4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_lock (vmtruncate)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_alloc_sem (various)
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->dcache_lock (proc_pid_lookup)
110 * Remove a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold the mapping's tree_lock.
114 void __remove_from_page_cache(struct page
*page
)
116 struct address_space
*mapping
= page
->mapping
;
118 radix_tree_delete(&mapping
->page_tree
, page
->index
);
119 page
->mapping
= NULL
;
121 __dec_zone_page_state(page
, NR_FILE_PAGES
);
122 BUG_ON(page_mapped(page
));
125 * Some filesystems seem to re-dirty the page even after
126 * the VM has canceled the dirty bit (eg ext3 journaling).
128 * Fix it up by doing a final dirty accounting check after
129 * having removed the page entirely.
131 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
132 dec_zone_page_state(page
, NR_FILE_DIRTY
);
133 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
137 void remove_from_page_cache(struct page
*page
)
139 struct address_space
*mapping
= page
->mapping
;
141 BUG_ON(!PageLocked(page
));
143 spin_lock_irq(&mapping
->tree_lock
);
144 __remove_from_page_cache(page
);
145 spin_unlock_irq(&mapping
->tree_lock
);
146 mem_cgroup_uncharge_cache_page(page
);
149 static int sync_page(void *word
)
151 struct address_space
*mapping
;
154 page
= container_of((unsigned long *)word
, struct page
, flags
);
157 * page_mapping() is being called without PG_locked held.
158 * Some knowledge of the state and use of the page is used to
159 * reduce the requirements down to a memory barrier.
160 * The danger here is of a stale page_mapping() return value
161 * indicating a struct address_space different from the one it's
162 * associated with when it is associated with one.
163 * After smp_mb(), it's either the correct page_mapping() for
164 * the page, or an old page_mapping() and the page's own
165 * page_mapping() has gone NULL.
166 * The ->sync_page() address_space operation must tolerate
167 * page_mapping() going NULL. By an amazing coincidence,
168 * this comes about because none of the users of the page
169 * in the ->sync_page() methods make essential use of the
170 * page_mapping(), merely passing the page down to the backing
171 * device's unplug functions when it's non-NULL, which in turn
172 * ignore it for all cases but swap, where only page_private(page) is
173 * of interest. When page_mapping() does go NULL, the entire
174 * call stack gracefully ignores the page and returns.
178 mapping
= page_mapping(page
);
179 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
180 mapping
->a_ops
->sync_page(page
);
185 static int sync_page_killable(void *word
)
188 return fatal_signal_pending(current
) ? -EINTR
: 0;
192 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
193 * @mapping: address space structure to write
194 * @start: offset in bytes where the range starts
195 * @end: offset in bytes where the range ends (inclusive)
196 * @sync_mode: enable synchronous operation
198 * Start writeback against all of a mapping's dirty pages that lie
199 * within the byte offsets <start, end> inclusive.
201 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
202 * opposed to a regular memory cleansing writeback. The difference between
203 * these two operations is that if a dirty page/buffer is encountered, it must
204 * be waited upon, and not just skipped over.
206 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
207 loff_t end
, int sync_mode
)
210 struct writeback_control wbc
= {
211 .sync_mode
= sync_mode
,
212 .nr_to_write
= LONG_MAX
,
213 .range_start
= start
,
217 if (!mapping_cap_writeback_dirty(mapping
))
220 ret
= do_writepages(mapping
, &wbc
);
224 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
227 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
230 int filemap_fdatawrite(struct address_space
*mapping
)
232 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
234 EXPORT_SYMBOL(filemap_fdatawrite
);
236 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
239 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
241 EXPORT_SYMBOL(filemap_fdatawrite_range
);
244 * filemap_flush - mostly a non-blocking flush
245 * @mapping: target address_space
247 * This is a mostly non-blocking flush. Not suitable for data-integrity
248 * purposes - I/O may not be started against all dirty pages.
250 int filemap_flush(struct address_space
*mapping
)
252 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
254 EXPORT_SYMBOL(filemap_flush
);
257 * wait_on_page_writeback_range - wait for writeback to complete
258 * @mapping: target address_space
259 * @start: beginning page index
260 * @end: ending page index
262 * Wait for writeback to complete against pages indexed by start->end
265 int wait_on_page_writeback_range(struct address_space
*mapping
,
266 pgoff_t start
, pgoff_t end
)
276 pagevec_init(&pvec
, 0);
278 while ((index
<= end
) &&
279 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
280 PAGECACHE_TAG_WRITEBACK
,
281 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
284 for (i
= 0; i
< nr_pages
; i
++) {
285 struct page
*page
= pvec
.pages
[i
];
287 /* until radix tree lookup accepts end_index */
288 if (page
->index
> end
)
291 wait_on_page_writeback(page
);
295 pagevec_release(&pvec
);
299 /* Check for outstanding write errors */
300 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
302 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
309 * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
310 * @mapping: address space structure to wait for
311 * @start: offset in bytes where the range starts
312 * @end: offset in bytes where the range ends (inclusive)
314 * Walk the list of under-writeback pages of the given address space
315 * in the given range and wait for all of them.
317 * This is just a simple wrapper so that callers don't have to convert offsets
318 * to page indexes themselves
320 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start
,
323 return wait_on_page_writeback_range(mapping
, start
>> PAGE_CACHE_SHIFT
,
324 end
>> PAGE_CACHE_SHIFT
);
326 EXPORT_SYMBOL(filemap_fdatawait_range
);
329 * filemap_fdatawait - wait for all under-writeback pages to complete
330 * @mapping: address space structure to wait for
332 * Walk the list of under-writeback pages of the given address space
333 * and wait for all of them.
335 int filemap_fdatawait(struct address_space
*mapping
)
337 loff_t i_size
= i_size_read(mapping
->host
);
342 return wait_on_page_writeback_range(mapping
, 0,
343 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
345 EXPORT_SYMBOL(filemap_fdatawait
);
347 int filemap_write_and_wait(struct address_space
*mapping
)
351 if (mapping
->nrpages
) {
352 err
= filemap_fdatawrite(mapping
);
354 * Even if the above returned error, the pages may be
355 * written partially (e.g. -ENOSPC), so we wait for it.
356 * But the -EIO is special case, it may indicate the worst
357 * thing (e.g. bug) happened, so we avoid waiting for it.
360 int err2
= filemap_fdatawait(mapping
);
367 EXPORT_SYMBOL(filemap_write_and_wait
);
370 * filemap_write_and_wait_range - write out & wait on a file range
371 * @mapping: the address_space for the pages
372 * @lstart: offset in bytes where the range starts
373 * @lend: offset in bytes where the range ends (inclusive)
375 * Write out and wait upon file offsets lstart->lend, inclusive.
377 * Note that `lend' is inclusive (describes the last byte to be written) so
378 * that this function can be used to write to the very end-of-file (end = -1).
380 int filemap_write_and_wait_range(struct address_space
*mapping
,
381 loff_t lstart
, loff_t lend
)
385 if (mapping
->nrpages
) {
386 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
388 /* See comment of filemap_write_and_wait() */
390 int err2
= wait_on_page_writeback_range(mapping
,
391 lstart
>> PAGE_CACHE_SHIFT
,
392 lend
>> PAGE_CACHE_SHIFT
);
399 EXPORT_SYMBOL(filemap_write_and_wait_range
);
402 * add_to_page_cache_locked - add a locked page to the pagecache
404 * @mapping: the page's address_space
405 * @offset: page index
406 * @gfp_mask: page allocation mode
408 * This function is used to add a page to the pagecache. It must be locked.
409 * This function does not add the page to the LRU. The caller must do that.
411 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
412 pgoff_t offset
, gfp_t gfp_mask
)
416 VM_BUG_ON(!PageLocked(page
));
418 error
= mem_cgroup_cache_charge(page
, current
->mm
,
419 gfp_mask
& GFP_RECLAIM_MASK
);
423 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
425 page_cache_get(page
);
426 page
->mapping
= mapping
;
427 page
->index
= offset
;
429 spin_lock_irq(&mapping
->tree_lock
);
430 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
431 if (likely(!error
)) {
433 __inc_zone_page_state(page
, NR_FILE_PAGES
);
434 spin_unlock_irq(&mapping
->tree_lock
);
436 page
->mapping
= NULL
;
437 spin_unlock_irq(&mapping
->tree_lock
);
438 mem_cgroup_uncharge_cache_page(page
);
439 page_cache_release(page
);
441 radix_tree_preload_end();
443 mem_cgroup_uncharge_cache_page(page
);
447 EXPORT_SYMBOL(add_to_page_cache_locked
);
449 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
450 pgoff_t offset
, gfp_t gfp_mask
)
455 * Splice_read and readahead add shmem/tmpfs pages into the page cache
456 * before shmem_readpage has a chance to mark them as SwapBacked: they
457 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
458 * (called in add_to_page_cache) needs to know where they're going too.
460 if (mapping_cap_swap_backed(mapping
))
461 SetPageSwapBacked(page
);
463 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
465 if (page_is_file_cache(page
))
466 lru_cache_add_file(page
);
468 lru_cache_add_active_anon(page
);
472 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
475 struct page
*__page_cache_alloc(gfp_t gfp
)
477 if (cpuset_do_page_mem_spread()) {
478 int n
= cpuset_mem_spread_node();
479 return alloc_pages_exact_node(n
, gfp
, 0);
481 return alloc_pages(gfp
, 0);
483 EXPORT_SYMBOL(__page_cache_alloc
);
486 static int __sleep_on_page_lock(void *word
)
493 * In order to wait for pages to become available there must be
494 * waitqueues associated with pages. By using a hash table of
495 * waitqueues where the bucket discipline is to maintain all
496 * waiters on the same queue and wake all when any of the pages
497 * become available, and for the woken contexts to check to be
498 * sure the appropriate page became available, this saves space
499 * at a cost of "thundering herd" phenomena during rare hash
502 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
504 const struct zone
*zone
= page_zone(page
);
506 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
509 static inline void wake_up_page(struct page
*page
, int bit
)
511 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
514 void wait_on_page_bit(struct page
*page
, int bit_nr
)
516 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
518 if (test_bit(bit_nr
, &page
->flags
))
519 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
520 TASK_UNINTERRUPTIBLE
);
522 EXPORT_SYMBOL(wait_on_page_bit
);
525 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
526 * @page: Page defining the wait queue of interest
527 * @waiter: Waiter to add to the queue
529 * Add an arbitrary @waiter to the wait queue for the nominated @page.
531 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
533 wait_queue_head_t
*q
= page_waitqueue(page
);
536 spin_lock_irqsave(&q
->lock
, flags
);
537 __add_wait_queue(q
, waiter
);
538 spin_unlock_irqrestore(&q
->lock
, flags
);
540 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
543 * unlock_page - unlock a locked page
546 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
547 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
548 * mechananism between PageLocked pages and PageWriteback pages is shared.
549 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
551 * The mb is necessary to enforce ordering between the clear_bit and the read
552 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
554 void unlock_page(struct page
*page
)
556 VM_BUG_ON(!PageLocked(page
));
557 clear_bit_unlock(PG_locked
, &page
->flags
);
558 smp_mb__after_clear_bit();
559 wake_up_page(page
, PG_locked
);
561 EXPORT_SYMBOL(unlock_page
);
564 * end_page_writeback - end writeback against a page
567 void end_page_writeback(struct page
*page
)
569 if (TestClearPageReclaim(page
))
570 rotate_reclaimable_page(page
);
572 if (!test_clear_page_writeback(page
))
575 smp_mb__after_clear_bit();
576 wake_up_page(page
, PG_writeback
);
578 EXPORT_SYMBOL(end_page_writeback
);
581 * __lock_page - get a lock on the page, assuming we need to sleep to get it
582 * @page: the page to lock
584 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
585 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
586 * chances are that on the second loop, the block layer's plug list is empty,
587 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
589 void __lock_page(struct page
*page
)
591 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
593 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
594 TASK_UNINTERRUPTIBLE
);
596 EXPORT_SYMBOL(__lock_page
);
598 int __lock_page_killable(struct page
*page
)
600 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
602 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
603 sync_page_killable
, TASK_KILLABLE
);
605 EXPORT_SYMBOL_GPL(__lock_page_killable
);
608 * __lock_page_nosync - get a lock on the page, without calling sync_page()
609 * @page: the page to lock
611 * Variant of lock_page that does not require the caller to hold a reference
612 * on the page's mapping.
614 void __lock_page_nosync(struct page
*page
)
616 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
617 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
618 TASK_UNINTERRUPTIBLE
);
622 * find_get_page - find and get a page reference
623 * @mapping: the address_space to search
624 * @offset: the page index
626 * Is there a pagecache struct page at the given (mapping, offset) tuple?
627 * If yes, increment its refcount and return it; if no, return NULL.
629 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
637 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
639 page
= radix_tree_deref_slot(pagep
);
640 if (unlikely(!page
|| page
== RADIX_TREE_RETRY
))
643 if (!page_cache_get_speculative(page
))
647 * Has the page moved?
648 * This is part of the lockless pagecache protocol. See
649 * include/linux/pagemap.h for details.
651 if (unlikely(page
!= *pagep
)) {
652 page_cache_release(page
);
660 EXPORT_SYMBOL(find_get_page
);
663 * find_lock_page - locate, pin and lock a pagecache page
664 * @mapping: the address_space to search
665 * @offset: the page index
667 * Locates the desired pagecache page, locks it, increments its reference
668 * count and returns its address.
670 * Returns zero if the page was not present. find_lock_page() may sleep.
672 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
677 page
= find_get_page(mapping
, offset
);
680 /* Has the page been truncated? */
681 if (unlikely(page
->mapping
!= mapping
)) {
683 page_cache_release(page
);
686 VM_BUG_ON(page
->index
!= offset
);
690 EXPORT_SYMBOL(find_lock_page
);
693 * find_or_create_page - locate or add a pagecache page
694 * @mapping: the page's address_space
695 * @index: the page's index into the mapping
696 * @gfp_mask: page allocation mode
698 * Locates a page in the pagecache. If the page is not present, a new page
699 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
700 * LRU list. The returned page is locked and has its reference count
703 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
706 * find_or_create_page() returns the desired page's address, or zero on
709 struct page
*find_or_create_page(struct address_space
*mapping
,
710 pgoff_t index
, gfp_t gfp_mask
)
715 page
= find_lock_page(mapping
, index
);
717 page
= __page_cache_alloc(gfp_mask
);
721 * We want a regular kernel memory (not highmem or DMA etc)
722 * allocation for the radix tree nodes, but we need to honour
723 * the context-specific requirements the caller has asked for.
724 * GFP_RECLAIM_MASK collects those requirements.
726 err
= add_to_page_cache_lru(page
, mapping
, index
,
727 (gfp_mask
& GFP_RECLAIM_MASK
));
729 page_cache_release(page
);
737 EXPORT_SYMBOL(find_or_create_page
);
740 * find_get_pages - gang pagecache lookup
741 * @mapping: The address_space to search
742 * @start: The starting page index
743 * @nr_pages: The maximum number of pages
744 * @pages: Where the resulting pages are placed
746 * find_get_pages() will search for and return a group of up to
747 * @nr_pages pages in the mapping. The pages are placed at @pages.
748 * find_get_pages() takes a reference against the returned pages.
750 * The search returns a group of mapping-contiguous pages with ascending
751 * indexes. There may be holes in the indices due to not-present pages.
753 * find_get_pages() returns the number of pages which were found.
755 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
756 unsigned int nr_pages
, struct page
**pages
)
760 unsigned int nr_found
;
764 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
765 (void ***)pages
, start
, nr_pages
);
767 for (i
= 0; i
< nr_found
; i
++) {
770 page
= radix_tree_deref_slot((void **)pages
[i
]);
774 * this can only trigger if nr_found == 1, making livelock
777 if (unlikely(page
== RADIX_TREE_RETRY
))
780 if (!page_cache_get_speculative(page
))
783 /* Has the page moved? */
784 if (unlikely(page
!= *((void **)pages
[i
]))) {
785 page_cache_release(page
);
797 * find_get_pages_contig - gang contiguous pagecache lookup
798 * @mapping: The address_space to search
799 * @index: The starting page index
800 * @nr_pages: The maximum number of pages
801 * @pages: Where the resulting pages are placed
803 * find_get_pages_contig() works exactly like find_get_pages(), except
804 * that the returned number of pages are guaranteed to be contiguous.
806 * find_get_pages_contig() returns the number of pages which were found.
808 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
809 unsigned int nr_pages
, struct page
**pages
)
813 unsigned int nr_found
;
817 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
818 (void ***)pages
, index
, nr_pages
);
820 for (i
= 0; i
< nr_found
; i
++) {
823 page
= radix_tree_deref_slot((void **)pages
[i
]);
827 * this can only trigger if nr_found == 1, making livelock
830 if (unlikely(page
== RADIX_TREE_RETRY
))
833 if (page
->mapping
== NULL
|| page
->index
!= index
)
836 if (!page_cache_get_speculative(page
))
839 /* Has the page moved? */
840 if (unlikely(page
!= *((void **)pages
[i
]))) {
841 page_cache_release(page
);
852 EXPORT_SYMBOL(find_get_pages_contig
);
855 * find_get_pages_tag - find and return pages that match @tag
856 * @mapping: the address_space to search
857 * @index: the starting page index
858 * @tag: the tag index
859 * @nr_pages: the maximum number of pages
860 * @pages: where the resulting pages are placed
862 * Like find_get_pages, except we only return pages which are tagged with
863 * @tag. We update @index to index the next page for the traversal.
865 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
866 int tag
, unsigned int nr_pages
, struct page
**pages
)
870 unsigned int nr_found
;
874 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
875 (void ***)pages
, *index
, nr_pages
, tag
);
877 for (i
= 0; i
< nr_found
; i
++) {
880 page
= radix_tree_deref_slot((void **)pages
[i
]);
884 * this can only trigger if nr_found == 1, making livelock
887 if (unlikely(page
== RADIX_TREE_RETRY
))
890 if (!page_cache_get_speculative(page
))
893 /* Has the page moved? */
894 if (unlikely(page
!= *((void **)pages
[i
]))) {
895 page_cache_release(page
);
905 *index
= pages
[ret
- 1]->index
+ 1;
909 EXPORT_SYMBOL(find_get_pages_tag
);
912 * grab_cache_page_nowait - returns locked page at given index in given cache
913 * @mapping: target address_space
914 * @index: the page index
916 * Same as grab_cache_page(), but do not wait if the page is unavailable.
917 * This is intended for speculative data generators, where the data can
918 * be regenerated if the page couldn't be grabbed. This routine should
919 * be safe to call while holding the lock for another page.
921 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
922 * and deadlock against the caller's locked page.
925 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
927 struct page
*page
= find_get_page(mapping
, index
);
930 if (trylock_page(page
))
932 page_cache_release(page
);
935 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
936 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
937 page_cache_release(page
);
942 EXPORT_SYMBOL(grab_cache_page_nowait
);
945 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
946 * a _large_ part of the i/o request. Imagine the worst scenario:
948 * ---R__________________________________________B__________
949 * ^ reading here ^ bad block(assume 4k)
951 * read(R) => miss => readahead(R...B) => media error => frustrating retries
952 * => failing the whole request => read(R) => read(R+1) =>
953 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
954 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
955 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
957 * It is going insane. Fix it by quickly scaling down the readahead size.
959 static void shrink_readahead_size_eio(struct file
*filp
,
960 struct file_ra_state
*ra
)
966 * do_generic_file_read - generic file read routine
967 * @filp: the file to read
968 * @ppos: current file position
969 * @desc: read_descriptor
970 * @actor: read method
972 * This is a generic file read routine, and uses the
973 * mapping->a_ops->readpage() function for the actual low-level stuff.
975 * This is really ugly. But the goto's actually try to clarify some
976 * of the logic when it comes to error handling etc.
978 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
979 read_descriptor_t
*desc
, read_actor_t actor
)
981 struct address_space
*mapping
= filp
->f_mapping
;
982 struct inode
*inode
= mapping
->host
;
983 struct file_ra_state
*ra
= &filp
->f_ra
;
987 unsigned long offset
; /* offset into pagecache page */
988 unsigned int prev_offset
;
991 index
= *ppos
>> PAGE_CACHE_SHIFT
;
992 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
993 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
994 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
995 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1001 unsigned long nr
, ret
;
1005 page
= find_get_page(mapping
, index
);
1007 page_cache_sync_readahead(mapping
,
1009 index
, last_index
- index
);
1010 page
= find_get_page(mapping
, index
);
1011 if (unlikely(page
== NULL
))
1012 goto no_cached_page
;
1014 if (PageReadahead(page
)) {
1015 page_cache_async_readahead(mapping
,
1017 index
, last_index
- index
);
1019 if (!PageUptodate(page
)) {
1020 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1021 !mapping
->a_ops
->is_partially_uptodate
)
1022 goto page_not_up_to_date
;
1023 if (!trylock_page(page
))
1024 goto page_not_up_to_date
;
1025 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1027 goto page_not_up_to_date_locked
;
1032 * i_size must be checked after we know the page is Uptodate.
1034 * Checking i_size after the check allows us to calculate
1035 * the correct value for "nr", which means the zero-filled
1036 * part of the page is not copied back to userspace (unless
1037 * another truncate extends the file - this is desired though).
1040 isize
= i_size_read(inode
);
1041 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1042 if (unlikely(!isize
|| index
> end_index
)) {
1043 page_cache_release(page
);
1047 /* nr is the maximum number of bytes to copy from this page */
1048 nr
= PAGE_CACHE_SIZE
;
1049 if (index
== end_index
) {
1050 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1052 page_cache_release(page
);
1058 /* If users can be writing to this page using arbitrary
1059 * virtual addresses, take care about potential aliasing
1060 * before reading the page on the kernel side.
1062 if (mapping_writably_mapped(mapping
))
1063 flush_dcache_page(page
);
1066 * When a sequential read accesses a page several times,
1067 * only mark it as accessed the first time.
1069 if (prev_index
!= index
|| offset
!= prev_offset
)
1070 mark_page_accessed(page
);
1074 * Ok, we have the page, and it's up-to-date, so
1075 * now we can copy it to user space...
1077 * The actor routine returns how many bytes were actually used..
1078 * NOTE! This may not be the same as how much of a user buffer
1079 * we filled up (we may be padding etc), so we can only update
1080 * "pos" here (the actor routine has to update the user buffer
1081 * pointers and the remaining count).
1083 ret
= actor(desc
, page
, offset
, nr
);
1085 index
+= offset
>> PAGE_CACHE_SHIFT
;
1086 offset
&= ~PAGE_CACHE_MASK
;
1087 prev_offset
= offset
;
1089 page_cache_release(page
);
1090 if (ret
== nr
&& desc
->count
)
1094 page_not_up_to_date
:
1095 /* Get exclusive access to the page ... */
1096 error
= lock_page_killable(page
);
1097 if (unlikely(error
))
1098 goto readpage_error
;
1100 page_not_up_to_date_locked
:
1101 /* Did it get truncated before we got the lock? */
1102 if (!page
->mapping
) {
1104 page_cache_release(page
);
1108 /* Did somebody else fill it already? */
1109 if (PageUptodate(page
)) {
1115 /* Start the actual read. The read will unlock the page. */
1116 error
= mapping
->a_ops
->readpage(filp
, page
);
1118 if (unlikely(error
)) {
1119 if (error
== AOP_TRUNCATED_PAGE
) {
1120 page_cache_release(page
);
1123 goto readpage_error
;
1126 if (!PageUptodate(page
)) {
1127 error
= lock_page_killable(page
);
1128 if (unlikely(error
))
1129 goto readpage_error
;
1130 if (!PageUptodate(page
)) {
1131 if (page
->mapping
== NULL
) {
1133 * invalidate_inode_pages got it
1136 page_cache_release(page
);
1140 shrink_readahead_size_eio(filp
, ra
);
1142 goto readpage_error
;
1150 /* UHHUH! A synchronous read error occurred. Report it */
1151 desc
->error
= error
;
1152 page_cache_release(page
);
1157 * Ok, it wasn't cached, so we need to create a new
1160 page
= page_cache_alloc_cold(mapping
);
1162 desc
->error
= -ENOMEM
;
1165 error
= add_to_page_cache_lru(page
, mapping
,
1168 page_cache_release(page
);
1169 if (error
== -EEXIST
)
1171 desc
->error
= error
;
1178 ra
->prev_pos
= prev_index
;
1179 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1180 ra
->prev_pos
|= prev_offset
;
1182 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1183 file_accessed(filp
);
1186 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1187 unsigned long offset
, unsigned long size
)
1190 unsigned long left
, count
= desc
->count
;
1196 * Faults on the destination of a read are common, so do it before
1199 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1200 kaddr
= kmap_atomic(page
, KM_USER0
);
1201 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1202 kaddr
+ offset
, size
);
1203 kunmap_atomic(kaddr
, KM_USER0
);
1208 /* Do it the slow way */
1210 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1215 desc
->error
= -EFAULT
;
1218 desc
->count
= count
- size
;
1219 desc
->written
+= size
;
1220 desc
->arg
.buf
+= size
;
1225 * Performs necessary checks before doing a write
1226 * @iov: io vector request
1227 * @nr_segs: number of segments in the iovec
1228 * @count: number of bytes to write
1229 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1231 * Adjust number of segments and amount of bytes to write (nr_segs should be
1232 * properly initialized first). Returns appropriate error code that caller
1233 * should return or zero in case that write should be allowed.
1235 int generic_segment_checks(const struct iovec
*iov
,
1236 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1240 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1241 const struct iovec
*iv
= &iov
[seg
];
1244 * If any segment has a negative length, or the cumulative
1245 * length ever wraps negative then return -EINVAL.
1248 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1250 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1255 cnt
-= iv
->iov_len
; /* This segment is no good */
1261 EXPORT_SYMBOL(generic_segment_checks
);
1264 * generic_file_aio_read - generic filesystem read routine
1265 * @iocb: kernel I/O control block
1266 * @iov: io vector request
1267 * @nr_segs: number of segments in the iovec
1268 * @pos: current file position
1270 * This is the "read()" routine for all filesystems
1271 * that can use the page cache directly.
1274 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1275 unsigned long nr_segs
, loff_t pos
)
1277 struct file
*filp
= iocb
->ki_filp
;
1281 loff_t
*ppos
= &iocb
->ki_pos
;
1284 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1288 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1289 if (filp
->f_flags
& O_DIRECT
) {
1291 struct address_space
*mapping
;
1292 struct inode
*inode
;
1294 mapping
= filp
->f_mapping
;
1295 inode
= mapping
->host
;
1297 goto out
; /* skip atime */
1298 size
= i_size_read(inode
);
1300 retval
= filemap_write_and_wait_range(mapping
, pos
,
1301 pos
+ iov_length(iov
, nr_segs
) - 1);
1303 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1307 *ppos
= pos
+ retval
;
1309 file_accessed(filp
);
1315 for (seg
= 0; seg
< nr_segs
; seg
++) {
1316 read_descriptor_t desc
;
1319 desc
.arg
.buf
= iov
[seg
].iov_base
;
1320 desc
.count
= iov
[seg
].iov_len
;
1321 if (desc
.count
== 0)
1324 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1325 retval
+= desc
.written
;
1327 retval
= retval
?: desc
.error
;
1336 EXPORT_SYMBOL(generic_file_aio_read
);
1339 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1340 pgoff_t index
, unsigned long nr
)
1342 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1345 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1349 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1357 if (file
->f_mode
& FMODE_READ
) {
1358 struct address_space
*mapping
= file
->f_mapping
;
1359 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1360 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1361 unsigned long len
= end
- start
+ 1;
1362 ret
= do_readahead(mapping
, file
, start
, len
);
1368 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1369 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1371 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1373 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1378 * page_cache_read - adds requested page to the page cache if not already there
1379 * @file: file to read
1380 * @offset: page index
1382 * This adds the requested page to the page cache if it isn't already there,
1383 * and schedules an I/O to read in its contents from disk.
1385 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1387 struct address_space
*mapping
= file
->f_mapping
;
1392 page
= page_cache_alloc_cold(mapping
);
1396 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1398 ret
= mapping
->a_ops
->readpage(file
, page
);
1399 else if (ret
== -EEXIST
)
1400 ret
= 0; /* losing race to add is OK */
1402 page_cache_release(page
);
1404 } while (ret
== AOP_TRUNCATED_PAGE
);
1409 #define MMAP_LOTSAMISS (100)
1412 * Synchronous readahead happens when we don't even find
1413 * a page in the page cache at all.
1415 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1416 struct file_ra_state
*ra
,
1420 unsigned long ra_pages
;
1421 struct address_space
*mapping
= file
->f_mapping
;
1423 /* If we don't want any read-ahead, don't bother */
1424 if (VM_RandomReadHint(vma
))
1427 if (VM_SequentialReadHint(vma
) ||
1428 offset
- 1 == (ra
->prev_pos
>> PAGE_CACHE_SHIFT
)) {
1429 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1434 if (ra
->mmap_miss
< INT_MAX
)
1438 * Do we miss much more than hit in this file? If so,
1439 * stop bothering with read-ahead. It will only hurt.
1441 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1447 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1449 ra
->start
= max_t(long, 0, offset
- ra_pages
/2);
1450 ra
->size
= ra_pages
;
1452 ra_submit(ra
, mapping
, file
);
1457 * Asynchronous readahead happens when we find the page and PG_readahead,
1458 * so we want to possibly extend the readahead further..
1460 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1461 struct file_ra_state
*ra
,
1466 struct address_space
*mapping
= file
->f_mapping
;
1468 /* If we don't want any read-ahead, don't bother */
1469 if (VM_RandomReadHint(vma
))
1471 if (ra
->mmap_miss
> 0)
1473 if (PageReadahead(page
))
1474 page_cache_async_readahead(mapping
, ra
, file
,
1475 page
, offset
, ra
->ra_pages
);
1479 * filemap_fault - read in file data for page fault handling
1480 * @vma: vma in which the fault was taken
1481 * @vmf: struct vm_fault containing details of the fault
1483 * filemap_fault() is invoked via the vma operations vector for a
1484 * mapped memory region to read in file data during a page fault.
1486 * The goto's are kind of ugly, but this streamlines the normal case of having
1487 * it in the page cache, and handles the special cases reasonably without
1488 * having a lot of duplicated code.
1490 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1493 struct file
*file
= vma
->vm_file
;
1494 struct address_space
*mapping
= file
->f_mapping
;
1495 struct file_ra_state
*ra
= &file
->f_ra
;
1496 struct inode
*inode
= mapping
->host
;
1497 pgoff_t offset
= vmf
->pgoff
;
1502 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1504 return VM_FAULT_SIGBUS
;
1507 * Do we have something in the page cache already?
1509 page
= find_get_page(mapping
, offset
);
1512 * We found the page, so try async readahead before
1513 * waiting for the lock.
1515 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1518 /* Did it get truncated? */
1519 if (unlikely(page
->mapping
!= mapping
)) {
1522 goto no_cached_page
;
1525 /* No page in the page cache at all */
1526 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1527 count_vm_event(PGMAJFAULT
);
1528 ret
= VM_FAULT_MAJOR
;
1530 page
= find_lock_page(mapping
, offset
);
1532 goto no_cached_page
;
1536 * We have a locked page in the page cache, now we need to check
1537 * that it's up-to-date. If not, it is going to be due to an error.
1539 if (unlikely(!PageUptodate(page
)))
1540 goto page_not_uptodate
;
1543 * Found the page and have a reference on it.
1544 * We must recheck i_size under page lock.
1546 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1547 if (unlikely(offset
>= size
)) {
1549 page_cache_release(page
);
1550 return VM_FAULT_SIGBUS
;
1553 ra
->prev_pos
= (loff_t
)offset
<< PAGE_CACHE_SHIFT
;
1555 return ret
| VM_FAULT_LOCKED
;
1559 * We're only likely to ever get here if MADV_RANDOM is in
1562 error
= page_cache_read(file
, offset
);
1565 * The page we want has now been added to the page cache.
1566 * In the unlikely event that someone removed it in the
1567 * meantime, we'll just come back here and read it again.
1573 * An error return from page_cache_read can result if the
1574 * system is low on memory, or a problem occurs while trying
1577 if (error
== -ENOMEM
)
1578 return VM_FAULT_OOM
;
1579 return VM_FAULT_SIGBUS
;
1583 * Umm, take care of errors if the page isn't up-to-date.
1584 * Try to re-read it _once_. We do this synchronously,
1585 * because there really aren't any performance issues here
1586 * and we need to check for errors.
1588 ClearPageError(page
);
1589 error
= mapping
->a_ops
->readpage(file
, page
);
1591 wait_on_page_locked(page
);
1592 if (!PageUptodate(page
))
1595 page_cache_release(page
);
1597 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1600 /* Things didn't work out. Return zero to tell the mm layer so. */
1601 shrink_readahead_size_eio(file
, ra
);
1602 return VM_FAULT_SIGBUS
;
1604 EXPORT_SYMBOL(filemap_fault
);
1606 struct vm_operations_struct generic_file_vm_ops
= {
1607 .fault
= filemap_fault
,
1610 /* This is used for a general mmap of a disk file */
1612 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1614 struct address_space
*mapping
= file
->f_mapping
;
1616 if (!mapping
->a_ops
->readpage
)
1618 file_accessed(file
);
1619 vma
->vm_ops
= &generic_file_vm_ops
;
1620 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1625 * This is for filesystems which do not implement ->writepage.
1627 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1629 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1631 return generic_file_mmap(file
, vma
);
1634 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1638 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1642 #endif /* CONFIG_MMU */
1644 EXPORT_SYMBOL(generic_file_mmap
);
1645 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1647 static struct page
*__read_cache_page(struct address_space
*mapping
,
1649 int (*filler
)(void *,struct page
*),
1655 page
= find_get_page(mapping
, index
);
1657 page
= page_cache_alloc_cold(mapping
);
1659 return ERR_PTR(-ENOMEM
);
1660 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1661 if (unlikely(err
)) {
1662 page_cache_release(page
);
1665 /* Presumably ENOMEM for radix tree node */
1666 return ERR_PTR(err
);
1668 err
= filler(data
, page
);
1670 page_cache_release(page
);
1671 page
= ERR_PTR(err
);
1678 * read_cache_page_async - read into page cache, fill it if needed
1679 * @mapping: the page's address_space
1680 * @index: the page index
1681 * @filler: function to perform the read
1682 * @data: destination for read data
1684 * Same as read_cache_page, but don't wait for page to become unlocked
1685 * after submitting it to the filler.
1687 * Read into the page cache. If a page already exists, and PageUptodate() is
1688 * not set, try to fill the page but don't wait for it to become unlocked.
1690 * If the page does not get brought uptodate, return -EIO.
1692 struct page
*read_cache_page_async(struct address_space
*mapping
,
1694 int (*filler
)(void *,struct page
*),
1701 page
= __read_cache_page(mapping
, index
, filler
, data
);
1704 if (PageUptodate(page
))
1708 if (!page
->mapping
) {
1710 page_cache_release(page
);
1713 if (PageUptodate(page
)) {
1717 err
= filler(data
, page
);
1719 page_cache_release(page
);
1720 return ERR_PTR(err
);
1723 mark_page_accessed(page
);
1726 EXPORT_SYMBOL(read_cache_page_async
);
1729 * read_cache_page - read into page cache, fill it if needed
1730 * @mapping: the page's address_space
1731 * @index: the page index
1732 * @filler: function to perform the read
1733 * @data: destination for read data
1735 * Read into the page cache. If a page already exists, and PageUptodate() is
1736 * not set, try to fill the page then wait for it to become unlocked.
1738 * If the page does not get brought uptodate, return -EIO.
1740 struct page
*read_cache_page(struct address_space
*mapping
,
1742 int (*filler
)(void *,struct page
*),
1747 page
= read_cache_page_async(mapping
, index
, filler
, data
);
1750 wait_on_page_locked(page
);
1751 if (!PageUptodate(page
)) {
1752 page_cache_release(page
);
1753 page
= ERR_PTR(-EIO
);
1758 EXPORT_SYMBOL(read_cache_page
);
1761 * The logic we want is
1763 * if suid or (sgid and xgrp)
1766 int should_remove_suid(struct dentry
*dentry
)
1768 mode_t mode
= dentry
->d_inode
->i_mode
;
1771 /* suid always must be killed */
1772 if (unlikely(mode
& S_ISUID
))
1773 kill
= ATTR_KILL_SUID
;
1776 * sgid without any exec bits is just a mandatory locking mark; leave
1777 * it alone. If some exec bits are set, it's a real sgid; kill it.
1779 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1780 kill
|= ATTR_KILL_SGID
;
1782 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1787 EXPORT_SYMBOL(should_remove_suid
);
1789 static int __remove_suid(struct dentry
*dentry
, int kill
)
1791 struct iattr newattrs
;
1793 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1794 return notify_change(dentry
, &newattrs
);
1797 int file_remove_suid(struct file
*file
)
1799 struct dentry
*dentry
= file
->f_path
.dentry
;
1800 int killsuid
= should_remove_suid(dentry
);
1801 int killpriv
= security_inode_need_killpriv(dentry
);
1807 error
= security_inode_killpriv(dentry
);
1808 if (!error
&& killsuid
)
1809 error
= __remove_suid(dentry
, killsuid
);
1813 EXPORT_SYMBOL(file_remove_suid
);
1815 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1816 const struct iovec
*iov
, size_t base
, size_t bytes
)
1818 size_t copied
= 0, left
= 0;
1821 char __user
*buf
= iov
->iov_base
+ base
;
1822 int copy
= min(bytes
, iov
->iov_len
- base
);
1825 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
1834 return copied
- left
;
1838 * Copy as much as we can into the page and return the number of bytes which
1839 * were sucessfully copied. If a fault is encountered then return the number of
1840 * bytes which were copied.
1842 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1843 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1848 BUG_ON(!in_atomic());
1849 kaddr
= kmap_atomic(page
, KM_USER0
);
1850 if (likely(i
->nr_segs
== 1)) {
1852 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1853 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
1854 copied
= bytes
- left
;
1856 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1857 i
->iov
, i
->iov_offset
, bytes
);
1859 kunmap_atomic(kaddr
, KM_USER0
);
1863 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1866 * This has the same sideeffects and return value as
1867 * iov_iter_copy_from_user_atomic().
1868 * The difference is that it attempts to resolve faults.
1869 * Page must not be locked.
1871 size_t iov_iter_copy_from_user(struct page
*page
,
1872 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1878 if (likely(i
->nr_segs
== 1)) {
1880 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1881 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
1882 copied
= bytes
- left
;
1884 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1885 i
->iov
, i
->iov_offset
, bytes
);
1890 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1892 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1894 BUG_ON(i
->count
< bytes
);
1896 if (likely(i
->nr_segs
== 1)) {
1897 i
->iov_offset
+= bytes
;
1900 const struct iovec
*iov
= i
->iov
;
1901 size_t base
= i
->iov_offset
;
1904 * The !iov->iov_len check ensures we skip over unlikely
1905 * zero-length segments (without overruning the iovec).
1907 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
1910 copy
= min(bytes
, iov
->iov_len
- base
);
1911 BUG_ON(!i
->count
|| i
->count
< copy
);
1915 if (iov
->iov_len
== base
) {
1921 i
->iov_offset
= base
;
1924 EXPORT_SYMBOL(iov_iter_advance
);
1927 * Fault in the first iovec of the given iov_iter, to a maximum length
1928 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1929 * accessed (ie. because it is an invalid address).
1931 * writev-intensive code may want this to prefault several iovecs -- that
1932 * would be possible (callers must not rely on the fact that _only_ the
1933 * first iovec will be faulted with the current implementation).
1935 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
1937 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1938 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
1939 return fault_in_pages_readable(buf
, bytes
);
1941 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
1944 * Return the count of just the current iov_iter segment.
1946 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
1948 const struct iovec
*iov
= i
->iov
;
1949 if (i
->nr_segs
== 1)
1952 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
1954 EXPORT_SYMBOL(iov_iter_single_seg_count
);
1957 * Performs necessary checks before doing a write
1959 * Can adjust writing position or amount of bytes to write.
1960 * Returns appropriate error code that caller should return or
1961 * zero in case that write should be allowed.
1963 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1965 struct inode
*inode
= file
->f_mapping
->host
;
1966 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1968 if (unlikely(*pos
< 0))
1972 /* FIXME: this is for backwards compatibility with 2.4 */
1973 if (file
->f_flags
& O_APPEND
)
1974 *pos
= i_size_read(inode
);
1976 if (limit
!= RLIM_INFINITY
) {
1977 if (*pos
>= limit
) {
1978 send_sig(SIGXFSZ
, current
, 0);
1981 if (*count
> limit
- (typeof(limit
))*pos
) {
1982 *count
= limit
- (typeof(limit
))*pos
;
1990 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1991 !(file
->f_flags
& O_LARGEFILE
))) {
1992 if (*pos
>= MAX_NON_LFS
) {
1995 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1996 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2001 * Are we about to exceed the fs block limit ?
2003 * If we have written data it becomes a short write. If we have
2004 * exceeded without writing data we send a signal and return EFBIG.
2005 * Linus frestrict idea will clean these up nicely..
2007 if (likely(!isblk
)) {
2008 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2009 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2012 /* zero-length writes at ->s_maxbytes are OK */
2015 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2016 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2020 if (bdev_read_only(I_BDEV(inode
)))
2022 isize
= i_size_read(inode
);
2023 if (*pos
>= isize
) {
2024 if (*count
|| *pos
> isize
)
2028 if (*pos
+ *count
> isize
)
2029 *count
= isize
- *pos
;
2036 EXPORT_SYMBOL(generic_write_checks
);
2038 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2039 loff_t pos
, unsigned len
, unsigned flags
,
2040 struct page
**pagep
, void **fsdata
)
2042 const struct address_space_operations
*aops
= mapping
->a_ops
;
2044 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2047 EXPORT_SYMBOL(pagecache_write_begin
);
2049 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2050 loff_t pos
, unsigned len
, unsigned copied
,
2051 struct page
*page
, void *fsdata
)
2053 const struct address_space_operations
*aops
= mapping
->a_ops
;
2055 mark_page_accessed(page
);
2056 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2058 EXPORT_SYMBOL(pagecache_write_end
);
2061 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2062 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2063 size_t count
, size_t ocount
)
2065 struct file
*file
= iocb
->ki_filp
;
2066 struct address_space
*mapping
= file
->f_mapping
;
2067 struct inode
*inode
= mapping
->host
;
2072 if (count
!= ocount
)
2073 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2075 write_len
= iov_length(iov
, *nr_segs
);
2076 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2078 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2083 * After a write we want buffered reads to be sure to go to disk to get
2084 * the new data. We invalidate clean cached page from the region we're
2085 * about to write. We do this *before* the write so that we can return
2086 * without clobbering -EIOCBQUEUED from ->direct_IO().
2088 if (mapping
->nrpages
) {
2089 written
= invalidate_inode_pages2_range(mapping
,
2090 pos
>> PAGE_CACHE_SHIFT
, end
);
2092 * If a page can not be invalidated, return 0 to fall back
2093 * to buffered write.
2096 if (written
== -EBUSY
)
2102 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2105 * Finally, try again to invalidate clean pages which might have been
2106 * cached by non-direct readahead, or faulted in by get_user_pages()
2107 * if the source of the write was an mmap'ed region of the file
2108 * we're writing. Either one is a pretty crazy thing to do,
2109 * so we don't support it 100%. If this invalidation
2110 * fails, tough, the write still worked...
2112 if (mapping
->nrpages
) {
2113 invalidate_inode_pages2_range(mapping
,
2114 pos
>> PAGE_CACHE_SHIFT
, end
);
2118 loff_t end
= pos
+ written
;
2119 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2120 i_size_write(inode
, end
);
2121 mark_inode_dirty(inode
);
2128 EXPORT_SYMBOL(generic_file_direct_write
);
2131 * Find or create a page at the given pagecache position. Return the locked
2132 * page. This function is specifically for buffered writes.
2134 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2135 pgoff_t index
, unsigned flags
)
2139 gfp_t gfp_notmask
= 0;
2140 if (flags
& AOP_FLAG_NOFS
)
2141 gfp_notmask
= __GFP_FS
;
2143 page
= find_lock_page(mapping
, index
);
2147 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2150 status
= add_to_page_cache_lru(page
, mapping
, index
,
2151 GFP_KERNEL
& ~gfp_notmask
);
2152 if (unlikely(status
)) {
2153 page_cache_release(page
);
2154 if (status
== -EEXIST
)
2160 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2162 static ssize_t
generic_perform_write(struct file
*file
,
2163 struct iov_iter
*i
, loff_t pos
)
2165 struct address_space
*mapping
= file
->f_mapping
;
2166 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2168 ssize_t written
= 0;
2169 unsigned int flags
= 0;
2172 * Copies from kernel address space cannot fail (NFSD is a big user).
2174 if (segment_eq(get_fs(), KERNEL_DS
))
2175 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2179 pgoff_t index
; /* Pagecache index for current page */
2180 unsigned long offset
; /* Offset into pagecache page */
2181 unsigned long bytes
; /* Bytes to write to page */
2182 size_t copied
; /* Bytes copied from user */
2185 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2186 index
= pos
>> PAGE_CACHE_SHIFT
;
2187 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2193 * Bring in the user page that we will copy from _first_.
2194 * Otherwise there's a nasty deadlock on copying from the
2195 * same page as we're writing to, without it being marked
2198 * Not only is this an optimisation, but it is also required
2199 * to check that the address is actually valid, when atomic
2200 * usercopies are used, below.
2202 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2207 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2209 if (unlikely(status
))
2212 pagefault_disable();
2213 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2215 flush_dcache_page(page
);
2217 mark_page_accessed(page
);
2218 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2220 if (unlikely(status
< 0))
2226 iov_iter_advance(i
, copied
);
2227 if (unlikely(copied
== 0)) {
2229 * If we were unable to copy any data at all, we must
2230 * fall back to a single segment length write.
2232 * If we didn't fallback here, we could livelock
2233 * because not all segments in the iov can be copied at
2234 * once without a pagefault.
2236 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2237 iov_iter_single_seg_count(i
));
2243 balance_dirty_pages_ratelimited(mapping
);
2245 } while (iov_iter_count(i
));
2247 return written
? written
: status
;
2251 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2252 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2253 size_t count
, ssize_t written
)
2255 struct file
*file
= iocb
->ki_filp
;
2256 struct address_space
*mapping
= file
->f_mapping
;
2260 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2261 status
= generic_perform_write(file
, &i
, pos
);
2263 if (likely(status
>= 0)) {
2265 *ppos
= pos
+ status
;
2269 * If we get here for O_DIRECT writes then we must have fallen through
2270 * to buffered writes (block instantiation inside i_size). So we sync
2271 * the file data here, to try to honour O_DIRECT expectations.
2273 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2274 status
= filemap_write_and_wait_range(mapping
,
2275 pos
, pos
+ written
- 1);
2277 return written
? written
: status
;
2279 EXPORT_SYMBOL(generic_file_buffered_write
);
2282 * __generic_file_aio_write - write data to a file
2283 * @iocb: IO state structure (file, offset, etc.)
2284 * @iov: vector with data to write
2285 * @nr_segs: number of segments in the vector
2286 * @ppos: position where to write
2288 * This function does all the work needed for actually writing data to a
2289 * file. It does all basic checks, removes SUID from the file, updates
2290 * modification times and calls proper subroutines depending on whether we
2291 * do direct IO or a standard buffered write.
2293 * It expects i_mutex to be grabbed unless we work on a block device or similar
2294 * object which does not need locking at all.
2296 * This function does *not* take care of syncing data in case of O_SYNC write.
2297 * A caller has to handle it. This is mainly due to the fact that we want to
2298 * avoid syncing under i_mutex.
2300 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2301 unsigned long nr_segs
, loff_t
*ppos
)
2303 struct file
*file
= iocb
->ki_filp
;
2304 struct address_space
* mapping
= file
->f_mapping
;
2305 size_t ocount
; /* original count */
2306 size_t count
; /* after file limit checks */
2307 struct inode
*inode
= mapping
->host
;
2313 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2320 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2322 /* We can write back this queue in page reclaim */
2323 current
->backing_dev_info
= mapping
->backing_dev_info
;
2326 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2333 err
= file_remove_suid(file
);
2337 file_update_time(file
);
2339 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2340 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2342 ssize_t written_buffered
;
2344 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2345 ppos
, count
, ocount
);
2346 if (written
< 0 || written
== count
)
2349 * direct-io write to a hole: fall through to buffered I/O
2350 * for completing the rest of the request.
2354 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2355 nr_segs
, pos
, ppos
, count
,
2358 * If generic_file_buffered_write() retuned a synchronous error
2359 * then we want to return the number of bytes which were
2360 * direct-written, or the error code if that was zero. Note
2361 * that this differs from normal direct-io semantics, which
2362 * will return -EFOO even if some bytes were written.
2364 if (written_buffered
< 0) {
2365 err
= written_buffered
;
2370 * We need to ensure that the page cache pages are written to
2371 * disk and invalidated to preserve the expected O_DIRECT
2374 endbyte
= pos
+ written_buffered
- written
- 1;
2375 err
= do_sync_mapping_range(file
->f_mapping
, pos
, endbyte
,
2376 SYNC_FILE_RANGE_WAIT_BEFORE
|
2377 SYNC_FILE_RANGE_WRITE
|
2378 SYNC_FILE_RANGE_WAIT_AFTER
);
2380 written
= written_buffered
;
2381 invalidate_mapping_pages(mapping
,
2382 pos
>> PAGE_CACHE_SHIFT
,
2383 endbyte
>> PAGE_CACHE_SHIFT
);
2386 * We don't know how much we wrote, so just return
2387 * the number of bytes which were direct-written
2391 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2392 pos
, ppos
, count
, written
);
2395 current
->backing_dev_info
= NULL
;
2396 return written
? written
: err
;
2398 EXPORT_SYMBOL(__generic_file_aio_write
);
2401 * generic_file_aio_write - write data to a file
2402 * @iocb: IO state structure
2403 * @iov: vector with data to write
2404 * @nr_segs: number of segments in the vector
2405 * @pos: position in file where to write
2407 * This is a wrapper around __generic_file_aio_write() to be used by most
2408 * filesystems. It takes care of syncing the file in case of O_SYNC file
2409 * and acquires i_mutex as needed.
2411 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2412 unsigned long nr_segs
, loff_t pos
)
2414 struct file
*file
= iocb
->ki_filp
;
2415 struct inode
*inode
= file
->f_mapping
->host
;
2418 BUG_ON(iocb
->ki_pos
!= pos
);
2420 mutex_lock(&inode
->i_mutex
);
2421 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2422 mutex_unlock(&inode
->i_mutex
);
2424 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2427 err
= generic_write_sync(file
, pos
, ret
);
2428 if (err
< 0 && ret
> 0)
2433 EXPORT_SYMBOL(generic_file_aio_write
);
2436 * try_to_release_page() - release old fs-specific metadata on a page
2438 * @page: the page which the kernel is trying to free
2439 * @gfp_mask: memory allocation flags (and I/O mode)
2441 * The address_space is to try to release any data against the page
2442 * (presumably at page->private). If the release was successful, return `1'.
2443 * Otherwise return zero.
2445 * This may also be called if PG_fscache is set on a page, indicating that the
2446 * page is known to the local caching routines.
2448 * The @gfp_mask argument specifies whether I/O may be performed to release
2449 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2452 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2454 struct address_space
* const mapping
= page
->mapping
;
2456 BUG_ON(!PageLocked(page
));
2457 if (PageWriteback(page
))
2460 if (mapping
&& mapping
->a_ops
->releasepage
)
2461 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2462 return try_to_free_buffers(page
);
2465 EXPORT_SYMBOL(try_to_release_page
);