1 #ifndef _ASM_ARCH_IRQ_H
2 #define _ASM_ARCH_IRQ_H
4 #include <hwregs/intr_vect.h>
6 /* Number of non-cpu interrupts. */
7 #define NR_IRQS NBR_INTR_VECT /* Exceptions + IRQs */
8 #define FIRST_IRQ 0x31 /* Exception number for first IRQ */
9 #define NR_REAL_IRQS (NBR_INTR_VECT - FIRST_IRQ) /* IRQs */
17 /* Global IRQ vector. */
18 typedef void (*irqvectptr
)(void);
20 struct etrax_interrupt_vector
{
24 extern struct etrax_interrupt_vector
*etrax_irv
; /* head.S */
26 void mask_irq(int irq
);
27 void unmask_irq(int irq
);
29 void set_exception_vector(int n
, irqvectptr addr
);
31 /* Save registers so that they match pt_regs. */
34 "move $erp,[$sp]\n\t" \
36 "move $srp,[$sp]\n\t" \
38 "move $ccs,[$sp]\n\t" \
40 "move $spc,[$sp]\n\t" \
42 "move $mof,[$sp]\n\t" \
44 "move $srs,[$sp]\n\t" \
46 "move.d $acr,[$sp]\n\t" \
48 "movem $r13,[$sp]\n\t" \
53 #define STR(x) STR2(x)
55 #define IRQ_NAME2(nr) nr##_interrupt(void)
56 #define IRQ_NAME(nr) IRQ_NAME2(IRQ##nr)
59 * The reason for setting the S-bit when debugging the kernel is that we want
60 * hardware breakpoints to remain active while we are in an exception handler.
61 * Note that we cannot simply copy S1, since we may come here from user-space,
62 * or any context where the S-bit wasn't set.
64 #ifdef CONFIG_ETRAX_KGDB
66 "move $ccs, $r10\n\t" \
67 "or.d (1<<9), $r10\n\t" \
74 * Make sure the causing IRQ is blocked, then call do_IRQ. After that, unblock
75 * and jump to ret_from_intr which is found in entry.S.
77 * The reason for blocking the IRQ is to allow an sti() before the handler,
78 * which will acknowledge the interrupt, is run. The actual blocking is made
81 #define BUILD_IRQ(nr) \
85 "IRQ" #nr "_interrupt:\n\t" \
88 "move.d "#nr",$r10\n\t" \
89 "move.d $sp, $r12\n\t" \
90 "jsr crisv32_do_IRQ\n\t" \
92 "jump ret_from_intr\n\t" \
95 * This is subtle. The timer interrupt is crucial and it should not be disabled
96 * for too long. However, if it had been a normal interrupt as per BUILD_IRQ, it
97 * would have been BLOCK'ed, and then softirq's are run before we return here to
98 * UNBLOCK. If the softirq's take too much time to run, the timer irq won't run
99 * and the watchdog will kill us.
101 * Furthermore, if a lot of other irq's occur before we return here, the
102 * multiple_irq handler is run and it prioritizes the timer interrupt. However
103 * if we had BLOCK'edit here, we would not get the multiple_irq at all.
105 * The non-blocking here is based on the knowledge that the timer interrupt is
106 * registred as a fast interrupt (IRQF_DISABLED) so that we _know_ there will not
107 * be an sti() before the timer irq handler is run to acknowledge the interrupt.
109 #define BUILD_TIMER_IRQ(nr, mask) \
113 "IRQ" #nr "_interrupt:\n\t" \
116 "move.d "#nr",$r10\n\t" \
117 "move.d $sp,$r12\n\t" \
118 "jsr crisv32_do_IRQ\n\t" \
120 "jump ret_from_intr\n\t" \
123 #endif /* __ASSEMBLY__ */
124 #endif /* _ASM_ARCH_IRQ_H */