1803 /* and return what I found */
1804 return probe_irq_off(cookie);
1808 * Function: smc_probe(unsigned long ioaddr)
1810 * Purpose:
1811 * Tests to see if a given ioaddr points to an SMC91x chip.
1812 * Returns a 0 on success
1814 * Algorithm:
1815 * (1) see if the high byte of BANK_SELECT is 0x33
1816 * (2) compare the ioaddr with the base register's address
1817 * (3) see if I recognize the chip ID in the appropriate register
1819 * Here I do typical initialization tasks.
1821 * o Initialize the structure if needed
1822 * o print out my vanity message if not done so already
1823 * o print out what type of hardware is detected
1824 * o print out the ethernet address
1825 * o find the IRQ
1826 * o set up my private data
1827 * o configure the dev structure with my subroutines
1828 * o actually GRAB the irq.
1829 * o GRAB the region
1831 static int __init smc_probe(struct net_device *dev, void __iomem *ioaddr)
1833 struct smc_local *lp = netdev_priv(dev);
1834 static int version_printed = 0;
1835 int i, retval;
1836 unsigned int val, revision_register;
1837 const char *version_string;
1839 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
1841 /* First, see if the high byte is 0x33 */
1842 val = SMC_CURRENT_BANK();
1843 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1844 if ((val & 0xFF00) != 0x3300) {
1845 if ((val & 0xFF) == 0x33) {
1846 printk(KERN_WARNING
1847 "%s: Detected possible byte-swapped interface"
1848 " at IOADDR %p\n", CARDNAME, ioaddr);
1850 retval = -ENODEV;
1851 goto err_out;
1855 * The above MIGHT indicate a device, but I need to write to
1856 * further test this.
1858 SMC_SELECT_BANK(0);
1859 val = SMC_CURRENT_BANK();
1860 if ((val & 0xFF00) != 0x3300) {
1861 retval = -ENODEV;
1862 goto err_out;
1866 * well, we've already written once, so hopefully another
1867 * time won't hurt. This time, I need to switch the bank
1868 * register to bank 1, so I can access the base address
1869 * register
1871 SMC_SELECT_BANK(1);
1872 val = SMC_GET_BASE();
1873 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1874 if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1875 printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1876 CARDNAME, ioaddr, val);
1880 * check if the revision register is something that I
1881 * recognize. These might need to be added to later,
1882 * as future revisions could be added.
1884 SMC_SELECT_BANK(3);
1885 revision_register = SMC_GET_REV();
1886 DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1887 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1888 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1889 /* I don't recognize this chip, so... */
1890 printk("%s: IO %p: Unrecognized revision register 0x%04x"
1891 ", Contact author.\n", CARDNAME,
1892 ioaddr, revision_register);
1894 retval = -ENODEV;
1895 goto err_out;
1898 /* At this point I'll assume that the chip is an SMC91x. */
1899 if (version_printed++ == 0)
1900 printk("%s", version);
1902 /* fill in some of the fields */
1903 dev->base_addr = (unsigned long)ioaddr;
1904 lp->base = ioaddr;
1905 lp->version = revision_register & 0xff;
1906 spin_lock_init(&lp->lock);
1908 /* Get the MAC address */
1909 SMC_SELECT_BANK(1);
1910 SMC_GET_MAC_ADDR(dev->dev_addr);
1912 /* now, reset the chip, and put it into a known state */
1913 smc_reset(dev);
1916 * If dev->irq is 0, then the device has to be banged on to see
1917 * what the IRQ is.
1919 * This banging doesn't always detect the IRQ, for unknown reasons.
1920 * a workaround is to reset the chip and try again.
1922 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1923 * be what is requested on the command line. I don't do that, mostly
1924 * because the card that I have uses a non-standard method of accessing
1925 * the IRQs, and because this _should_ work in most configurations.
1927 * Specifying an IRQ is done with the assumption that the user knows
1928 * what (s)he is doing. No checking is done!!!!
1930 if (dev->irq < 1) {
1931 int trials;
1933 trials = 3;
1934 while (trials--) {
1935 dev->irq = smc_findirq(ioaddr);
1936 if (dev->irq)
1937 break;
1938 /* kick the card and try again */
1939 smc_reset(dev);
1942 if (dev->irq == 0) {
1943 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1944 dev->name);
1945 retval = -ENODEV;
1946 goto err_out;
1948 dev->irq = irq_canonicalize(dev->irq);
1950 /* Fill in the fields of the device structure with ethernet values. */
1951 ether_setup(dev);
1953 dev->open = smc_open;
1954 dev->stop = smc_close;
1955 dev->hard_start_xmit = smc_hard_start_xmit;
1956 dev->tx_timeout = smc_timeout;
1957 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1958 dev->get_stats = smc_query_statistics;
1959 dev->set_multicast_list = smc_set_multicast_list;
1960 dev->ethtool_ops = &smc_ethtool_ops;
1961 #ifdef CONFIG_NET_POLL_CONTROLLER
1962 dev->poll_controller = smc_poll_controller;
1963 #endif
1965 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1966 INIT_WORK(&lp->phy_configure, smc_phy_configure, dev);
1967 lp->mii.phy_id_mask = 0x1f;
1968 lp->mii.reg_num_mask = 0x1f;
1969 lp->mii.force_media = 0;
1970 lp->mii.full_duplex = 0;
1971 lp->mii.dev = dev;
1972 lp->mii.mdio_read = smc_phy_read;
1973 lp->mii.mdio_write = smc_phy_write;
1976 * Locate the phy, if any.
1978 if (lp->version >= (CHIP_91100 << 4))
1979 smc_phy_detect(dev);
1981 /* Set default parameters */
1982 lp->msg_enable = NETIF_MSG_LINK;
1983 lp->ctl_rfduplx = 0;
1984 lp->ctl_rspeed = 10;
1986 if (lp->version >= (CHIP_91100 << 4)) {
1987 lp->ctl_rfduplx = 1;
1988 lp->ctl_rspeed = 100;
1991 /* Grab the IRQ */
1992 retval = request_irq(dev->irq, &smc_interrupt, 0, dev->name, dev);
1993 if (retval)
1994 goto err_out;
1996 set_irq_type(dev->irq, IRQT_RISING);
1998 #ifdef SMC_USE_PXA_DMA
2000 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2001 smc_pxa_dma_irq, NULL);
2002 if (dma >= 0)
2003 dev->dma = dma;
2005 #endif
2007 retval = register_netdev(dev);
2008 if (retval == 0) {
2009 /* now, print out the card info, in a short format.. */
2010 printk("%s: %s (rev %d) at %p IRQ %d",
2011 dev->name, version_string, revision_register & 0x0f,
2012 lp->base, dev->irq);
2014 if (dev->dma != (unsigned char)-1)
2015 printk(" DMA %d", dev->dma);
2017 printk("%s%s\n", nowait ? " [nowait]" : "",
2018 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2020 if (!is_valid_ether_addr(dev->dev_addr)) {
2021 printk("%s: Invalid ethernet MAC address. Please "
2022 "set using ifconfig\n", dev->name);
2023 } else {
2024 /* Print the Ethernet address */
2025 printk("%s: Ethernet addr: ", dev->name);
2026 for (i = 0; i < 5; i++)
2027 printk("%2.2x:", dev->dev_addr[i]);
2028 printk("%2.2x\n", dev->dev_addr[5]);
2031 if (lp->phy_type == 0) {
2032 PRINTK("%s: No PHY found\n", dev->name);
2033 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2034 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2035 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2036 PRINTK("%s: PHY LAN83C180\n", dev->name);
2040 err_out:
2041 #ifdef SMC_USE_PXA_DMA
2042 if (retval && dev->dma != (unsigned char)-1)
2043 pxa_free_dma(dev->dma);
2044 #endif
2045 return retval;
2048 static int smc_enable_device(struct platform_device *pdev)
2050 unsigned long flags;
2051 unsigned char ecor, ecsr;
2052 void __iomem *addr;
2053 struct resource * res;
2055 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2056 if (!res)
2057 return 0;
2060 * Map the attribute space. This is overkill, but clean.
2062 addr = ioremap(res->start, ATTRIB_SIZE);
2063 if (!addr)
2064 return -ENOMEM;
2067 * Reset the device. We must disable IRQs around this
2068 * since a reset causes the IRQ line become active.
2070 local_irq_save(flags);
2071 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2072 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2073 readb(addr + (ECOR << SMC_IO_SHIFT));
2076 * Wait 100us for the chip to reset.
2078 udelay(100);
2081 * The device will ignore all writes to the enable bit while
2082 * reset is asserted, even if the reset bit is cleared in the
2083 * same write. Must clear reset first, then enable the device.
2085 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2086 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2089 * Set the appropriate byte/word mode.
2091 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2092 #ifndef SMC_CAN_USE_16BIT
2093 ecsr |= ECSR_IOIS8;
2094 #endif
2095 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2096 local_irq_restore(flags);
2098 iounmap(addr);
2101 * Wait for the chip to wake up. We could poll the control
2102 * register in the main register space, but that isn't mapped
2103 * yet. We know this is going to take 750us.
2105 msleep(1);
2107 return 0;
2110 static int smc_request_attrib(struct platform_device *pdev)
2112 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2114 if (!res)
2115 return 0;
2117 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2118 return -EBUSY;
2120 return 0;
2123 static void smc_release_attrib(struct platform_device *pdev)
2125 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2127 if (res)
2128 release_mem_region(res->start, ATTRIB_SIZE);
2131 #ifdef SMC_CAN_USE_DATACS
2132 static void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2134 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2135 struct smc_local *lp = netdev_priv(ndev);
2137 if (!res)
2138 return;
2140 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2141 printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2142 return;
2145 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2148 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2150 struct smc_local *lp = netdev_priv(ndev);
2151 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2153 if (lp->datacs)
2154 iounmap(lp->datacs);
2156 lp->datacs = NULL;
2158 if (res)
2159 release_mem_region(res->start, SMC_DATA_EXTENT);
2161 #else
2162 static void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev) {}
2163 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev) {}
2164 #endif
2167 * smc_init(void)
2168 * Input parameters:
2169 * dev->base_addr == 0, try to find all possible locations
2170 * dev->base_addr > 0x1ff, this is the address to check
2171 * dev->base_addr == <anything else>, return failure code
2173 * Output:
2174 * 0 --> there is a device
2175 * anything else, error
2177 static int smc_drv_probe(struct device *dev)
2179 struct platform_device *pdev = to_platform_device(dev);
2180 struct net_device *ndev;
2181 struct resource *res;
2182 unsigned int __iomem *addr;
2183 int ret;
2185 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2186 if (!res)
2187 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2188 if (!res) {
2189 ret = -ENODEV;
2190 goto out;
2194 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2195 ret = -EBUSY;
2196 goto out;
2199 ndev = alloc_etherdev(sizeof(struct smc_local));
2200 if (!ndev) {
2201 printk("%s: could not allocate device.\n", CARDNAME);
2202 ret = -ENOMEM;
2203 goto out_release_io;
2205 SET_MODULE_OWNER(ndev);
2206 SET_NETDEV_DEV(ndev, dev);
2208 ndev->dma = (unsigned char)-1;
2209 ndev->irq = platform_get_irq(pdev, 0);
2211 ret = smc_request_attrib(pdev);
2212 if (ret)
2213 goto out_free_netdev;
2214 #if defined(CONFIG_SA1100_ASSABET)
2215 NCR_0 |= NCR_ENET_OSC_EN;
2216 #endif
2217 ret = smc_enable_device(pdev);
2218 if (ret)
2219 goto out_release_attrib;
2221 addr = ioremap(res->start, SMC_IO_EXTENT);
2222 if (!addr) {
2223 ret = -ENOMEM;
2224 goto out_release_attrib;
2227 dev_set_drvdata(dev, ndev);
2228 ret = smc_probe(ndev, addr);
2229 if (ret != 0)
2230 goto out_iounmap;
2231 #ifdef SMC_USE_PXA_DMA
2232 else {
2233 struct smc_local *lp = netdev_priv(ndev);
2234 lp->physaddr = res->start;
2236 #endif
2238 smc_request_datacs(pdev, ndev);
2240 return 0;
2242 out_iounmap:
2243 dev_set_drvdata(dev, NULL);
2244 iounmap(addr);
2245 out_release_attrib:
2246 smc_release_attrib(pdev);
2247 out_free_netdev:
2248 free_netdev(ndev);
2249 out_release_io:
2250 release_mem_region(res->start, SMC_IO_EXTENT);
2251 out:
2252 printk("%s: not found (%d).\n", CARDNAME, ret);
2254 return ret;
2257 static int smc_drv_remove(struct device *dev)
2259 struct platform_device *pdev = to_platform_device(dev);
2260 struct net_device *ndev = dev_get_drvdata(dev);
2261 struct smc_local *lp = netdev_priv(ndev);
2262 struct resource *res;
2264 dev_set_drvdata(dev, NULL);
2266 unregister_netdev(ndev);
2268 free_irq(ndev->irq, ndev);
2270 #ifdef SMC_USE_PXA_DMA
2271 if (ndev->dma != (unsigned char)-1)
2272 pxa_free_dma(ndev->dma);
2273 #endif
2274 iounmap(lp->base);
2276 smc_release_datacs(pdev,ndev);
2277 smc_release_attrib(pdev);
2279 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2280 if (!res)
2281 platform_get_resource(pdev, IORESOURCE_MEM, 0);
2282 release_mem_region(res->start, SMC_IO_EXTENT);
2284 free_netdev(ndev);
2286 return 0;
2289 static int smc_drv_suspend(struct device *dev, pm_message_t state, u32 level)
2291 struct net_device *ndev = dev_get_drvdata(dev);
2293 if (ndev && level == SUSPEND_DISABLE) {
2294 if (netif_running(ndev)) {
2295 netif_device_detach(ndev);
2296 smc_shutdown(ndev);
2297 smc_phy_powerdown(ndev);
2300 return 0;
2303 static int smc_drv_resume(struct device *dev, u32 level)
2305 struct platform_device *pdev = to_platform_device(dev);
2306 struct net_device *ndev = dev_get_drvdata(dev);
2308 if (ndev && level == RESUME_ENABLE) {
2309 struct smc_local *lp = netdev_priv(ndev);
2310 smc_enable_device(pdev);
2311 if (netif_running(ndev)) {
2312 smc_reset(ndev);
2313 smc_enable(ndev);
2314 if (lp->phy_type != 0)
2315 smc_phy_configure(ndev);
2316 netif_device_attach(ndev);
2319 return 0;
2322 static struct device_driver smc_driver = {
2323 .name = CARDNAME,
2324 .bus = &platform_bus_type,
2325 .probe = smc_drv_probe,
2326 .remove = smc_drv_remove,
2327 .suspend = smc_drv_suspend,
2328 .resume = smc_drv_resume,
2331 static int __init smc_init(void)
2333 #ifdef MODULE
2334 #ifdef CONFIG_ISA
2335 if (io == -1)
2336 printk(KERN_WARNING
2337 "%s: You shouldn't use auto-probing with insmod!\n",
2338 CARDNAME);
2339 #endif
2340 #endif
2342 return driver_register(&smc_driver);
2345 static void __exit smc_cleanup(void)
2347 driver_unregister(&smc_driver);
2350 module_init(smc_init);
2351 module_exit(smc_cleanup);