1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
74 #include <linux/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
80 #include <asm/div64.h>
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.20"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name
[] = "Neterion";
91 static char s2io_driver_version
[] = DRV_VERSION
;
93 static int rxd_size
[2] = {32,48};
94 static int rxd_count
[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
100 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
101 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 static inline int rx_buffer_level(struct s2io_nic
* sp
, int rxb_size
, int ring
)
123 struct mac_info
*mac_control
;
125 mac_control
= &sp
->mac_control
;
126 if (rxb_size
<= rxd_count
[sp
->rxd_mode
])
128 else if ((mac_control
->rings
[ring
].pkt_cnt
- rxb_size
) > 16)
133 static inline int is_s2io_card_up(const struct s2io_nic
* sp
)
135 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
147 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
149 {"tmac_data_octets"},
153 {"tmac_pause_ctrl_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
226 {"new_rd_req_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
231 {"new_wr_req_rtry_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
244 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
263 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
331 {"prc_pcix_err_cnt"},
338 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
339 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
340 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
342 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
343 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
346 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
349 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
351 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
352 init_timer(&timer); \
353 timer.function = handle; \
354 timer.data = (unsigned long) arg; \
355 mod_timer(&timer, (jiffies + exp)) \
357 /* copy mac addr to def_mac_addr array */
358 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
360 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
361 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
362 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
363 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
364 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
365 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
368 static void s2io_vlan_rx_register(struct net_device
*dev
,
369 struct vlan_group
*grp
)
372 struct s2io_nic
*nic
= dev
->priv
;
373 unsigned long flags
[MAX_TX_FIFOS
];
374 struct mac_info
*mac_control
= &nic
->mac_control
;
375 struct config_param
*config
= &nic
->config
;
377 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
378 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
381 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
382 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
386 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
387 static int vlan_strip_flag
;
390 * Constants to be programmed into the Xena's registers, to configure
395 static const u64 herc_act_dtx_cfg
[] = {
397 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
399 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
401 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
403 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
405 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
407 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
409 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
411 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
416 static const u64 xena_dtx_cfg
[] = {
418 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
420 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
422 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
424 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
426 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
428 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
433 * Constants for Fixing the MacAddress problem seen mostly on
436 static const u64 fix_mac
[] = {
437 0x0060000000000000ULL
, 0x0060600000000000ULL
,
438 0x0040600000000000ULL
, 0x0000600000000000ULL
,
439 0x0020600000000000ULL
, 0x0060600000000000ULL
,
440 0x0020600000000000ULL
, 0x0060600000000000ULL
,
441 0x0020600000000000ULL
, 0x0060600000000000ULL
,
442 0x0020600000000000ULL
, 0x0060600000000000ULL
,
443 0x0020600000000000ULL
, 0x0060600000000000ULL
,
444 0x0020600000000000ULL
, 0x0060600000000000ULL
,
445 0x0020600000000000ULL
, 0x0060600000000000ULL
,
446 0x0020600000000000ULL
, 0x0060600000000000ULL
,
447 0x0020600000000000ULL
, 0x0060600000000000ULL
,
448 0x0020600000000000ULL
, 0x0060600000000000ULL
,
449 0x0020600000000000ULL
, 0x0000600000000000ULL
,
450 0x0040600000000000ULL
, 0x0060600000000000ULL
,
454 MODULE_LICENSE("GPL");
455 MODULE_VERSION(DRV_VERSION
);
458 /* Module Loadable parameters. */
459 S2IO_PARM_INT(tx_fifo_num
, 1);
460 S2IO_PARM_INT(rx_ring_num
, 1);
463 S2IO_PARM_INT(rx_ring_mode
, 1);
464 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
465 S2IO_PARM_INT(rmac_pause_time
, 0x100);
466 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
467 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
468 S2IO_PARM_INT(shared_splits
, 0);
469 S2IO_PARM_INT(tmac_util_period
, 5);
470 S2IO_PARM_INT(rmac_util_period
, 5);
471 S2IO_PARM_INT(l3l4hdr_size
, 128);
472 /* Frequency of Rx desc syncs expressed as power of 2 */
473 S2IO_PARM_INT(rxsync_frequency
, 3);
474 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
475 S2IO_PARM_INT(intr_type
, 2);
476 /* Large receive offload feature */
477 static unsigned int lro_enable
;
478 module_param_named(lro
, lro_enable
, uint
, 0);
480 /* Max pkts to be aggregated by LRO at one time. If not specified,
481 * aggregation happens until we hit max IP pkt size(64K)
483 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
484 S2IO_PARM_INT(indicate_max_pkts
, 0);
486 S2IO_PARM_INT(napi
, 1);
487 S2IO_PARM_INT(ufo
, 0);
488 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
490 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
491 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
492 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
493 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
494 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
495 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
497 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
498 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
499 module_param_array(rts_frm_len
, uint
, NULL
, 0);
503 * This table lists all the devices that this driver supports.
505 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
506 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
507 PCI_ANY_ID
, PCI_ANY_ID
},
508 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
509 PCI_ANY_ID
, PCI_ANY_ID
},
510 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
511 PCI_ANY_ID
, PCI_ANY_ID
},
512 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
513 PCI_ANY_ID
, PCI_ANY_ID
},
517 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
519 static struct pci_error_handlers s2io_err_handler
= {
520 .error_detected
= s2io_io_error_detected
,
521 .slot_reset
= s2io_io_slot_reset
,
522 .resume
= s2io_io_resume
,
525 static struct pci_driver s2io_driver
= {
527 .id_table
= s2io_tbl
,
528 .probe
= s2io_init_nic
,
529 .remove
= __devexit_p(s2io_rem_nic
),
530 .err_handler
= &s2io_err_handler
,
533 /* A simplifier macro used both by init and free shared_mem Fns(). */
534 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
537 * init_shared_mem - Allocation and Initialization of Memory
538 * @nic: Device private variable.
539 * Description: The function allocates all the memory areas shared
540 * between the NIC and the driver. This includes Tx descriptors,
541 * Rx descriptors and the statistics block.
544 static int init_shared_mem(struct s2io_nic
*nic
)
547 void *tmp_v_addr
, *tmp_v_addr_next
;
548 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
549 struct RxD_block
*pre_rxd_blk
= NULL
;
551 int lst_size
, lst_per_page
;
552 struct net_device
*dev
= nic
->dev
;
556 struct mac_info
*mac_control
;
557 struct config_param
*config
;
558 unsigned long long mem_allocated
= 0;
560 mac_control
= &nic
->mac_control
;
561 config
= &nic
->config
;
564 /* Allocation and initialization of TXDLs in FIOFs */
566 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
567 size
+= config
->tx_cfg
[i
].fifo_len
;
569 if (size
> MAX_AVAILABLE_TXDS
) {
570 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
571 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
576 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
577 size
= config
->tx_cfg
[i
].fifo_len
;
579 * Legal values are from 2 to 8192
582 DBG_PRINT(ERR_DBG
, "s2io: Invalid fifo len (%d)", size
);
583 DBG_PRINT(ERR_DBG
, "for fifo %d\n", i
);
584 DBG_PRINT(ERR_DBG
, "s2io: Legal values for fifo len"
590 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
591 lst_per_page
= PAGE_SIZE
/ lst_size
;
593 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
594 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
595 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
596 mac_control
->fifos
[i
].list_info
= kzalloc(list_holder_size
,
598 if (!mac_control
->fifos
[i
].list_info
) {
600 "Malloc failed for list_info\n");
603 mem_allocated
+= list_holder_size
;
605 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
606 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
608 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
609 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
610 config
->tx_cfg
[i
].fifo_len
- 1;
611 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
612 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
613 config
->tx_cfg
[i
].fifo_len
- 1;
614 mac_control
->fifos
[i
].fifo_no
= i
;
615 mac_control
->fifos
[i
].nic
= nic
;
616 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
618 for (j
= 0; j
< page_num
; j
++) {
622 tmp_v
= pci_alloc_consistent(nic
->pdev
,
626 "pci_alloc_consistent ");
627 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
630 /* If we got a zero DMA address(can happen on
631 * certain platforms like PPC), reallocate.
632 * Store virtual address of page we don't want,
636 mac_control
->zerodma_virt_addr
= tmp_v
;
638 "%s: Zero DMA address for TxDL. ", dev
->name
);
640 "Virtual address %p\n", tmp_v
);
641 tmp_v
= pci_alloc_consistent(nic
->pdev
,
645 "pci_alloc_consistent ");
646 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
649 mem_allocated
+= PAGE_SIZE
;
651 while (k
< lst_per_page
) {
652 int l
= (j
* lst_per_page
) + k
;
653 if (l
== config
->tx_cfg
[i
].fifo_len
)
655 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
656 tmp_v
+ (k
* lst_size
);
657 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
658 tmp_p
+ (k
* lst_size
);
664 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
665 size
= config
->tx_cfg
[i
].fifo_len
;
666 mac_control
->fifos
[i
].ufo_in_band_v
667 = kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
668 if (!mac_control
->fifos
[i
].ufo_in_band_v
)
670 mem_allocated
+= (size
* sizeof(u64
));
673 /* Allocation and initialization of RXDs in Rings */
675 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
676 if (config
->rx_cfg
[i
].num_rxd
%
677 (rxd_count
[nic
->rxd_mode
] + 1)) {
678 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
679 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
681 DBG_PRINT(ERR_DBG
, "RxDs per Block");
684 size
+= config
->rx_cfg
[i
].num_rxd
;
685 mac_control
->rings
[i
].block_count
=
686 config
->rx_cfg
[i
].num_rxd
/
687 (rxd_count
[nic
->rxd_mode
] + 1 );
688 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
689 mac_control
->rings
[i
].block_count
;
691 if (nic
->rxd_mode
== RXD_MODE_1
)
692 size
= (size
* (sizeof(struct RxD1
)));
694 size
= (size
* (sizeof(struct RxD3
)));
696 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
697 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
698 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
699 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
700 config
->rx_cfg
[i
].num_rxd
- 1;
701 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
702 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
703 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
704 config
->rx_cfg
[i
].num_rxd
- 1;
705 mac_control
->rings
[i
].nic
= nic
;
706 mac_control
->rings
[i
].ring_no
= i
;
708 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
709 (rxd_count
[nic
->rxd_mode
] + 1);
710 /* Allocating all the Rx blocks */
711 for (j
= 0; j
< blk_cnt
; j
++) {
712 struct rx_block_info
*rx_blocks
;
715 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
716 size
= SIZE_OF_BLOCK
; //size is always page size
717 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
719 if (tmp_v_addr
== NULL
) {
721 * In case of failure, free_shared_mem()
722 * is called, which should free any
723 * memory that was alloced till the
726 rx_blocks
->block_virt_addr
= tmp_v_addr
;
729 mem_allocated
+= size
;
730 memset(tmp_v_addr
, 0, size
);
731 rx_blocks
->block_virt_addr
= tmp_v_addr
;
732 rx_blocks
->block_dma_addr
= tmp_p_addr
;
733 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
734 rxd_count
[nic
->rxd_mode
],
736 if (!rx_blocks
->rxds
)
739 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
740 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
741 rx_blocks
->rxds
[l
].virt_addr
=
742 rx_blocks
->block_virt_addr
+
743 (rxd_size
[nic
->rxd_mode
] * l
);
744 rx_blocks
->rxds
[l
].dma_addr
=
745 rx_blocks
->block_dma_addr
+
746 (rxd_size
[nic
->rxd_mode
] * l
);
749 /* Interlinking all Rx Blocks */
750 for (j
= 0; j
< blk_cnt
; j
++) {
752 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
754 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
755 blk_cnt
].block_virt_addr
;
757 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
759 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
760 blk_cnt
].block_dma_addr
;
762 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
763 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
764 (unsigned long) tmp_v_addr_next
;
765 pre_rxd_blk
->pNext_RxD_Blk_physical
=
766 (u64
) tmp_p_addr_next
;
769 if (nic
->rxd_mode
== RXD_MODE_3B
) {
771 * Allocation of Storages for buffer addresses in 2BUFF mode
772 * and the buffers as well.
774 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
775 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
776 (rxd_count
[nic
->rxd_mode
]+ 1);
777 mac_control
->rings
[i
].ba
=
778 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
780 if (!mac_control
->rings
[i
].ba
)
782 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
783 for (j
= 0; j
< blk_cnt
; j
++) {
785 mac_control
->rings
[i
].ba
[j
] =
786 kmalloc((sizeof(struct buffAdd
) *
787 (rxd_count
[nic
->rxd_mode
] + 1)),
789 if (!mac_control
->rings
[i
].ba
[j
])
791 mem_allocated
+= (sizeof(struct buffAdd
) * \
792 (rxd_count
[nic
->rxd_mode
] + 1));
793 while (k
!= rxd_count
[nic
->rxd_mode
]) {
794 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
796 ba
->ba_0_org
= (void *) kmalloc
797 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
801 (BUF0_LEN
+ ALIGN_SIZE
);
802 tmp
= (unsigned long)ba
->ba_0_org
;
804 tmp
&= ~((unsigned long) ALIGN_SIZE
);
805 ba
->ba_0
= (void *) tmp
;
807 ba
->ba_1_org
= (void *) kmalloc
808 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
812 += (BUF1_LEN
+ ALIGN_SIZE
);
813 tmp
= (unsigned long) ba
->ba_1_org
;
815 tmp
&= ~((unsigned long) ALIGN_SIZE
);
816 ba
->ba_1
= (void *) tmp
;
823 /* Allocation and initialization of Statistics block */
824 size
= sizeof(struct stat_block
);
825 mac_control
->stats_mem
= pci_alloc_consistent
826 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
828 if (!mac_control
->stats_mem
) {
830 * In case of failure, free_shared_mem() is called, which
831 * should free any memory that was alloced till the
836 mem_allocated
+= size
;
837 mac_control
->stats_mem_sz
= size
;
839 tmp_v_addr
= mac_control
->stats_mem
;
840 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
841 memset(tmp_v_addr
, 0, size
);
842 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
843 (unsigned long long) tmp_p_addr
);
844 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
849 * free_shared_mem - Free the allocated Memory
850 * @nic: Device private variable.
851 * Description: This function is to free all memory locations allocated by
852 * the init_shared_mem() function and return it to the kernel.
855 static void free_shared_mem(struct s2io_nic
*nic
)
857 int i
, j
, blk_cnt
, size
;
859 dma_addr_t tmp_p_addr
;
860 struct mac_info
*mac_control
;
861 struct config_param
*config
;
862 int lst_size
, lst_per_page
;
863 struct net_device
*dev
;
871 mac_control
= &nic
->mac_control
;
872 config
= &nic
->config
;
874 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
875 lst_per_page
= PAGE_SIZE
/ lst_size
;
877 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
878 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
880 for (j
= 0; j
< page_num
; j
++) {
881 int mem_blks
= (j
* lst_per_page
);
882 if (!mac_control
->fifos
[i
].list_info
)
884 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
887 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
888 mac_control
->fifos
[i
].
891 mac_control
->fifos
[i
].
894 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
897 /* If we got a zero DMA address during allocation,
900 if (mac_control
->zerodma_virt_addr
) {
901 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
902 mac_control
->zerodma_virt_addr
,
905 "%s: Freeing TxDL with zero DMA addr. ",
907 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
908 mac_control
->zerodma_virt_addr
);
909 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
912 kfree(mac_control
->fifos
[i
].list_info
);
913 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
914 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
917 size
= SIZE_OF_BLOCK
;
918 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
919 blk_cnt
= mac_control
->rings
[i
].block_count
;
920 for (j
= 0; j
< blk_cnt
; j
++) {
921 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
923 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
925 if (tmp_v_addr
== NULL
)
927 pci_free_consistent(nic
->pdev
, size
,
928 tmp_v_addr
, tmp_p_addr
);
929 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
930 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
931 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
932 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
936 if (nic
->rxd_mode
== RXD_MODE_3B
) {
937 /* Freeing buffer storage addresses in 2BUFF mode. */
938 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
939 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
940 (rxd_count
[nic
->rxd_mode
] + 1);
941 for (j
= 0; j
< blk_cnt
; j
++) {
943 if (!mac_control
->rings
[i
].ba
[j
])
945 while (k
!= rxd_count
[nic
->rxd_mode
]) {
947 &mac_control
->rings
[i
].ba
[j
][k
];
949 nic
->mac_control
.stats_info
->sw_stat
.\
950 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
952 nic
->mac_control
.stats_info
->sw_stat
.\
953 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
956 kfree(mac_control
->rings
[i
].ba
[j
]);
957 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
958 (sizeof(struct buffAdd
) *
959 (rxd_count
[nic
->rxd_mode
] + 1));
961 kfree(mac_control
->rings
[i
].ba
);
962 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
963 (sizeof(struct buffAdd
*) * blk_cnt
);
967 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
968 if (mac_control
->fifos
[i
].ufo_in_band_v
) {
969 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
970 += (config
->tx_cfg
[i
].fifo_len
* sizeof(u64
));
971 kfree(mac_control
->fifos
[i
].ufo_in_band_v
);
975 if (mac_control
->stats_mem
) {
976 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
977 mac_control
->stats_mem_sz
;
978 pci_free_consistent(nic
->pdev
,
979 mac_control
->stats_mem_sz
,
980 mac_control
->stats_mem
,
981 mac_control
->stats_mem_phy
);
986 * s2io_verify_pci_mode -
989 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
991 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
992 register u64 val64
= 0;
995 val64
= readq(&bar0
->pci_mode
);
996 mode
= (u8
)GET_PCI_MODE(val64
);
998 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
999 return -1; /* Unknown PCI mode */
1003 #define NEC_VENID 0x1033
1004 #define NEC_DEVID 0x0125
1005 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1007 struct pci_dev
*tdev
= NULL
;
1008 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1009 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1010 if (tdev
->bus
== s2io_pdev
->bus
->parent
)
1018 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1020 * s2io_print_pci_mode -
1022 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1024 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1025 register u64 val64
= 0;
1027 struct config_param
*config
= &nic
->config
;
1029 val64
= readq(&bar0
->pci_mode
);
1030 mode
= (u8
)GET_PCI_MODE(val64
);
1032 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1033 return -1; /* Unknown PCI mode */
1035 config
->bus_speed
= bus_speed
[mode
];
1037 if (s2io_on_nec_bridge(nic
->pdev
)) {
1038 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1043 if (val64
& PCI_MODE_32_BITS
) {
1044 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
1046 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
1050 case PCI_MODE_PCI_33
:
1051 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
1053 case PCI_MODE_PCI_66
:
1054 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
1056 case PCI_MODE_PCIX_M1_66
:
1057 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
1059 case PCI_MODE_PCIX_M1_100
:
1060 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
1062 case PCI_MODE_PCIX_M1_133
:
1063 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
1065 case PCI_MODE_PCIX_M2_66
:
1066 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1068 case PCI_MODE_PCIX_M2_100
:
1069 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1071 case PCI_MODE_PCIX_M2_133
:
1072 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1075 return -1; /* Unsupported bus speed */
1082 * init_tti - Initialization transmit traffic interrupt scheme
1083 * @nic: device private variable
1084 * @link: link status (UP/DOWN) used to enable/disable continuous
1085 * transmit interrupts
1086 * Description: The function configures transmit traffic interrupts
1087 * Return Value: SUCCESS on success and
1091 static int init_tti(struct s2io_nic
*nic
, int link
)
1093 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1094 register u64 val64
= 0;
1096 struct config_param
*config
;
1098 config
= &nic
->config
;
1100 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1102 * TTI Initialization. Default Tx timer gets us about
1103 * 250 interrupts per sec. Continuous interrupts are enabled
1106 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1107 int count
= (nic
->config
.bus_speed
* 125)/2;
1108 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1110 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1112 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1113 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1114 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1115 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1117 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1118 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1119 writeq(val64
, &bar0
->tti_data1_mem
);
1121 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1122 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1123 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1124 TTI_DATA2_MEM_TX_UFC_D(0x80);
1126 writeq(val64
, &bar0
->tti_data2_mem
);
1128 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
|
1129 TTI_CMD_MEM_OFFSET(i
);
1130 writeq(val64
, &bar0
->tti_command_mem
);
1132 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1133 TTI_CMD_MEM_STROBE_NEW_CMD
, S2IO_BIT_RESET
) != SUCCESS
)
1141 * init_nic - Initialization of hardware
1142 * @nic: device private variable
1143 * Description: The function sequentially configures every block
1144 * of the H/W from their reset values.
1145 * Return Value: SUCCESS on success and
1146 * '-1' on failure (endian settings incorrect).
1149 static int init_nic(struct s2io_nic
*nic
)
1151 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1152 struct net_device
*dev
= nic
->dev
;
1153 register u64 val64
= 0;
1157 struct mac_info
*mac_control
;
1158 struct config_param
*config
;
1160 unsigned long long mem_share
;
1163 mac_control
= &nic
->mac_control
;
1164 config
= &nic
->config
;
1166 /* to set the swapper controle on the card */
1167 if(s2io_set_swapper(nic
)) {
1168 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1173 * Herc requires EOI to be removed from reset before XGXS, so..
1175 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1176 val64
= 0xA500000000ULL
;
1177 writeq(val64
, &bar0
->sw_reset
);
1179 val64
= readq(&bar0
->sw_reset
);
1182 /* Remove XGXS from reset state */
1184 writeq(val64
, &bar0
->sw_reset
);
1186 val64
= readq(&bar0
->sw_reset
);
1188 /* Ensure that it's safe to access registers by checking
1189 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1191 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1192 for (i
= 0; i
< 50; i
++) {
1193 val64
= readq(&bar0
->adapter_status
);
1194 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1202 /* Enable Receiving broadcasts */
1203 add
= &bar0
->mac_cfg
;
1204 val64
= readq(&bar0
->mac_cfg
);
1205 val64
|= MAC_RMAC_BCAST_ENABLE
;
1206 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1207 writel((u32
) val64
, add
);
1208 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1209 writel((u32
) (val64
>> 32), (add
+ 4));
1211 /* Read registers in all blocks */
1212 val64
= readq(&bar0
->mac_int_mask
);
1213 val64
= readq(&bar0
->mc_int_mask
);
1214 val64
= readq(&bar0
->xgxs_int_mask
);
1218 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1220 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1221 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1222 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1223 &bar0
->dtx_control
, UF
);
1225 msleep(1); /* Necessary!! */
1229 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1230 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1231 &bar0
->dtx_control
, UF
);
1232 val64
= readq(&bar0
->dtx_control
);
1237 /* Tx DMA Initialization */
1239 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1240 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1241 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1242 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1245 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1247 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((j
* 32) + 19),
1248 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1251 if (i
== (config
->tx_fifo_num
- 1)) {
1258 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1263 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1268 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1273 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1284 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1285 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1287 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1288 (nic
->pdev
->revision
< 4))
1289 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1291 val64
= readq(&bar0
->tx_fifo_partition_0
);
1292 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1293 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1296 * Initialization of Tx_PA_CONFIG register to ignore packet
1297 * integrity checking.
1299 val64
= readq(&bar0
->tx_pa_cfg
);
1300 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1301 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1302 writeq(val64
, &bar0
->tx_pa_cfg
);
1304 /* Rx DMA intialization. */
1306 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1308 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1311 writeq(val64
, &bar0
->rx_queue_priority
);
1314 * Allocating equal share of memory to all the
1318 if (nic
->device_type
& XFRAME_II_DEVICE
)
1323 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1326 mem_share
= (mem_size
/ config
->rx_ring_num
+
1327 mem_size
% config
->rx_ring_num
);
1328 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1331 mem_share
= (mem_size
/ config
->rx_ring_num
);
1332 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1335 mem_share
= (mem_size
/ config
->rx_ring_num
);
1336 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1339 mem_share
= (mem_size
/ config
->rx_ring_num
);
1340 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1343 mem_share
= (mem_size
/ config
->rx_ring_num
);
1344 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1347 mem_share
= (mem_size
/ config
->rx_ring_num
);
1348 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1351 mem_share
= (mem_size
/ config
->rx_ring_num
);
1352 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1355 mem_share
= (mem_size
/ config
->rx_ring_num
);
1356 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1360 writeq(val64
, &bar0
->rx_queue_cfg
);
1363 * Filling Tx round robin registers
1364 * as per the number of FIFOs for equal scheduling priority
1366 switch (config
->tx_fifo_num
) {
1369 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1370 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1371 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1372 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1373 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1376 val64
= 0x0001000100010001ULL
;
1377 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1378 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1379 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1380 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1381 val64
= 0x0001000100000000ULL
;
1382 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1385 val64
= 0x0001020001020001ULL
;
1386 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1387 val64
= 0x0200010200010200ULL
;
1388 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1389 val64
= 0x0102000102000102ULL
;
1390 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1391 val64
= 0x0001020001020001ULL
;
1392 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1393 val64
= 0x0200010200000000ULL
;
1394 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1397 val64
= 0x0001020300010203ULL
;
1398 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1399 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1400 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1401 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1402 val64
= 0x0001020300000000ULL
;
1403 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1406 val64
= 0x0001020304000102ULL
;
1407 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1408 val64
= 0x0304000102030400ULL
;
1409 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1410 val64
= 0x0102030400010203ULL
;
1411 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1412 val64
= 0x0400010203040001ULL
;
1413 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1414 val64
= 0x0203040000000000ULL
;
1415 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1418 val64
= 0x0001020304050001ULL
;
1419 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1420 val64
= 0x0203040500010203ULL
;
1421 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1422 val64
= 0x0405000102030405ULL
;
1423 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1424 val64
= 0x0001020304050001ULL
;
1425 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1426 val64
= 0x0203040500000000ULL
;
1427 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1430 val64
= 0x0001020304050600ULL
;
1431 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1432 val64
= 0x0102030405060001ULL
;
1433 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1434 val64
= 0x0203040506000102ULL
;
1435 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1436 val64
= 0x0304050600010203ULL
;
1437 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1438 val64
= 0x0405060000000000ULL
;
1439 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1442 val64
= 0x0001020304050607ULL
;
1443 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1444 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1445 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1446 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1447 val64
= 0x0001020300000000ULL
;
1448 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1452 /* Enable all configured Tx FIFO partitions */
1453 val64
= readq(&bar0
->tx_fifo_partition_0
);
1454 val64
|= (TX_FIFO_PARTITION_EN
);
1455 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1457 /* Filling the Rx round robin registers as per the
1458 * number of Rings and steering based on QoS.
1460 switch (config
->rx_ring_num
) {
1462 val64
= 0x8080808080808080ULL
;
1463 writeq(val64
, &bar0
->rts_qos_steering
);
1466 val64
= 0x0000010000010000ULL
;
1467 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1468 val64
= 0x0100000100000100ULL
;
1469 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1470 val64
= 0x0001000001000001ULL
;
1471 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1472 val64
= 0x0000010000010000ULL
;
1473 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1474 val64
= 0x0100000000000000ULL
;
1475 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1477 val64
= 0x8080808040404040ULL
;
1478 writeq(val64
, &bar0
->rts_qos_steering
);
1481 val64
= 0x0001000102000001ULL
;
1482 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1483 val64
= 0x0001020000010001ULL
;
1484 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1485 val64
= 0x0200000100010200ULL
;
1486 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1487 val64
= 0x0001000102000001ULL
;
1488 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1489 val64
= 0x0001020000000000ULL
;
1490 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1492 val64
= 0x8080804040402020ULL
;
1493 writeq(val64
, &bar0
->rts_qos_steering
);
1496 val64
= 0x0001020300010200ULL
;
1497 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1498 val64
= 0x0100000102030001ULL
;
1499 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1500 val64
= 0x0200010000010203ULL
;
1501 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1502 val64
= 0x0001020001000001ULL
;
1503 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1504 val64
= 0x0203000100000000ULL
;
1505 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1507 val64
= 0x8080404020201010ULL
;
1508 writeq(val64
, &bar0
->rts_qos_steering
);
1511 val64
= 0x0001000203000102ULL
;
1512 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1513 val64
= 0x0001020001030004ULL
;
1514 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1515 val64
= 0x0001000203000102ULL
;
1516 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1517 val64
= 0x0001020001030004ULL
;
1518 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1519 val64
= 0x0001000000000000ULL
;
1520 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1522 val64
= 0x8080404020201008ULL
;
1523 writeq(val64
, &bar0
->rts_qos_steering
);
1526 val64
= 0x0001020304000102ULL
;
1527 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1528 val64
= 0x0304050001020001ULL
;
1529 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1530 val64
= 0x0203000100000102ULL
;
1531 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1532 val64
= 0x0304000102030405ULL
;
1533 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1534 val64
= 0x0001000200000000ULL
;
1535 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1537 val64
= 0x8080404020100804ULL
;
1538 writeq(val64
, &bar0
->rts_qos_steering
);
1541 val64
= 0x0001020001020300ULL
;
1542 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1543 val64
= 0x0102030400010203ULL
;
1544 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1545 val64
= 0x0405060001020001ULL
;
1546 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1547 val64
= 0x0304050000010200ULL
;
1548 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1549 val64
= 0x0102030000000000ULL
;
1550 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1552 val64
= 0x8080402010080402ULL
;
1553 writeq(val64
, &bar0
->rts_qos_steering
);
1556 val64
= 0x0001020300040105ULL
;
1557 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1558 val64
= 0x0200030106000204ULL
;
1559 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1560 val64
= 0x0103000502010007ULL
;
1561 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1562 val64
= 0x0304010002060500ULL
;
1563 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1564 val64
= 0x0103020400000000ULL
;
1565 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1567 val64
= 0x8040201008040201ULL
;
1568 writeq(val64
, &bar0
->rts_qos_steering
);
1574 for (i
= 0; i
< 8; i
++)
1575 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1577 /* Set the default rts frame length for the rings configured */
1578 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1579 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1580 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1582 /* Set the frame length for the configured rings
1583 * desired by the user
1585 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1586 /* If rts_frm_len[i] == 0 then it is assumed that user not
1587 * specified frame length steering.
1588 * If the user provides the frame length then program
1589 * the rts_frm_len register for those values or else
1590 * leave it as it is.
1592 if (rts_frm_len
[i
] != 0) {
1593 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1594 &bar0
->rts_frm_len_n
[i
]);
1598 /* Disable differentiated services steering logic */
1599 for (i
= 0; i
< 64; i
++) {
1600 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1601 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1603 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1608 /* Program statistics memory */
1609 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1611 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1612 val64
= STAT_BC(0x320);
1613 writeq(val64
, &bar0
->stat_byte_cnt
);
1617 * Initializing the sampling rate for the device to calculate the
1618 * bandwidth utilization.
1620 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1621 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1622 writeq(val64
, &bar0
->mac_link_util
);
1625 * Initializing the Transmit and Receive Traffic Interrupt
1629 /* Initialize TTI */
1630 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1633 /* RTI Initialization */
1634 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1636 * Programmed to generate Apprx 500 Intrs per
1639 int count
= (nic
->config
.bus_speed
* 125)/4;
1640 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1642 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1643 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1644 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1645 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1647 writeq(val64
, &bar0
->rti_data1_mem
);
1649 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1650 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1651 if (nic
->config
.intr_type
== MSI_X
)
1652 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1653 RTI_DATA2_MEM_RX_UFC_D(0x40));
1655 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1656 RTI_DATA2_MEM_RX_UFC_D(0x80));
1657 writeq(val64
, &bar0
->rti_data2_mem
);
1659 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1660 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1661 | RTI_CMD_MEM_OFFSET(i
);
1662 writeq(val64
, &bar0
->rti_command_mem
);
1665 * Once the operation completes, the Strobe bit of the
1666 * command register will be reset. We poll for this
1667 * particular condition. We wait for a maximum of 500ms
1668 * for the operation to complete, if it's not complete
1669 * by then we return error.
1673 val64
= readq(&bar0
->rti_command_mem
);
1674 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1678 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1688 * Initializing proper values as Pause threshold into all
1689 * the 8 Queues on Rx side.
1691 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1692 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1694 /* Disable RMAC PAD STRIPPING */
1695 add
= &bar0
->mac_cfg
;
1696 val64
= readq(&bar0
->mac_cfg
);
1697 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1698 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1699 writel((u32
) (val64
), add
);
1700 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1701 writel((u32
) (val64
>> 32), (add
+ 4));
1702 val64
= readq(&bar0
->mac_cfg
);
1704 /* Enable FCS stripping by adapter */
1705 add
= &bar0
->mac_cfg
;
1706 val64
= readq(&bar0
->mac_cfg
);
1707 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1708 if (nic
->device_type
== XFRAME_II_DEVICE
)
1709 writeq(val64
, &bar0
->mac_cfg
);
1711 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1712 writel((u32
) (val64
), add
);
1713 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1714 writel((u32
) (val64
>> 32), (add
+ 4));
1718 * Set the time value to be inserted in the pause frame
1719 * generated by xena.
1721 val64
= readq(&bar0
->rmac_pause_cfg
);
1722 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1723 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1724 writeq(val64
, &bar0
->rmac_pause_cfg
);
1727 * Set the Threshold Limit for Generating the pause frame
1728 * If the amount of data in any Queue exceeds ratio of
1729 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1730 * pause frame is generated
1733 for (i
= 0; i
< 4; i
++) {
1735 (((u64
) 0xFF00 | nic
->mac_control
.
1736 mc_pause_threshold_q0q3
)
1739 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1742 for (i
= 0; i
< 4; i
++) {
1744 (((u64
) 0xFF00 | nic
->mac_control
.
1745 mc_pause_threshold_q4q7
)
1748 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1751 * TxDMA will stop Read request if the number of read split has
1752 * exceeded the limit pointed by shared_splits
1754 val64
= readq(&bar0
->pic_control
);
1755 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1756 writeq(val64
, &bar0
->pic_control
);
1758 if (nic
->config
.bus_speed
== 266) {
1759 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1760 writeq(0x0, &bar0
->read_retry_delay
);
1761 writeq(0x0, &bar0
->write_retry_delay
);
1765 * Programming the Herc to split every write transaction
1766 * that does not start on an ADB to reduce disconnects.
1768 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1769 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1770 MISC_LINK_STABILITY_PRD(3);
1771 writeq(val64
, &bar0
->misc_control
);
1772 val64
= readq(&bar0
->pic_control2
);
1773 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1774 writeq(val64
, &bar0
->pic_control2
);
1776 if (strstr(nic
->product_name
, "CX4")) {
1777 val64
= TMAC_AVG_IPG(0x17);
1778 writeq(val64
, &bar0
->tmac_avg_ipg
);
1783 #define LINK_UP_DOWN_INTERRUPT 1
1784 #define MAC_RMAC_ERR_TIMER 2
1786 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1788 if (nic
->config
.intr_type
!= INTA
)
1789 return MAC_RMAC_ERR_TIMER
;
1790 if (nic
->device_type
== XFRAME_II_DEVICE
)
1791 return LINK_UP_DOWN_INTERRUPT
;
1793 return MAC_RMAC_ERR_TIMER
;
1797 * do_s2io_write_bits - update alarm bits in alarm register
1798 * @value: alarm bits
1799 * @flag: interrupt status
1800 * @addr: address value
1801 * Description: update alarm bits in alarm register
1805 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1809 temp64
= readq(addr
);
1811 if(flag
== ENABLE_INTRS
)
1812 temp64
&= ~((u64
) value
);
1814 temp64
|= ((u64
) value
);
1815 writeq(temp64
, addr
);
1818 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1820 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1821 register u64 gen_int_mask
= 0;
1823 if (mask
& TX_DMA_INTR
) {
1825 gen_int_mask
|= TXDMA_INT_M
;
1827 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1828 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1829 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1830 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1832 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1833 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1834 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1835 &bar0
->pfc_err_mask
);
1837 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1838 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1839 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1841 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1842 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1843 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1844 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1845 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1846 PCC_TXB_ECC_SG_ERR
, flag
, &bar0
->pcc_err_mask
);
1848 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1849 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1851 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1852 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1853 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1854 flag
, &bar0
->lso_err_mask
);
1856 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1857 flag
, &bar0
->tpa_err_mask
);
1859 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1863 if (mask
& TX_MAC_INTR
) {
1864 gen_int_mask
|= TXMAC_INT_M
;
1865 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1866 &bar0
->mac_int_mask
);
1867 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1868 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1869 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1870 flag
, &bar0
->mac_tmac_err_mask
);
1873 if (mask
& TX_XGXS_INTR
) {
1874 gen_int_mask
|= TXXGXS_INT_M
;
1875 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1876 &bar0
->xgxs_int_mask
);
1877 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1878 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1879 flag
, &bar0
->xgxs_txgxs_err_mask
);
1882 if (mask
& RX_DMA_INTR
) {
1883 gen_int_mask
|= RXDMA_INT_M
;
1884 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1885 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1886 flag
, &bar0
->rxdma_int_mask
);
1887 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1888 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1889 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1890 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1891 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1892 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1893 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1894 &bar0
->prc_pcix_err_mask
);
1895 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1896 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1897 &bar0
->rpa_err_mask
);
1898 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1899 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1900 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1901 RDA_FRM_ECC_SG_ERR
| RDA_MISC_ERR
|RDA_PCIX_ERR
,
1902 flag
, &bar0
->rda_err_mask
);
1903 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
1904 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
1905 flag
, &bar0
->rti_err_mask
);
1908 if (mask
& RX_MAC_INTR
) {
1909 gen_int_mask
|= RXMAC_INT_M
;
1910 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
1911 &bar0
->mac_int_mask
);
1912 do_s2io_write_bits(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
1913 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
1914 RMAC_DOUBLE_ECC_ERR
|
1915 RMAC_LINK_STATE_CHANGE_INT
,
1916 flag
, &bar0
->mac_rmac_err_mask
);
1919 if (mask
& RX_XGXS_INTR
)
1921 gen_int_mask
|= RXXGXS_INT_M
;
1922 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
1923 &bar0
->xgxs_int_mask
);
1924 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
1925 &bar0
->xgxs_rxgxs_err_mask
);
1928 if (mask
& MC_INTR
) {
1929 gen_int_mask
|= MC_INT_M
;
1930 do_s2io_write_bits(MC_INT_MASK_MC_INT
, flag
, &bar0
->mc_int_mask
);
1931 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
1932 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
1933 &bar0
->mc_err_mask
);
1935 nic
->general_int_mask
= gen_int_mask
;
1937 /* Remove this line when alarm interrupts are enabled */
1938 nic
->general_int_mask
= 0;
1941 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1942 * @nic: device private variable,
1943 * @mask: A mask indicating which Intr block must be modified and,
1944 * @flag: A flag indicating whether to enable or disable the Intrs.
1945 * Description: This function will either disable or enable the interrupts
1946 * depending on the flag argument. The mask argument can be used to
1947 * enable/disable any Intr block.
1948 * Return Value: NONE.
1951 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
1953 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1954 register u64 temp64
= 0, intr_mask
= 0;
1956 intr_mask
= nic
->general_int_mask
;
1958 /* Top level interrupt classification */
1959 /* PIC Interrupts */
1960 if (mask
& TX_PIC_INTR
) {
1961 /* Enable PIC Intrs in the general intr mask register */
1962 intr_mask
|= TXPIC_INT_M
;
1963 if (flag
== ENABLE_INTRS
) {
1965 * If Hercules adapter enable GPIO otherwise
1966 * disable all PCIX, Flash, MDIO, IIC and GPIO
1967 * interrupts for now.
1970 if (s2io_link_fault_indication(nic
) ==
1971 LINK_UP_DOWN_INTERRUPT
) {
1972 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
1973 &bar0
->pic_int_mask
);
1974 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
1975 &bar0
->gpio_int_mask
);
1977 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1978 } else if (flag
== DISABLE_INTRS
) {
1980 * Disable PIC Intrs in the general
1981 * intr mask register
1983 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1987 /* Tx traffic interrupts */
1988 if (mask
& TX_TRAFFIC_INTR
) {
1989 intr_mask
|= TXTRAFFIC_INT_M
;
1990 if (flag
== ENABLE_INTRS
) {
1992 * Enable all the Tx side interrupts
1993 * writing 0 Enables all 64 TX interrupt levels
1995 writeq(0x0, &bar0
->tx_traffic_mask
);
1996 } else if (flag
== DISABLE_INTRS
) {
1998 * Disable Tx Traffic Intrs in the general intr mask
2001 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2005 /* Rx traffic interrupts */
2006 if (mask
& RX_TRAFFIC_INTR
) {
2007 intr_mask
|= RXTRAFFIC_INT_M
;
2008 if (flag
== ENABLE_INTRS
) {
2009 /* writing 0 Enables all 8 RX interrupt levels */
2010 writeq(0x0, &bar0
->rx_traffic_mask
);
2011 } else if (flag
== DISABLE_INTRS
) {
2013 * Disable Rx Traffic Intrs in the general intr mask
2016 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2020 temp64
= readq(&bar0
->general_int_mask
);
2021 if (flag
== ENABLE_INTRS
)
2022 temp64
&= ~((u64
) intr_mask
);
2024 temp64
= DISABLE_ALL_INTRS
;
2025 writeq(temp64
, &bar0
->general_int_mask
);
2027 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2031 * verify_pcc_quiescent- Checks for PCC quiescent state
2032 * Return: 1 If PCC is quiescence
2033 * 0 If PCC is not quiescence
2035 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2038 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2039 u64 val64
= readq(&bar0
->adapter_status
);
2041 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2043 if (flag
== FALSE
) {
2044 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2045 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2048 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2052 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2053 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2054 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2057 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2058 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2066 * verify_xena_quiescence - Checks whether the H/W is ready
2067 * Description: Returns whether the H/W is ready to go or not. Depending
2068 * on whether adapter enable bit was written or not the comparison
2069 * differs and the calling function passes the input argument flag to
2071 * Return: 1 If xena is quiescence
2072 * 0 If Xena is not quiescence
2075 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2078 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2079 u64 val64
= readq(&bar0
->adapter_status
);
2080 mode
= s2io_verify_pci_mode(sp
);
2082 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2083 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
2086 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2087 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
2090 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2091 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
2094 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2095 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
2098 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2099 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
2102 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2103 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
2106 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2107 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
2110 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2111 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
2116 * In PCI 33 mode, the P_PLL is not used, and therefore,
2117 * the the P_PLL_LOCK bit in the adapter_status register will
2120 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2121 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
2123 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
2126 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2127 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2128 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
2135 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2136 * @sp: Pointer to device specifc structure
2138 * New procedure to clear mac address reading problems on Alpha platforms
2142 static void fix_mac_address(struct s2io_nic
* sp
)
2144 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2148 while (fix_mac
[i
] != END_SIGN
) {
2149 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2151 val64
= readq(&bar0
->gpio_control
);
2156 * start_nic - Turns the device on
2157 * @nic : device private variable.
2159 * This function actually turns the device on. Before this function is
2160 * called,all Registers are configured from their reset states
2161 * and shared memory is allocated but the NIC is still quiescent. On
2162 * calling this function, the device interrupts are cleared and the NIC is
2163 * literally switched on by writing into the adapter control register.
2165 * SUCCESS on success and -1 on failure.
2168 static int start_nic(struct s2io_nic
*nic
)
2170 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2171 struct net_device
*dev
= nic
->dev
;
2172 register u64 val64
= 0;
2174 struct mac_info
*mac_control
;
2175 struct config_param
*config
;
2177 mac_control
= &nic
->mac_control
;
2178 config
= &nic
->config
;
2180 /* PRC Initialization and configuration */
2181 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2182 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2183 &bar0
->prc_rxd0_n
[i
]);
2185 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2186 if (nic
->rxd_mode
== RXD_MODE_1
)
2187 val64
|= PRC_CTRL_RC_ENABLED
;
2189 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2190 if (nic
->device_type
== XFRAME_II_DEVICE
)
2191 val64
|= PRC_CTRL_GROUP_READS
;
2192 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2193 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2194 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2197 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2198 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2199 val64
= readq(&bar0
->rx_pa_cfg
);
2200 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2201 writeq(val64
, &bar0
->rx_pa_cfg
);
2204 if (vlan_tag_strip
== 0) {
2205 val64
= readq(&bar0
->rx_pa_cfg
);
2206 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2207 writeq(val64
, &bar0
->rx_pa_cfg
);
2208 vlan_strip_flag
= 0;
2212 * Enabling MC-RLDRAM. After enabling the device, we timeout
2213 * for around 100ms, which is approximately the time required
2214 * for the device to be ready for operation.
2216 val64
= readq(&bar0
->mc_rldram_mrs
);
2217 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2218 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2219 val64
= readq(&bar0
->mc_rldram_mrs
);
2221 msleep(100); /* Delay by around 100 ms. */
2223 /* Enabling ECC Protection. */
2224 val64
= readq(&bar0
->adapter_control
);
2225 val64
&= ~ADAPTER_ECC_EN
;
2226 writeq(val64
, &bar0
->adapter_control
);
2229 * Verify if the device is ready to be enabled, if so enable
2232 val64
= readq(&bar0
->adapter_status
);
2233 if (!verify_xena_quiescence(nic
)) {
2234 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2235 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2236 (unsigned long long) val64
);
2241 * With some switches, link might be already up at this point.
2242 * Because of this weird behavior, when we enable laser,
2243 * we may not get link. We need to handle this. We cannot
2244 * figure out which switch is misbehaving. So we are forced to
2245 * make a global change.
2248 /* Enabling Laser. */
2249 val64
= readq(&bar0
->adapter_control
);
2250 val64
|= ADAPTER_EOI_TX_ON
;
2251 writeq(val64
, &bar0
->adapter_control
);
2253 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2255 * Dont see link state interrupts initally on some switches,
2256 * so directly scheduling the link state task here.
2258 schedule_work(&nic
->set_link_task
);
2260 /* SXE-002: Initialize link and activity LED */
2261 subid
= nic
->pdev
->subsystem_device
;
2262 if (((subid
& 0xFF) >= 0x07) &&
2263 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2264 val64
= readq(&bar0
->gpio_control
);
2265 val64
|= 0x0000800000000000ULL
;
2266 writeq(val64
, &bar0
->gpio_control
);
2267 val64
= 0x0411040400000000ULL
;
2268 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2274 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2276 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2277 TxD
*txdlp
, int get_off
)
2279 struct s2io_nic
*nic
= fifo_data
->nic
;
2280 struct sk_buff
*skb
;
2285 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2286 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2287 txds
->Buffer_Pointer
, sizeof(u64
),
2292 skb
= (struct sk_buff
*) ((unsigned long)
2293 txds
->Host_Control
);
2295 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2298 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2299 txds
->Buffer_Pointer
,
2300 skb
->len
- skb
->data_len
,
2302 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2305 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2306 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2307 if (!txds
->Buffer_Pointer
)
2309 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2310 txds
->Buffer_Pointer
,
2311 frag
->size
, PCI_DMA_TODEVICE
);
2314 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2319 * free_tx_buffers - Free all queued Tx buffers
2320 * @nic : device private variable.
2322 * Free all queued Tx buffers.
2323 * Return Value: void
2326 static void free_tx_buffers(struct s2io_nic
*nic
)
2328 struct net_device
*dev
= nic
->dev
;
2329 struct sk_buff
*skb
;
2332 struct mac_info
*mac_control
;
2333 struct config_param
*config
;
2336 mac_control
= &nic
->mac_control
;
2337 config
= &nic
->config
;
2339 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2340 unsigned long flags
;
2341 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
);
2342 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
- 1; j
++) {
2343 txdp
= (struct TxD
*) \
2344 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2345 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2347 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2354 "%s:forcibly freeing %d skbs on FIFO%d\n",
2356 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2357 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2358 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
, flags
);
2363 * stop_nic - To stop the nic
2364 * @nic ; device private variable.
2366 * This function does exactly the opposite of what the start_nic()
2367 * function does. This function is called to stop the device.
2372 static void stop_nic(struct s2io_nic
*nic
)
2374 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2375 register u64 val64
= 0;
2377 struct mac_info
*mac_control
;
2378 struct config_param
*config
;
2380 mac_control
= &nic
->mac_control
;
2381 config
= &nic
->config
;
2383 /* Disable all interrupts */
2384 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2385 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2386 interruptible
|= TX_PIC_INTR
;
2387 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2389 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2390 val64
= readq(&bar0
->adapter_control
);
2391 val64
&= ~(ADAPTER_CNTL_EN
);
2392 writeq(val64
, &bar0
->adapter_control
);
2396 * fill_rx_buffers - Allocates the Rx side skbs
2397 * @nic: device private variable
2398 * @ring_no: ring number
2400 * The function allocates Rx side skbs and puts the physical
2401 * address of these buffers into the RxD buffer pointers, so that the NIC
2402 * can DMA the received frame into these locations.
2403 * The NIC supports 3 receive modes, viz
2405 * 2. three buffer and
2406 * 3. Five buffer modes.
2407 * Each mode defines how many fragments the received frame will be split
2408 * up into by the NIC. The frame is split into L3 header, L4 Header,
2409 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2410 * is split into 3 fragments. As of now only single buffer mode is
2413 * SUCCESS on success or an appropriate -ve value on failure.
2416 static int fill_rx_buffers(struct s2io_nic
*nic
, int ring_no
)
2418 struct net_device
*dev
= nic
->dev
;
2419 struct sk_buff
*skb
;
2421 int off
, off1
, size
, block_no
, block_no1
;
2424 struct mac_info
*mac_control
;
2425 struct config_param
*config
;
2428 unsigned long flags
;
2429 struct RxD_t
*first_rxdp
= NULL
;
2430 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2433 struct swStat
*stats
= &nic
->mac_control
.stats_info
->sw_stat
;
2435 mac_control
= &nic
->mac_control
;
2436 config
= &nic
->config
;
2437 alloc_cnt
= mac_control
->rings
[ring_no
].pkt_cnt
-
2438 atomic_read(&nic
->rx_bufs_left
[ring_no
]);
2440 block_no1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.block_index
;
2441 off1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.offset
;
2442 while (alloc_tab
< alloc_cnt
) {
2443 block_no
= mac_control
->rings
[ring_no
].rx_curr_put_info
.
2445 off
= mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
;
2447 rxdp
= mac_control
->rings
[ring_no
].
2448 rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2450 if ((block_no
== block_no1
) && (off
== off1
) &&
2451 (rxdp
->Host_Control
)) {
2452 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2454 DBG_PRINT(INTR_DBG
, " info equated\n");
2457 if (off
&& (off
== rxd_count
[nic
->rxd_mode
])) {
2458 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2460 if (mac_control
->rings
[ring_no
].rx_curr_put_info
.
2461 block_index
== mac_control
->rings
[ring_no
].
2463 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2465 block_no
= mac_control
->rings
[ring_no
].
2466 rx_curr_put_info
.block_index
;
2467 if (off
== rxd_count
[nic
->rxd_mode
])
2469 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2471 rxdp
= mac_control
->rings
[ring_no
].
2472 rx_blocks
[block_no
].block_virt_addr
;
2473 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2477 spin_lock_irqsave(&nic
->put_lock
, flags
);
2478 mac_control
->rings
[ring_no
].put_pos
=
2479 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2480 spin_unlock_irqrestore(&nic
->put_lock
, flags
);
2482 mac_control
->rings
[ring_no
].put_pos
=
2483 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2485 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2486 ((nic
->rxd_mode
== RXD_MODE_3B
) &&
2487 (rxdp
->Control_2
& s2BIT(0)))) {
2488 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2492 /* calculate size of skb based on ring mode */
2493 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2494 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2495 if (nic
->rxd_mode
== RXD_MODE_1
)
2496 size
+= NET_IP_ALIGN
;
2498 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2501 skb
= dev_alloc_skb(size
);
2503 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
2504 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2507 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2509 nic
->mac_control
.stats_info
->sw_stat
. \
2510 mem_alloc_fail_cnt
++;
2513 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
2515 if (nic
->rxd_mode
== RXD_MODE_1
) {
2516 /* 1 buffer mode - normal operation mode */
2517 rxdp1
= (struct RxD1
*)rxdp
;
2518 memset(rxdp
, 0, sizeof(struct RxD1
));
2519 skb_reserve(skb
, NET_IP_ALIGN
);
2520 rxdp1
->Buffer0_ptr
= pci_map_single
2521 (nic
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2522 PCI_DMA_FROMDEVICE
);
2523 if( (rxdp1
->Buffer0_ptr
== 0) ||
2524 (rxdp1
->Buffer0_ptr
==
2526 goto pci_map_failed
;
2529 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2531 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2534 * 2 buffer mode provides 128
2535 * byte aligned receive buffers.
2538 rxdp3
= (struct RxD3
*)rxdp
;
2539 /* save buffer pointers to avoid frequent dma mapping */
2540 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2541 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2542 memset(rxdp
, 0, sizeof(struct RxD3
));
2543 /* restore the buffer pointers for dma sync*/
2544 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2545 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2547 ba
= &mac_control
->rings
[ring_no
].ba
[block_no
][off
];
2548 skb_reserve(skb
, BUF0_LEN
);
2549 tmp
= (u64
)(unsigned long) skb
->data
;
2552 skb
->data
= (void *) (unsigned long)tmp
;
2553 skb_reset_tail_pointer(skb
);
2555 if (!(rxdp3
->Buffer0_ptr
))
2556 rxdp3
->Buffer0_ptr
=
2557 pci_map_single(nic
->pdev
, ba
->ba_0
, BUF0_LEN
,
2558 PCI_DMA_FROMDEVICE
);
2560 pci_dma_sync_single_for_device(nic
->pdev
,
2561 (dma_addr_t
) rxdp3
->Buffer0_ptr
,
2562 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2563 if( (rxdp3
->Buffer0_ptr
== 0) ||
2564 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
))
2565 goto pci_map_failed
;
2567 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2568 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2569 /* Two buffer mode */
2572 * Buffer2 will have L3/L4 header plus
2575 rxdp3
->Buffer2_ptr
= pci_map_single
2576 (nic
->pdev
, skb
->data
, dev
->mtu
+ 4,
2577 PCI_DMA_FROMDEVICE
);
2579 if( (rxdp3
->Buffer2_ptr
== 0) ||
2580 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
))
2581 goto pci_map_failed
;
2583 rxdp3
->Buffer1_ptr
=
2584 pci_map_single(nic
->pdev
,
2586 PCI_DMA_FROMDEVICE
);
2587 if( (rxdp3
->Buffer1_ptr
== 0) ||
2588 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
2591 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2593 PCI_DMA_FROMDEVICE
);
2594 goto pci_map_failed
;
2596 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2597 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2600 rxdp
->Control_2
|= s2BIT(0);
2602 rxdp
->Host_Control
= (unsigned long) (skb
);
2603 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2604 rxdp
->Control_1
|= RXD_OWN_XENA
;
2606 if (off
== (rxd_count
[nic
->rxd_mode
] + 1))
2608 mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
= off
;
2610 rxdp
->Control_2
|= SET_RXD_MARKER
;
2611 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2614 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2618 atomic_inc(&nic
->rx_bufs_left
[ring_no
]);
2623 /* Transfer ownership of first descriptor to adapter just before
2624 * exiting. Before that, use memory barrier so that ownership
2625 * and other fields are seen by adapter correctly.
2629 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2634 stats
->pci_map_fail_cnt
++;
2635 stats
->mem_freed
+= skb
->truesize
;
2636 dev_kfree_skb_irq(skb
);
2640 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2642 struct net_device
*dev
= sp
->dev
;
2644 struct sk_buff
*skb
;
2646 struct mac_info
*mac_control
;
2651 mac_control
= &sp
->mac_control
;
2652 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2653 rxdp
= mac_control
->rings
[ring_no
].
2654 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2655 skb
= (struct sk_buff
*)
2656 ((unsigned long) rxdp
->Host_Control
);
2660 if (sp
->rxd_mode
== RXD_MODE_1
) {
2661 rxdp1
= (struct RxD1
*)rxdp
;
2662 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2665 HEADER_ETHERNET_II_802_3_SIZE
2666 + HEADER_802_2_SIZE
+
2668 PCI_DMA_FROMDEVICE
);
2669 memset(rxdp
, 0, sizeof(struct RxD1
));
2670 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2671 rxdp3
= (struct RxD3
*)rxdp
;
2672 ba
= &mac_control
->rings
[ring_no
].
2674 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2677 PCI_DMA_FROMDEVICE
);
2678 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2681 PCI_DMA_FROMDEVICE
);
2682 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2685 PCI_DMA_FROMDEVICE
);
2686 memset(rxdp
, 0, sizeof(struct RxD3
));
2688 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2690 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
2695 * free_rx_buffers - Frees all Rx buffers
2696 * @sp: device private variable.
2698 * This function will free all Rx buffers allocated by host.
2703 static void free_rx_buffers(struct s2io_nic
*sp
)
2705 struct net_device
*dev
= sp
->dev
;
2706 int i
, blk
= 0, buf_cnt
= 0;
2707 struct mac_info
*mac_control
;
2708 struct config_param
*config
;
2710 mac_control
= &sp
->mac_control
;
2711 config
= &sp
->config
;
2713 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2714 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2715 free_rxd_blk(sp
,i
,blk
);
2717 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2718 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2719 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2720 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2721 atomic_set(&sp
->rx_bufs_left
[i
], 0);
2722 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2723 dev
->name
, buf_cnt
, i
);
2728 * s2io_poll - Rx interrupt handler for NAPI support
2729 * @napi : pointer to the napi structure.
2730 * @budget : The number of packets that were budgeted to be processed
2731 * during one pass through the 'Poll" function.
2733 * Comes into picture only if NAPI support has been incorporated. It does
2734 * the same thing that rx_intr_handler does, but not in a interrupt context
2735 * also It will process only a given number of packets.
2737 * 0 on success and 1 if there are No Rx packets to be processed.
2740 static int s2io_poll(struct napi_struct
*napi
, int budget
)
2742 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2743 struct net_device
*dev
= nic
->dev
;
2744 int pkt_cnt
= 0, org_pkts_to_process
;
2745 struct mac_info
*mac_control
;
2746 struct config_param
*config
;
2747 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2750 mac_control
= &nic
->mac_control
;
2751 config
= &nic
->config
;
2753 nic
->pkts_to_process
= budget
;
2754 org_pkts_to_process
= nic
->pkts_to_process
;
2756 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
2757 readl(&bar0
->rx_traffic_int
);
2759 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2760 rx_intr_handler(&mac_control
->rings
[i
]);
2761 pkt_cnt
= org_pkts_to_process
- nic
->pkts_to_process
;
2762 if (!nic
->pkts_to_process
) {
2763 /* Quota for the current iteration has been met */
2768 netif_rx_complete(dev
, napi
);
2770 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2771 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2772 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2773 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2777 /* Re enable the Rx interrupts. */
2778 writeq(0x0, &bar0
->rx_traffic_mask
);
2779 readl(&bar0
->rx_traffic_mask
);
2783 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2784 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2785 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2786 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2793 #ifdef CONFIG_NET_POLL_CONTROLLER
2795 * s2io_netpoll - netpoll event handler entry point
2796 * @dev : pointer to the device structure.
2798 * This function will be called by upper layer to check for events on the
2799 * interface in situations where interrupts are disabled. It is used for
2800 * specific in-kernel networking tasks, such as remote consoles and kernel
2801 * debugging over the network (example netdump in RedHat).
2803 static void s2io_netpoll(struct net_device
*dev
)
2805 struct s2io_nic
*nic
= dev
->priv
;
2806 struct mac_info
*mac_control
;
2807 struct config_param
*config
;
2808 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2809 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2812 if (pci_channel_offline(nic
->pdev
))
2815 disable_irq(dev
->irq
);
2817 mac_control
= &nic
->mac_control
;
2818 config
= &nic
->config
;
2820 writeq(val64
, &bar0
->rx_traffic_int
);
2821 writeq(val64
, &bar0
->tx_traffic_int
);
2823 /* we need to free up the transmitted skbufs or else netpoll will
2824 * run out of skbs and will fail and eventually netpoll application such
2825 * as netdump will fail.
2827 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2828 tx_intr_handler(&mac_control
->fifos
[i
]);
2830 /* check for received packet and indicate up to network */
2831 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2832 rx_intr_handler(&mac_control
->rings
[i
]);
2834 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2835 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2836 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2837 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2841 enable_irq(dev
->irq
);
2847 * rx_intr_handler - Rx interrupt handler
2848 * @nic: device private variable.
2850 * If the interrupt is because of a received frame or if the
2851 * receive ring contains fresh as yet un-processed frames,this function is
2852 * called. It picks out the RxD at which place the last Rx processing had
2853 * stopped and sends the skb to the OSM's Rx handler and then increments
2858 static void rx_intr_handler(struct ring_info
*ring_data
)
2860 struct s2io_nic
*nic
= ring_data
->nic
;
2861 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2862 int get_block
, put_block
, put_offset
;
2863 struct rx_curr_get_info get_info
, put_info
;
2865 struct sk_buff
*skb
;
2871 spin_lock(&nic
->rx_lock
);
2873 get_info
= ring_data
->rx_curr_get_info
;
2874 get_block
= get_info
.block_index
;
2875 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2876 put_block
= put_info
.block_index
;
2877 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2879 spin_lock(&nic
->put_lock
);
2880 put_offset
= ring_data
->put_pos
;
2881 spin_unlock(&nic
->put_lock
);
2883 put_offset
= ring_data
->put_pos
;
2885 while (RXD_IS_UP2DT(rxdp
)) {
2887 * If your are next to put index then it's
2888 * FIFO full condition
2890 if ((get_block
== put_block
) &&
2891 (get_info
.offset
+ 1) == put_info
.offset
) {
2892 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",dev
->name
);
2895 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
2897 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
2899 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
2900 spin_unlock(&nic
->rx_lock
);
2903 if (nic
->rxd_mode
== RXD_MODE_1
) {
2904 rxdp1
= (struct RxD1
*)rxdp
;
2905 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2908 HEADER_ETHERNET_II_802_3_SIZE
+
2911 PCI_DMA_FROMDEVICE
);
2912 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2913 rxdp3
= (struct RxD3
*)rxdp
;
2914 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
2916 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2917 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2920 PCI_DMA_FROMDEVICE
);
2922 prefetch(skb
->data
);
2923 rx_osm_handler(ring_data
, rxdp
);
2925 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2926 rxdp
= ring_data
->rx_blocks
[get_block
].
2927 rxds
[get_info
.offset
].virt_addr
;
2928 if (get_info
.offset
== rxd_count
[nic
->rxd_mode
]) {
2929 get_info
.offset
= 0;
2930 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2932 if (get_block
== ring_data
->block_count
)
2934 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2935 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2938 nic
->pkts_to_process
-= 1;
2939 if ((napi
) && (!nic
->pkts_to_process
))
2942 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2946 /* Clear all LRO sessions before exiting */
2947 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
2948 struct lro
*lro
= &nic
->lro0_n
[i
];
2950 update_L3L4_header(nic
, lro
);
2951 queue_rx_frame(lro
->parent
);
2952 clear_lro_session(lro
);
2957 spin_unlock(&nic
->rx_lock
);
2961 * tx_intr_handler - Transmit interrupt handler
2962 * @nic : device private variable
2964 * If an interrupt was raised to indicate DMA complete of the
2965 * Tx packet, this function is called. It identifies the last TxD
2966 * whose buffer was freed and frees all skbs whose data have already
2967 * DMA'ed into the NICs internal memory.
2972 static void tx_intr_handler(struct fifo_info
*fifo_data
)
2974 struct s2io_nic
*nic
= fifo_data
->nic
;
2975 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2976 struct tx_curr_get_info get_info
, put_info
;
2977 struct sk_buff
*skb
;
2979 unsigned long flags
= 0;
2982 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
2985 get_info
= fifo_data
->tx_curr_get_info
;
2986 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
2987 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
2989 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
2990 (get_info
.offset
!= put_info
.offset
) &&
2991 (txdlp
->Host_Control
)) {
2992 /* Check for TxD errors */
2993 if (txdlp
->Control_1
& TXD_T_CODE
) {
2994 unsigned long long err
;
2995 err
= txdlp
->Control_1
& TXD_T_CODE
;
2997 nic
->mac_control
.stats_info
->sw_stat
.
3001 /* update t_code statistics */
3002 err_mask
= err
>> 48;
3005 nic
->mac_control
.stats_info
->sw_stat
.
3010 nic
->mac_control
.stats_info
->sw_stat
.
3011 tx_desc_abort_cnt
++;
3015 nic
->mac_control
.stats_info
->sw_stat
.
3016 tx_parity_err_cnt
++;
3020 nic
->mac_control
.stats_info
->sw_stat
.
3025 nic
->mac_control
.stats_info
->sw_stat
.
3026 tx_list_proc_err_cnt
++;
3031 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3033 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3034 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
3036 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
3040 /* Updating the statistics block */
3041 nic
->stats
.tx_bytes
+= skb
->len
;
3042 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
3043 dev_kfree_skb_irq(skb
);
3046 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3047 get_info
.offset
= 0;
3048 txdlp
= (struct TxD
*) fifo_data
->list_info
3049 [get_info
.offset
].list_virt_addr
;
3050 fifo_data
->tx_curr_get_info
.offset
=
3054 if (netif_queue_stopped(dev
))
3055 netif_wake_queue(dev
);
3057 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3061 * s2io_mdio_write - Function to write in to MDIO registers
3062 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3063 * @addr : address value
3064 * @value : data value
3065 * @dev : pointer to net_device structure
3067 * This function is used to write values to the MDIO registers
3070 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
3073 struct s2io_nic
*sp
= dev
->priv
;
3074 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3076 //address transaction
3077 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3078 | MDIO_MMD_DEV_ADDR(mmd_type
)
3079 | MDIO_MMS_PRT_ADDR(0x0);
3080 writeq(val64
, &bar0
->mdio_control
);
3081 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3082 writeq(val64
, &bar0
->mdio_control
);
3087 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3088 | MDIO_MMD_DEV_ADDR(mmd_type
)
3089 | MDIO_MMS_PRT_ADDR(0x0)
3090 | MDIO_MDIO_DATA(value
)
3091 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
3092 writeq(val64
, &bar0
->mdio_control
);
3093 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3094 writeq(val64
, &bar0
->mdio_control
);
3098 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3099 | MDIO_MMD_DEV_ADDR(mmd_type
)
3100 | MDIO_MMS_PRT_ADDR(0x0)
3101 | MDIO_OP(MDIO_OP_READ_TRANS
);
3102 writeq(val64
, &bar0
->mdio_control
);
3103 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3104 writeq(val64
, &bar0
->mdio_control
);
3110 * s2io_mdio_read - Function to write in to MDIO registers
3111 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3112 * @addr : address value
3113 * @dev : pointer to net_device structure
3115 * This function is used to read values to the MDIO registers
3118 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3122 struct s2io_nic
*sp
= dev
->priv
;
3123 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3125 /* address transaction */
3126 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3127 | MDIO_MMD_DEV_ADDR(mmd_type
)
3128 | MDIO_MMS_PRT_ADDR(0x0);
3129 writeq(val64
, &bar0
->mdio_control
);
3130 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3131 writeq(val64
, &bar0
->mdio_control
);
3134 /* Data transaction */
3136 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3137 | MDIO_MMD_DEV_ADDR(mmd_type
)
3138 | MDIO_MMS_PRT_ADDR(0x0)
3139 | MDIO_OP(MDIO_OP_READ_TRANS
);
3140 writeq(val64
, &bar0
->mdio_control
);
3141 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3142 writeq(val64
, &bar0
->mdio_control
);
3145 /* Read the value from regs */
3146 rval64
= readq(&bar0
->mdio_control
);
3147 rval64
= rval64
& 0xFFFF0000;
3148 rval64
= rval64
>> 16;
3152 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3153 * @counter : couter value to be updated
3154 * @flag : flag to indicate the status
3155 * @type : counter type
3157 * This function is to check the status of the xpak counters value
3161 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3166 for(i
= 0; i
<index
; i
++)
3171 *counter
= *counter
+ 1;
3172 val64
= *regs_stat
& mask
;
3173 val64
= val64
>> (index
* 0x2);
3180 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3181 "service. Excessive temperatures may "
3182 "result in premature transceiver "
3186 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3187 "service Excessive bias currents may "
3188 "indicate imminent laser diode "
3192 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3193 "service Excessive laser output "
3194 "power may saturate far-end "
3198 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3203 val64
= val64
<< (index
* 0x2);
3204 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3207 *regs_stat
= *regs_stat
& (~mask
);
3212 * s2io_updt_xpak_counter - Function to update the xpak counters
3213 * @dev : pointer to net_device struct
3215 * This function is to upate the status of the xpak counters value
3218 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3226 struct s2io_nic
*sp
= dev
->priv
;
3227 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3229 /* Check the communication with the MDIO slave */
3232 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3233 if((val64
== 0xFFFF) || (val64
== 0x0000))
3235 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3236 "Returned %llx\n", (unsigned long long)val64
);
3240 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3243 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3244 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3245 (unsigned long long)val64
);
3249 /* Loading the DOM register to MDIO register */
3251 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3252 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3254 /* Reading the Alarm flags */
3257 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3259 flag
= CHECKBIT(val64
, 0x7);
3261 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3262 &stat_info
->xpak_stat
.xpak_regs_stat
,
3265 if(CHECKBIT(val64
, 0x6))
3266 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3268 flag
= CHECKBIT(val64
, 0x3);
3270 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3271 &stat_info
->xpak_stat
.xpak_regs_stat
,
3274 if(CHECKBIT(val64
, 0x2))
3275 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3277 flag
= CHECKBIT(val64
, 0x1);
3279 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3280 &stat_info
->xpak_stat
.xpak_regs_stat
,
3283 if(CHECKBIT(val64
, 0x0))
3284 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3286 /* Reading the Warning flags */
3289 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3291 if(CHECKBIT(val64
, 0x7))
3292 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3294 if(CHECKBIT(val64
, 0x6))
3295 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3297 if(CHECKBIT(val64
, 0x3))
3298 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3300 if(CHECKBIT(val64
, 0x2))
3301 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3303 if(CHECKBIT(val64
, 0x1))
3304 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3306 if(CHECKBIT(val64
, 0x0))
3307 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3311 * wait_for_cmd_complete - waits for a command to complete.
3312 * @sp : private member of the device structure, which is a pointer to the
3313 * s2io_nic structure.
3314 * Description: Function that waits for a command to Write into RMAC
3315 * ADDR DATA registers to be completed and returns either success or
3316 * error depending on whether the command was complete or not.
3318 * SUCCESS on success and FAILURE on failure.
3321 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3324 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3327 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3331 val64
= readq(addr
);
3332 if (bit_state
== S2IO_BIT_RESET
) {
3333 if (!(val64
& busy_bit
)) {
3338 if (!(val64
& busy_bit
)) {
3355 * check_pci_device_id - Checks if the device id is supported
3357 * Description: Function to check if the pci device id is supported by driver.
3358 * Return value: Actual device id if supported else PCI_ANY_ID
3360 static u16
check_pci_device_id(u16 id
)
3363 case PCI_DEVICE_ID_HERC_WIN
:
3364 case PCI_DEVICE_ID_HERC_UNI
:
3365 return XFRAME_II_DEVICE
;
3366 case PCI_DEVICE_ID_S2IO_UNI
:
3367 case PCI_DEVICE_ID_S2IO_WIN
:
3368 return XFRAME_I_DEVICE
;
3375 * s2io_reset - Resets the card.
3376 * @sp : private member of the device structure.
3377 * Description: Function to Reset the card. This function then also
3378 * restores the previously saved PCI configuration space registers as
3379 * the card reset also resets the configuration space.
3384 static void s2io_reset(struct s2io_nic
* sp
)
3386 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3391 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3392 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3394 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3395 __FUNCTION__
, sp
->dev
->name
);
3397 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3398 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3400 val64
= SW_RESET_ALL
;
3401 writeq(val64
, &bar0
->sw_reset
);
3402 if (strstr(sp
->product_name
, "CX4")) {
3406 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3408 /* Restore the PCI state saved during initialization. */
3409 pci_restore_state(sp
->pdev
);
3410 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3411 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3416 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3417 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3420 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3424 /* Set swapper to enable I/O register access */
3425 s2io_set_swapper(sp
);
3427 /* restore mac_addr entries */
3428 do_s2io_restore_unicast_mc(sp
);
3430 /* Restore the MSIX table entries from local variables */
3431 restore_xmsi_data(sp
);
3433 /* Clear certain PCI/PCI-X fields after reset */
3434 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3435 /* Clear "detected parity error" bit */
3436 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3438 /* Clearing PCIX Ecc status register */
3439 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3441 /* Clearing PCI_STATUS error reflected here */
3442 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3445 /* Reset device statistics maintained by OS */
3446 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3448 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3449 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3450 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3451 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3452 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3453 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3454 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3455 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3456 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3457 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3458 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3459 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3460 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3461 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3462 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3463 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3464 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3465 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3466 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3468 /* SXE-002: Configure link and activity LED to turn it off */
3469 subid
= sp
->pdev
->subsystem_device
;
3470 if (((subid
& 0xFF) >= 0x07) &&
3471 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3472 val64
= readq(&bar0
->gpio_control
);
3473 val64
|= 0x0000800000000000ULL
;
3474 writeq(val64
, &bar0
->gpio_control
);
3475 val64
= 0x0411040400000000ULL
;
3476 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3480 * Clear spurious ECC interrupts that would have occured on
3481 * XFRAME II cards after reset.
3483 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3484 val64
= readq(&bar0
->pcc_err_reg
);
3485 writeq(val64
, &bar0
->pcc_err_reg
);
3488 sp
->device_enabled_once
= FALSE
;
3492 * s2io_set_swapper - to set the swapper controle on the card
3493 * @sp : private member of the device structure,
3494 * pointer to the s2io_nic structure.
3495 * Description: Function to set the swapper control on the card
3496 * correctly depending on the 'endianness' of the system.
3498 * SUCCESS on success and FAILURE on failure.
3501 static int s2io_set_swapper(struct s2io_nic
* sp
)
3503 struct net_device
*dev
= sp
->dev
;
3504 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3505 u64 val64
, valt
, valr
;
3508 * Set proper endian settings and verify the same by reading
3509 * the PIF Feed-back register.
3512 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3513 if (val64
!= 0x0123456789ABCDEFULL
) {
3515 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3516 0x8100008181000081ULL
, /* FE=1, SE=0 */
3517 0x4200004242000042ULL
, /* FE=0, SE=1 */
3518 0}; /* FE=0, SE=0 */
3521 writeq(value
[i
], &bar0
->swapper_ctrl
);
3522 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3523 if (val64
== 0x0123456789ABCDEFULL
)
3528 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3530 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3531 (unsigned long long) val64
);
3536 valr
= readq(&bar0
->swapper_ctrl
);
3539 valt
= 0x0123456789ABCDEFULL
;
3540 writeq(valt
, &bar0
->xmsi_address
);
3541 val64
= readq(&bar0
->xmsi_address
);
3545 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3546 0x0081810000818100ULL
, /* FE=1, SE=0 */
3547 0x0042420000424200ULL
, /* FE=0, SE=1 */
3548 0}; /* FE=0, SE=0 */
3551 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3552 writeq(valt
, &bar0
->xmsi_address
);
3553 val64
= readq(&bar0
->xmsi_address
);
3559 unsigned long long x
= val64
;
3560 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3561 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3565 val64
= readq(&bar0
->swapper_ctrl
);
3566 val64
&= 0xFFFF000000000000ULL
;
3570 * The device by default set to a big endian format, so a
3571 * big endian driver need not set anything.
3573 val64
|= (SWAPPER_CTRL_TXP_FE
|
3574 SWAPPER_CTRL_TXP_SE
|
3575 SWAPPER_CTRL_TXD_R_FE
|
3576 SWAPPER_CTRL_TXD_W_FE
|
3577 SWAPPER_CTRL_TXF_R_FE
|
3578 SWAPPER_CTRL_RXD_R_FE
|
3579 SWAPPER_CTRL_RXD_W_FE
|
3580 SWAPPER_CTRL_RXF_W_FE
|
3581 SWAPPER_CTRL_XMSI_FE
|
3582 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3583 if (sp
->config
.intr_type
== INTA
)
3584 val64
|= SWAPPER_CTRL_XMSI_SE
;
3585 writeq(val64
, &bar0
->swapper_ctrl
);
3588 * Initially we enable all bits to make it accessible by the
3589 * driver, then we selectively enable only those bits that
3592 val64
|= (SWAPPER_CTRL_TXP_FE
|
3593 SWAPPER_CTRL_TXP_SE
|
3594 SWAPPER_CTRL_TXD_R_FE
|
3595 SWAPPER_CTRL_TXD_R_SE
|
3596 SWAPPER_CTRL_TXD_W_FE
|
3597 SWAPPER_CTRL_TXD_W_SE
|
3598 SWAPPER_CTRL_TXF_R_FE
|
3599 SWAPPER_CTRL_RXD_R_FE
|
3600 SWAPPER_CTRL_RXD_R_SE
|
3601 SWAPPER_CTRL_RXD_W_FE
|
3602 SWAPPER_CTRL_RXD_W_SE
|
3603 SWAPPER_CTRL_RXF_W_FE
|
3604 SWAPPER_CTRL_XMSI_FE
|
3605 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3606 if (sp
->config
.intr_type
== INTA
)
3607 val64
|= SWAPPER_CTRL_XMSI_SE
;
3608 writeq(val64
, &bar0
->swapper_ctrl
);
3610 val64
= readq(&bar0
->swapper_ctrl
);
3613 * Verifying if endian settings are accurate by reading a
3614 * feedback register.
3616 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3617 if (val64
!= 0x0123456789ABCDEFULL
) {
3618 /* Endian settings are incorrect, calls for another dekko. */
3619 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3621 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3622 (unsigned long long) val64
);
3629 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3631 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3633 int ret
= 0, cnt
= 0;
3636 val64
= readq(&bar0
->xmsi_access
);
3637 if (!(val64
& s2BIT(15)))
3643 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3650 static void restore_xmsi_data(struct s2io_nic
*nic
)
3652 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3656 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3657 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3658 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3659 val64
= (s2BIT(7) | s2BIT(15) | vBIT(i
, 26, 6));
3660 writeq(val64
, &bar0
->xmsi_access
);
3661 if (wait_for_msix_trans(nic
, i
)) {
3662 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3668 static void store_xmsi_data(struct s2io_nic
*nic
)
3670 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3671 u64 val64
, addr
, data
;
3674 /* Store and display */
3675 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3676 val64
= (s2BIT(15) | vBIT(i
, 26, 6));
3677 writeq(val64
, &bar0
->xmsi_access
);
3678 if (wait_for_msix_trans(nic
, i
)) {
3679 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3682 addr
= readq(&bar0
->xmsi_address
);
3683 data
= readq(&bar0
->xmsi_data
);
3685 nic
->msix_info
[i
].addr
= addr
;
3686 nic
->msix_info
[i
].data
= data
;
3691 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3693 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3695 u16 msi_control
; /* Temp variable */
3696 int ret
, i
, j
, msix_indx
= 1;
3698 nic
->entries
= kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct msix_entry
),
3700 if (!nic
->entries
) {
3701 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3703 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3706 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3707 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3710 kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct s2io_msix_entry
),
3712 if (!nic
->s2io_entries
) {
3713 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3715 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3716 kfree(nic
->entries
);
3717 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3718 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3721 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3722 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3724 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3725 nic
->entries
[i
].entry
= i
;
3726 nic
->s2io_entries
[i
].entry
= i
;
3727 nic
->s2io_entries
[i
].arg
= NULL
;
3728 nic
->s2io_entries
[i
].in_use
= 0;
3731 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3732 for (i
=0; i
<nic
->config
.tx_fifo_num
; i
++, msix_indx
++) {
3733 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3734 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.fifos
[i
];
3735 nic
->s2io_entries
[msix_indx
].type
= MSIX_FIFO_TYPE
;
3736 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3738 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3740 rx_mat
= readq(&bar0
->rx_mat
);
3741 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3742 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3743 nic
->s2io_entries
[msix_indx
].arg
3744 = &nic
->mac_control
.rings
[j
];
3745 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3746 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3748 writeq(rx_mat
, &bar0
->rx_mat
);
3750 nic
->avail_msix_vectors
= 0;
3751 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, MAX_REQUESTED_MSI_X
);
3752 /* We fail init if error or we get less vectors than min required */
3753 if (ret
>= (nic
->config
.tx_fifo_num
+ nic
->config
.rx_ring_num
+ 1)) {
3754 nic
->avail_msix_vectors
= ret
;
3755 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, ret
);
3758 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3759 kfree(nic
->entries
);
3760 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3761 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3762 kfree(nic
->s2io_entries
);
3763 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3764 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3765 nic
->entries
= NULL
;
3766 nic
->s2io_entries
= NULL
;
3767 nic
->avail_msix_vectors
= 0;
3770 if (!nic
->avail_msix_vectors
)
3771 nic
->avail_msix_vectors
= MAX_REQUESTED_MSI_X
;
3774 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3775 * in the herc NIC. (Temp change, needs to be removed later)
3777 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3778 msi_control
|= 0x1; /* Enable MSI */
3779 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3784 /* Handle software interrupt used during MSI(X) test */
3785 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3787 struct s2io_nic
*sp
= dev_id
;
3789 sp
->msi_detected
= 1;
3790 wake_up(&sp
->msi_wait
);
3795 /* Test interrupt path by forcing a a software IRQ */
3796 static int s2io_test_msi(struct s2io_nic
*sp
)
3798 struct pci_dev
*pdev
= sp
->pdev
;
3799 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3803 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3806 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3807 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3811 init_waitqueue_head (&sp
->msi_wait
);
3812 sp
->msi_detected
= 0;
3814 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3815 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3816 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3817 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3818 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3820 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3822 if (!sp
->msi_detected
) {
3823 /* MSI(X) test failed, go back to INTx mode */
3824 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3825 "using MSI(X) during test\n", sp
->dev
->name
,
3831 free_irq(sp
->entries
[1].vector
, sp
);
3833 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3838 static void remove_msix_isr(struct s2io_nic
*sp
)
3843 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3844 if (sp
->s2io_entries
[i
].in_use
==
3845 MSIX_REGISTERED_SUCCESS
) {
3846 int vector
= sp
->entries
[i
].vector
;
3847 void *arg
= sp
->s2io_entries
[i
].arg
;
3848 free_irq(vector
, arg
);
3853 kfree(sp
->s2io_entries
);
3855 sp
->s2io_entries
= NULL
;
3857 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3858 msi_control
&= 0xFFFE; /* Disable MSI */
3859 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3861 pci_disable_msix(sp
->pdev
);
3864 static void remove_inta_isr(struct s2io_nic
*sp
)
3866 struct net_device
*dev
= sp
->dev
;
3868 free_irq(sp
->pdev
->irq
, dev
);
3871 /* ********************************************************* *
3872 * Functions defined below concern the OS part of the driver *
3873 * ********************************************************* */
3876 * s2io_open - open entry point of the driver
3877 * @dev : pointer to the device structure.
3879 * This function is the open entry point of the driver. It mainly calls a
3880 * function to allocate Rx buffers and inserts them into the buffer
3881 * descriptors and then enables the Rx part of the NIC.
3883 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3887 static int s2io_open(struct net_device
*dev
)
3889 struct s2io_nic
*sp
= dev
->priv
;
3893 * Make sure you have link off by default every time
3894 * Nic is initialized
3896 netif_carrier_off(dev
);
3897 sp
->last_link_state
= 0;
3899 if (sp
->config
.intr_type
== MSI_X
) {
3900 int ret
= s2io_enable_msi_x(sp
);
3903 ret
= s2io_test_msi(sp
);
3904 /* rollback MSI-X, will re-enable during add_isr() */
3905 remove_msix_isr(sp
);
3910 "%s: MSI-X requested but failed to enable\n",
3912 sp
->config
.intr_type
= INTA
;
3916 /* NAPI doesn't work well with MSI(X) */
3917 if (sp
->config
.intr_type
!= INTA
) {
3919 sp
->config
.napi
= 0;
3922 /* Initialize H/W and enable interrupts */
3923 err
= s2io_card_up(sp
);
3925 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3927 goto hw_init_failed
;
3930 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3931 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3934 goto hw_init_failed
;
3937 netif_start_queue(dev
);
3941 if (sp
->config
.intr_type
== MSI_X
) {
3944 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3945 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3947 if (sp
->s2io_entries
) {
3948 kfree(sp
->s2io_entries
);
3949 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3950 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3957 * s2io_close -close entry point of the driver
3958 * @dev : device pointer.
3960 * This is the stop entry point of the driver. It needs to undo exactly
3961 * whatever was done by the open entry point,thus it's usually referred to
3962 * as the close function.Among other things this function mainly stops the
3963 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3965 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3969 static int s2io_close(struct net_device
*dev
)
3971 struct s2io_nic
*sp
= dev
->priv
;
3972 struct config_param
*config
= &sp
->config
;
3976 /* Return if the device is already closed *
3977 * Can happen when s2io_card_up failed in change_mtu *
3979 if (!is_s2io_card_up(sp
))
3982 netif_stop_queue(dev
);
3984 /* delete all populated mac entries */
3985 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
3986 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
3987 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
3988 do_s2io_delete_unicast_mc(sp
, tmp64
);
3991 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3998 * s2io_xmit - Tx entry point of te driver
3999 * @skb : the socket buffer containing the Tx data.
4000 * @dev : device pointer.
4002 * This function is the Tx entry point of the driver. S2IO NIC supports
4003 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4004 * NOTE: when device cant queue the pkt,just the trans_start variable will
4007 * 0 on success & 1 on failure.
4010 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4012 struct s2io_nic
*sp
= dev
->priv
;
4013 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4016 struct TxFIFO_element __iomem
*tx_fifo
;
4017 unsigned long flags
= 0;
4019 int vlan_priority
= 0;
4020 struct fifo_info
*fifo
= NULL
;
4021 struct mac_info
*mac_control
;
4022 struct config_param
*config
;
4024 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
4026 mac_control
= &sp
->mac_control
;
4027 config
= &sp
->config
;
4029 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4031 if (unlikely(skb
->len
<= 0)) {
4032 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
4033 dev_kfree_skb_any(skb
);
4037 if (!is_s2io_card_up(sp
)) {
4038 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4045 /* Get Fifo number to Transmit based on vlan priority */
4046 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4047 vlan_tag
= vlan_tx_tag_get(skb
);
4048 vlan_priority
= vlan_tag
>> 13;
4049 queue
= config
->fifo_mapping
[vlan_priority
];
4052 fifo
= &mac_control
->fifos
[queue
];
4053 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4054 put_off
= (u16
) fifo
->tx_curr_put_info
.offset
;
4055 get_off
= (u16
) fifo
->tx_curr_get_info
.offset
;
4056 txdp
= (struct TxD
*) fifo
->list_info
[put_off
].list_virt_addr
;
4058 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4059 /* Avoid "put" pointer going beyond "get" pointer */
4060 if (txdp
->Host_Control
||
4061 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4062 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4063 netif_stop_queue(dev
);
4065 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4069 offload_type
= s2io_offload_type(skb
);
4070 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4071 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4072 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4074 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4076 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
4079 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4080 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4081 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4083 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4084 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4085 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4088 frg_len
= skb
->len
- skb
->data_len
;
4089 if (offload_type
== SKB_GSO_UDP
) {
4092 ufo_size
= s2io_udp_mss(skb
);
4094 txdp
->Control_1
|= TXD_UFO_EN
;
4095 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4096 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4098 fifo
->ufo_in_band_v
[put_off
] =
4099 (u64
)skb_shinfo(skb
)->ip6_frag_id
;
4101 fifo
->ufo_in_band_v
[put_off
] =
4102 (u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4104 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4105 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4106 fifo
->ufo_in_band_v
,
4107 sizeof(u64
), PCI_DMA_TODEVICE
);
4108 if((txdp
->Buffer_Pointer
== 0) ||
4109 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4110 goto pci_map_failed
;
4114 txdp
->Buffer_Pointer
= pci_map_single
4115 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
4116 if((txdp
->Buffer_Pointer
== 0) ||
4117 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4118 goto pci_map_failed
;
4120 txdp
->Host_Control
= (unsigned long) skb
;
4121 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4122 if (offload_type
== SKB_GSO_UDP
)
4123 txdp
->Control_1
|= TXD_UFO_EN
;
4125 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4126 /* For fragmented SKB. */
4127 for (i
= 0; i
< frg_cnt
; i
++) {
4128 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4129 /* A '0' length fragment will be ignored */
4133 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4134 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4135 frag
->size
, PCI_DMA_TODEVICE
);
4136 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4137 if (offload_type
== SKB_GSO_UDP
)
4138 txdp
->Control_1
|= TXD_UFO_EN
;
4140 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4142 if (offload_type
== SKB_GSO_UDP
)
4143 frg_cnt
++; /* as Txd0 was used for inband header */
4145 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4146 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4147 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4149 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4152 val64
|= TX_FIFO_SPECIAL_FUNC
;
4154 writeq(val64
, &tx_fifo
->List_Control
);
4159 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4161 fifo
->tx_curr_put_info
.offset
= put_off
;
4163 /* Avoid "put" pointer going beyond "get" pointer */
4164 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4165 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4167 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4169 netif_stop_queue(dev
);
4171 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4172 dev
->trans_start
= jiffies
;
4173 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4175 if (sp
->config
.intr_type
== MSI_X
)
4176 tx_intr_handler(fifo
);
4180 stats
->pci_map_fail_cnt
++;
4181 netif_stop_queue(dev
);
4182 stats
->mem_freed
+= skb
->truesize
;
4184 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4189 s2io_alarm_handle(unsigned long data
)
4191 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4192 struct net_device
*dev
= sp
->dev
;
4194 s2io_handle_errors(dev
);
4195 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4198 static int s2io_chk_rx_buffers(struct s2io_nic
*sp
, int rng_n
)
4200 int rxb_size
, level
;
4203 rxb_size
= atomic_read(&sp
->rx_bufs_left
[rng_n
]);
4204 level
= rx_buffer_level(sp
, rxb_size
, rng_n
);
4206 if ((level
== PANIC
) && (!TASKLET_IN_USE
)) {
4208 DBG_PRINT(INTR_DBG
, "%s: Rx BD hit ", __FUNCTION__
);
4209 DBG_PRINT(INTR_DBG
, "PANIC levels\n");
4210 if ((ret
= fill_rx_buffers(sp
, rng_n
)) == -ENOMEM
) {
4211 DBG_PRINT(INFO_DBG
, "Out of memory in %s",
4213 clear_bit(0, (&sp
->tasklet_status
));
4216 clear_bit(0, (&sp
->tasklet_status
));
4217 } else if (level
== LOW
)
4218 tasklet_schedule(&sp
->task
);
4220 } else if (fill_rx_buffers(sp
, rng_n
) == -ENOMEM
) {
4221 DBG_PRINT(INFO_DBG
, "%s:Out of memory", sp
->dev
->name
);
4222 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
4227 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4229 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4230 struct s2io_nic
*sp
= ring
->nic
;
4232 if (!is_s2io_card_up(sp
))
4235 rx_intr_handler(ring
);
4236 s2io_chk_rx_buffers(sp
, ring
->ring_no
);
4241 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4243 struct fifo_info
*fifo
= (struct fifo_info
*)dev_id
;
4244 struct s2io_nic
*sp
= fifo
->nic
;
4246 if (!is_s2io_card_up(sp
))
4249 tx_intr_handler(fifo
);
4252 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4254 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4257 val64
= readq(&bar0
->pic_int_status
);
4258 if (val64
& PIC_INT_GPIO
) {
4259 val64
= readq(&bar0
->gpio_int_reg
);
4260 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4261 (val64
& GPIO_INT_REG_LINK_UP
)) {
4263 * This is unstable state so clear both up/down
4264 * interrupt and adapter to re-evaluate the link state.
4266 val64
|= GPIO_INT_REG_LINK_DOWN
;
4267 val64
|= GPIO_INT_REG_LINK_UP
;
4268 writeq(val64
, &bar0
->gpio_int_reg
);
4269 val64
= readq(&bar0
->gpio_int_mask
);
4270 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4271 GPIO_INT_MASK_LINK_DOWN
);
4272 writeq(val64
, &bar0
->gpio_int_mask
);
4274 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4275 val64
= readq(&bar0
->adapter_status
);
4276 /* Enable Adapter */
4277 val64
= readq(&bar0
->adapter_control
);
4278 val64
|= ADAPTER_CNTL_EN
;
4279 writeq(val64
, &bar0
->adapter_control
);
4280 val64
|= ADAPTER_LED_ON
;
4281 writeq(val64
, &bar0
->adapter_control
);
4282 if (!sp
->device_enabled_once
)
4283 sp
->device_enabled_once
= 1;
4285 s2io_link(sp
, LINK_UP
);
4287 * unmask link down interrupt and mask link-up
4290 val64
= readq(&bar0
->gpio_int_mask
);
4291 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4292 val64
|= GPIO_INT_MASK_LINK_UP
;
4293 writeq(val64
, &bar0
->gpio_int_mask
);
4295 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4296 val64
= readq(&bar0
->adapter_status
);
4297 s2io_link(sp
, LINK_DOWN
);
4298 /* Link is down so unmaks link up interrupt */
4299 val64
= readq(&bar0
->gpio_int_mask
);
4300 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4301 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4302 writeq(val64
, &bar0
->gpio_int_mask
);
4305 val64
= readq(&bar0
->adapter_control
);
4306 val64
= val64
&(~ADAPTER_LED_ON
);
4307 writeq(val64
, &bar0
->adapter_control
);
4310 val64
= readq(&bar0
->gpio_int_mask
);
4314 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4315 * @value: alarm bits
4316 * @addr: address value
4317 * @cnt: counter variable
4318 * Description: Check for alarm and increment the counter
4320 * 1 - if alarm bit set
4321 * 0 - if alarm bit is not set
4323 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
* addr
,
4324 unsigned long long *cnt
)
4327 val64
= readq(addr
);
4328 if ( val64
& value
) {
4329 writeq(val64
, addr
);
4338 * s2io_handle_errors - Xframe error indication handler
4339 * @nic: device private variable
4340 * Description: Handle alarms such as loss of link, single or
4341 * double ECC errors, critical and serious errors.
4345 static void s2io_handle_errors(void * dev_id
)
4347 struct net_device
*dev
= (struct net_device
*) dev_id
;
4348 struct s2io_nic
*sp
= dev
->priv
;
4349 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4350 u64 temp64
= 0,val64
=0;
4353 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4354 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4356 if (!is_s2io_card_up(sp
))
4359 if (pci_channel_offline(sp
->pdev
))
4362 memset(&sw_stat
->ring_full_cnt
, 0,
4363 sizeof(sw_stat
->ring_full_cnt
));
4365 /* Handling the XPAK counters update */
4366 if(stats
->xpak_timer_count
< 72000) {
4367 /* waiting for an hour */
4368 stats
->xpak_timer_count
++;
4370 s2io_updt_xpak_counter(dev
);
4371 /* reset the count to zero */
4372 stats
->xpak_timer_count
= 0;
4375 /* Handling link status change error Intr */
4376 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4377 val64
= readq(&bar0
->mac_rmac_err_reg
);
4378 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4379 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4380 schedule_work(&sp
->set_link_task
);
4383 /* In case of a serious error, the device will be Reset. */
4384 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4385 &sw_stat
->serious_err_cnt
))
4388 /* Check for data parity error */
4389 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4390 &sw_stat
->parity_err_cnt
))
4393 /* Check for ring full counter */
4394 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4395 val64
= readq(&bar0
->ring_bump_counter1
);
4396 for (i
=0; i
<4; i
++) {
4397 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4398 temp64
>>= 64 - ((i
+1)*16);
4399 sw_stat
->ring_full_cnt
[i
] += temp64
;
4402 val64
= readq(&bar0
->ring_bump_counter2
);
4403 for (i
=0; i
<4; i
++) {
4404 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4405 temp64
>>= 64 - ((i
+1)*16);
4406 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4410 val64
= readq(&bar0
->txdma_int_status
);
4411 /*check for pfc_err*/
4412 if (val64
& TXDMA_PFC_INT
) {
4413 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4414 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4415 PFC_PCIX_ERR
, &bar0
->pfc_err_reg
,
4416 &sw_stat
->pfc_err_cnt
))
4418 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
, &bar0
->pfc_err_reg
,
4419 &sw_stat
->pfc_err_cnt
);
4422 /*check for tda_err*/
4423 if (val64
& TXDMA_TDA_INT
) {
4424 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
4425 TDA_SM1_ERR_ALARM
, &bar0
->tda_err_reg
,
4426 &sw_stat
->tda_err_cnt
))
4428 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4429 &bar0
->tda_err_reg
, &sw_stat
->tda_err_cnt
);
4431 /*check for pcc_err*/
4432 if (val64
& TXDMA_PCC_INT
) {
4433 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
4434 | PCC_N_SERR
| PCC_6_COF_OV_ERR
4435 | PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
4436 | PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
4437 | PCC_TXB_ECC_DB_ERR
, &bar0
->pcc_err_reg
,
4438 &sw_stat
->pcc_err_cnt
))
4440 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4441 &bar0
->pcc_err_reg
, &sw_stat
->pcc_err_cnt
);
4444 /*check for tti_err*/
4445 if (val64
& TXDMA_TTI_INT
) {
4446 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
, &bar0
->tti_err_reg
,
4447 &sw_stat
->tti_err_cnt
))
4449 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4450 &bar0
->tti_err_reg
, &sw_stat
->tti_err_cnt
);
4453 /*check for lso_err*/
4454 if (val64
& TXDMA_LSO_INT
) {
4455 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
4456 | LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4457 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
))
4459 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4460 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
);
4463 /*check for tpa_err*/
4464 if (val64
& TXDMA_TPA_INT
) {
4465 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
, &bar0
->tpa_err_reg
,
4466 &sw_stat
->tpa_err_cnt
))
4468 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
, &bar0
->tpa_err_reg
,
4469 &sw_stat
->tpa_err_cnt
);
4472 /*check for sm_err*/
4473 if (val64
& TXDMA_SM_INT
) {
4474 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
, &bar0
->sm_err_reg
,
4475 &sw_stat
->sm_err_cnt
))
4479 val64
= readq(&bar0
->mac_int_status
);
4480 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4481 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4482 &bar0
->mac_tmac_err_reg
,
4483 &sw_stat
->mac_tmac_err_cnt
))
4485 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
4486 | TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
4487 &bar0
->mac_tmac_err_reg
,
4488 &sw_stat
->mac_tmac_err_cnt
);
4491 val64
= readq(&bar0
->xgxs_int_status
);
4492 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4493 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4494 &bar0
->xgxs_txgxs_err_reg
,
4495 &sw_stat
->xgxs_txgxs_err_cnt
))
4497 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4498 &bar0
->xgxs_txgxs_err_reg
,
4499 &sw_stat
->xgxs_txgxs_err_cnt
);
4502 val64
= readq(&bar0
->rxdma_int_status
);
4503 if (val64
& RXDMA_INT_RC_INT_M
) {
4504 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
4505 | RC_PRCn_SM_ERR_ALARM
|RC_FTC_SM_ERR_ALARM
,
4506 &bar0
->rc_err_reg
, &sw_stat
->rc_err_cnt
))
4508 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
4509 | RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4510 &sw_stat
->rc_err_cnt
);
4511 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
4512 | PRC_PCI_AB_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4513 &sw_stat
->prc_pcix_err_cnt
))
4515 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
| PRC_PCI_DP_WR_Rn
4516 | PRC_PCI_DP_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4517 &sw_stat
->prc_pcix_err_cnt
);
4520 if (val64
& RXDMA_INT_RPA_INT_M
) {
4521 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4522 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
))
4524 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4525 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
);
4528 if (val64
& RXDMA_INT_RDA_INT_M
) {
4529 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4530 | RDA_FRM_ECC_DB_N_AERR
| RDA_SM1_ERR_ALARM
4531 | RDA_SM0_ERR_ALARM
| RDA_RXD_ECC_DB_SERR
,
4532 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
))
4534 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
| RDA_FRM_ECC_SG_ERR
4535 | RDA_MISC_ERR
| RDA_PCIX_ERR
,
4536 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
);
4539 if (val64
& RXDMA_INT_RTI_INT_M
) {
4540 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
, &bar0
->rti_err_reg
,
4541 &sw_stat
->rti_err_cnt
))
4543 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4544 &bar0
->rti_err_reg
, &sw_stat
->rti_err_cnt
);
4547 val64
= readq(&bar0
->mac_int_status
);
4548 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4549 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4550 &bar0
->mac_rmac_err_reg
,
4551 &sw_stat
->mac_rmac_err_cnt
))
4553 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|RMAC_SINGLE_ECC_ERR
|
4554 RMAC_DOUBLE_ECC_ERR
, &bar0
->mac_rmac_err_reg
,
4555 &sw_stat
->mac_rmac_err_cnt
);
4558 val64
= readq(&bar0
->xgxs_int_status
);
4559 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4560 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4561 &bar0
->xgxs_rxgxs_err_reg
,
4562 &sw_stat
->xgxs_rxgxs_err_cnt
))
4566 val64
= readq(&bar0
->mc_int_status
);
4567 if(val64
& MC_INT_STATUS_MC_INT
) {
4568 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
, &bar0
->mc_err_reg
,
4569 &sw_stat
->mc_err_cnt
))
4572 /* Handling Ecc errors */
4573 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4574 writeq(val64
, &bar0
->mc_err_reg
);
4575 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4576 sw_stat
->double_ecc_errs
++;
4577 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4579 * Reset XframeI only if critical error
4582 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4583 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4587 sw_stat
->single_ecc_errs
++;
4593 netif_stop_queue(dev
);
4594 schedule_work(&sp
->rst_timer_task
);
4595 sw_stat
->soft_reset_cnt
++;
4600 * s2io_isr - ISR handler of the device .
4601 * @irq: the irq of the device.
4602 * @dev_id: a void pointer to the dev structure of the NIC.
4603 * Description: This function is the ISR handler of the device. It
4604 * identifies the reason for the interrupt and calls the relevant
4605 * service routines. As a contongency measure, this ISR allocates the
4606 * recv buffers, if their numbers are below the panic value which is
4607 * presently set to 25% of the original number of rcv buffers allocated.
4609 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4610 * IRQ_NONE: will be returned if interrupt is not from our device
4612 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4614 struct net_device
*dev
= (struct net_device
*) dev_id
;
4615 struct s2io_nic
*sp
= dev
->priv
;
4616 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4619 struct mac_info
*mac_control
;
4620 struct config_param
*config
;
4622 /* Pretend we handled any irq's from a disconnected card */
4623 if (pci_channel_offline(sp
->pdev
))
4626 if (!is_s2io_card_up(sp
))
4629 mac_control
= &sp
->mac_control
;
4630 config
= &sp
->config
;
4633 * Identify the cause for interrupt and call the appropriate
4634 * interrupt handler. Causes for the interrupt could be;
4639 reason
= readq(&bar0
->general_int_status
);
4641 if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4642 /* Nothing much can be done. Get out */
4646 if (reason
& (GEN_INTR_RXTRAFFIC
|
4647 GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
))
4649 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4652 if (reason
& GEN_INTR_RXTRAFFIC
) {
4653 if (likely(netif_rx_schedule_prep(dev
,
4655 __netif_rx_schedule(dev
, &sp
->napi
);
4656 writeq(S2IO_MINUS_ONE
,
4657 &bar0
->rx_traffic_mask
);
4659 writeq(S2IO_MINUS_ONE
,
4660 &bar0
->rx_traffic_int
);
4664 * rx_traffic_int reg is an R1 register, writing all 1's
4665 * will ensure that the actual interrupt causing bit
4666 * get's cleared and hence a read can be avoided.
4668 if (reason
& GEN_INTR_RXTRAFFIC
)
4669 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4671 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4672 rx_intr_handler(&mac_control
->rings
[i
]);
4676 * tx_traffic_int reg is an R1 register, writing all 1's
4677 * will ensure that the actual interrupt causing bit get's
4678 * cleared and hence a read can be avoided.
4680 if (reason
& GEN_INTR_TXTRAFFIC
)
4681 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4683 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4684 tx_intr_handler(&mac_control
->fifos
[i
]);
4686 if (reason
& GEN_INTR_TXPIC
)
4687 s2io_txpic_intr_handle(sp
);
4690 * Reallocate the buffers from the interrupt handler itself.
4692 if (!config
->napi
) {
4693 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4694 s2io_chk_rx_buffers(sp
, i
);
4696 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4697 readl(&bar0
->general_int_status
);
4703 /* The interrupt was not raised by us */
4713 static void s2io_updt_stats(struct s2io_nic
*sp
)
4715 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4719 if (is_s2io_card_up(sp
)) {
4720 /* Apprx 30us on a 133 MHz bus */
4721 val64
= SET_UPDT_CLICKS(10) |
4722 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4723 writeq(val64
, &bar0
->stat_cfg
);
4726 val64
= readq(&bar0
->stat_cfg
);
4727 if (!(val64
& s2BIT(0)))
4731 break; /* Updt failed */
4737 * s2io_get_stats - Updates the device statistics structure.
4738 * @dev : pointer to the device structure.
4740 * This function updates the device statistics structure in the s2io_nic
4741 * structure and returns a pointer to the same.
4743 * pointer to the updated net_device_stats structure.
4746 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4748 struct s2io_nic
*sp
= dev
->priv
;
4749 struct mac_info
*mac_control
;
4750 struct config_param
*config
;
4753 mac_control
= &sp
->mac_control
;
4754 config
= &sp
->config
;
4756 /* Configure Stats for immediate updt */
4757 s2io_updt_stats(sp
);
4759 sp
->stats
.tx_packets
=
4760 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4761 sp
->stats
.tx_errors
=
4762 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4763 sp
->stats
.rx_errors
=
4764 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4765 sp
->stats
.multicast
=
4766 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4767 sp
->stats
.rx_length_errors
=
4768 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4770 return (&sp
->stats
);
4774 * s2io_set_multicast - entry point for multicast address enable/disable.
4775 * @dev : pointer to the device structure
4777 * This function is a driver entry point which gets called by the kernel
4778 * whenever multicast addresses must be enabled/disabled. This also gets
4779 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4780 * determine, if multicast address must be enabled or if promiscuous mode
4781 * is to be disabled etc.
4786 static void s2io_set_multicast(struct net_device
*dev
)
4789 struct dev_mc_list
*mclist
;
4790 struct s2io_nic
*sp
= dev
->priv
;
4791 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4792 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4794 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4796 struct config_param
*config
= &sp
->config
;
4798 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4799 /* Enable all Multicast addresses */
4800 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4801 &bar0
->rmac_addr_data0_mem
);
4802 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4803 &bar0
->rmac_addr_data1_mem
);
4804 val64
= RMAC_ADDR_CMD_MEM_WE
|
4805 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4806 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4807 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4808 /* Wait till command completes */
4809 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4810 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4814 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4815 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4816 /* Disable all Multicast addresses */
4817 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4818 &bar0
->rmac_addr_data0_mem
);
4819 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4820 &bar0
->rmac_addr_data1_mem
);
4821 val64
= RMAC_ADDR_CMD_MEM_WE
|
4822 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4823 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4824 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4825 /* Wait till command completes */
4826 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4827 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4831 sp
->all_multi_pos
= 0;
4834 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4835 /* Put the NIC into promiscuous mode */
4836 add
= &bar0
->mac_cfg
;
4837 val64
= readq(&bar0
->mac_cfg
);
4838 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4840 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4841 writel((u32
) val64
, add
);
4842 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4843 writel((u32
) (val64
>> 32), (add
+ 4));
4845 if (vlan_tag_strip
!= 1) {
4846 val64
= readq(&bar0
->rx_pa_cfg
);
4847 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4848 writeq(val64
, &bar0
->rx_pa_cfg
);
4849 vlan_strip_flag
= 0;
4852 val64
= readq(&bar0
->mac_cfg
);
4853 sp
->promisc_flg
= 1;
4854 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4856 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4857 /* Remove the NIC from promiscuous mode */
4858 add
= &bar0
->mac_cfg
;
4859 val64
= readq(&bar0
->mac_cfg
);
4860 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
4862 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4863 writel((u32
) val64
, add
);
4864 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4865 writel((u32
) (val64
>> 32), (add
+ 4));
4867 if (vlan_tag_strip
!= 0) {
4868 val64
= readq(&bar0
->rx_pa_cfg
);
4869 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
4870 writeq(val64
, &bar0
->rx_pa_cfg
);
4871 vlan_strip_flag
= 1;
4874 val64
= readq(&bar0
->mac_cfg
);
4875 sp
->promisc_flg
= 0;
4876 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
4880 /* Update individual M_CAST address list */
4881 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
4883 (config
->max_mc_addr
- config
->max_mac_addr
)) {
4884 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
4886 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
4887 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
4891 prev_cnt
= sp
->mc_addr_count
;
4892 sp
->mc_addr_count
= dev
->mc_count
;
4894 /* Clear out the previous list of Mc in the H/W. */
4895 for (i
= 0; i
< prev_cnt
; i
++) {
4896 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4897 &bar0
->rmac_addr_data0_mem
);
4898 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4899 &bar0
->rmac_addr_data1_mem
);
4900 val64
= RMAC_ADDR_CMD_MEM_WE
|
4901 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4902 RMAC_ADDR_CMD_MEM_OFFSET
4903 (config
->mc_start_offset
+ i
);
4904 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4906 /* Wait for command completes */
4907 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4908 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4910 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4912 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4917 /* Create the new Rx filter list and update the same in H/W. */
4918 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
4919 i
++, mclist
= mclist
->next
) {
4920 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
4923 for (j
= 0; j
< ETH_ALEN
; j
++) {
4924 mac_addr
|= mclist
->dmi_addr
[j
];
4928 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4929 &bar0
->rmac_addr_data0_mem
);
4930 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4931 &bar0
->rmac_addr_data1_mem
);
4932 val64
= RMAC_ADDR_CMD_MEM_WE
|
4933 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4934 RMAC_ADDR_CMD_MEM_OFFSET
4935 (i
+ config
->mc_start_offset
);
4936 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4938 /* Wait for command completes */
4939 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4940 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4942 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4944 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4951 /* read from CAM unicast & multicast addresses and store it in
4952 * def_mac_addr structure
4954 void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
4958 struct config_param
*config
= &sp
->config
;
4960 /* store unicast & multicast mac addresses */
4961 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
4962 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
4963 /* if read fails disable the entry */
4964 if (mac_addr
== FAILURE
)
4965 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
4966 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
4970 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
4971 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
4974 struct config_param
*config
= &sp
->config
;
4975 /* restore unicast mac address */
4976 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
4977 do_s2io_prog_unicast(sp
->dev
,
4978 sp
->def_mac_addr
[offset
].mac_addr
);
4980 /* restore multicast mac address */
4981 for (offset
= config
->mc_start_offset
;
4982 offset
< config
->max_mc_addr
; offset
++)
4983 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
4986 /* add a multicast MAC address to CAM */
4987 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
4991 struct config_param
*config
= &sp
->config
;
4993 for (i
= 0; i
< ETH_ALEN
; i
++) {
4995 mac_addr
|= addr
[i
];
4997 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5000 /* check if the multicast mac already preset in CAM */
5001 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5003 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5004 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5007 if (tmp64
== mac_addr
)
5010 if (i
== config
->max_mc_addr
) {
5012 "CAM full no space left for multicast MAC\n");
5015 /* Update the internal structure with this new mac address */
5016 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5018 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5021 /* add MAC address to CAM */
5022 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5025 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5027 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5028 &bar0
->rmac_addr_data0_mem
);
5031 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5032 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5033 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5035 /* Wait till command completes */
5036 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5037 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5039 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5044 /* deletes a specified unicast/multicast mac entry from CAM */
5045 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5048 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5049 struct config_param
*config
= &sp
->config
;
5052 offset
< config
->max_mc_addr
; offset
++) {
5053 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5054 if (tmp64
== addr
) {
5055 /* disable the entry by writing 0xffffffffffffULL */
5056 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5058 /* store the new mac list from CAM */
5059 do_s2io_store_unicast_mc(sp
);
5063 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5064 (unsigned long long)addr
);
5068 /* read mac entries from CAM */
5069 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5071 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5072 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5076 RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5077 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5078 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5080 /* Wait till command completes */
5081 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5082 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5084 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5087 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5088 return (tmp64
>> 16);
5092 * s2io_set_mac_addr driver entry point
5095 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5097 struct sockaddr
*addr
= p
;
5099 if (!is_valid_ether_addr(addr
->sa_data
))
5102 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5104 /* store the MAC address in CAM */
5105 return (do_s2io_prog_unicast(dev
, dev
->dev_addr
));
5108 * do_s2io_prog_unicast - Programs the Xframe mac address
5109 * @dev : pointer to the device structure.
5110 * @addr: a uchar pointer to the new mac address which is to be set.
5111 * Description : This procedure will program the Xframe to receive
5112 * frames with new Mac Address
5113 * Return value: SUCCESS on success and an appropriate (-)ve integer
5114 * as defined in errno.h file on failure.
5117 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5119 struct s2io_nic
*sp
= dev
->priv
;
5120 register u64 mac_addr
= 0, perm_addr
= 0;
5123 struct config_param
*config
= &sp
->config
;
5126 * Set the new MAC address as the new unicast filter and reflect this
5127 * change on the device address registered with the OS. It will be
5130 for (i
= 0; i
< ETH_ALEN
; i
++) {
5132 mac_addr
|= addr
[i
];
5134 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5137 /* check if the dev_addr is different than perm_addr */
5138 if (mac_addr
== perm_addr
)
5141 /* check if the mac already preset in CAM */
5142 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5143 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5144 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5147 if (tmp64
== mac_addr
) {
5149 "MAC addr:0x%llx already present in CAM\n",
5150 (unsigned long long)mac_addr
);
5154 if (i
== config
->max_mac_addr
) {
5155 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5158 /* Update the internal structure with this new mac address */
5159 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5160 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5164 * s2io_ethtool_sset - Sets different link parameters.
5165 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5166 * @info: pointer to the structure with parameters given by ethtool to set
5169 * The function sets different link parameters provided by the user onto
5175 static int s2io_ethtool_sset(struct net_device
*dev
,
5176 struct ethtool_cmd
*info
)
5178 struct s2io_nic
*sp
= dev
->priv
;
5179 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5180 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
5183 s2io_close(sp
->dev
);
5191 * s2io_ethtol_gset - Return link specific information.
5192 * @sp : private member of the device structure, pointer to the
5193 * s2io_nic structure.
5194 * @info : pointer to the structure with parameters given by ethtool
5195 * to return link information.
5197 * Returns link specific information like speed, duplex etc.. to ethtool.
5199 * return 0 on success.
5202 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5204 struct s2io_nic
*sp
= dev
->priv
;
5205 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5206 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5207 info
->port
= PORT_FIBRE
;
5209 /* info->transceiver */
5210 info
->transceiver
= XCVR_EXTERNAL
;
5212 if (netif_carrier_ok(sp
->dev
)) {
5213 info
->speed
= 10000;
5214 info
->duplex
= DUPLEX_FULL
;
5220 info
->autoneg
= AUTONEG_DISABLE
;
5225 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5226 * @sp : private member of the device structure, which is a pointer to the
5227 * s2io_nic structure.
5228 * @info : pointer to the structure with parameters given by ethtool to
5229 * return driver information.
5231 * Returns driver specefic information like name, version etc.. to ethtool.
5236 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5237 struct ethtool_drvinfo
*info
)
5239 struct s2io_nic
*sp
= dev
->priv
;
5241 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5242 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5243 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5244 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5245 info
->regdump_len
= XENA_REG_SPACE
;
5246 info
->eedump_len
= XENA_EEPROM_SPACE
;
5250 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5251 * @sp: private member of the device structure, which is a pointer to the
5252 * s2io_nic structure.
5253 * @regs : pointer to the structure with parameters given by ethtool for
5254 * dumping the registers.
5255 * @reg_space: The input argumnet into which all the registers are dumped.
5257 * Dumps the entire register space of xFrame NIC into the user given
5263 static void s2io_ethtool_gregs(struct net_device
*dev
,
5264 struct ethtool_regs
*regs
, void *space
)
5268 u8
*reg_space
= (u8
*) space
;
5269 struct s2io_nic
*sp
= dev
->priv
;
5271 regs
->len
= XENA_REG_SPACE
;
5272 regs
->version
= sp
->pdev
->subsystem_device
;
5274 for (i
= 0; i
< regs
->len
; i
+= 8) {
5275 reg
= readq(sp
->bar0
+ i
);
5276 memcpy((reg_space
+ i
), ®
, 8);
5281 * s2io_phy_id - timer function that alternates adapter LED.
5282 * @data : address of the private member of the device structure, which
5283 * is a pointer to the s2io_nic structure, provided as an u32.
5284 * Description: This is actually the timer function that alternates the
5285 * adapter LED bit of the adapter control bit to set/reset every time on
5286 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5287 * once every second.
5289 static void s2io_phy_id(unsigned long data
)
5291 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
5292 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5296 subid
= sp
->pdev
->subsystem_device
;
5297 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5298 ((subid
& 0xFF) >= 0x07)) {
5299 val64
= readq(&bar0
->gpio_control
);
5300 val64
^= GPIO_CTRL_GPIO_0
;
5301 writeq(val64
, &bar0
->gpio_control
);
5303 val64
= readq(&bar0
->adapter_control
);
5304 val64
^= ADAPTER_LED_ON
;
5305 writeq(val64
, &bar0
->adapter_control
);
5308 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5312 * s2io_ethtool_idnic - To physically identify the nic on the system.
5313 * @sp : private member of the device structure, which is a pointer to the
5314 * s2io_nic structure.
5315 * @id : pointer to the structure with identification parameters given by
5317 * Description: Used to physically identify the NIC on the system.
5318 * The Link LED will blink for a time specified by the user for
5320 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5321 * identification is possible only if it's link is up.
5323 * int , returns 0 on success
5326 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5328 u64 val64
= 0, last_gpio_ctrl_val
;
5329 struct s2io_nic
*sp
= dev
->priv
;
5330 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5333 subid
= sp
->pdev
->subsystem_device
;
5334 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5335 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
5336 ((subid
& 0xFF) < 0x07)) {
5337 val64
= readq(&bar0
->adapter_control
);
5338 if (!(val64
& ADAPTER_CNTL_EN
)) {
5340 "Adapter Link down, cannot blink LED\n");
5344 if (sp
->id_timer
.function
== NULL
) {
5345 init_timer(&sp
->id_timer
);
5346 sp
->id_timer
.function
= s2io_phy_id
;
5347 sp
->id_timer
.data
= (unsigned long) sp
;
5349 mod_timer(&sp
->id_timer
, jiffies
);
5351 msleep_interruptible(data
* HZ
);
5353 msleep_interruptible(MAX_FLICKER_TIME
);
5354 del_timer_sync(&sp
->id_timer
);
5356 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5357 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5358 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5364 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5365 struct ethtool_ringparam
*ering
)
5367 struct s2io_nic
*sp
= dev
->priv
;
5368 int i
,tx_desc_count
=0,rx_desc_count
=0;
5370 if (sp
->rxd_mode
== RXD_MODE_1
)
5371 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5372 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5373 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5375 ering
->tx_max_pending
= MAX_TX_DESC
;
5376 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5377 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5379 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
5380 ering
->tx_pending
= tx_desc_count
;
5382 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5383 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5385 ering
->rx_pending
= rx_desc_count
;
5387 ering
->rx_mini_max_pending
= 0;
5388 ering
->rx_mini_pending
= 0;
5389 if(sp
->rxd_mode
== RXD_MODE_1
)
5390 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5391 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5392 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5393 ering
->rx_jumbo_pending
= rx_desc_count
;
5397 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5398 * @sp : private member of the device structure, which is a pointer to the
5399 * s2io_nic structure.
5400 * @ep : pointer to the structure with pause parameters given by ethtool.
5402 * Returns the Pause frame generation and reception capability of the NIC.
5406 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5407 struct ethtool_pauseparam
*ep
)
5410 struct s2io_nic
*sp
= dev
->priv
;
5411 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5413 val64
= readq(&bar0
->rmac_pause_cfg
);
5414 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5415 ep
->tx_pause
= TRUE
;
5416 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5417 ep
->rx_pause
= TRUE
;
5418 ep
->autoneg
= FALSE
;
5422 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5423 * @sp : private member of the device structure, which is a pointer to the
5424 * s2io_nic structure.
5425 * @ep : pointer to the structure with pause parameters given by ethtool.
5427 * It can be used to set or reset Pause frame generation or reception
5428 * support of the NIC.
5430 * int, returns 0 on Success
5433 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5434 struct ethtool_pauseparam
*ep
)
5437 struct s2io_nic
*sp
= dev
->priv
;
5438 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5440 val64
= readq(&bar0
->rmac_pause_cfg
);
5442 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5444 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5446 val64
|= RMAC_PAUSE_RX_ENABLE
;
5448 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5449 writeq(val64
, &bar0
->rmac_pause_cfg
);
5454 * read_eeprom - reads 4 bytes of data from user given offset.
5455 * @sp : private member of the device structure, which is a pointer to the
5456 * s2io_nic structure.
5457 * @off : offset at which the data must be written
5458 * @data : Its an output parameter where the data read at the given
5461 * Will read 4 bytes of data from the user given offset and return the
5463 * NOTE: Will allow to read only part of the EEPROM visible through the
5466 * -1 on failure and 0 on success.
5469 #define S2IO_DEV_ID 5
5470 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
5475 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5477 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5478 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5479 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
5480 I2C_CONTROL_CNTL_START
;
5481 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5483 while (exit_cnt
< 5) {
5484 val64
= readq(&bar0
->i2c_control
);
5485 if (I2C_CONTROL_CNTL_END(val64
)) {
5486 *data
= I2C_CONTROL_GET_DATA(val64
);
5495 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5496 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5497 SPI_CONTROL_BYTECNT(0x3) |
5498 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5499 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5500 val64
|= SPI_CONTROL_REQ
;
5501 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5502 while (exit_cnt
< 5) {
5503 val64
= readq(&bar0
->spi_control
);
5504 if (val64
& SPI_CONTROL_NACK
) {
5507 } else if (val64
& SPI_CONTROL_DONE
) {
5508 *data
= readq(&bar0
->spi_data
);
5521 * write_eeprom - actually writes the relevant part of the data value.
5522 * @sp : private member of the device structure, which is a pointer to the
5523 * s2io_nic structure.
5524 * @off : offset at which the data must be written
5525 * @data : The data that is to be written
5526 * @cnt : Number of bytes of the data that are actually to be written into
5527 * the Eeprom. (max of 3)
5529 * Actually writes the relevant part of the data value into the Eeprom
5530 * through the I2C bus.
5532 * 0 on success, -1 on failure.
5535 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
5537 int exit_cnt
= 0, ret
= -1;
5539 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5541 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5542 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5543 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
5544 I2C_CONTROL_CNTL_START
;
5545 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5547 while (exit_cnt
< 5) {
5548 val64
= readq(&bar0
->i2c_control
);
5549 if (I2C_CONTROL_CNTL_END(val64
)) {
5550 if (!(val64
& I2C_CONTROL_NACK
))
5559 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5560 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5561 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
5563 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5564 SPI_CONTROL_BYTECNT(write_cnt
) |
5565 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5566 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5567 val64
|= SPI_CONTROL_REQ
;
5568 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5569 while (exit_cnt
< 5) {
5570 val64
= readq(&bar0
->spi_control
);
5571 if (val64
& SPI_CONTROL_NACK
) {
5574 } else if (val64
& SPI_CONTROL_DONE
) {
5584 static void s2io_vpd_read(struct s2io_nic
*nic
)
5588 int i
=0, cnt
, fail
= 0;
5589 int vpd_addr
= 0x80;
5591 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5592 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5596 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5599 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5601 vpd_data
= kmalloc(256, GFP_KERNEL
);
5603 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5606 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5608 for (i
= 0; i
< 256; i
+=4 ) {
5609 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5610 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5611 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5612 for (cnt
= 0; cnt
<5; cnt
++) {
5614 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5619 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5623 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5624 (u32
*)&vpd_data
[i
]);
5628 /* read serial number of adapter */
5629 for (cnt
= 0; cnt
< 256; cnt
++) {
5630 if ((vpd_data
[cnt
] == 'S') &&
5631 (vpd_data
[cnt
+1] == 'N') &&
5632 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5633 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5634 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5641 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5642 memset(nic
->product_name
, 0, vpd_data
[1]);
5643 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5646 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5650 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5651 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5652 * @eeprom : pointer to the user level structure provided by ethtool,
5653 * containing all relevant information.
5654 * @data_buf : user defined value to be written into Eeprom.
5655 * Description: Reads the values stored in the Eeprom at given offset
5656 * for a given length. Stores these values int the input argument data
5657 * buffer 'data_buf' and returns these to the caller (ethtool.)
5662 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5663 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5667 struct s2io_nic
*sp
= dev
->priv
;
5669 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5671 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5672 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5674 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5675 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5676 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5680 memcpy((data_buf
+ i
), &valid
, 4);
5686 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5687 * @sp : private member of the device structure, which is a pointer to the
5688 * s2io_nic structure.
5689 * @eeprom : pointer to the user level structure provided by ethtool,
5690 * containing all relevant information.
5691 * @data_buf ; user defined value to be written into Eeprom.
5693 * Tries to write the user provided value in the Eeprom, at the offset
5694 * given by the user.
5696 * 0 on success, -EFAULT on failure.
5699 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5700 struct ethtool_eeprom
*eeprom
,
5703 int len
= eeprom
->len
, cnt
= 0;
5704 u64 valid
= 0, data
;
5705 struct s2io_nic
*sp
= dev
->priv
;
5707 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5709 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5710 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5716 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5718 valid
= (u32
) (data
<< 24);
5722 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5724 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5726 "write into the specified offset\n");
5737 * s2io_register_test - reads and writes into all clock domains.
5738 * @sp : private member of the device structure, which is a pointer to the
5739 * s2io_nic structure.
5740 * @data : variable that returns the result of each of the test conducted b
5743 * Read and write into all clock domains. The NIC has 3 clock domains,
5744 * see that registers in all the three regions are accessible.
5749 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5751 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5752 u64 val64
= 0, exp_val
;
5755 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5756 if (val64
!= 0x123456789abcdefULL
) {
5758 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5761 val64
= readq(&bar0
->rmac_pause_cfg
);
5762 if (val64
!= 0xc000ffff00000000ULL
) {
5764 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5767 val64
= readq(&bar0
->rx_queue_cfg
);
5768 if (sp
->device_type
== XFRAME_II_DEVICE
)
5769 exp_val
= 0x0404040404040404ULL
;
5771 exp_val
= 0x0808080808080808ULL
;
5772 if (val64
!= exp_val
) {
5774 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5777 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5778 if (val64
!= 0x000000001923141EULL
) {
5780 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5783 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5784 writeq(val64
, &bar0
->xmsi_data
);
5785 val64
= readq(&bar0
->xmsi_data
);
5786 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5788 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5791 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5792 writeq(val64
, &bar0
->xmsi_data
);
5793 val64
= readq(&bar0
->xmsi_data
);
5794 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5796 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5804 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5805 * @sp : private member of the device structure, which is a pointer to the
5806 * s2io_nic structure.
5807 * @data:variable that returns the result of each of the test conducted by
5810 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5816 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5819 u64 ret_data
, org_4F0
, org_7F0
;
5820 u8 saved_4F0
= 0, saved_7F0
= 0;
5821 struct net_device
*dev
= sp
->dev
;
5823 /* Test Write Error at offset 0 */
5824 /* Note that SPI interface allows write access to all areas
5825 * of EEPROM. Hence doing all negative testing only for Xframe I.
5827 if (sp
->device_type
== XFRAME_I_DEVICE
)
5828 if (!write_eeprom(sp
, 0, 0, 3))
5831 /* Save current values at offsets 0x4F0 and 0x7F0 */
5832 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5834 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5837 /* Test Write at offset 4f0 */
5838 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5840 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5843 if (ret_data
!= 0x012345) {
5844 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5845 "Data written %llx Data read %llx\n",
5846 dev
->name
, (unsigned long long)0x12345,
5847 (unsigned long long)ret_data
);
5851 /* Reset the EEPROM data go FFFF */
5852 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5854 /* Test Write Request Error at offset 0x7c */
5855 if (sp
->device_type
== XFRAME_I_DEVICE
)
5856 if (!write_eeprom(sp
, 0x07C, 0, 3))
5859 /* Test Write Request at offset 0x7f0 */
5860 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
5862 if (read_eeprom(sp
, 0x7F0, &ret_data
))
5865 if (ret_data
!= 0x012345) {
5866 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
5867 "Data written %llx Data read %llx\n",
5868 dev
->name
, (unsigned long long)0x12345,
5869 (unsigned long long)ret_data
);
5873 /* Reset the EEPROM data go FFFF */
5874 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
5876 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5877 /* Test Write Error at offset 0x80 */
5878 if (!write_eeprom(sp
, 0x080, 0, 3))
5881 /* Test Write Error at offset 0xfc */
5882 if (!write_eeprom(sp
, 0x0FC, 0, 3))
5885 /* Test Write Error at offset 0x100 */
5886 if (!write_eeprom(sp
, 0x100, 0, 3))
5889 /* Test Write Error at offset 4ec */
5890 if (!write_eeprom(sp
, 0x4EC, 0, 3))
5894 /* Restore values at offsets 0x4F0 and 0x7F0 */
5896 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
5898 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
5905 * s2io_bist_test - invokes the MemBist test of the card .
5906 * @sp : private member of the device structure, which is a pointer to the
5907 * s2io_nic structure.
5908 * @data:variable that returns the result of each of the test conducted by
5911 * This invokes the MemBist test of the card. We give around
5912 * 2 secs time for the Test to complete. If it's still not complete
5913 * within this peiod, we consider that the test failed.
5915 * 0 on success and -1 on failure.
5918 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
5921 int cnt
= 0, ret
= -1;
5923 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5924 bist
|= PCI_BIST_START
;
5925 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
5928 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5929 if (!(bist
& PCI_BIST_START
)) {
5930 *data
= (bist
& PCI_BIST_CODE_MASK
);
5942 * s2io-link_test - verifies the link state of the nic
5943 * @sp ; private member of the device structure, which is a pointer to the
5944 * s2io_nic structure.
5945 * @data: variable that returns the result of each of the test conducted by
5948 * The function verifies the link state of the NIC and updates the input
5949 * argument 'data' appropriately.
5954 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
5956 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5959 val64
= readq(&bar0
->adapter_status
);
5960 if(!(LINK_IS_UP(val64
)))
5969 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5970 * @sp - private member of the device structure, which is a pointer to the
5971 * s2io_nic structure.
5972 * @data - variable that returns the result of each of the test
5973 * conducted by the driver.
5975 * This is one of the offline test that tests the read and write
5976 * access to the RldRam chip on the NIC.
5981 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
5983 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5985 int cnt
, iteration
= 0, test_fail
= 0;
5987 val64
= readq(&bar0
->adapter_control
);
5988 val64
&= ~ADAPTER_ECC_EN
;
5989 writeq(val64
, &bar0
->adapter_control
);
5991 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5992 val64
|= MC_RLDRAM_TEST_MODE
;
5993 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5995 val64
= readq(&bar0
->mc_rldram_mrs
);
5996 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
5997 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5999 val64
|= MC_RLDRAM_MRS_ENABLE
;
6000 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6002 while (iteration
< 2) {
6003 val64
= 0x55555555aaaa0000ULL
;
6004 if (iteration
== 1) {
6005 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6007 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6009 val64
= 0xaaaa5a5555550000ULL
;
6010 if (iteration
== 1) {
6011 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6013 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6015 val64
= 0x55aaaaaaaa5a0000ULL
;
6016 if (iteration
== 1) {
6017 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6019 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6021 val64
= (u64
) (0x0000003ffffe0100ULL
);
6022 writeq(val64
, &bar0
->mc_rldram_test_add
);
6024 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
6026 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6028 for (cnt
= 0; cnt
< 5; cnt
++) {
6029 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6030 if (val64
& MC_RLDRAM_TEST_DONE
)
6038 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6039 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6041 for (cnt
= 0; cnt
< 5; cnt
++) {
6042 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6043 if (val64
& MC_RLDRAM_TEST_DONE
)
6051 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6052 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6060 /* Bring the adapter out of test mode */
6061 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6067 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6068 * @sp : private member of the device structure, which is a pointer to the
6069 * s2io_nic structure.
6070 * @ethtest : pointer to a ethtool command specific structure that will be
6071 * returned to the user.
6072 * @data : variable that returns the result of each of the test
6073 * conducted by the driver.
6075 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6076 * the health of the card.
6081 static void s2io_ethtool_test(struct net_device
*dev
,
6082 struct ethtool_test
*ethtest
,
6085 struct s2io_nic
*sp
= dev
->priv
;
6086 int orig_state
= netif_running(sp
->dev
);
6088 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6089 /* Offline Tests. */
6091 s2io_close(sp
->dev
);
6093 if (s2io_register_test(sp
, &data
[0]))
6094 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6098 if (s2io_rldram_test(sp
, &data
[3]))
6099 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6103 if (s2io_eeprom_test(sp
, &data
[1]))
6104 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6106 if (s2io_bist_test(sp
, &data
[4]))
6107 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6117 "%s: is not up, cannot run test\n",
6126 if (s2io_link_test(sp
, &data
[2]))
6127 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6136 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6137 struct ethtool_stats
*estats
,
6141 struct s2io_nic
*sp
= dev
->priv
;
6142 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
6144 s2io_updt_stats(sp
);
6146 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
6147 le32_to_cpu(stat_info
->tmac_frms
);
6149 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
6150 le32_to_cpu(stat_info
->tmac_data_octets
);
6151 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
6153 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
6154 le32_to_cpu(stat_info
->tmac_mcst_frms
);
6156 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
6157 le32_to_cpu(stat_info
->tmac_bcst_frms
);
6158 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
6160 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
6161 le32_to_cpu(stat_info
->tmac_ttl_octets
);
6163 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
6164 le32_to_cpu(stat_info
->tmac_ucst_frms
);
6166 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
6167 le32_to_cpu(stat_info
->tmac_nucst_frms
);
6169 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
6170 le32_to_cpu(stat_info
->tmac_any_err_frms
);
6171 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
6172 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
6174 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
6175 le32_to_cpu(stat_info
->tmac_vld_ip
);
6177 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
6178 le32_to_cpu(stat_info
->tmac_drop_ip
);
6180 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
6181 le32_to_cpu(stat_info
->tmac_icmp
);
6183 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
6184 le32_to_cpu(stat_info
->tmac_rst_tcp
);
6185 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
6186 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
6187 le32_to_cpu(stat_info
->tmac_udp
);
6189 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
6190 le32_to_cpu(stat_info
->rmac_vld_frms
);
6192 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
6193 le32_to_cpu(stat_info
->rmac_data_octets
);
6194 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
6195 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
6197 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
6198 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
6200 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
6201 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
6202 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
6203 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
6204 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
6205 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
6206 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
6208 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
6209 le32_to_cpu(stat_info
->rmac_ttl_octets
);
6211 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
6212 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
6214 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
6215 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
6217 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
6218 le32_to_cpu(stat_info
->rmac_discarded_frms
);
6220 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
6221 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
6222 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
6223 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
6225 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
6226 le32_to_cpu(stat_info
->rmac_usized_frms
);
6228 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
6229 le32_to_cpu(stat_info
->rmac_osized_frms
);
6231 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
6232 le32_to_cpu(stat_info
->rmac_frag_frms
);
6234 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
6235 le32_to_cpu(stat_info
->rmac_jabber_frms
);
6236 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
6237 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
6238 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
6239 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
6240 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
6241 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
6243 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
6244 le32_to_cpu(stat_info
->rmac_ip
);
6245 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
6246 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
6248 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
6249 le32_to_cpu(stat_info
->rmac_drop_ip
);
6251 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
6252 le32_to_cpu(stat_info
->rmac_icmp
);
6253 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
6255 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
6256 le32_to_cpu(stat_info
->rmac_udp
);
6258 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
6259 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
6260 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
6261 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
6262 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
6263 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
6264 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
6265 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
6266 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
6267 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
6268 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
6269 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
6270 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
6271 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
6272 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
6273 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
6274 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
6275 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
6276 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
6278 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
6279 le32_to_cpu(stat_info
->rmac_pause_cnt
);
6280 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
6281 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
6283 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
6284 le32_to_cpu(stat_info
->rmac_accepted_ip
);
6285 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
6286 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
6287 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
6288 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
6289 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
6290 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
6291 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
6292 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
6293 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
6294 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
6295 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
6296 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
6297 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
6298 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
6299 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
6300 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
6301 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
6302 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
6303 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
6305 /* Enhanced statistics exist only for Hercules */
6306 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6308 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
6310 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
6312 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
6313 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
6314 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
6315 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
6316 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
6317 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
6318 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
6319 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
6320 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
6321 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
6322 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
6323 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
6324 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
6325 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
6329 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
6330 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
6331 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
6332 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
6333 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
6334 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
6335 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6336 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
[k
];
6337 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
6338 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
6339 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
6340 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
6341 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
6342 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
6343 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
6344 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
6345 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
6346 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
6347 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
6348 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
6349 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
6350 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
6351 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
6352 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
6353 if (stat_info
->sw_stat
.num_aggregations
) {
6354 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
6357 * Since 64-bit divide does not work on all platforms,
6358 * do repeated subtraction.
6360 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
6361 tmp
-= stat_info
->sw_stat
.num_aggregations
;
6364 tmp_stats
[i
++] = count
;
6368 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
6369 tmp_stats
[i
++] = stat_info
->sw_stat
.pci_map_fail_cnt
;
6370 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
6371 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
6372 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
6373 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
6374 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
6375 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
6376 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
6378 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
6379 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
6380 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
6381 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
6382 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
6384 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
6385 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
6386 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
6387 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
6388 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
6389 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
6390 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
6391 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
6392 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
6393 tmp_stats
[i
++] = stat_info
->sw_stat
.tda_err_cnt
;
6394 tmp_stats
[i
++] = stat_info
->sw_stat
.pfc_err_cnt
;
6395 tmp_stats
[i
++] = stat_info
->sw_stat
.pcc_err_cnt
;
6396 tmp_stats
[i
++] = stat_info
->sw_stat
.tti_err_cnt
;
6397 tmp_stats
[i
++] = stat_info
->sw_stat
.tpa_err_cnt
;
6398 tmp_stats
[i
++] = stat_info
->sw_stat
.sm_err_cnt
;
6399 tmp_stats
[i
++] = stat_info
->sw_stat
.lso_err_cnt
;
6400 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_tmac_err_cnt
;
6401 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_rmac_err_cnt
;
6402 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_txgxs_err_cnt
;
6403 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_rxgxs_err_cnt
;
6404 tmp_stats
[i
++] = stat_info
->sw_stat
.rc_err_cnt
;
6405 tmp_stats
[i
++] = stat_info
->sw_stat
.prc_pcix_err_cnt
;
6406 tmp_stats
[i
++] = stat_info
->sw_stat
.rpa_err_cnt
;
6407 tmp_stats
[i
++] = stat_info
->sw_stat
.rda_err_cnt
;
6408 tmp_stats
[i
++] = stat_info
->sw_stat
.rti_err_cnt
;
6409 tmp_stats
[i
++] = stat_info
->sw_stat
.mc_err_cnt
;
6412 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6414 return (XENA_REG_SPACE
);
6418 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
6420 struct s2io_nic
*sp
= dev
->priv
;
6422 return (sp
->rx_csum
);
6425 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6427 struct s2io_nic
*sp
= dev
->priv
;
6437 static int s2io_get_eeprom_len(struct net_device
*dev
)
6439 return (XENA_EEPROM_SPACE
);
6442 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6444 struct s2io_nic
*sp
= dev
->priv
;
6448 return S2IO_TEST_LEN
;
6450 switch(sp
->device_type
) {
6451 case XFRAME_I_DEVICE
:
6452 return XFRAME_I_STAT_LEN
;
6453 case XFRAME_II_DEVICE
:
6454 return XFRAME_II_STAT_LEN
;
6463 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6464 u32 stringset
, u8
* data
)
6467 struct s2io_nic
*sp
= dev
->priv
;
6469 switch (stringset
) {
6471 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6474 stat_size
= sizeof(ethtool_xena_stats_keys
);
6475 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
6476 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6477 memcpy(data
+ stat_size
,
6478 ðtool_enhanced_stats_keys
,
6479 sizeof(ethtool_enhanced_stats_keys
));
6480 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6483 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6484 sizeof(ethtool_driver_stats_keys
));
6488 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6491 dev
->features
|= NETIF_F_IP_CSUM
;
6493 dev
->features
&= ~NETIF_F_IP_CSUM
;
6498 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6500 return (dev
->features
& NETIF_F_TSO
) != 0;
6502 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6505 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6507 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6512 static const struct ethtool_ops netdev_ethtool_ops
= {
6513 .get_settings
= s2io_ethtool_gset
,
6514 .set_settings
= s2io_ethtool_sset
,
6515 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6516 .get_regs_len
= s2io_ethtool_get_regs_len
,
6517 .get_regs
= s2io_ethtool_gregs
,
6518 .get_link
= ethtool_op_get_link
,
6519 .get_eeprom_len
= s2io_get_eeprom_len
,
6520 .get_eeprom
= s2io_ethtool_geeprom
,
6521 .set_eeprom
= s2io_ethtool_seeprom
,
6522 .get_ringparam
= s2io_ethtool_gringparam
,
6523 .get_pauseparam
= s2io_ethtool_getpause_data
,
6524 .set_pauseparam
= s2io_ethtool_setpause_data
,
6525 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6526 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6527 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6528 .set_sg
= ethtool_op_set_sg
,
6529 .get_tso
= s2io_ethtool_op_get_tso
,
6530 .set_tso
= s2io_ethtool_op_set_tso
,
6531 .set_ufo
= ethtool_op_set_ufo
,
6532 .self_test
= s2io_ethtool_test
,
6533 .get_strings
= s2io_ethtool_get_strings
,
6534 .phys_id
= s2io_ethtool_idnic
,
6535 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6536 .get_sset_count
= s2io_get_sset_count
,
6540 * s2io_ioctl - Entry point for the Ioctl
6541 * @dev : Device pointer.
6542 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6543 * a proprietary structure used to pass information to the driver.
6544 * @cmd : This is used to distinguish between the different commands that
6545 * can be passed to the IOCTL functions.
6547 * Currently there are no special functionality supported in IOCTL, hence
6548 * function always return EOPNOTSUPPORTED
6551 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6557 * s2io_change_mtu - entry point to change MTU size for the device.
6558 * @dev : device pointer.
6559 * @new_mtu : the new MTU size for the device.
6560 * Description: A driver entry point to change MTU size for the device.
6561 * Before changing the MTU the device must be stopped.
6563 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6567 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6569 struct s2io_nic
*sp
= dev
->priv
;
6572 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6573 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
6579 if (netif_running(dev
)) {
6581 netif_stop_queue(dev
);
6582 ret
= s2io_card_up(sp
);
6584 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6588 if (netif_queue_stopped(dev
))
6589 netif_wake_queue(dev
);
6590 } else { /* Device is down */
6591 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6592 u64 val64
= new_mtu
;
6594 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6601 * s2io_tasklet - Bottom half of the ISR.
6602 * @dev_adr : address of the device structure in dma_addr_t format.
6604 * This is the tasklet or the bottom half of the ISR. This is
6605 * an extension of the ISR which is scheduled by the scheduler to be run
6606 * when the load on the CPU is low. All low priority tasks of the ISR can
6607 * be pushed into the tasklet. For now the tasklet is used only to
6608 * replenish the Rx buffers in the Rx buffer descriptors.
6613 static void s2io_tasklet(unsigned long dev_addr
)
6615 struct net_device
*dev
= (struct net_device
*) dev_addr
;
6616 struct s2io_nic
*sp
= dev
->priv
;
6618 struct mac_info
*mac_control
;
6619 struct config_param
*config
;
6621 mac_control
= &sp
->mac_control
;
6622 config
= &sp
->config
;
6624 if (!TASKLET_IN_USE
) {
6625 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6626 ret
= fill_rx_buffers(sp
, i
);
6627 if (ret
== -ENOMEM
) {
6628 DBG_PRINT(INFO_DBG
, "%s: Out of ",
6630 DBG_PRINT(INFO_DBG
, "memory in tasklet\n");
6632 } else if (ret
== -EFILL
) {
6634 "%s: Rx Ring %d is full\n",
6639 clear_bit(0, (&sp
->tasklet_status
));
6644 * s2io_set_link - Set the LInk status
6645 * @data: long pointer to device private structue
6646 * Description: Sets the link status for the adapter
6649 static void s2io_set_link(struct work_struct
*work
)
6651 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6652 struct net_device
*dev
= nic
->dev
;
6653 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6659 if (!netif_running(dev
))
6662 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6663 /* The card is being reset, no point doing anything */
6667 subid
= nic
->pdev
->subsystem_device
;
6668 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6670 * Allow a small delay for the NICs self initiated
6671 * cleanup to complete.
6676 val64
= readq(&bar0
->adapter_status
);
6677 if (LINK_IS_UP(val64
)) {
6678 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6679 if (verify_xena_quiescence(nic
)) {
6680 val64
= readq(&bar0
->adapter_control
);
6681 val64
|= ADAPTER_CNTL_EN
;
6682 writeq(val64
, &bar0
->adapter_control
);
6683 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6684 nic
->device_type
, subid
)) {
6685 val64
= readq(&bar0
->gpio_control
);
6686 val64
|= GPIO_CTRL_GPIO_0
;
6687 writeq(val64
, &bar0
->gpio_control
);
6688 val64
= readq(&bar0
->gpio_control
);
6690 val64
|= ADAPTER_LED_ON
;
6691 writeq(val64
, &bar0
->adapter_control
);
6693 nic
->device_enabled_once
= TRUE
;
6695 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6696 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6697 netif_stop_queue(dev
);
6700 val64
= readq(&bar0
->adapter_control
);
6701 val64
|= ADAPTER_LED_ON
;
6702 writeq(val64
, &bar0
->adapter_control
);
6703 s2io_link(nic
, LINK_UP
);
6705 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6707 val64
= readq(&bar0
->gpio_control
);
6708 val64
&= ~GPIO_CTRL_GPIO_0
;
6709 writeq(val64
, &bar0
->gpio_control
);
6710 val64
= readq(&bar0
->gpio_control
);
6713 val64
= readq(&bar0
->adapter_control
);
6714 val64
= val64
&(~ADAPTER_LED_ON
);
6715 writeq(val64
, &bar0
->adapter_control
);
6716 s2io_link(nic
, LINK_DOWN
);
6718 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6724 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6726 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6727 u64
*temp2
, int size
)
6729 struct net_device
*dev
= sp
->dev
;
6730 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6732 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6733 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6736 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6738 * As Rx frame are not going to be processed,
6739 * using same mapped address for the Rxd
6742 rxdp1
->Buffer0_ptr
= *temp0
;
6744 *skb
= dev_alloc_skb(size
);
6746 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6747 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6748 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6749 sp
->mac_control
.stats_info
->sw_stat
. \
6750 mem_alloc_fail_cnt
++;
6753 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6754 += (*skb
)->truesize
;
6755 /* storing the mapped addr in a temp variable
6756 * such it will be used for next rxd whose
6757 * Host Control is NULL
6759 rxdp1
->Buffer0_ptr
= *temp0
=
6760 pci_map_single( sp
->pdev
, (*skb
)->data
,
6761 size
- NET_IP_ALIGN
,
6762 PCI_DMA_FROMDEVICE
);
6763 if( (rxdp1
->Buffer0_ptr
== 0) ||
6764 (rxdp1
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6765 goto memalloc_failed
;
6767 rxdp
->Host_Control
= (unsigned long) (*skb
);
6769 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6770 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6771 /* Two buffer Mode */
6773 rxdp3
->Buffer2_ptr
= *temp2
;
6774 rxdp3
->Buffer0_ptr
= *temp0
;
6775 rxdp3
->Buffer1_ptr
= *temp1
;
6777 *skb
= dev_alloc_skb(size
);
6779 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6780 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6781 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6782 sp
->mac_control
.stats_info
->sw_stat
. \
6783 mem_alloc_fail_cnt
++;
6786 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6787 += (*skb
)->truesize
;
6788 rxdp3
->Buffer2_ptr
= *temp2
=
6789 pci_map_single(sp
->pdev
, (*skb
)->data
,
6791 PCI_DMA_FROMDEVICE
);
6792 if( (rxdp3
->Buffer2_ptr
== 0) ||
6793 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
)) {
6794 goto memalloc_failed
;
6796 rxdp3
->Buffer0_ptr
= *temp0
=
6797 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6798 PCI_DMA_FROMDEVICE
);
6799 if( (rxdp3
->Buffer0_ptr
== 0) ||
6800 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6801 pci_unmap_single (sp
->pdev
,
6802 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6803 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6804 goto memalloc_failed
;
6806 rxdp
->Host_Control
= (unsigned long) (*skb
);
6808 /* Buffer-1 will be dummy buffer not used */
6809 rxdp3
->Buffer1_ptr
= *temp1
=
6810 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6811 PCI_DMA_FROMDEVICE
);
6812 if( (rxdp3
->Buffer1_ptr
== 0) ||
6813 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
6814 pci_unmap_single (sp
->pdev
,
6815 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6816 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6817 pci_unmap_single (sp
->pdev
,
6818 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6819 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6820 goto memalloc_failed
;
6826 stats
->pci_map_fail_cnt
++;
6827 stats
->mem_freed
+= (*skb
)->truesize
;
6828 dev_kfree_skb(*skb
);
6832 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6835 struct net_device
*dev
= sp
->dev
;
6836 if (sp
->rxd_mode
== RXD_MODE_1
) {
6837 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6838 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6839 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6840 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6841 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6845 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6847 int i
, j
, k
, blk_cnt
= 0, size
;
6848 struct mac_info
* mac_control
= &sp
->mac_control
;
6849 struct config_param
*config
= &sp
->config
;
6850 struct net_device
*dev
= sp
->dev
;
6851 struct RxD_t
*rxdp
= NULL
;
6852 struct sk_buff
*skb
= NULL
;
6853 struct buffAdd
*ba
= NULL
;
6854 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6856 /* Calculate the size based on ring mode */
6857 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6858 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6859 if (sp
->rxd_mode
== RXD_MODE_1
)
6860 size
+= NET_IP_ALIGN
;
6861 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6862 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6864 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6865 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6866 (rxd_count
[sp
->rxd_mode
] +1);
6868 for (j
= 0; j
< blk_cnt
; j
++) {
6869 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6870 rxdp
= mac_control
->rings
[i
].
6871 rx_blocks
[j
].rxds
[k
].virt_addr
;
6872 if(sp
->rxd_mode
== RXD_MODE_3B
)
6873 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6874 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6875 &skb
,(u64
*)&temp0_64
,
6882 set_rxd_buffer_size(sp
, rxdp
, size
);
6884 /* flip the Ownership bit to Hardware */
6885 rxdp
->Control_1
|= RXD_OWN_XENA
;
6893 static int s2io_add_isr(struct s2io_nic
* sp
)
6896 struct net_device
*dev
= sp
->dev
;
6899 if (sp
->config
.intr_type
== MSI_X
)
6900 ret
= s2io_enable_msi_x(sp
);
6902 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6903 sp
->config
.intr_type
= INTA
;
6906 /* Store the values of the MSIX table in the struct s2io_nic structure */
6907 store_xmsi_data(sp
);
6909 /* After proper initialization of H/W, register ISR */
6910 if (sp
->config
.intr_type
== MSI_X
) {
6911 int i
, msix_tx_cnt
=0,msix_rx_cnt
=0;
6913 for (i
=1; (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
); i
++) {
6914 if (sp
->s2io_entries
[i
].type
== MSIX_FIFO_TYPE
) {
6915 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
6917 err
= request_irq(sp
->entries
[i
].vector
,
6918 s2io_msix_fifo_handle
, 0, sp
->desc
[i
],
6919 sp
->s2io_entries
[i
].arg
);
6920 /* If either data or addr is zero print it */
6921 if(!(sp
->msix_info
[i
].addr
&&
6922 sp
->msix_info
[i
].data
)) {
6923 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx "
6924 "Data:0x%lx\n",sp
->desc
[i
],
6925 (unsigned long long)
6926 sp
->msix_info
[i
].addr
,
6928 ntohl(sp
->msix_info
[i
].data
));
6933 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
6935 err
= request_irq(sp
->entries
[i
].vector
,
6936 s2io_msix_ring_handle
, 0, sp
->desc
[i
],
6937 sp
->s2io_entries
[i
].arg
);
6938 /* If either data or addr is zero print it */
6939 if(!(sp
->msix_info
[i
].addr
&&
6940 sp
->msix_info
[i
].data
)) {
6941 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx "
6942 "Data:0x%lx\n",sp
->desc
[i
],
6943 (unsigned long long)
6944 sp
->msix_info
[i
].addr
,
6946 ntohl(sp
->msix_info
[i
].data
));
6952 remove_msix_isr(sp
);
6953 DBG_PRINT(ERR_DBG
,"%s:MSI-X-%d registration "
6954 "failed\n", dev
->name
, i
);
6955 DBG_PRINT(ERR_DBG
, "%s: defaulting to INTA\n",
6957 sp
->config
.intr_type
= INTA
;
6960 sp
->s2io_entries
[i
].in_use
= MSIX_REGISTERED_SUCCESS
;
6963 printk(KERN_INFO
"MSI-X-TX %d entries enabled\n",
6965 printk(KERN_INFO
"MSI-X-RX %d entries enabled\n",
6969 if (sp
->config
.intr_type
== INTA
) {
6970 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
6973 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
6980 static void s2io_rem_isr(struct s2io_nic
* sp
)
6982 if (sp
->config
.intr_type
== MSI_X
)
6983 remove_msix_isr(sp
);
6985 remove_inta_isr(sp
);
6988 static void do_s2io_card_down(struct s2io_nic
* sp
, int do_io
)
6991 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6992 unsigned long flags
;
6993 register u64 val64
= 0;
6994 struct config_param
*config
;
6995 config
= &sp
->config
;
6997 if (!is_s2io_card_up(sp
))
7000 del_timer_sync(&sp
->alarm_timer
);
7001 /* If s2io_set_link task is executing, wait till it completes. */
7002 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
))) {
7005 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7009 napi_disable(&sp
->napi
);
7011 /* disable Tx and Rx traffic on the NIC */
7018 tasklet_kill(&sp
->task
);
7020 /* Check if the device is Quiescent and then Reset the NIC */
7022 /* As per the HW requirement we need to replenish the
7023 * receive buffer to avoid the ring bump. Since there is
7024 * no intention of processing the Rx frame at this pointwe are
7025 * just settting the ownership bit of rxd in Each Rx
7026 * ring to HW and set the appropriate buffer size
7027 * based on the ring mode
7029 rxd_owner_bit_reset(sp
);
7031 val64
= readq(&bar0
->adapter_status
);
7032 if (verify_xena_quiescence(sp
)) {
7033 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7041 "s2io_close:Device not Quiescent ");
7042 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
7043 (unsigned long long) val64
);
7050 /* Free all Tx buffers */
7051 free_tx_buffers(sp
);
7053 /* Free all Rx buffers */
7054 spin_lock_irqsave(&sp
->rx_lock
, flags
);
7055 free_rx_buffers(sp
);
7056 spin_unlock_irqrestore(&sp
->rx_lock
, flags
);
7058 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7061 static void s2io_card_down(struct s2io_nic
* sp
)
7063 do_s2io_card_down(sp
, 1);
7066 static int s2io_card_up(struct s2io_nic
* sp
)
7069 struct mac_info
*mac_control
;
7070 struct config_param
*config
;
7071 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7074 /* Initialize the H/W I/O registers */
7077 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7085 * Initializing the Rx buffers. For now we are considering only 1
7086 * Rx ring and initializing buffers into 30 Rx blocks
7088 mac_control
= &sp
->mac_control
;
7089 config
= &sp
->config
;
7091 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7092 if ((ret
= fill_rx_buffers(sp
, i
))) {
7093 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7096 free_rx_buffers(sp
);
7099 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7100 atomic_read(&sp
->rx_bufs_left
[i
]));
7103 /* Initialise napi */
7105 napi_enable(&sp
->napi
);
7107 /* Maintain the state prior to the open */
7108 if (sp
->promisc_flg
)
7109 sp
->promisc_flg
= 0;
7110 if (sp
->m_cast_flg
) {
7112 sp
->all_multi_pos
= 0;
7115 /* Setting its receive mode */
7116 s2io_set_multicast(dev
);
7119 /* Initialize max aggregatable pkts per session based on MTU */
7120 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7121 /* Check if we can use(if specified) user provided value */
7122 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7123 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7126 /* Enable Rx Traffic and interrupts on the NIC */
7127 if (start_nic(sp
)) {
7128 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7130 free_rx_buffers(sp
);
7134 /* Add interrupt service routine */
7135 if (s2io_add_isr(sp
) != 0) {
7136 if (sp
->config
.intr_type
== MSI_X
)
7139 free_rx_buffers(sp
);
7143 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7145 /* Enable tasklet for the device */
7146 tasklet_init(&sp
->task
, s2io_tasklet
, (unsigned long) dev
);
7148 /* Enable select interrupts */
7149 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7150 if (sp
->config
.intr_type
!= INTA
)
7151 en_dis_able_nic_intrs(sp
, ENA_ALL_INTRS
, DISABLE_INTRS
);
7153 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7154 interruptible
|= TX_PIC_INTR
;
7155 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7158 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7163 * s2io_restart_nic - Resets the NIC.
7164 * @data : long pointer to the device private structure
7166 * This function is scheduled to be run by the s2io_tx_watchdog
7167 * function after 0.5 secs to reset the NIC. The idea is to reduce
7168 * the run time of the watch dog routine which is run holding a
7172 static void s2io_restart_nic(struct work_struct
*work
)
7174 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7175 struct net_device
*dev
= sp
->dev
;
7179 if (!netif_running(dev
))
7183 if (s2io_card_up(sp
)) {
7184 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
7187 netif_wake_queue(dev
);
7188 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
7195 * s2io_tx_watchdog - Watchdog for transmit side.
7196 * @dev : Pointer to net device structure
7198 * This function is triggered if the Tx Queue is stopped
7199 * for a pre-defined amount of time when the Interface is still up.
7200 * If the Interface is jammed in such a situation, the hardware is
7201 * reset (by s2io_close) and restarted again (by s2io_open) to
7202 * overcome any problem that might have been caused in the hardware.
7207 static void s2io_tx_watchdog(struct net_device
*dev
)
7209 struct s2io_nic
*sp
= dev
->priv
;
7211 if (netif_carrier_ok(dev
)) {
7212 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
7213 schedule_work(&sp
->rst_timer_task
);
7214 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
7219 * rx_osm_handler - To perform some OS related operations on SKB.
7220 * @sp: private member of the device structure,pointer to s2io_nic structure.
7221 * @skb : the socket buffer pointer.
7222 * @len : length of the packet
7223 * @cksum : FCS checksum of the frame.
7224 * @ring_no : the ring from which this RxD was extracted.
7226 * This function is called by the Rx interrupt serivce routine to perform
7227 * some OS related operations on the SKB before passing it to the upper
7228 * layers. It mainly checks if the checksum is OK, if so adds it to the
7229 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7230 * to the upper layer. If the checksum is wrong, it increments the Rx
7231 * packet error count, frees the SKB and returns error.
7233 * SUCCESS on success and -1 on failure.
7235 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7237 struct s2io_nic
*sp
= ring_data
->nic
;
7238 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7239 struct sk_buff
*skb
= (struct sk_buff
*)
7240 ((unsigned long) rxdp
->Host_Control
);
7241 int ring_no
= ring_data
->ring_no
;
7242 u16 l3_csum
, l4_csum
;
7243 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7250 /* Check for parity error */
7252 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
7254 err_mask
= err
>> 48;
7257 sp
->mac_control
.stats_info
->sw_stat
.
7258 rx_parity_err_cnt
++;
7262 sp
->mac_control
.stats_info
->sw_stat
.
7267 sp
->mac_control
.stats_info
->sw_stat
.
7268 rx_parity_abort_cnt
++;
7272 sp
->mac_control
.stats_info
->sw_stat
.
7277 sp
->mac_control
.stats_info
->sw_stat
.
7282 sp
->mac_control
.stats_info
->sw_stat
.
7287 sp
->mac_control
.stats_info
->sw_stat
.
7288 rx_buf_size_err_cnt
++;
7292 sp
->mac_control
.stats_info
->sw_stat
.
7293 rx_rxd_corrupt_cnt
++;
7297 sp
->mac_control
.stats_info
->sw_stat
.
7302 * Drop the packet if bad transfer code. Exception being
7303 * 0x5, which could be due to unsupported IPv6 extension header.
7304 * In this case, we let stack handle the packet.
7305 * Note that in this case, since checksum will be incorrect,
7306 * stack will validate the same.
7308 if (err_mask
!= 0x5) {
7309 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7310 dev
->name
, err_mask
);
7311 sp
->stats
.rx_crc_errors
++;
7312 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
7315 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
7316 rxdp
->Host_Control
= 0;
7321 /* Updating statistics */
7322 sp
->stats
.rx_packets
++;
7323 rxdp
->Host_Control
= 0;
7324 if (sp
->rxd_mode
== RXD_MODE_1
) {
7325 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7327 sp
->stats
.rx_bytes
+= len
;
7330 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7331 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7332 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7333 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7334 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7335 unsigned char *buff
= skb_push(skb
, buf0_len
);
7337 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7338 sp
->stats
.rx_bytes
+= buf0_len
+ buf2_len
;
7339 memcpy(buff
, ba
->ba_0
, buf0_len
);
7340 skb_put(skb
, buf2_len
);
7343 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!sp
->lro
) ||
7344 (sp
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7346 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7347 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7348 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7350 * NIC verifies if the Checksum of the received
7351 * frame is Ok or not and accordingly returns
7352 * a flag in the RxD.
7354 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7360 ret
= s2io_club_tcp_session(skb
->data
, &tcp
,
7364 case 3: /* Begin anew */
7367 case 1: /* Aggregate */
7369 lro_append_pkt(sp
, lro
,
7373 case 4: /* Flush session */
7375 lro_append_pkt(sp
, lro
,
7377 queue_rx_frame(lro
->parent
);
7378 clear_lro_session(lro
);
7379 sp
->mac_control
.stats_info
->
7380 sw_stat
.flush_max_pkts
++;
7383 case 2: /* Flush both */
7384 lro
->parent
->data_len
=
7386 sp
->mac_control
.stats_info
->
7387 sw_stat
.sending_both
++;
7388 queue_rx_frame(lro
->parent
);
7389 clear_lro_session(lro
);
7391 case 0: /* sessions exceeded */
7392 case -1: /* non-TCP or not
7396 * First pkt in session not
7397 * L3/L4 aggregatable
7402 "%s: Samadhana!!\n",
7409 * Packet with erroneous checksum, let the
7410 * upper layers deal with it.
7412 skb
->ip_summed
= CHECKSUM_NONE
;
7415 skb
->ip_summed
= CHECKSUM_NONE
;
7417 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
7419 skb
->protocol
= eth_type_trans(skb
, dev
);
7420 if ((sp
->vlgrp
&& RXD_GET_VLAN_TAG(rxdp
->Control_2
) &&
7422 /* Queueing the vlan frame to the upper layer */
7424 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
,
7425 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7427 vlan_hwaccel_rx(skb
, sp
->vlgrp
,
7428 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7431 netif_receive_skb(skb
);
7437 queue_rx_frame(skb
);
7439 dev
->last_rx
= jiffies
;
7441 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
7446 * s2io_link - stops/starts the Tx queue.
7447 * @sp : private member of the device structure, which is a pointer to the
7448 * s2io_nic structure.
7449 * @link : inidicates whether link is UP/DOWN.
7451 * This function stops/starts the Tx queue depending on whether the link
7452 * status of the NIC is is down or up. This is called by the Alarm
7453 * interrupt handler whenever a link change interrupt comes up.
7458 static void s2io_link(struct s2io_nic
* sp
, int link
)
7460 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7462 if (link
!= sp
->last_link_state
) {
7464 if (link
== LINK_DOWN
) {
7465 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7466 netif_carrier_off(dev
);
7467 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
7468 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
7469 jiffies
- sp
->start_time
;
7470 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
7472 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7473 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
7474 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
7475 jiffies
- sp
->start_time
;
7476 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
7477 netif_carrier_on(dev
);
7480 sp
->last_link_state
= link
;
7481 sp
->start_time
= jiffies
;
7485 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7486 * @sp : private member of the device structure, which is a pointer to the
7487 * s2io_nic structure.
7489 * This function initializes a few of the PCI and PCI-X configuration registers
7490 * with recommended values.
7495 static void s2io_init_pci(struct s2io_nic
* sp
)
7497 u16 pci_cmd
= 0, pcix_cmd
= 0;
7499 /* Enable Data Parity Error Recovery in PCI-X command register. */
7500 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7502 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7504 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7507 /* Set the PErr Response bit in PCI command register. */
7508 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7509 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7510 (pci_cmd
| PCI_COMMAND_PARITY
));
7511 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7514 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
)
7516 if ((tx_fifo_num
> MAX_TX_FIFOS
) ||
7517 (tx_fifo_num
< FIFO_DEFAULT_NUM
)) {
7518 DBG_PRINT(ERR_DBG
, "s2io: Requested number of tx fifos "
7519 "(%d) not supported\n", tx_fifo_num
);
7521 ((tx_fifo_num
> MAX_TX_FIFOS
)? MAX_TX_FIFOS
:
7522 ((tx_fifo_num
< FIFO_DEFAULT_NUM
) ? FIFO_DEFAULT_NUM
:
7524 DBG_PRINT(ERR_DBG
, "s2io: Default to %d ", tx_fifo_num
);
7525 DBG_PRINT(ERR_DBG
, "tx fifos\n");
7528 if ( rx_ring_num
> 8) {
7529 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Rx rings not "
7531 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Rx rings\n");
7534 if (*dev_intr_type
!= INTA
)
7537 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7538 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
7539 "Defaulting to INTA\n");
7540 *dev_intr_type
= INTA
;
7543 if ((*dev_intr_type
== MSI_X
) &&
7544 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7545 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7546 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
7547 "Defaulting to INTA\n");
7548 *dev_intr_type
= INTA
;
7551 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7552 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
7553 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 1-buffer mode\n");
7560 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7561 * or Traffic class respectively.
7562 * @nic: device private variable
7563 * Description: The function configures the receive steering to
7564 * desired receive ring.
7565 * Return Value: SUCCESS on success and
7566 * '-1' on failure (endian settings incorrect).
7568 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7570 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7571 register u64 val64
= 0;
7573 if (ds_codepoint
> 63)
7576 val64
= RTS_DS_MEM_DATA(ring
);
7577 writeq(val64
, &bar0
->rts_ds_mem_data
);
7579 val64
= RTS_DS_MEM_CTRL_WE
|
7580 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7581 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7583 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7585 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7586 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7591 * s2io_init_nic - Initialization of the adapter .
7592 * @pdev : structure containing the PCI related information of the device.
7593 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7595 * The function initializes an adapter identified by the pci_dec structure.
7596 * All OS related initialization including memory and device structure and
7597 * initlaization of the device private variable is done. Also the swapper
7598 * control register is initialized to enable read and write into the I/O
7599 * registers of the device.
7601 * returns 0 on success and negative on failure.
7604 static int __devinit
7605 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7607 struct s2io_nic
*sp
;
7608 struct net_device
*dev
;
7610 int dma_flag
= FALSE
;
7611 u32 mac_up
, mac_down
;
7612 u64 val64
= 0, tmp64
= 0;
7613 struct XENA_dev_config __iomem
*bar0
= NULL
;
7615 struct mac_info
*mac_control
;
7616 struct config_param
*config
;
7618 u8 dev_intr_type
= intr_type
;
7619 DECLARE_MAC_BUF(mac
);
7621 if ((ret
= s2io_verify_parm(pdev
, &dev_intr_type
)))
7624 if ((ret
= pci_enable_device(pdev
))) {
7626 "s2io_init_nic: pci_enable_device failed\n");
7630 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7631 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7633 if (pci_set_consistent_dma_mask
7634 (pdev
, DMA_64BIT_MASK
)) {
7636 "Unable to obtain 64bit DMA for \
7637 consistent allocations\n");
7638 pci_disable_device(pdev
);
7641 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7642 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7644 pci_disable_device(pdev
);
7647 if ((ret
= pci_request_regions(pdev
, s2io_driver_name
))) {
7648 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x \n", __FUNCTION__
, ret
);
7649 pci_disable_device(pdev
);
7653 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7655 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7656 pci_disable_device(pdev
);
7657 pci_release_regions(pdev
);
7661 pci_set_master(pdev
);
7662 pci_set_drvdata(pdev
, dev
);
7663 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7665 /* Private member variable initialized to s2io NIC structure */
7667 memset(sp
, 0, sizeof(struct s2io_nic
));
7670 sp
->high_dma_flag
= dma_flag
;
7671 sp
->device_enabled_once
= FALSE
;
7672 if (rx_ring_mode
== 1)
7673 sp
->rxd_mode
= RXD_MODE_1
;
7674 if (rx_ring_mode
== 2)
7675 sp
->rxd_mode
= RXD_MODE_3B
;
7677 sp
->config
.intr_type
= dev_intr_type
;
7679 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7680 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7681 sp
->device_type
= XFRAME_II_DEVICE
;
7683 sp
->device_type
= XFRAME_I_DEVICE
;
7685 sp
->lro
= lro_enable
;
7687 /* Initialize some PCI/PCI-X fields of the NIC. */
7691 * Setting the device configuration parameters.
7692 * Most of these parameters can be specified by the user during
7693 * module insertion as they are module loadable parameters. If
7694 * these parameters are not not specified during load time, they
7695 * are initialized with default values.
7697 mac_control
= &sp
->mac_control
;
7698 config
= &sp
->config
;
7700 config
->napi
= napi
;
7702 /* Tx side parameters. */
7703 config
->tx_fifo_num
= tx_fifo_num
;
7704 for (i
= 0; i
< MAX_TX_FIFOS
; i
++) {
7705 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7706 config
->tx_cfg
[i
].fifo_priority
= i
;
7709 /* mapping the QoS priority to the configured fifos */
7710 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7711 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
][i
];
7713 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7714 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7715 config
->tx_cfg
[i
].f_no_snoop
=
7716 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7717 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7718 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7722 /* + 2 because one Txd for skb->data and one Txd for UFO */
7723 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7725 /* Rx side parameters. */
7726 config
->rx_ring_num
= rx_ring_num
;
7727 for (i
= 0; i
< MAX_RX_RINGS
; i
++) {
7728 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7729 (rxd_count
[sp
->rxd_mode
] + 1);
7730 config
->rx_cfg
[i
].ring_priority
= i
;
7733 for (i
= 0; i
< rx_ring_num
; i
++) {
7734 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7735 config
->rx_cfg
[i
].f_no_snoop
=
7736 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7739 /* Setting Mac Control parameters */
7740 mac_control
->rmac_pause_time
= rmac_pause_time
;
7741 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7742 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7745 /* Initialize Ring buffer parameters. */
7746 for (i
= 0; i
< config
->rx_ring_num
; i
++)
7747 atomic_set(&sp
->rx_bufs_left
[i
], 0);
7749 /* initialize the shared memory used by the NIC and the host */
7750 if (init_shared_mem(sp
)) {
7751 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7754 goto mem_alloc_failed
;
7757 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7758 pci_resource_len(pdev
, 0));
7760 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7763 goto bar0_remap_failed
;
7766 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7767 pci_resource_len(pdev
, 2));
7769 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7772 goto bar1_remap_failed
;
7775 dev
->irq
= pdev
->irq
;
7776 dev
->base_addr
= (unsigned long) sp
->bar0
;
7778 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7779 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7780 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7781 (sp
->bar1
+ (j
* 0x00020000));
7784 /* Driver entry points */
7785 dev
->open
= &s2io_open
;
7786 dev
->stop
= &s2io_close
;
7787 dev
->hard_start_xmit
= &s2io_xmit
;
7788 dev
->get_stats
= &s2io_get_stats
;
7789 dev
->set_multicast_list
= &s2io_set_multicast
;
7790 dev
->do_ioctl
= &s2io_ioctl
;
7791 dev
->set_mac_address
= &s2io_set_mac_addr
;
7792 dev
->change_mtu
= &s2io_change_mtu
;
7793 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7794 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7795 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7798 * will use eth_mac_addr() for dev->set_mac_address
7799 * mac address will be set every time dev->open() is called
7801 netif_napi_add(dev
, &sp
->napi
, s2io_poll
, 32);
7803 #ifdef CONFIG_NET_POLL_CONTROLLER
7804 dev
->poll_controller
= s2io_netpoll
;
7807 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7808 if (sp
->high_dma_flag
== TRUE
)
7809 dev
->features
|= NETIF_F_HIGHDMA
;
7810 dev
->features
|= NETIF_F_TSO
;
7811 dev
->features
|= NETIF_F_TSO6
;
7812 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7813 dev
->features
|= NETIF_F_UFO
;
7814 dev
->features
|= NETIF_F_HW_CSUM
;
7817 dev
->tx_timeout
= &s2io_tx_watchdog
;
7818 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7819 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7820 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7822 pci_save_state(sp
->pdev
);
7824 /* Setting swapper control on the NIC, for proper reset operation */
7825 if (s2io_set_swapper(sp
)) {
7826 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7829 goto set_swap_failed
;
7832 /* Verify if the Herc works on the slot its placed into */
7833 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7834 mode
= s2io_verify_pci_mode(sp
);
7836 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
7837 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7839 goto set_swap_failed
;
7843 /* Not needed for Herc */
7844 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7846 * Fix for all "FFs" MAC address problems observed on
7849 fix_mac_address(sp
);
7854 * MAC address initialization.
7855 * For now only one mac address will be read and used.
7858 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7859 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
7860 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7861 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7862 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
7863 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7864 mac_down
= (u32
) tmp64
;
7865 mac_up
= (u32
) (tmp64
>> 32);
7867 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
7868 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
7869 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
7870 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
7871 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
7872 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
7874 /* Set the factory defined MAC address initially */
7875 dev
->addr_len
= ETH_ALEN
;
7876 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
7877 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
7879 /* initialize number of multicast & unicast MAC entries variables */
7880 if (sp
->device_type
== XFRAME_I_DEVICE
) {
7881 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
7882 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
7883 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
7884 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
7885 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
7886 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
7887 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
7890 /* store mac addresses from CAM to s2io_nic structure */
7891 do_s2io_store_unicast_mc(sp
);
7893 /* Store the values of the MSIX table in the s2io_nic structure */
7894 store_xmsi_data(sp
);
7895 /* reset Nic and bring it to known state */
7899 * Initialize the tasklet status and link state flags
7900 * and the card state parameter
7902 sp
->tasklet_status
= 0;
7905 /* Initialize spinlocks */
7906 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
7907 spin_lock_init(&mac_control
->fifos
[i
].tx_lock
);
7910 spin_lock_init(&sp
->put_lock
);
7911 spin_lock_init(&sp
->rx_lock
);
7914 * SXE-002: Configure link and activity LED to init state
7917 subid
= sp
->pdev
->subsystem_device
;
7918 if ((subid
& 0xFF) >= 0x07) {
7919 val64
= readq(&bar0
->gpio_control
);
7920 val64
|= 0x0000800000000000ULL
;
7921 writeq(val64
, &bar0
->gpio_control
);
7922 val64
= 0x0411040400000000ULL
;
7923 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
7924 val64
= readq(&bar0
->gpio_control
);
7927 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
7929 if (register_netdev(dev
)) {
7930 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
7932 goto register_failed
;
7935 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
7936 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
7937 sp
->product_name
, pdev
->revision
);
7938 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
7939 s2io_driver_version
);
7940 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: %s\n",
7941 dev
->name
, print_mac(mac
, dev
->dev_addr
));
7942 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
7943 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7944 mode
= s2io_print_pci_mode(sp
);
7946 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7948 unregister_netdev(dev
);
7949 goto set_swap_failed
;
7952 switch(sp
->rxd_mode
) {
7954 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
7958 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
7964 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
7965 switch(sp
->config
.intr_type
) {
7967 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
7970 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
7974 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
7977 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
7978 " enabled\n", dev
->name
);
7979 /* Initialize device name */
7980 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
7983 * Make Link state as off at this point, when the Link change
7984 * interrupt comes the state will be automatically changed to
7987 netif_carrier_off(dev
);
7998 free_shared_mem(sp
);
7999 pci_disable_device(pdev
);
8000 pci_release_regions(pdev
);
8001 pci_set_drvdata(pdev
, NULL
);
8008 * s2io_rem_nic - Free the PCI device
8009 * @pdev: structure containing the PCI related information of the device.
8010 * Description: This function is called by the Pci subsystem to release a
8011 * PCI device and free up all resource held up by the device. This could
8012 * be in response to a Hot plug event or when the driver is to be removed
8016 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8018 struct net_device
*dev
=
8019 (struct net_device
*) pci_get_drvdata(pdev
);
8020 struct s2io_nic
*sp
;
8023 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8027 flush_scheduled_work();
8030 unregister_netdev(dev
);
8032 free_shared_mem(sp
);
8035 pci_release_regions(pdev
);
8036 pci_set_drvdata(pdev
, NULL
);
8038 pci_disable_device(pdev
);
8042 * s2io_starter - Entry point for the driver
8043 * Description: This function is the entry point for the driver. It verifies
8044 * the module loadable parameters and initializes PCI configuration space.
8047 static int __init
s2io_starter(void)
8049 return pci_register_driver(&s2io_driver
);
8053 * s2io_closer - Cleanup routine for the driver
8054 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8057 static __exit
void s2io_closer(void)
8059 pci_unregister_driver(&s2io_driver
);
8060 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8063 module_init(s2io_starter
);
8064 module_exit(s2io_closer
);
8066 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8067 struct tcphdr
**tcp
, struct RxD_t
*rxdp
)
8070 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8072 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8073 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
8079 * By default the VLAN field in the MAC is stripped by the card, if this
8080 * feature is turned off in rx_pa_cfg register, then the ip_off field
8081 * has to be shifted by a further 2 bytes
8084 case 0: /* DIX type */
8085 case 4: /* DIX type with VLAN */
8086 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8088 /* LLC, SNAP etc are considered non-mergeable */
8093 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8094 ip_len
= (u8
)((*ip
)->ihl
);
8096 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8101 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8104 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8105 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
8106 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
8111 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8113 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
8116 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8117 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8119 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8123 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8124 lro
->tcp_ack
= tcp
->ack_seq
;
8126 lro
->total_len
= ntohs(ip
->tot_len
);
8129 * check if we saw TCP timestamp. Other consistency checks have
8130 * already been done.
8132 if (tcp
->doff
== 8) {
8134 ptr
= (__be32
*)(tcp
+1);
8136 lro
->cur_tsval
= ntohl(*(ptr
+1));
8137 lro
->cur_tsecr
= *(ptr
+2);
8142 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8144 struct iphdr
*ip
= lro
->iph
;
8145 struct tcphdr
*tcp
= lro
->tcph
;
8147 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
8148 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8150 /* Update L3 header */
8151 ip
->tot_len
= htons(lro
->total_len
);
8153 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8156 /* Update L4 header */
8157 tcp
->ack_seq
= lro
->tcp_ack
;
8158 tcp
->window
= lro
->window
;
8160 /* Update tsecr field if this session has timestamps enabled */
8162 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8163 *(ptr
+2) = lro
->cur_tsecr
;
8166 /* Update counters required for calculation of
8167 * average no. of packets aggregated.
8169 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
8170 statinfo
->sw_stat
.num_aggregations
++;
8173 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8174 struct tcphdr
*tcp
, u32 l4_pyld
)
8176 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8177 lro
->total_len
+= l4_pyld
;
8178 lro
->frags_len
+= l4_pyld
;
8179 lro
->tcp_next_seq
+= l4_pyld
;
8182 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8183 lro
->tcp_ack
= tcp
->ack_seq
;
8184 lro
->window
= tcp
->window
;
8188 /* Update tsecr and tsval from this packet */
8189 ptr
= (__be32
*)(tcp
+1);
8190 lro
->cur_tsval
= ntohl(*(ptr
+1));
8191 lro
->cur_tsecr
= *(ptr
+ 2);
8195 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8196 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8200 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8202 if (!tcp_pyld_len
) {
8203 /* Runt frame or a pure ack */
8207 if (ip
->ihl
!= 5) /* IP has options */
8210 /* If we see CE codepoint in IP header, packet is not mergeable */
8211 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8214 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8215 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
8216 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8218 * Currently recognize only the ack control word and
8219 * any other control field being set would result in
8220 * flushing the LRO session
8226 * Allow only one TCP timestamp option. Don't aggregate if
8227 * any other options are detected.
8229 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8232 if (tcp
->doff
== 8) {
8233 ptr
= (u8
*)(tcp
+ 1);
8234 while (*ptr
== TCPOPT_NOP
)
8236 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8239 /* Ensure timestamp value increases monotonically */
8241 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8244 /* timestamp echo reply should be non-zero */
8245 if (*((__be32
*)(ptr
+6)) == 0)
8253 s2io_club_tcp_session(u8
*buffer
, u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8254 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8257 struct tcphdr
*tcph
;
8260 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8262 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
8263 ip
->saddr
, ip
->daddr
);
8268 tcph
= (struct tcphdr
*)*tcp
;
8269 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8270 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8271 struct lro
*l_lro
= &sp
->lro0_n
[i
];
8272 if (l_lro
->in_use
) {
8273 if (check_for_socket_match(l_lro
, ip
, tcph
))
8275 /* Sock pair matched */
8278 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8279 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
8280 "0x%x, actual 0x%x\n", __FUNCTION__
,
8281 (*lro
)->tcp_next_seq
,
8284 sp
->mac_control
.stats_info
->
8285 sw_stat
.outof_sequence_pkts
++;
8290 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
8291 ret
= 1; /* Aggregate */
8293 ret
= 2; /* Flush both */
8299 /* Before searching for available LRO objects,
8300 * check if the pkt is L3/L4 aggregatable. If not
8301 * don't create new LRO session. Just send this
8304 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
8308 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8309 struct lro
*l_lro
= &sp
->lro0_n
[i
];
8310 if (!(l_lro
->in_use
)) {
8312 ret
= 3; /* Begin anew */
8318 if (ret
== 0) { /* sessions exceeded */
8319 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
8327 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
);
8330 update_L3L4_header(sp
, *lro
);
8333 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8334 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8335 update_L3L4_header(sp
, *lro
);
8336 ret
= 4; /* Flush the LRO */
8340 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
8348 static void clear_lro_session(struct lro
*lro
)
8350 static u16 lro_struct_size
= sizeof(struct lro
);
8352 memset(lro
, 0, lro_struct_size
);
8355 static void queue_rx_frame(struct sk_buff
*skb
)
8357 struct net_device
*dev
= skb
->dev
;
8359 skb
->protocol
= eth_type_trans(skb
, dev
);
8361 netif_receive_skb(skb
);
8366 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8367 struct sk_buff
*skb
,
8370 struct sk_buff
*first
= lro
->parent
;
8372 first
->len
+= tcp_len
;
8373 first
->data_len
= lro
->frags_len
;
8374 skb_pull(skb
, (skb
->len
- tcp_len
));
8375 if (skb_shinfo(first
)->frag_list
)
8376 lro
->last_frag
->next
= skb
;
8378 skb_shinfo(first
)->frag_list
= skb
;
8379 first
->truesize
+= skb
->truesize
;
8380 lro
->last_frag
= skb
;
8381 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;
8386 * s2io_io_error_detected - called when PCI error is detected
8387 * @pdev: Pointer to PCI device
8388 * @state: The current pci connection state
8390 * This function is called after a PCI bus error affecting
8391 * this device has been detected.
8393 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8394 pci_channel_state_t state
)
8396 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8397 struct s2io_nic
*sp
= netdev
->priv
;
8399 netif_device_detach(netdev
);
8401 if (netif_running(netdev
)) {
8402 /* Bring down the card, while avoiding PCI I/O */
8403 do_s2io_card_down(sp
, 0);
8405 pci_disable_device(pdev
);
8407 return PCI_ERS_RESULT_NEED_RESET
;
8411 * s2io_io_slot_reset - called after the pci bus has been reset.
8412 * @pdev: Pointer to PCI device
8414 * Restart the card from scratch, as if from a cold-boot.
8415 * At this point, the card has exprienced a hard reset,
8416 * followed by fixups by BIOS, and has its config space
8417 * set up identically to what it was at cold boot.
8419 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8421 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8422 struct s2io_nic
*sp
= netdev
->priv
;
8424 if (pci_enable_device(pdev
)) {
8425 printk(KERN_ERR
"s2io: "
8426 "Cannot re-enable PCI device after reset.\n");
8427 return PCI_ERS_RESULT_DISCONNECT
;
8430 pci_set_master(pdev
);
8433 return PCI_ERS_RESULT_RECOVERED
;
8437 * s2io_io_resume - called when traffic can start flowing again.
8438 * @pdev: Pointer to PCI device
8440 * This callback is called when the error recovery driver tells
8441 * us that its OK to resume normal operation.
8443 static void s2io_io_resume(struct pci_dev
*pdev
)
8445 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8446 struct s2io_nic
*sp
= netdev
->priv
;
8448 if (netif_running(netdev
)) {
8449 if (s2io_card_up(sp
)) {
8450 printk(KERN_ERR
"s2io: "
8451 "Can't bring device back up after reset.\n");
8455 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8457 printk(KERN_ERR
"s2io: "
8458 "Can't resetore mac addr after reset.\n");
8463 netif_device_attach(netdev
);
8464 netif_wake_queue(netdev
);