memcg: fix gfp_mask of callers of charge
[linux-2.6/linux-2.6-openrd.git] / mm / memcontrol.c
blobc34eb52bdc3fe22ad571206cc4e7ddcacb8ec700
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
32 #include <linux/fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/vmalloc.h>
35 #include <linux/mm_inline.h>
36 #include <linux/page_cgroup.h>
38 #include <asm/uaccess.h>
40 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
41 #define MEM_CGROUP_RECLAIM_RETRIES 5
44 * Statistics for memory cgroup.
46 enum mem_cgroup_stat_index {
48 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
50 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
51 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
52 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
53 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
55 MEM_CGROUP_STAT_NSTATS,
58 struct mem_cgroup_stat_cpu {
59 s64 count[MEM_CGROUP_STAT_NSTATS];
60 } ____cacheline_aligned_in_smp;
62 struct mem_cgroup_stat {
63 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
67 * For accounting under irq disable, no need for increment preempt count.
69 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
70 enum mem_cgroup_stat_index idx, int val)
72 stat->count[idx] += val;
75 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76 enum mem_cgroup_stat_index idx)
78 int cpu;
79 s64 ret = 0;
80 for_each_possible_cpu(cpu)
81 ret += stat->cpustat[cpu].count[idx];
82 return ret;
86 * per-zone information in memory controller.
88 struct mem_cgroup_per_zone {
90 * spin_lock to protect the per cgroup LRU
92 spinlock_t lru_lock;
93 struct list_head lists[NR_LRU_LISTS];
94 unsigned long count[NR_LRU_LISTS];
96 /* Macro for accessing counter */
97 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
99 struct mem_cgroup_per_node {
100 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
103 struct mem_cgroup_lru_info {
104 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
108 * The memory controller data structure. The memory controller controls both
109 * page cache and RSS per cgroup. We would eventually like to provide
110 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
111 * to help the administrator determine what knobs to tune.
113 * TODO: Add a water mark for the memory controller. Reclaim will begin when
114 * we hit the water mark. May be even add a low water mark, such that
115 * no reclaim occurs from a cgroup at it's low water mark, this is
116 * a feature that will be implemented much later in the future.
118 struct mem_cgroup {
119 struct cgroup_subsys_state css;
121 * the counter to account for memory usage
123 struct res_counter res;
125 * Per cgroup active and inactive list, similar to the
126 * per zone LRU lists.
128 struct mem_cgroup_lru_info info;
130 int prev_priority; /* for recording reclaim priority */
132 * statistics.
134 struct mem_cgroup_stat stat;
136 static struct mem_cgroup init_mem_cgroup;
138 enum charge_type {
139 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
140 MEM_CGROUP_CHARGE_TYPE_MAPPED,
141 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
142 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
143 NR_CHARGE_TYPE,
146 /* only for here (for easy reading.) */
147 #define PCGF_CACHE (1UL << PCG_CACHE)
148 #define PCGF_USED (1UL << PCG_USED)
149 #define PCGF_ACTIVE (1UL << PCG_ACTIVE)
150 #define PCGF_LOCK (1UL << PCG_LOCK)
151 #define PCGF_FILE (1UL << PCG_FILE)
152 static const unsigned long
153 pcg_default_flags[NR_CHARGE_TYPE] = {
154 PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */
155 PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */
156 PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
157 0, /* FORCE */
161 * Always modified under lru lock. Then, not necessary to preempt_disable()
163 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
164 struct page_cgroup *pc,
165 bool charge)
167 int val = (charge)? 1 : -1;
168 struct mem_cgroup_stat *stat = &mem->stat;
169 struct mem_cgroup_stat_cpu *cpustat;
171 VM_BUG_ON(!irqs_disabled());
173 cpustat = &stat->cpustat[smp_processor_id()];
174 if (PageCgroupCache(pc))
175 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
176 else
177 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
179 if (charge)
180 __mem_cgroup_stat_add_safe(cpustat,
181 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
182 else
183 __mem_cgroup_stat_add_safe(cpustat,
184 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
187 static struct mem_cgroup_per_zone *
188 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
190 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
193 static struct mem_cgroup_per_zone *
194 page_cgroup_zoneinfo(struct page_cgroup *pc)
196 struct mem_cgroup *mem = pc->mem_cgroup;
197 int nid = page_cgroup_nid(pc);
198 int zid = page_cgroup_zid(pc);
200 return mem_cgroup_zoneinfo(mem, nid, zid);
203 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
204 enum lru_list idx)
206 int nid, zid;
207 struct mem_cgroup_per_zone *mz;
208 u64 total = 0;
210 for_each_online_node(nid)
211 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
212 mz = mem_cgroup_zoneinfo(mem, nid, zid);
213 total += MEM_CGROUP_ZSTAT(mz, idx);
215 return total;
218 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
220 return container_of(cgroup_subsys_state(cont,
221 mem_cgroup_subsys_id), struct mem_cgroup,
222 css);
225 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
228 * mm_update_next_owner() may clear mm->owner to NULL
229 * if it races with swapoff, page migration, etc.
230 * So this can be called with p == NULL.
232 if (unlikely(!p))
233 return NULL;
235 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
236 struct mem_cgroup, css);
239 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
240 struct page_cgroup *pc)
242 int lru = LRU_BASE;
244 if (PageCgroupUnevictable(pc))
245 lru = LRU_UNEVICTABLE;
246 else {
247 if (PageCgroupActive(pc))
248 lru += LRU_ACTIVE;
249 if (PageCgroupFile(pc))
250 lru += LRU_FILE;
253 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
255 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false);
256 list_del(&pc->lru);
259 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
260 struct page_cgroup *pc)
262 int lru = LRU_BASE;
264 if (PageCgroupUnevictable(pc))
265 lru = LRU_UNEVICTABLE;
266 else {
267 if (PageCgroupActive(pc))
268 lru += LRU_ACTIVE;
269 if (PageCgroupFile(pc))
270 lru += LRU_FILE;
273 MEM_CGROUP_ZSTAT(mz, lru) += 1;
274 list_add(&pc->lru, &mz->lists[lru]);
276 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true);
279 static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru)
281 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
282 int active = PageCgroupActive(pc);
283 int file = PageCgroupFile(pc);
284 int unevictable = PageCgroupUnevictable(pc);
285 enum lru_list from = unevictable ? LRU_UNEVICTABLE :
286 (LRU_FILE * !!file + !!active);
288 if (lru == from)
289 return;
291 MEM_CGROUP_ZSTAT(mz, from) -= 1;
293 * However this is done under mz->lru_lock, another flags, which
294 * are not related to LRU, will be modified from out-of-lock.
295 * We have to use atomic set/clear flags.
297 if (is_unevictable_lru(lru)) {
298 ClearPageCgroupActive(pc);
299 SetPageCgroupUnevictable(pc);
300 } else {
301 if (is_active_lru(lru))
302 SetPageCgroupActive(pc);
303 else
304 ClearPageCgroupActive(pc);
305 ClearPageCgroupUnevictable(pc);
308 MEM_CGROUP_ZSTAT(mz, lru) += 1;
309 list_move(&pc->lru, &mz->lists[lru]);
312 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
314 int ret;
316 task_lock(task);
317 ret = task->mm && mm_match_cgroup(task->mm, mem);
318 task_unlock(task);
319 return ret;
323 * This routine assumes that the appropriate zone's lru lock is already held
325 void mem_cgroup_move_lists(struct page *page, enum lru_list lru)
327 struct page_cgroup *pc;
328 struct mem_cgroup_per_zone *mz;
329 unsigned long flags;
331 if (mem_cgroup_subsys.disabled)
332 return;
335 * We cannot lock_page_cgroup while holding zone's lru_lock,
336 * because other holders of lock_page_cgroup can be interrupted
337 * with an attempt to rotate_reclaimable_page. But we cannot
338 * safely get to page_cgroup without it, so just try_lock it:
339 * mem_cgroup_isolate_pages allows for page left on wrong list.
341 pc = lookup_page_cgroup(page);
342 if (!trylock_page_cgroup(pc))
343 return;
344 if (pc && PageCgroupUsed(pc)) {
345 mz = page_cgroup_zoneinfo(pc);
346 spin_lock_irqsave(&mz->lru_lock, flags);
347 __mem_cgroup_move_lists(pc, lru);
348 spin_unlock_irqrestore(&mz->lru_lock, flags);
350 unlock_page_cgroup(pc);
354 * Calculate mapped_ratio under memory controller. This will be used in
355 * vmscan.c for deteremining we have to reclaim mapped pages.
357 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
359 long total, rss;
362 * usage is recorded in bytes. But, here, we assume the number of
363 * physical pages can be represented by "long" on any arch.
365 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
366 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
367 return (int)((rss * 100L) / total);
371 * prev_priority control...this will be used in memory reclaim path.
373 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
375 return mem->prev_priority;
378 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
380 if (priority < mem->prev_priority)
381 mem->prev_priority = priority;
384 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
386 mem->prev_priority = priority;
390 * Calculate # of pages to be scanned in this priority/zone.
391 * See also vmscan.c
393 * priority starts from "DEF_PRIORITY" and decremented in each loop.
394 * (see include/linux/mmzone.h)
397 long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
398 int priority, enum lru_list lru)
400 long nr_pages;
401 int nid = zone->zone_pgdat->node_id;
402 int zid = zone_idx(zone);
403 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
405 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
407 return (nr_pages >> priority);
410 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
411 struct list_head *dst,
412 unsigned long *scanned, int order,
413 int mode, struct zone *z,
414 struct mem_cgroup *mem_cont,
415 int active, int file)
417 unsigned long nr_taken = 0;
418 struct page *page;
419 unsigned long scan;
420 LIST_HEAD(pc_list);
421 struct list_head *src;
422 struct page_cgroup *pc, *tmp;
423 int nid = z->zone_pgdat->node_id;
424 int zid = zone_idx(z);
425 struct mem_cgroup_per_zone *mz;
426 int lru = LRU_FILE * !!file + !!active;
428 BUG_ON(!mem_cont);
429 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
430 src = &mz->lists[lru];
432 spin_lock(&mz->lru_lock);
433 scan = 0;
434 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
435 if (scan >= nr_to_scan)
436 break;
437 if (unlikely(!PageCgroupUsed(pc)))
438 continue;
439 page = pc->page;
441 if (unlikely(!PageLRU(page)))
442 continue;
445 * TODO: play better with lumpy reclaim, grabbing anything.
447 if (PageUnevictable(page) ||
448 (PageActive(page) && !active) ||
449 (!PageActive(page) && active)) {
450 __mem_cgroup_move_lists(pc, page_lru(page));
451 continue;
454 scan++;
455 list_move(&pc->lru, &pc_list);
457 if (__isolate_lru_page(page, mode, file) == 0) {
458 list_move(&page->lru, dst);
459 nr_taken++;
463 list_splice(&pc_list, src);
464 spin_unlock(&mz->lru_lock);
466 *scanned = scan;
467 return nr_taken;
472 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
473 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
474 * @gfp_mask: gfp_mask for reclaim.
475 * @memcg: a pointer to memory cgroup which is charged against.
477 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
478 * memory cgroup from @mm is got and stored in *memcg.
480 * Returns 0 if success. -ENOMEM at failure.
483 int mem_cgroup_try_charge(struct mm_struct *mm,
484 gfp_t gfp_mask, struct mem_cgroup **memcg)
486 struct mem_cgroup *mem;
487 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
489 * We always charge the cgroup the mm_struct belongs to.
490 * The mm_struct's mem_cgroup changes on task migration if the
491 * thread group leader migrates. It's possible that mm is not
492 * set, if so charge the init_mm (happens for pagecache usage).
494 if (likely(!*memcg)) {
495 rcu_read_lock();
496 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
497 if (unlikely(!mem)) {
498 rcu_read_unlock();
499 return 0;
502 * For every charge from the cgroup, increment reference count
504 css_get(&mem->css);
505 *memcg = mem;
506 rcu_read_unlock();
507 } else {
508 mem = *memcg;
509 css_get(&mem->css);
513 while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
514 if (!(gfp_mask & __GFP_WAIT))
515 goto nomem;
517 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
518 continue;
521 * try_to_free_mem_cgroup_pages() might not give us a full
522 * picture of reclaim. Some pages are reclaimed and might be
523 * moved to swap cache or just unmapped from the cgroup.
524 * Check the limit again to see if the reclaim reduced the
525 * current usage of the cgroup before giving up
527 if (res_counter_check_under_limit(&mem->res))
528 continue;
530 if (!nr_retries--) {
531 mem_cgroup_out_of_memory(mem, gfp_mask);
532 goto nomem;
535 return 0;
536 nomem:
537 css_put(&mem->css);
538 return -ENOMEM;
542 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
543 * USED state. If already USED, uncharge and return.
546 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
547 struct page_cgroup *pc,
548 enum charge_type ctype)
550 struct mem_cgroup_per_zone *mz;
551 unsigned long flags;
553 /* try_charge() can return NULL to *memcg, taking care of it. */
554 if (!mem)
555 return;
557 lock_page_cgroup(pc);
558 if (unlikely(PageCgroupUsed(pc))) {
559 unlock_page_cgroup(pc);
560 res_counter_uncharge(&mem->res, PAGE_SIZE);
561 css_put(&mem->css);
562 return;
564 pc->mem_cgroup = mem;
566 * If a page is accounted as a page cache, insert to inactive list.
567 * If anon, insert to active list.
569 pc->flags = pcg_default_flags[ctype];
571 mz = page_cgroup_zoneinfo(pc);
573 spin_lock_irqsave(&mz->lru_lock, flags);
574 __mem_cgroup_add_list(mz, pc);
575 spin_unlock_irqrestore(&mz->lru_lock, flags);
576 unlock_page_cgroup(pc);
580 * Charge the memory controller for page usage.
581 * Return
582 * 0 if the charge was successful
583 * < 0 if the cgroup is over its limit
585 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
586 gfp_t gfp_mask, enum charge_type ctype,
587 struct mem_cgroup *memcg)
589 struct mem_cgroup *mem;
590 struct page_cgroup *pc;
591 int ret;
593 pc = lookup_page_cgroup(page);
594 /* can happen at boot */
595 if (unlikely(!pc))
596 return 0;
597 prefetchw(pc);
599 mem = memcg;
600 ret = mem_cgroup_try_charge(mm, gfp_mask, &mem);
601 if (ret)
602 return ret;
604 __mem_cgroup_commit_charge(mem, pc, ctype);
605 return 0;
608 int mem_cgroup_newpage_charge(struct page *page,
609 struct mm_struct *mm, gfp_t gfp_mask)
611 if (mem_cgroup_subsys.disabled)
612 return 0;
613 if (PageCompound(page))
614 return 0;
616 * If already mapped, we don't have to account.
617 * If page cache, page->mapping has address_space.
618 * But page->mapping may have out-of-use anon_vma pointer,
619 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
620 * is NULL.
622 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
623 return 0;
624 if (unlikely(!mm))
625 mm = &init_mm;
626 return mem_cgroup_charge_common(page, mm, gfp_mask,
627 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
631 * same as mem_cgroup_newpage_charge(), now.
632 * But what we assume is different from newpage, and this is special case.
633 * treat this in special function. easy for maintenance.
636 int mem_cgroup_charge_migrate_fixup(struct page *page,
637 struct mm_struct *mm, gfp_t gfp_mask)
639 if (mem_cgroup_subsys.disabled)
640 return 0;
642 if (PageCompound(page))
643 return 0;
645 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
646 return 0;
648 if (unlikely(!mm))
649 mm = &init_mm;
651 return mem_cgroup_charge_common(page, mm, gfp_mask,
652 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
658 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
659 gfp_t gfp_mask)
661 if (mem_cgroup_subsys.disabled)
662 return 0;
663 if (PageCompound(page))
664 return 0;
666 * Corner case handling. This is called from add_to_page_cache()
667 * in usual. But some FS (shmem) precharges this page before calling it
668 * and call add_to_page_cache() with GFP_NOWAIT.
670 * For GFP_NOWAIT case, the page may be pre-charged before calling
671 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
672 * charge twice. (It works but has to pay a bit larger cost.)
674 if (!(gfp_mask & __GFP_WAIT)) {
675 struct page_cgroup *pc;
678 pc = lookup_page_cgroup(page);
679 if (!pc)
680 return 0;
681 lock_page_cgroup(pc);
682 if (PageCgroupUsed(pc)) {
683 unlock_page_cgroup(pc);
684 return 0;
686 unlock_page_cgroup(pc);
689 if (unlikely(!mm))
690 mm = &init_mm;
692 if (page_is_file_cache(page))
693 return mem_cgroup_charge_common(page, mm, gfp_mask,
694 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
695 else
696 return mem_cgroup_charge_common(page, mm, gfp_mask,
697 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
701 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
703 struct page_cgroup *pc;
705 if (mem_cgroup_subsys.disabled)
706 return;
707 if (!ptr)
708 return;
709 pc = lookup_page_cgroup(page);
710 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
713 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
715 if (mem_cgroup_subsys.disabled)
716 return;
717 if (!mem)
718 return;
719 res_counter_uncharge(&mem->res, PAGE_SIZE);
720 css_put(&mem->css);
725 * uncharge if !page_mapped(page)
727 static void
728 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
730 struct page_cgroup *pc;
731 struct mem_cgroup *mem;
732 struct mem_cgroup_per_zone *mz;
733 unsigned long flags;
735 if (mem_cgroup_subsys.disabled)
736 return;
739 * Check if our page_cgroup is valid
741 pc = lookup_page_cgroup(page);
742 if (unlikely(!pc || !PageCgroupUsed(pc)))
743 return;
745 lock_page_cgroup(pc);
746 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page))
747 || !PageCgroupUsed(pc)) {
748 /* This happens at race in zap_pte_range() and do_swap_page()*/
749 unlock_page_cgroup(pc);
750 return;
752 ClearPageCgroupUsed(pc);
753 mem = pc->mem_cgroup;
755 mz = page_cgroup_zoneinfo(pc);
756 spin_lock_irqsave(&mz->lru_lock, flags);
757 __mem_cgroup_remove_list(mz, pc);
758 spin_unlock_irqrestore(&mz->lru_lock, flags);
759 unlock_page_cgroup(pc);
761 res_counter_uncharge(&mem->res, PAGE_SIZE);
762 css_put(&mem->css);
764 return;
767 void mem_cgroup_uncharge_page(struct page *page)
769 /* early check. */
770 if (page_mapped(page))
771 return;
772 if (page->mapping && !PageAnon(page))
773 return;
774 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
777 void mem_cgroup_uncharge_cache_page(struct page *page)
779 VM_BUG_ON(page_mapped(page));
780 VM_BUG_ON(page->mapping);
781 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
785 * Before starting migration, account against new page.
787 int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
789 struct page_cgroup *pc;
790 struct mem_cgroup *mem = NULL;
791 enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
792 int ret = 0;
794 if (mem_cgroup_subsys.disabled)
795 return 0;
797 pc = lookup_page_cgroup(page);
798 lock_page_cgroup(pc);
799 if (PageCgroupUsed(pc)) {
800 mem = pc->mem_cgroup;
801 css_get(&mem->css);
802 if (PageCgroupCache(pc)) {
803 if (page_is_file_cache(page))
804 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
805 else
806 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
809 unlock_page_cgroup(pc);
810 if (mem) {
811 ret = mem_cgroup_charge_common(newpage, NULL,
812 GFP_HIGHUSER_MOVABLE,
813 ctype, mem);
814 css_put(&mem->css);
816 return ret;
819 /* remove redundant charge if migration failed*/
820 void mem_cgroup_end_migration(struct page *newpage)
823 * At success, page->mapping is not NULL.
824 * special rollback care is necessary when
825 * 1. at migration failure. (newpage->mapping is cleared in this case)
826 * 2. the newpage was moved but not remapped again because the task
827 * exits and the newpage is obsolete. In this case, the new page
828 * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
829 * always for avoiding mess. The page_cgroup will be removed if
830 * unnecessary. File cache pages is still on radix-tree. Don't
831 * care it.
833 if (!newpage->mapping)
834 __mem_cgroup_uncharge_common(newpage,
835 MEM_CGROUP_CHARGE_TYPE_FORCE);
836 else if (PageAnon(newpage))
837 mem_cgroup_uncharge_page(newpage);
841 * A call to try to shrink memory usage under specified resource controller.
842 * This is typically used for page reclaiming for shmem for reducing side
843 * effect of page allocation from shmem, which is used by some mem_cgroup.
845 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
847 struct mem_cgroup *mem;
848 int progress = 0;
849 int retry = MEM_CGROUP_RECLAIM_RETRIES;
851 if (mem_cgroup_subsys.disabled)
852 return 0;
853 if (!mm)
854 return 0;
856 rcu_read_lock();
857 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
858 if (unlikely(!mem)) {
859 rcu_read_unlock();
860 return 0;
862 css_get(&mem->css);
863 rcu_read_unlock();
865 do {
866 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
867 progress += res_counter_check_under_limit(&mem->res);
868 } while (!progress && --retry);
870 css_put(&mem->css);
871 if (!retry)
872 return -ENOMEM;
873 return 0;
876 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
877 unsigned long long val)
880 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
881 int progress;
882 int ret = 0;
884 while (res_counter_set_limit(&memcg->res, val)) {
885 if (signal_pending(current)) {
886 ret = -EINTR;
887 break;
889 if (!retry_count) {
890 ret = -EBUSY;
891 break;
893 progress = try_to_free_mem_cgroup_pages(memcg,
894 GFP_HIGHUSER_MOVABLE);
895 if (!progress)
896 retry_count--;
898 return ret;
903 * This routine traverse page_cgroup in given list and drop them all.
904 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
906 #define FORCE_UNCHARGE_BATCH (128)
907 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
908 struct mem_cgroup_per_zone *mz,
909 enum lru_list lru)
911 struct page_cgroup *pc;
912 struct page *page;
913 int count = FORCE_UNCHARGE_BATCH;
914 unsigned long flags;
915 struct list_head *list;
917 list = &mz->lists[lru];
919 spin_lock_irqsave(&mz->lru_lock, flags);
920 while (!list_empty(list)) {
921 pc = list_entry(list->prev, struct page_cgroup, lru);
922 page = pc->page;
923 if (!PageCgroupUsed(pc))
924 break;
925 get_page(page);
926 spin_unlock_irqrestore(&mz->lru_lock, flags);
928 * Check if this page is on LRU. !LRU page can be found
929 * if it's under page migration.
931 if (PageLRU(page)) {
932 __mem_cgroup_uncharge_common(page,
933 MEM_CGROUP_CHARGE_TYPE_FORCE);
934 put_page(page);
935 if (--count <= 0) {
936 count = FORCE_UNCHARGE_BATCH;
937 cond_resched();
939 } else {
940 spin_lock_irqsave(&mz->lru_lock, flags);
941 break;
943 spin_lock_irqsave(&mz->lru_lock, flags);
945 spin_unlock_irqrestore(&mz->lru_lock, flags);
949 * make mem_cgroup's charge to be 0 if there is no task.
950 * This enables deleting this mem_cgroup.
952 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
954 int ret = -EBUSY;
955 int node, zid;
957 css_get(&mem->css);
959 * page reclaim code (kswapd etc..) will move pages between
960 * active_list <-> inactive_list while we don't take a lock.
961 * So, we have to do loop here until all lists are empty.
963 while (mem->res.usage > 0) {
964 if (atomic_read(&mem->css.cgroup->count) > 0)
965 goto out;
966 /* This is for making all *used* pages to be on LRU. */
967 lru_add_drain_all();
968 for_each_node_state(node, N_POSSIBLE)
969 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
970 struct mem_cgroup_per_zone *mz;
971 enum lru_list l;
972 mz = mem_cgroup_zoneinfo(mem, node, zid);
973 for_each_lru(l)
974 mem_cgroup_force_empty_list(mem, mz, l);
976 cond_resched();
978 ret = 0;
979 out:
980 css_put(&mem->css);
981 return ret;
984 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
986 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
987 cft->private);
990 * The user of this function is...
991 * RES_LIMIT.
993 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
994 const char *buffer)
996 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
997 unsigned long long val;
998 int ret;
1000 switch (cft->private) {
1001 case RES_LIMIT:
1002 /* This function does all necessary parse...reuse it */
1003 ret = res_counter_memparse_write_strategy(buffer, &val);
1004 if (!ret)
1005 ret = mem_cgroup_resize_limit(memcg, val);
1006 break;
1007 default:
1008 ret = -EINVAL; /* should be BUG() ? */
1009 break;
1011 return ret;
1014 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1016 struct mem_cgroup *mem;
1018 mem = mem_cgroup_from_cont(cont);
1019 switch (event) {
1020 case RES_MAX_USAGE:
1021 res_counter_reset_max(&mem->res);
1022 break;
1023 case RES_FAILCNT:
1024 res_counter_reset_failcnt(&mem->res);
1025 break;
1027 return 0;
1030 static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
1032 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
1035 static const struct mem_cgroup_stat_desc {
1036 const char *msg;
1037 u64 unit;
1038 } mem_cgroup_stat_desc[] = {
1039 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1040 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1041 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1042 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1045 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1046 struct cgroup_map_cb *cb)
1048 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1049 struct mem_cgroup_stat *stat = &mem_cont->stat;
1050 int i;
1052 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1053 s64 val;
1055 val = mem_cgroup_read_stat(stat, i);
1056 val *= mem_cgroup_stat_desc[i].unit;
1057 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1059 /* showing # of active pages */
1061 unsigned long active_anon, inactive_anon;
1062 unsigned long active_file, inactive_file;
1063 unsigned long unevictable;
1065 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1066 LRU_INACTIVE_ANON);
1067 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1068 LRU_ACTIVE_ANON);
1069 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1070 LRU_INACTIVE_FILE);
1071 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1072 LRU_ACTIVE_FILE);
1073 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1074 LRU_UNEVICTABLE);
1076 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1077 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1078 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1079 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1080 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1083 return 0;
1086 static struct cftype mem_cgroup_files[] = {
1088 .name = "usage_in_bytes",
1089 .private = RES_USAGE,
1090 .read_u64 = mem_cgroup_read,
1093 .name = "max_usage_in_bytes",
1094 .private = RES_MAX_USAGE,
1095 .trigger = mem_cgroup_reset,
1096 .read_u64 = mem_cgroup_read,
1099 .name = "limit_in_bytes",
1100 .private = RES_LIMIT,
1101 .write_string = mem_cgroup_write,
1102 .read_u64 = mem_cgroup_read,
1105 .name = "failcnt",
1106 .private = RES_FAILCNT,
1107 .trigger = mem_cgroup_reset,
1108 .read_u64 = mem_cgroup_read,
1111 .name = "force_empty",
1112 .trigger = mem_force_empty_write,
1115 .name = "stat",
1116 .read_map = mem_control_stat_show,
1120 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1122 struct mem_cgroup_per_node *pn;
1123 struct mem_cgroup_per_zone *mz;
1124 enum lru_list l;
1125 int zone, tmp = node;
1127 * This routine is called against possible nodes.
1128 * But it's BUG to call kmalloc() against offline node.
1130 * TODO: this routine can waste much memory for nodes which will
1131 * never be onlined. It's better to use memory hotplug callback
1132 * function.
1134 if (!node_state(node, N_NORMAL_MEMORY))
1135 tmp = -1;
1136 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1137 if (!pn)
1138 return 1;
1140 mem->info.nodeinfo[node] = pn;
1141 memset(pn, 0, sizeof(*pn));
1143 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1144 mz = &pn->zoneinfo[zone];
1145 spin_lock_init(&mz->lru_lock);
1146 for_each_lru(l)
1147 INIT_LIST_HEAD(&mz->lists[l]);
1149 return 0;
1152 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1154 kfree(mem->info.nodeinfo[node]);
1157 static struct mem_cgroup *mem_cgroup_alloc(void)
1159 struct mem_cgroup *mem;
1161 if (sizeof(*mem) < PAGE_SIZE)
1162 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1163 else
1164 mem = vmalloc(sizeof(*mem));
1166 if (mem)
1167 memset(mem, 0, sizeof(*mem));
1168 return mem;
1171 static void mem_cgroup_free(struct mem_cgroup *mem)
1173 if (sizeof(*mem) < PAGE_SIZE)
1174 kfree(mem);
1175 else
1176 vfree(mem);
1180 static struct cgroup_subsys_state *
1181 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1183 struct mem_cgroup *mem;
1184 int node;
1186 if (unlikely((cont->parent) == NULL)) {
1187 mem = &init_mem_cgroup;
1188 } else {
1189 mem = mem_cgroup_alloc();
1190 if (!mem)
1191 return ERR_PTR(-ENOMEM);
1194 res_counter_init(&mem->res);
1196 for_each_node_state(node, N_POSSIBLE)
1197 if (alloc_mem_cgroup_per_zone_info(mem, node))
1198 goto free_out;
1200 return &mem->css;
1201 free_out:
1202 for_each_node_state(node, N_POSSIBLE)
1203 free_mem_cgroup_per_zone_info(mem, node);
1204 if (cont->parent != NULL)
1205 mem_cgroup_free(mem);
1206 return ERR_PTR(-ENOMEM);
1209 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1210 struct cgroup *cont)
1212 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1213 mem_cgroup_force_empty(mem);
1216 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1217 struct cgroup *cont)
1219 int node;
1220 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1222 for_each_node_state(node, N_POSSIBLE)
1223 free_mem_cgroup_per_zone_info(mem, node);
1225 mem_cgroup_free(mem_cgroup_from_cont(cont));
1228 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1229 struct cgroup *cont)
1231 return cgroup_add_files(cont, ss, mem_cgroup_files,
1232 ARRAY_SIZE(mem_cgroup_files));
1235 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1236 struct cgroup *cont,
1237 struct cgroup *old_cont,
1238 struct task_struct *p)
1240 struct mm_struct *mm;
1241 struct mem_cgroup *mem, *old_mem;
1243 mm = get_task_mm(p);
1244 if (mm == NULL)
1245 return;
1247 mem = mem_cgroup_from_cont(cont);
1248 old_mem = mem_cgroup_from_cont(old_cont);
1251 * Only thread group leaders are allowed to migrate, the mm_struct is
1252 * in effect owned by the leader
1254 if (!thread_group_leader(p))
1255 goto out;
1257 out:
1258 mmput(mm);
1261 struct cgroup_subsys mem_cgroup_subsys = {
1262 .name = "memory",
1263 .subsys_id = mem_cgroup_subsys_id,
1264 .create = mem_cgroup_create,
1265 .pre_destroy = mem_cgroup_pre_destroy,
1266 .destroy = mem_cgroup_destroy,
1267 .populate = mem_cgroup_populate,
1268 .attach = mem_cgroup_move_task,
1269 .early_init = 0,