[PATCH] x86_64: x86_64 write apic id fix
[linux-2.6/linux-2.6-openrd.git] / kernel / sched.c
blobc0c60c926d5eafe1ebd57a0f298324933cb46507
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/blkdev.h>
38 #include <linux/delay.h>
39 #include <linux/smp.h>
40 #include <linux/threads.h>
41 #include <linux/timer.h>
42 #include <linux/rcupdate.h>
43 #include <linux/cpu.h>
44 #include <linux/cpuset.h>
45 #include <linux/percpu.h>
46 #include <linux/kthread.h>
47 #include <linux/seq_file.h>
48 #include <linux/syscalls.h>
49 #include <linux/times.h>
50 #include <linux/acct.h>
51 #include <asm/tlb.h>
53 #include <asm/unistd.h>
56 * Convert user-nice values [ -20 ... 0 ... 19 ]
57 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
58 * and back.
60 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
61 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
62 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65 * 'User priority' is the nice value converted to something we
66 * can work with better when scaling various scheduler parameters,
67 * it's a [ 0 ... 39 ] range.
69 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
70 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
71 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74 * Some helpers for converting nanosecond timing to jiffy resolution
76 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
77 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80 * These are the 'tuning knobs' of the scheduler:
82 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
83 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
84 * Timeslices get refilled after they expire.
86 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
87 #define DEF_TIMESLICE (100 * HZ / 1000)
88 #define ON_RUNQUEUE_WEIGHT 30
89 #define CHILD_PENALTY 95
90 #define PARENT_PENALTY 100
91 #define EXIT_WEIGHT 3
92 #define PRIO_BONUS_RATIO 25
93 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
94 #define INTERACTIVE_DELTA 2
95 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
96 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
97 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100 * If a task is 'interactive' then we reinsert it in the active
101 * array after it has expired its current timeslice. (it will not
102 * continue to run immediately, it will still roundrobin with
103 * other interactive tasks.)
105 * This part scales the interactivity limit depending on niceness.
107 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
108 * Here are a few examples of different nice levels:
110 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
111 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
112 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
116 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
117 * priority range a task can explore, a value of '1' means the
118 * task is rated interactive.)
120 * Ie. nice +19 tasks can never get 'interactive' enough to be
121 * reinserted into the active array. And only heavily CPU-hog nice -20
122 * tasks will be expired. Default nice 0 tasks are somewhere between,
123 * it takes some effort for them to get interactive, but it's not
124 * too hard.
127 #define CURRENT_BONUS(p) \
128 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
129 MAX_SLEEP_AVG)
131 #define GRANULARITY (10 * HZ / 1000 ? : 1)
133 #ifdef CONFIG_SMP
134 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
135 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
136 num_online_cpus())
137 #else
138 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
140 #endif
142 #define SCALE(v1,v1_max,v2_max) \
143 (v1) * (v2_max) / (v1_max)
145 #define DELTA(p) \
146 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
148 #define TASK_INTERACTIVE(p) \
149 ((p)->prio <= (p)->static_prio - DELTA(p))
151 #define INTERACTIVE_SLEEP(p) \
152 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
153 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
155 #define TASK_PREEMPTS_CURR(p, rq) \
156 ((p)->prio < (rq)->curr->prio)
159 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
160 * to time slice values: [800ms ... 100ms ... 5ms]
162 * The higher a thread's priority, the bigger timeslices
163 * it gets during one round of execution. But even the lowest
164 * priority thread gets MIN_TIMESLICE worth of execution time.
167 #define SCALE_PRIO(x, prio) \
168 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
170 static unsigned int task_timeslice(task_t *p)
172 if (p->static_prio < NICE_TO_PRIO(0))
173 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
174 else
175 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
177 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
178 < (long long) (sd)->cache_hot_time)
180 void __put_task_struct_cb(struct rcu_head *rhp)
182 __put_task_struct(container_of(rhp, struct task_struct, rcu));
185 EXPORT_SYMBOL_GPL(__put_task_struct_cb);
188 * These are the runqueue data structures:
191 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
193 typedef struct runqueue runqueue_t;
195 struct prio_array {
196 unsigned int nr_active;
197 unsigned long bitmap[BITMAP_SIZE];
198 struct list_head queue[MAX_PRIO];
202 * This is the main, per-CPU runqueue data structure.
204 * Locking rule: those places that want to lock multiple runqueues
205 * (such as the load balancing or the thread migration code), lock
206 * acquire operations must be ordered by ascending &runqueue.
208 struct runqueue {
209 spinlock_t lock;
212 * nr_running and cpu_load should be in the same cacheline because
213 * remote CPUs use both these fields when doing load calculation.
215 unsigned long nr_running;
216 #ifdef CONFIG_SMP
217 unsigned long prio_bias;
218 unsigned long cpu_load[3];
219 #endif
220 unsigned long long nr_switches;
223 * This is part of a global counter where only the total sum
224 * over all CPUs matters. A task can increase this counter on
225 * one CPU and if it got migrated afterwards it may decrease
226 * it on another CPU. Always updated under the runqueue lock:
228 unsigned long nr_uninterruptible;
230 unsigned long expired_timestamp;
231 unsigned long long timestamp_last_tick;
232 task_t *curr, *idle;
233 struct mm_struct *prev_mm;
234 prio_array_t *active, *expired, arrays[2];
235 int best_expired_prio;
236 atomic_t nr_iowait;
238 #ifdef CONFIG_SMP
239 struct sched_domain *sd;
241 /* For active balancing */
242 int active_balance;
243 int push_cpu;
245 task_t *migration_thread;
246 struct list_head migration_queue;
247 #endif
249 #ifdef CONFIG_SCHEDSTATS
250 /* latency stats */
251 struct sched_info rq_sched_info;
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
267 #endif
270 static DEFINE_PER_CPU(struct runqueue, runqueues);
273 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
274 * See detach_destroy_domains: synchronize_sched for details.
276 * The domain tree of any CPU may only be accessed from within
277 * preempt-disabled sections.
279 #define for_each_domain(cpu, domain) \
280 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
282 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
283 #define this_rq() (&__get_cpu_var(runqueues))
284 #define task_rq(p) cpu_rq(task_cpu(p))
285 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
287 #ifndef prepare_arch_switch
288 # define prepare_arch_switch(next) do { } while (0)
289 #endif
290 #ifndef finish_arch_switch
291 # define finish_arch_switch(prev) do { } while (0)
292 #endif
294 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
295 static inline int task_running(runqueue_t *rq, task_t *p)
297 return rq->curr == p;
300 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
304 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
306 #ifdef CONFIG_DEBUG_SPINLOCK
307 /* this is a valid case when another task releases the spinlock */
308 rq->lock.owner = current;
309 #endif
310 spin_unlock_irq(&rq->lock);
313 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
314 static inline int task_running(runqueue_t *rq, task_t *p)
316 #ifdef CONFIG_SMP
317 return p->oncpu;
318 #else
319 return rq->curr == p;
320 #endif
323 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
325 #ifdef CONFIG_SMP
327 * We can optimise this out completely for !SMP, because the
328 * SMP rebalancing from interrupt is the only thing that cares
329 * here.
331 next->oncpu = 1;
332 #endif
333 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
334 spin_unlock_irq(&rq->lock);
335 #else
336 spin_unlock(&rq->lock);
337 #endif
340 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
342 #ifdef CONFIG_SMP
344 * After ->oncpu is cleared, the task can be moved to a different CPU.
345 * We must ensure this doesn't happen until the switch is completely
346 * finished.
348 smp_wmb();
349 prev->oncpu = 0;
350 #endif
351 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
352 local_irq_enable();
353 #endif
355 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
358 * task_rq_lock - lock the runqueue a given task resides on and disable
359 * interrupts. Note the ordering: we can safely lookup the task_rq without
360 * explicitly disabling preemption.
362 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
363 __acquires(rq->lock)
365 struct runqueue *rq;
367 repeat_lock_task:
368 local_irq_save(*flags);
369 rq = task_rq(p);
370 spin_lock(&rq->lock);
371 if (unlikely(rq != task_rq(p))) {
372 spin_unlock_irqrestore(&rq->lock, *flags);
373 goto repeat_lock_task;
375 return rq;
378 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
379 __releases(rq->lock)
381 spin_unlock_irqrestore(&rq->lock, *flags);
384 #ifdef CONFIG_SCHEDSTATS
386 * bump this up when changing the output format or the meaning of an existing
387 * format, so that tools can adapt (or abort)
389 #define SCHEDSTAT_VERSION 12
391 static int show_schedstat(struct seq_file *seq, void *v)
393 int cpu;
395 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
396 seq_printf(seq, "timestamp %lu\n", jiffies);
397 for_each_online_cpu(cpu) {
398 runqueue_t *rq = cpu_rq(cpu);
399 #ifdef CONFIG_SMP
400 struct sched_domain *sd;
401 int dcnt = 0;
402 #endif
404 /* runqueue-specific stats */
405 seq_printf(seq,
406 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
407 cpu, rq->yld_both_empty,
408 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
409 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
410 rq->ttwu_cnt, rq->ttwu_local,
411 rq->rq_sched_info.cpu_time,
412 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
414 seq_printf(seq, "\n");
416 #ifdef CONFIG_SMP
417 /* domain-specific stats */
418 preempt_disable();
419 for_each_domain(cpu, sd) {
420 enum idle_type itype;
421 char mask_str[NR_CPUS];
423 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
424 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
425 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
426 itype++) {
427 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
428 sd->lb_cnt[itype],
429 sd->lb_balanced[itype],
430 sd->lb_failed[itype],
431 sd->lb_imbalance[itype],
432 sd->lb_gained[itype],
433 sd->lb_hot_gained[itype],
434 sd->lb_nobusyq[itype],
435 sd->lb_nobusyg[itype]);
437 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
438 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
439 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
440 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
441 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
443 preempt_enable();
444 #endif
446 return 0;
449 static int schedstat_open(struct inode *inode, struct file *file)
451 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
452 char *buf = kmalloc(size, GFP_KERNEL);
453 struct seq_file *m;
454 int res;
456 if (!buf)
457 return -ENOMEM;
458 res = single_open(file, show_schedstat, NULL);
459 if (!res) {
460 m = file->private_data;
461 m->buf = buf;
462 m->size = size;
463 } else
464 kfree(buf);
465 return res;
468 struct file_operations proc_schedstat_operations = {
469 .open = schedstat_open,
470 .read = seq_read,
471 .llseek = seq_lseek,
472 .release = single_release,
475 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
476 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
477 #else /* !CONFIG_SCHEDSTATS */
478 # define schedstat_inc(rq, field) do { } while (0)
479 # define schedstat_add(rq, field, amt) do { } while (0)
480 #endif
483 * rq_lock - lock a given runqueue and disable interrupts.
485 static inline runqueue_t *this_rq_lock(void)
486 __acquires(rq->lock)
488 runqueue_t *rq;
490 local_irq_disable();
491 rq = this_rq();
492 spin_lock(&rq->lock);
494 return rq;
497 #ifdef CONFIG_SCHEDSTATS
499 * Called when a process is dequeued from the active array and given
500 * the cpu. We should note that with the exception of interactive
501 * tasks, the expired queue will become the active queue after the active
502 * queue is empty, without explicitly dequeuing and requeuing tasks in the
503 * expired queue. (Interactive tasks may be requeued directly to the
504 * active queue, thus delaying tasks in the expired queue from running;
505 * see scheduler_tick()).
507 * This function is only called from sched_info_arrive(), rather than
508 * dequeue_task(). Even though a task may be queued and dequeued multiple
509 * times as it is shuffled about, we're really interested in knowing how
510 * long it was from the *first* time it was queued to the time that it
511 * finally hit a cpu.
513 static inline void sched_info_dequeued(task_t *t)
515 t->sched_info.last_queued = 0;
519 * Called when a task finally hits the cpu. We can now calculate how
520 * long it was waiting to run. We also note when it began so that we
521 * can keep stats on how long its timeslice is.
523 static inline void sched_info_arrive(task_t *t)
525 unsigned long now = jiffies, diff = 0;
526 struct runqueue *rq = task_rq(t);
528 if (t->sched_info.last_queued)
529 diff = now - t->sched_info.last_queued;
530 sched_info_dequeued(t);
531 t->sched_info.run_delay += diff;
532 t->sched_info.last_arrival = now;
533 t->sched_info.pcnt++;
535 if (!rq)
536 return;
538 rq->rq_sched_info.run_delay += diff;
539 rq->rq_sched_info.pcnt++;
543 * Called when a process is queued into either the active or expired
544 * array. The time is noted and later used to determine how long we
545 * had to wait for us to reach the cpu. Since the expired queue will
546 * become the active queue after active queue is empty, without dequeuing
547 * and requeuing any tasks, we are interested in queuing to either. It
548 * is unusual but not impossible for tasks to be dequeued and immediately
549 * requeued in the same or another array: this can happen in sched_yield(),
550 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
551 * to runqueue.
553 * This function is only called from enqueue_task(), but also only updates
554 * the timestamp if it is already not set. It's assumed that
555 * sched_info_dequeued() will clear that stamp when appropriate.
557 static inline void sched_info_queued(task_t *t)
559 if (!t->sched_info.last_queued)
560 t->sched_info.last_queued = jiffies;
564 * Called when a process ceases being the active-running process, either
565 * voluntarily or involuntarily. Now we can calculate how long we ran.
567 static inline void sched_info_depart(task_t *t)
569 struct runqueue *rq = task_rq(t);
570 unsigned long diff = jiffies - t->sched_info.last_arrival;
572 t->sched_info.cpu_time += diff;
574 if (rq)
575 rq->rq_sched_info.cpu_time += diff;
579 * Called when tasks are switched involuntarily due, typically, to expiring
580 * their time slice. (This may also be called when switching to or from
581 * the idle task.) We are only called when prev != next.
583 static inline void sched_info_switch(task_t *prev, task_t *next)
585 struct runqueue *rq = task_rq(prev);
588 * prev now departs the cpu. It's not interesting to record
589 * stats about how efficient we were at scheduling the idle
590 * process, however.
592 if (prev != rq->idle)
593 sched_info_depart(prev);
595 if (next != rq->idle)
596 sched_info_arrive(next);
598 #else
599 #define sched_info_queued(t) do { } while (0)
600 #define sched_info_switch(t, next) do { } while (0)
601 #endif /* CONFIG_SCHEDSTATS */
604 * Adding/removing a task to/from a priority array:
606 static void dequeue_task(struct task_struct *p, prio_array_t *array)
608 array->nr_active--;
609 list_del(&p->run_list);
610 if (list_empty(array->queue + p->prio))
611 __clear_bit(p->prio, array->bitmap);
614 static void enqueue_task(struct task_struct *p, prio_array_t *array)
616 sched_info_queued(p);
617 list_add_tail(&p->run_list, array->queue + p->prio);
618 __set_bit(p->prio, array->bitmap);
619 array->nr_active++;
620 p->array = array;
624 * Put task to the end of the run list without the overhead of dequeue
625 * followed by enqueue.
627 static void requeue_task(struct task_struct *p, prio_array_t *array)
629 list_move_tail(&p->run_list, array->queue + p->prio);
632 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
634 list_add(&p->run_list, array->queue + p->prio);
635 __set_bit(p->prio, array->bitmap);
636 array->nr_active++;
637 p->array = array;
641 * effective_prio - return the priority that is based on the static
642 * priority but is modified by bonuses/penalties.
644 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
645 * into the -5 ... 0 ... +5 bonus/penalty range.
647 * We use 25% of the full 0...39 priority range so that:
649 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
650 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
652 * Both properties are important to certain workloads.
654 static int effective_prio(task_t *p)
656 int bonus, prio;
658 if (rt_task(p))
659 return p->prio;
661 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
663 prio = p->static_prio - bonus;
664 if (prio < MAX_RT_PRIO)
665 prio = MAX_RT_PRIO;
666 if (prio > MAX_PRIO-1)
667 prio = MAX_PRIO-1;
668 return prio;
671 #ifdef CONFIG_SMP
672 static inline void inc_prio_bias(runqueue_t *rq, int prio)
674 rq->prio_bias += MAX_PRIO - prio;
677 static inline void dec_prio_bias(runqueue_t *rq, int prio)
679 rq->prio_bias -= MAX_PRIO - prio;
682 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
684 rq->nr_running++;
685 if (rt_task(p)) {
686 if (p != rq->migration_thread)
688 * The migration thread does the actual balancing. Do
689 * not bias by its priority as the ultra high priority
690 * will skew balancing adversely.
692 inc_prio_bias(rq, p->prio);
693 } else
694 inc_prio_bias(rq, p->static_prio);
697 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
699 rq->nr_running--;
700 if (rt_task(p)) {
701 if (p != rq->migration_thread)
702 dec_prio_bias(rq, p->prio);
703 } else
704 dec_prio_bias(rq, p->static_prio);
706 #else
707 static inline void inc_prio_bias(runqueue_t *rq, int prio)
711 static inline void dec_prio_bias(runqueue_t *rq, int prio)
715 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
717 rq->nr_running++;
720 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
722 rq->nr_running--;
724 #endif
727 * __activate_task - move a task to the runqueue.
729 static inline void __activate_task(task_t *p, runqueue_t *rq)
731 enqueue_task(p, rq->active);
732 inc_nr_running(p, rq);
736 * __activate_idle_task - move idle task to the _front_ of runqueue.
738 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
740 enqueue_task_head(p, rq->active);
741 inc_nr_running(p, rq);
744 static int recalc_task_prio(task_t *p, unsigned long long now)
746 /* Caller must always ensure 'now >= p->timestamp' */
747 unsigned long long __sleep_time = now - p->timestamp;
748 unsigned long sleep_time;
750 if (__sleep_time > NS_MAX_SLEEP_AVG)
751 sleep_time = NS_MAX_SLEEP_AVG;
752 else
753 sleep_time = (unsigned long)__sleep_time;
755 if (likely(sleep_time > 0)) {
757 * User tasks that sleep a long time are categorised as
758 * idle and will get just interactive status to stay active &
759 * prevent them suddenly becoming cpu hogs and starving
760 * other processes.
762 if (p->mm && p->activated != -1 &&
763 sleep_time > INTERACTIVE_SLEEP(p)) {
764 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
765 DEF_TIMESLICE);
766 } else {
768 * The lower the sleep avg a task has the more
769 * rapidly it will rise with sleep time.
771 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
774 * Tasks waking from uninterruptible sleep are
775 * limited in their sleep_avg rise as they
776 * are likely to be waiting on I/O
778 if (p->activated == -1 && p->mm) {
779 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
780 sleep_time = 0;
781 else if (p->sleep_avg + sleep_time >=
782 INTERACTIVE_SLEEP(p)) {
783 p->sleep_avg = INTERACTIVE_SLEEP(p);
784 sleep_time = 0;
789 * This code gives a bonus to interactive tasks.
791 * The boost works by updating the 'average sleep time'
792 * value here, based on ->timestamp. The more time a
793 * task spends sleeping, the higher the average gets -
794 * and the higher the priority boost gets as well.
796 p->sleep_avg += sleep_time;
798 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
799 p->sleep_avg = NS_MAX_SLEEP_AVG;
803 return effective_prio(p);
807 * activate_task - move a task to the runqueue and do priority recalculation
809 * Update all the scheduling statistics stuff. (sleep average
810 * calculation, priority modifiers, etc.)
812 static void activate_task(task_t *p, runqueue_t *rq, int local)
814 unsigned long long now;
816 now = sched_clock();
817 #ifdef CONFIG_SMP
818 if (!local) {
819 /* Compensate for drifting sched_clock */
820 runqueue_t *this_rq = this_rq();
821 now = (now - this_rq->timestamp_last_tick)
822 + rq->timestamp_last_tick;
824 #endif
826 if (!rt_task(p))
827 p->prio = recalc_task_prio(p, now);
830 * This checks to make sure it's not an uninterruptible task
831 * that is now waking up.
833 if (!p->activated) {
835 * Tasks which were woken up by interrupts (ie. hw events)
836 * are most likely of interactive nature. So we give them
837 * the credit of extending their sleep time to the period
838 * of time they spend on the runqueue, waiting for execution
839 * on a CPU, first time around:
841 if (in_interrupt())
842 p->activated = 2;
843 else {
845 * Normal first-time wakeups get a credit too for
846 * on-runqueue time, but it will be weighted down:
848 p->activated = 1;
851 p->timestamp = now;
853 __activate_task(p, rq);
857 * deactivate_task - remove a task from the runqueue.
859 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
861 dec_nr_running(p, rq);
862 dequeue_task(p, p->array);
863 p->array = NULL;
867 * resched_task - mark a task 'to be rescheduled now'.
869 * On UP this means the setting of the need_resched flag, on SMP it
870 * might also involve a cross-CPU call to trigger the scheduler on
871 * the target CPU.
873 #ifdef CONFIG_SMP
874 static void resched_task(task_t *p)
876 int cpu;
878 assert_spin_locked(&task_rq(p)->lock);
880 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
881 return;
883 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
885 cpu = task_cpu(p);
886 if (cpu == smp_processor_id())
887 return;
889 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
890 smp_mb();
891 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
892 smp_send_reschedule(cpu);
894 #else
895 static inline void resched_task(task_t *p)
897 assert_spin_locked(&task_rq(p)->lock);
898 set_tsk_need_resched(p);
900 #endif
903 * task_curr - is this task currently executing on a CPU?
904 * @p: the task in question.
906 inline int task_curr(const task_t *p)
908 return cpu_curr(task_cpu(p)) == p;
911 #ifdef CONFIG_SMP
912 typedef struct {
913 struct list_head list;
915 task_t *task;
916 int dest_cpu;
918 struct completion done;
919 } migration_req_t;
922 * The task's runqueue lock must be held.
923 * Returns true if you have to wait for migration thread.
925 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
927 runqueue_t *rq = task_rq(p);
930 * If the task is not on a runqueue (and not running), then
931 * it is sufficient to simply update the task's cpu field.
933 if (!p->array && !task_running(rq, p)) {
934 set_task_cpu(p, dest_cpu);
935 return 0;
938 init_completion(&req->done);
939 req->task = p;
940 req->dest_cpu = dest_cpu;
941 list_add(&req->list, &rq->migration_queue);
942 return 1;
946 * wait_task_inactive - wait for a thread to unschedule.
948 * The caller must ensure that the task *will* unschedule sometime soon,
949 * else this function might spin for a *long* time. This function can't
950 * be called with interrupts off, or it may introduce deadlock with
951 * smp_call_function() if an IPI is sent by the same process we are
952 * waiting to become inactive.
954 void wait_task_inactive(task_t *p)
956 unsigned long flags;
957 runqueue_t *rq;
958 int preempted;
960 repeat:
961 rq = task_rq_lock(p, &flags);
962 /* Must be off runqueue entirely, not preempted. */
963 if (unlikely(p->array || task_running(rq, p))) {
964 /* If it's preempted, we yield. It could be a while. */
965 preempted = !task_running(rq, p);
966 task_rq_unlock(rq, &flags);
967 cpu_relax();
968 if (preempted)
969 yield();
970 goto repeat;
972 task_rq_unlock(rq, &flags);
975 /***
976 * kick_process - kick a running thread to enter/exit the kernel
977 * @p: the to-be-kicked thread
979 * Cause a process which is running on another CPU to enter
980 * kernel-mode, without any delay. (to get signals handled.)
982 * NOTE: this function doesnt have to take the runqueue lock,
983 * because all it wants to ensure is that the remote task enters
984 * the kernel. If the IPI races and the task has been migrated
985 * to another CPU then no harm is done and the purpose has been
986 * achieved as well.
988 void kick_process(task_t *p)
990 int cpu;
992 preempt_disable();
993 cpu = task_cpu(p);
994 if ((cpu != smp_processor_id()) && task_curr(p))
995 smp_send_reschedule(cpu);
996 preempt_enable();
1000 * Return a low guess at the load of a migration-source cpu.
1002 * We want to under-estimate the load of migration sources, to
1003 * balance conservatively.
1005 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
1007 runqueue_t *rq = cpu_rq(cpu);
1008 unsigned long running = rq->nr_running;
1009 unsigned long source_load, cpu_load = rq->cpu_load[type-1],
1010 load_now = running * SCHED_LOAD_SCALE;
1012 if (type == 0)
1013 source_load = load_now;
1014 else
1015 source_load = min(cpu_load, load_now);
1017 if (running > 1 || (idle == NOT_IDLE && running))
1019 * If we are busy rebalancing the load is biased by
1020 * priority to create 'nice' support across cpus. When
1021 * idle rebalancing we should only bias the source_load if
1022 * there is more than one task running on that queue to
1023 * prevent idle rebalance from trying to pull tasks from a
1024 * queue with only one running task.
1026 source_load = source_load * rq->prio_bias / running;
1028 return source_load;
1031 static inline unsigned long source_load(int cpu, int type)
1033 return __source_load(cpu, type, NOT_IDLE);
1037 * Return a high guess at the load of a migration-target cpu
1039 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1041 runqueue_t *rq = cpu_rq(cpu);
1042 unsigned long running = rq->nr_running;
1043 unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1044 load_now = running * SCHED_LOAD_SCALE;
1046 if (type == 0)
1047 target_load = load_now;
1048 else
1049 target_load = max(cpu_load, load_now);
1051 if (running > 1 || (idle == NOT_IDLE && running))
1052 target_load = target_load * rq->prio_bias / running;
1054 return target_load;
1057 static inline unsigned long target_load(int cpu, int type)
1059 return __target_load(cpu, type, NOT_IDLE);
1063 * find_idlest_group finds and returns the least busy CPU group within the
1064 * domain.
1066 static struct sched_group *
1067 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1069 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1070 unsigned long min_load = ULONG_MAX, this_load = 0;
1071 int load_idx = sd->forkexec_idx;
1072 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1074 do {
1075 unsigned long load, avg_load;
1076 int local_group;
1077 int i;
1079 /* Skip over this group if it has no CPUs allowed */
1080 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1081 goto nextgroup;
1083 local_group = cpu_isset(this_cpu, group->cpumask);
1085 /* Tally up the load of all CPUs in the group */
1086 avg_load = 0;
1088 for_each_cpu_mask(i, group->cpumask) {
1089 /* Bias balancing toward cpus of our domain */
1090 if (local_group)
1091 load = source_load(i, load_idx);
1092 else
1093 load = target_load(i, load_idx);
1095 avg_load += load;
1098 /* Adjust by relative CPU power of the group */
1099 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1101 if (local_group) {
1102 this_load = avg_load;
1103 this = group;
1104 } else if (avg_load < min_load) {
1105 min_load = avg_load;
1106 idlest = group;
1108 nextgroup:
1109 group = group->next;
1110 } while (group != sd->groups);
1112 if (!idlest || 100*this_load < imbalance*min_load)
1113 return NULL;
1114 return idlest;
1118 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1120 static int
1121 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1123 cpumask_t tmp;
1124 unsigned long load, min_load = ULONG_MAX;
1125 int idlest = -1;
1126 int i;
1128 /* Traverse only the allowed CPUs */
1129 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1131 for_each_cpu_mask(i, tmp) {
1132 load = source_load(i, 0);
1134 if (load < min_load || (load == min_load && i == this_cpu)) {
1135 min_load = load;
1136 idlest = i;
1140 return idlest;
1144 * sched_balance_self: balance the current task (running on cpu) in domains
1145 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1146 * SD_BALANCE_EXEC.
1148 * Balance, ie. select the least loaded group.
1150 * Returns the target CPU number, or the same CPU if no balancing is needed.
1152 * preempt must be disabled.
1154 static int sched_balance_self(int cpu, int flag)
1156 struct task_struct *t = current;
1157 struct sched_domain *tmp, *sd = NULL;
1159 for_each_domain(cpu, tmp)
1160 if (tmp->flags & flag)
1161 sd = tmp;
1163 while (sd) {
1164 cpumask_t span;
1165 struct sched_group *group;
1166 int new_cpu;
1167 int weight;
1169 span = sd->span;
1170 group = find_idlest_group(sd, t, cpu);
1171 if (!group)
1172 goto nextlevel;
1174 new_cpu = find_idlest_cpu(group, t, cpu);
1175 if (new_cpu == -1 || new_cpu == cpu)
1176 goto nextlevel;
1178 /* Now try balancing at a lower domain level */
1179 cpu = new_cpu;
1180 nextlevel:
1181 sd = NULL;
1182 weight = cpus_weight(span);
1183 for_each_domain(cpu, tmp) {
1184 if (weight <= cpus_weight(tmp->span))
1185 break;
1186 if (tmp->flags & flag)
1187 sd = tmp;
1189 /* while loop will break here if sd == NULL */
1192 return cpu;
1195 #endif /* CONFIG_SMP */
1198 * wake_idle() will wake a task on an idle cpu if task->cpu is
1199 * not idle and an idle cpu is available. The span of cpus to
1200 * search starts with cpus closest then further out as needed,
1201 * so we always favor a closer, idle cpu.
1203 * Returns the CPU we should wake onto.
1205 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1206 static int wake_idle(int cpu, task_t *p)
1208 cpumask_t tmp;
1209 struct sched_domain *sd;
1210 int i;
1212 if (idle_cpu(cpu))
1213 return cpu;
1215 for_each_domain(cpu, sd) {
1216 if (sd->flags & SD_WAKE_IDLE) {
1217 cpus_and(tmp, sd->span, p->cpus_allowed);
1218 for_each_cpu_mask(i, tmp) {
1219 if (idle_cpu(i))
1220 return i;
1223 else
1224 break;
1226 return cpu;
1228 #else
1229 static inline int wake_idle(int cpu, task_t *p)
1231 return cpu;
1233 #endif
1235 /***
1236 * try_to_wake_up - wake up a thread
1237 * @p: the to-be-woken-up thread
1238 * @state: the mask of task states that can be woken
1239 * @sync: do a synchronous wakeup?
1241 * Put it on the run-queue if it's not already there. The "current"
1242 * thread is always on the run-queue (except when the actual
1243 * re-schedule is in progress), and as such you're allowed to do
1244 * the simpler "current->state = TASK_RUNNING" to mark yourself
1245 * runnable without the overhead of this.
1247 * returns failure only if the task is already active.
1249 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1251 int cpu, this_cpu, success = 0;
1252 unsigned long flags;
1253 long old_state;
1254 runqueue_t *rq;
1255 #ifdef CONFIG_SMP
1256 unsigned long load, this_load;
1257 struct sched_domain *sd, *this_sd = NULL;
1258 int new_cpu;
1259 #endif
1261 rq = task_rq_lock(p, &flags);
1262 old_state = p->state;
1263 if (!(old_state & state))
1264 goto out;
1266 if (p->array)
1267 goto out_running;
1269 cpu = task_cpu(p);
1270 this_cpu = smp_processor_id();
1272 #ifdef CONFIG_SMP
1273 if (unlikely(task_running(rq, p)))
1274 goto out_activate;
1276 new_cpu = cpu;
1278 schedstat_inc(rq, ttwu_cnt);
1279 if (cpu == this_cpu) {
1280 schedstat_inc(rq, ttwu_local);
1281 goto out_set_cpu;
1284 for_each_domain(this_cpu, sd) {
1285 if (cpu_isset(cpu, sd->span)) {
1286 schedstat_inc(sd, ttwu_wake_remote);
1287 this_sd = sd;
1288 break;
1292 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1293 goto out_set_cpu;
1296 * Check for affine wakeup and passive balancing possibilities.
1298 if (this_sd) {
1299 int idx = this_sd->wake_idx;
1300 unsigned int imbalance;
1302 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1304 load = source_load(cpu, idx);
1305 this_load = target_load(this_cpu, idx);
1307 new_cpu = this_cpu; /* Wake to this CPU if we can */
1309 if (this_sd->flags & SD_WAKE_AFFINE) {
1310 unsigned long tl = this_load;
1312 * If sync wakeup then subtract the (maximum possible)
1313 * effect of the currently running task from the load
1314 * of the current CPU:
1316 if (sync)
1317 tl -= SCHED_LOAD_SCALE;
1319 if ((tl <= load &&
1320 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1321 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1323 * This domain has SD_WAKE_AFFINE and
1324 * p is cache cold in this domain, and
1325 * there is no bad imbalance.
1327 schedstat_inc(this_sd, ttwu_move_affine);
1328 goto out_set_cpu;
1333 * Start passive balancing when half the imbalance_pct
1334 * limit is reached.
1336 if (this_sd->flags & SD_WAKE_BALANCE) {
1337 if (imbalance*this_load <= 100*load) {
1338 schedstat_inc(this_sd, ttwu_move_balance);
1339 goto out_set_cpu;
1344 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1345 out_set_cpu:
1346 new_cpu = wake_idle(new_cpu, p);
1347 if (new_cpu != cpu) {
1348 set_task_cpu(p, new_cpu);
1349 task_rq_unlock(rq, &flags);
1350 /* might preempt at this point */
1351 rq = task_rq_lock(p, &flags);
1352 old_state = p->state;
1353 if (!(old_state & state))
1354 goto out;
1355 if (p->array)
1356 goto out_running;
1358 this_cpu = smp_processor_id();
1359 cpu = task_cpu(p);
1362 out_activate:
1363 #endif /* CONFIG_SMP */
1364 if (old_state == TASK_UNINTERRUPTIBLE) {
1365 rq->nr_uninterruptible--;
1367 * Tasks on involuntary sleep don't earn
1368 * sleep_avg beyond just interactive state.
1370 p->activated = -1;
1374 * Tasks that have marked their sleep as noninteractive get
1375 * woken up without updating their sleep average. (i.e. their
1376 * sleep is handled in a priority-neutral manner, no priority
1377 * boost and no penalty.)
1379 if (old_state & TASK_NONINTERACTIVE)
1380 __activate_task(p, rq);
1381 else
1382 activate_task(p, rq, cpu == this_cpu);
1384 * Sync wakeups (i.e. those types of wakeups where the waker
1385 * has indicated that it will leave the CPU in short order)
1386 * don't trigger a preemption, if the woken up task will run on
1387 * this cpu. (in this case the 'I will reschedule' promise of
1388 * the waker guarantees that the freshly woken up task is going
1389 * to be considered on this CPU.)
1391 if (!sync || cpu != this_cpu) {
1392 if (TASK_PREEMPTS_CURR(p, rq))
1393 resched_task(rq->curr);
1395 success = 1;
1397 out_running:
1398 p->state = TASK_RUNNING;
1399 out:
1400 task_rq_unlock(rq, &flags);
1402 return success;
1405 int fastcall wake_up_process(task_t *p)
1407 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1408 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1411 EXPORT_SYMBOL(wake_up_process);
1413 int fastcall wake_up_state(task_t *p, unsigned int state)
1415 return try_to_wake_up(p, state, 0);
1419 * Perform scheduler related setup for a newly forked process p.
1420 * p is forked by current.
1422 void fastcall sched_fork(task_t *p, int clone_flags)
1424 int cpu = get_cpu();
1426 #ifdef CONFIG_SMP
1427 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1428 #endif
1429 set_task_cpu(p, cpu);
1432 * We mark the process as running here, but have not actually
1433 * inserted it onto the runqueue yet. This guarantees that
1434 * nobody will actually run it, and a signal or other external
1435 * event cannot wake it up and insert it on the runqueue either.
1437 p->state = TASK_RUNNING;
1438 INIT_LIST_HEAD(&p->run_list);
1439 p->array = NULL;
1440 #ifdef CONFIG_SCHEDSTATS
1441 memset(&p->sched_info, 0, sizeof(p->sched_info));
1442 #endif
1443 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1444 p->oncpu = 0;
1445 #endif
1446 #ifdef CONFIG_PREEMPT
1447 /* Want to start with kernel preemption disabled. */
1448 task_thread_info(p)->preempt_count = 1;
1449 #endif
1451 * Share the timeslice between parent and child, thus the
1452 * total amount of pending timeslices in the system doesn't change,
1453 * resulting in more scheduling fairness.
1455 local_irq_disable();
1456 p->time_slice = (current->time_slice + 1) >> 1;
1458 * The remainder of the first timeslice might be recovered by
1459 * the parent if the child exits early enough.
1461 p->first_time_slice = 1;
1462 current->time_slice >>= 1;
1463 p->timestamp = sched_clock();
1464 if (unlikely(!current->time_slice)) {
1466 * This case is rare, it happens when the parent has only
1467 * a single jiffy left from its timeslice. Taking the
1468 * runqueue lock is not a problem.
1470 current->time_slice = 1;
1471 scheduler_tick();
1473 local_irq_enable();
1474 put_cpu();
1478 * wake_up_new_task - wake up a newly created task for the first time.
1480 * This function will do some initial scheduler statistics housekeeping
1481 * that must be done for every newly created context, then puts the task
1482 * on the runqueue and wakes it.
1484 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1486 unsigned long flags;
1487 int this_cpu, cpu;
1488 runqueue_t *rq, *this_rq;
1490 rq = task_rq_lock(p, &flags);
1491 BUG_ON(p->state != TASK_RUNNING);
1492 this_cpu = smp_processor_id();
1493 cpu = task_cpu(p);
1496 * We decrease the sleep average of forking parents
1497 * and children as well, to keep max-interactive tasks
1498 * from forking tasks that are max-interactive. The parent
1499 * (current) is done further down, under its lock.
1501 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1502 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1504 p->prio = effective_prio(p);
1506 if (likely(cpu == this_cpu)) {
1507 if (!(clone_flags & CLONE_VM)) {
1509 * The VM isn't cloned, so we're in a good position to
1510 * do child-runs-first in anticipation of an exec. This
1511 * usually avoids a lot of COW overhead.
1513 if (unlikely(!current->array))
1514 __activate_task(p, rq);
1515 else {
1516 p->prio = current->prio;
1517 list_add_tail(&p->run_list, &current->run_list);
1518 p->array = current->array;
1519 p->array->nr_active++;
1520 inc_nr_running(p, rq);
1522 set_need_resched();
1523 } else
1524 /* Run child last */
1525 __activate_task(p, rq);
1527 * We skip the following code due to cpu == this_cpu
1529 * task_rq_unlock(rq, &flags);
1530 * this_rq = task_rq_lock(current, &flags);
1532 this_rq = rq;
1533 } else {
1534 this_rq = cpu_rq(this_cpu);
1537 * Not the local CPU - must adjust timestamp. This should
1538 * get optimised away in the !CONFIG_SMP case.
1540 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1541 + rq->timestamp_last_tick;
1542 __activate_task(p, rq);
1543 if (TASK_PREEMPTS_CURR(p, rq))
1544 resched_task(rq->curr);
1547 * Parent and child are on different CPUs, now get the
1548 * parent runqueue to update the parent's ->sleep_avg:
1550 task_rq_unlock(rq, &flags);
1551 this_rq = task_rq_lock(current, &flags);
1553 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1554 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1555 task_rq_unlock(this_rq, &flags);
1559 * Potentially available exiting-child timeslices are
1560 * retrieved here - this way the parent does not get
1561 * penalized for creating too many threads.
1563 * (this cannot be used to 'generate' timeslices
1564 * artificially, because any timeslice recovered here
1565 * was given away by the parent in the first place.)
1567 void fastcall sched_exit(task_t *p)
1569 unsigned long flags;
1570 runqueue_t *rq;
1573 * If the child was a (relative-) CPU hog then decrease
1574 * the sleep_avg of the parent as well.
1576 rq = task_rq_lock(p->parent, &flags);
1577 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1578 p->parent->time_slice += p->time_slice;
1579 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1580 p->parent->time_slice = task_timeslice(p);
1582 if (p->sleep_avg < p->parent->sleep_avg)
1583 p->parent->sleep_avg = p->parent->sleep_avg /
1584 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1585 (EXIT_WEIGHT + 1);
1586 task_rq_unlock(rq, &flags);
1590 * prepare_task_switch - prepare to switch tasks
1591 * @rq: the runqueue preparing to switch
1592 * @next: the task we are going to switch to.
1594 * This is called with the rq lock held and interrupts off. It must
1595 * be paired with a subsequent finish_task_switch after the context
1596 * switch.
1598 * prepare_task_switch sets up locking and calls architecture specific
1599 * hooks.
1601 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1603 prepare_lock_switch(rq, next);
1604 prepare_arch_switch(next);
1608 * finish_task_switch - clean up after a task-switch
1609 * @rq: runqueue associated with task-switch
1610 * @prev: the thread we just switched away from.
1612 * finish_task_switch must be called after the context switch, paired
1613 * with a prepare_task_switch call before the context switch.
1614 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1615 * and do any other architecture-specific cleanup actions.
1617 * Note that we may have delayed dropping an mm in context_switch(). If
1618 * so, we finish that here outside of the runqueue lock. (Doing it
1619 * with the lock held can cause deadlocks; see schedule() for
1620 * details.)
1622 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1623 __releases(rq->lock)
1625 struct mm_struct *mm = rq->prev_mm;
1626 unsigned long prev_task_flags;
1628 rq->prev_mm = NULL;
1631 * A task struct has one reference for the use as "current".
1632 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1633 * calls schedule one last time. The schedule call will never return,
1634 * and the scheduled task must drop that reference.
1635 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1636 * still held, otherwise prev could be scheduled on another cpu, die
1637 * there before we look at prev->state, and then the reference would
1638 * be dropped twice.
1639 * Manfred Spraul <manfred@colorfullife.com>
1641 prev_task_flags = prev->flags;
1642 finish_arch_switch(prev);
1643 finish_lock_switch(rq, prev);
1644 if (mm)
1645 mmdrop(mm);
1646 if (unlikely(prev_task_flags & PF_DEAD))
1647 put_task_struct(prev);
1651 * schedule_tail - first thing a freshly forked thread must call.
1652 * @prev: the thread we just switched away from.
1654 asmlinkage void schedule_tail(task_t *prev)
1655 __releases(rq->lock)
1657 runqueue_t *rq = this_rq();
1658 finish_task_switch(rq, prev);
1659 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1660 /* In this case, finish_task_switch does not reenable preemption */
1661 preempt_enable();
1662 #endif
1663 if (current->set_child_tid)
1664 put_user(current->pid, current->set_child_tid);
1668 * context_switch - switch to the new MM and the new
1669 * thread's register state.
1671 static inline
1672 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1674 struct mm_struct *mm = next->mm;
1675 struct mm_struct *oldmm = prev->active_mm;
1677 if (unlikely(!mm)) {
1678 next->active_mm = oldmm;
1679 atomic_inc(&oldmm->mm_count);
1680 enter_lazy_tlb(oldmm, next);
1681 } else
1682 switch_mm(oldmm, mm, next);
1684 if (unlikely(!prev->mm)) {
1685 prev->active_mm = NULL;
1686 WARN_ON(rq->prev_mm);
1687 rq->prev_mm = oldmm;
1690 /* Here we just switch the register state and the stack. */
1691 switch_to(prev, next, prev);
1693 return prev;
1697 * nr_running, nr_uninterruptible and nr_context_switches:
1699 * externally visible scheduler statistics: current number of runnable
1700 * threads, current number of uninterruptible-sleeping threads, total
1701 * number of context switches performed since bootup.
1703 unsigned long nr_running(void)
1705 unsigned long i, sum = 0;
1707 for_each_online_cpu(i)
1708 sum += cpu_rq(i)->nr_running;
1710 return sum;
1713 unsigned long nr_uninterruptible(void)
1715 unsigned long i, sum = 0;
1717 for_each_cpu(i)
1718 sum += cpu_rq(i)->nr_uninterruptible;
1721 * Since we read the counters lockless, it might be slightly
1722 * inaccurate. Do not allow it to go below zero though:
1724 if (unlikely((long)sum < 0))
1725 sum = 0;
1727 return sum;
1730 unsigned long long nr_context_switches(void)
1732 unsigned long long i, sum = 0;
1734 for_each_cpu(i)
1735 sum += cpu_rq(i)->nr_switches;
1737 return sum;
1740 unsigned long nr_iowait(void)
1742 unsigned long i, sum = 0;
1744 for_each_cpu(i)
1745 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1747 return sum;
1750 #ifdef CONFIG_SMP
1753 * double_rq_lock - safely lock two runqueues
1755 * Note this does not disable interrupts like task_rq_lock,
1756 * you need to do so manually before calling.
1758 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1759 __acquires(rq1->lock)
1760 __acquires(rq2->lock)
1762 if (rq1 == rq2) {
1763 spin_lock(&rq1->lock);
1764 __acquire(rq2->lock); /* Fake it out ;) */
1765 } else {
1766 if (rq1 < rq2) {
1767 spin_lock(&rq1->lock);
1768 spin_lock(&rq2->lock);
1769 } else {
1770 spin_lock(&rq2->lock);
1771 spin_lock(&rq1->lock);
1777 * double_rq_unlock - safely unlock two runqueues
1779 * Note this does not restore interrupts like task_rq_unlock,
1780 * you need to do so manually after calling.
1782 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1783 __releases(rq1->lock)
1784 __releases(rq2->lock)
1786 spin_unlock(&rq1->lock);
1787 if (rq1 != rq2)
1788 spin_unlock(&rq2->lock);
1789 else
1790 __release(rq2->lock);
1794 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1796 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1797 __releases(this_rq->lock)
1798 __acquires(busiest->lock)
1799 __acquires(this_rq->lock)
1801 if (unlikely(!spin_trylock(&busiest->lock))) {
1802 if (busiest < this_rq) {
1803 spin_unlock(&this_rq->lock);
1804 spin_lock(&busiest->lock);
1805 spin_lock(&this_rq->lock);
1806 } else
1807 spin_lock(&busiest->lock);
1812 * If dest_cpu is allowed for this process, migrate the task to it.
1813 * This is accomplished by forcing the cpu_allowed mask to only
1814 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1815 * the cpu_allowed mask is restored.
1817 static void sched_migrate_task(task_t *p, int dest_cpu)
1819 migration_req_t req;
1820 runqueue_t *rq;
1821 unsigned long flags;
1823 rq = task_rq_lock(p, &flags);
1824 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1825 || unlikely(cpu_is_offline(dest_cpu)))
1826 goto out;
1828 /* force the process onto the specified CPU */
1829 if (migrate_task(p, dest_cpu, &req)) {
1830 /* Need to wait for migration thread (might exit: take ref). */
1831 struct task_struct *mt = rq->migration_thread;
1832 get_task_struct(mt);
1833 task_rq_unlock(rq, &flags);
1834 wake_up_process(mt);
1835 put_task_struct(mt);
1836 wait_for_completion(&req.done);
1837 return;
1839 out:
1840 task_rq_unlock(rq, &flags);
1844 * sched_exec - execve() is a valuable balancing opportunity, because at
1845 * this point the task has the smallest effective memory and cache footprint.
1847 void sched_exec(void)
1849 int new_cpu, this_cpu = get_cpu();
1850 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1851 put_cpu();
1852 if (new_cpu != this_cpu)
1853 sched_migrate_task(current, new_cpu);
1857 * pull_task - move a task from a remote runqueue to the local runqueue.
1858 * Both runqueues must be locked.
1860 static inline
1861 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1862 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1864 dequeue_task(p, src_array);
1865 dec_nr_running(p, src_rq);
1866 set_task_cpu(p, this_cpu);
1867 inc_nr_running(p, this_rq);
1868 enqueue_task(p, this_array);
1869 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1870 + this_rq->timestamp_last_tick;
1872 * Note that idle threads have a prio of MAX_PRIO, for this test
1873 * to be always true for them.
1875 if (TASK_PREEMPTS_CURR(p, this_rq))
1876 resched_task(this_rq->curr);
1880 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1882 static inline
1883 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1884 struct sched_domain *sd, enum idle_type idle,
1885 int *all_pinned)
1888 * We do not migrate tasks that are:
1889 * 1) running (obviously), or
1890 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1891 * 3) are cache-hot on their current CPU.
1893 if (!cpu_isset(this_cpu, p->cpus_allowed))
1894 return 0;
1895 *all_pinned = 0;
1897 if (task_running(rq, p))
1898 return 0;
1901 * Aggressive migration if:
1902 * 1) task is cache cold, or
1903 * 2) too many balance attempts have failed.
1906 if (sd->nr_balance_failed > sd->cache_nice_tries)
1907 return 1;
1909 if (task_hot(p, rq->timestamp_last_tick, sd))
1910 return 0;
1911 return 1;
1915 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1916 * as part of a balancing operation within "domain". Returns the number of
1917 * tasks moved.
1919 * Called with both runqueues locked.
1921 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1922 unsigned long max_nr_move, struct sched_domain *sd,
1923 enum idle_type idle, int *all_pinned)
1925 prio_array_t *array, *dst_array;
1926 struct list_head *head, *curr;
1927 int idx, pulled = 0, pinned = 0;
1928 task_t *tmp;
1930 if (max_nr_move == 0)
1931 goto out;
1933 pinned = 1;
1936 * We first consider expired tasks. Those will likely not be
1937 * executed in the near future, and they are most likely to
1938 * be cache-cold, thus switching CPUs has the least effect
1939 * on them.
1941 if (busiest->expired->nr_active) {
1942 array = busiest->expired;
1943 dst_array = this_rq->expired;
1944 } else {
1945 array = busiest->active;
1946 dst_array = this_rq->active;
1949 new_array:
1950 /* Start searching at priority 0: */
1951 idx = 0;
1952 skip_bitmap:
1953 if (!idx)
1954 idx = sched_find_first_bit(array->bitmap);
1955 else
1956 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1957 if (idx >= MAX_PRIO) {
1958 if (array == busiest->expired && busiest->active->nr_active) {
1959 array = busiest->active;
1960 dst_array = this_rq->active;
1961 goto new_array;
1963 goto out;
1966 head = array->queue + idx;
1967 curr = head->prev;
1968 skip_queue:
1969 tmp = list_entry(curr, task_t, run_list);
1971 curr = curr->prev;
1973 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1974 if (curr != head)
1975 goto skip_queue;
1976 idx++;
1977 goto skip_bitmap;
1980 #ifdef CONFIG_SCHEDSTATS
1981 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1982 schedstat_inc(sd, lb_hot_gained[idle]);
1983 #endif
1985 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1986 pulled++;
1988 /* We only want to steal up to the prescribed number of tasks. */
1989 if (pulled < max_nr_move) {
1990 if (curr != head)
1991 goto skip_queue;
1992 idx++;
1993 goto skip_bitmap;
1995 out:
1997 * Right now, this is the only place pull_task() is called,
1998 * so we can safely collect pull_task() stats here rather than
1999 * inside pull_task().
2001 schedstat_add(sd, lb_gained[idle], pulled);
2003 if (all_pinned)
2004 *all_pinned = pinned;
2005 return pulled;
2009 * find_busiest_group finds and returns the busiest CPU group within the
2010 * domain. It calculates and returns the number of tasks which should be
2011 * moved to restore balance via the imbalance parameter.
2013 static struct sched_group *
2014 find_busiest_group(struct sched_domain *sd, int this_cpu,
2015 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2017 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2018 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2019 unsigned long max_pull;
2020 int load_idx;
2022 max_load = this_load = total_load = total_pwr = 0;
2023 if (idle == NOT_IDLE)
2024 load_idx = sd->busy_idx;
2025 else if (idle == NEWLY_IDLE)
2026 load_idx = sd->newidle_idx;
2027 else
2028 load_idx = sd->idle_idx;
2030 do {
2031 unsigned long load;
2032 int local_group;
2033 int i;
2035 local_group = cpu_isset(this_cpu, group->cpumask);
2037 /* Tally up the load of all CPUs in the group */
2038 avg_load = 0;
2040 for_each_cpu_mask(i, group->cpumask) {
2041 if (*sd_idle && !idle_cpu(i))
2042 *sd_idle = 0;
2044 /* Bias balancing toward cpus of our domain */
2045 if (local_group)
2046 load = __target_load(i, load_idx, idle);
2047 else
2048 load = __source_load(i, load_idx, idle);
2050 avg_load += load;
2053 total_load += avg_load;
2054 total_pwr += group->cpu_power;
2056 /* Adjust by relative CPU power of the group */
2057 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2059 if (local_group) {
2060 this_load = avg_load;
2061 this = group;
2062 } else if (avg_load > max_load) {
2063 max_load = avg_load;
2064 busiest = group;
2066 group = group->next;
2067 } while (group != sd->groups);
2069 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2070 goto out_balanced;
2072 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2074 if (this_load >= avg_load ||
2075 100*max_load <= sd->imbalance_pct*this_load)
2076 goto out_balanced;
2079 * We're trying to get all the cpus to the average_load, so we don't
2080 * want to push ourselves above the average load, nor do we wish to
2081 * reduce the max loaded cpu below the average load, as either of these
2082 * actions would just result in more rebalancing later, and ping-pong
2083 * tasks around. Thus we look for the minimum possible imbalance.
2084 * Negative imbalances (*we* are more loaded than anyone else) will
2085 * be counted as no imbalance for these purposes -- we can't fix that
2086 * by pulling tasks to us. Be careful of negative numbers as they'll
2087 * appear as very large values with unsigned longs.
2090 /* Don't want to pull so many tasks that a group would go idle */
2091 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2093 /* How much load to actually move to equalise the imbalance */
2094 *imbalance = min(max_pull * busiest->cpu_power,
2095 (avg_load - this_load) * this->cpu_power)
2096 / SCHED_LOAD_SCALE;
2098 if (*imbalance < SCHED_LOAD_SCALE) {
2099 unsigned long pwr_now = 0, pwr_move = 0;
2100 unsigned long tmp;
2102 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2103 *imbalance = 1;
2104 return busiest;
2108 * OK, we don't have enough imbalance to justify moving tasks,
2109 * however we may be able to increase total CPU power used by
2110 * moving them.
2113 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2114 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2115 pwr_now /= SCHED_LOAD_SCALE;
2117 /* Amount of load we'd subtract */
2118 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2119 if (max_load > tmp)
2120 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2121 max_load - tmp);
2123 /* Amount of load we'd add */
2124 if (max_load*busiest->cpu_power <
2125 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2126 tmp = max_load*busiest->cpu_power/this->cpu_power;
2127 else
2128 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2129 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2130 pwr_move /= SCHED_LOAD_SCALE;
2132 /* Move if we gain throughput */
2133 if (pwr_move <= pwr_now)
2134 goto out_balanced;
2136 *imbalance = 1;
2137 return busiest;
2140 /* Get rid of the scaling factor, rounding down as we divide */
2141 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2142 return busiest;
2144 out_balanced:
2146 *imbalance = 0;
2147 return NULL;
2151 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2153 static runqueue_t *find_busiest_queue(struct sched_group *group,
2154 enum idle_type idle)
2156 unsigned long load, max_load = 0;
2157 runqueue_t *busiest = NULL;
2158 int i;
2160 for_each_cpu_mask(i, group->cpumask) {
2161 load = __source_load(i, 0, idle);
2163 if (load > max_load) {
2164 max_load = load;
2165 busiest = cpu_rq(i);
2169 return busiest;
2173 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2174 * so long as it is large enough.
2176 #define MAX_PINNED_INTERVAL 512
2179 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2180 * tasks if there is an imbalance.
2182 * Called with this_rq unlocked.
2184 static int load_balance(int this_cpu, runqueue_t *this_rq,
2185 struct sched_domain *sd, enum idle_type idle)
2187 struct sched_group *group;
2188 runqueue_t *busiest;
2189 unsigned long imbalance;
2190 int nr_moved, all_pinned = 0;
2191 int active_balance = 0;
2192 int sd_idle = 0;
2194 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2195 sd_idle = 1;
2197 schedstat_inc(sd, lb_cnt[idle]);
2199 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2200 if (!group) {
2201 schedstat_inc(sd, lb_nobusyg[idle]);
2202 goto out_balanced;
2205 busiest = find_busiest_queue(group, idle);
2206 if (!busiest) {
2207 schedstat_inc(sd, lb_nobusyq[idle]);
2208 goto out_balanced;
2211 BUG_ON(busiest == this_rq);
2213 schedstat_add(sd, lb_imbalance[idle], imbalance);
2215 nr_moved = 0;
2216 if (busiest->nr_running > 1) {
2218 * Attempt to move tasks. If find_busiest_group has found
2219 * an imbalance but busiest->nr_running <= 1, the group is
2220 * still unbalanced. nr_moved simply stays zero, so it is
2221 * correctly treated as an imbalance.
2223 double_rq_lock(this_rq, busiest);
2224 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2225 imbalance, sd, idle, &all_pinned);
2226 double_rq_unlock(this_rq, busiest);
2228 /* All tasks on this runqueue were pinned by CPU affinity */
2229 if (unlikely(all_pinned))
2230 goto out_balanced;
2233 if (!nr_moved) {
2234 schedstat_inc(sd, lb_failed[idle]);
2235 sd->nr_balance_failed++;
2237 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2239 spin_lock(&busiest->lock);
2241 /* don't kick the migration_thread, if the curr
2242 * task on busiest cpu can't be moved to this_cpu
2244 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2245 spin_unlock(&busiest->lock);
2246 all_pinned = 1;
2247 goto out_one_pinned;
2250 if (!busiest->active_balance) {
2251 busiest->active_balance = 1;
2252 busiest->push_cpu = this_cpu;
2253 active_balance = 1;
2255 spin_unlock(&busiest->lock);
2256 if (active_balance)
2257 wake_up_process(busiest->migration_thread);
2260 * We've kicked active balancing, reset the failure
2261 * counter.
2263 sd->nr_balance_failed = sd->cache_nice_tries+1;
2265 } else
2266 sd->nr_balance_failed = 0;
2268 if (likely(!active_balance)) {
2269 /* We were unbalanced, so reset the balancing interval */
2270 sd->balance_interval = sd->min_interval;
2271 } else {
2273 * If we've begun active balancing, start to back off. This
2274 * case may not be covered by the all_pinned logic if there
2275 * is only 1 task on the busy runqueue (because we don't call
2276 * move_tasks).
2278 if (sd->balance_interval < sd->max_interval)
2279 sd->balance_interval *= 2;
2282 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2283 return -1;
2284 return nr_moved;
2286 out_balanced:
2287 schedstat_inc(sd, lb_balanced[idle]);
2289 sd->nr_balance_failed = 0;
2291 out_one_pinned:
2292 /* tune up the balancing interval */
2293 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2294 (sd->balance_interval < sd->max_interval))
2295 sd->balance_interval *= 2;
2297 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2298 return -1;
2299 return 0;
2303 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2304 * tasks if there is an imbalance.
2306 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2307 * this_rq is locked.
2309 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2310 struct sched_domain *sd)
2312 struct sched_group *group;
2313 runqueue_t *busiest = NULL;
2314 unsigned long imbalance;
2315 int nr_moved = 0;
2316 int sd_idle = 0;
2318 if (sd->flags & SD_SHARE_CPUPOWER)
2319 sd_idle = 1;
2321 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2322 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2323 if (!group) {
2324 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2325 goto out_balanced;
2328 busiest = find_busiest_queue(group, NEWLY_IDLE);
2329 if (!busiest) {
2330 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2331 goto out_balanced;
2334 BUG_ON(busiest == this_rq);
2336 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2338 nr_moved = 0;
2339 if (busiest->nr_running > 1) {
2340 /* Attempt to move tasks */
2341 double_lock_balance(this_rq, busiest);
2342 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2343 imbalance, sd, NEWLY_IDLE, NULL);
2344 spin_unlock(&busiest->lock);
2347 if (!nr_moved) {
2348 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2349 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2350 return -1;
2351 } else
2352 sd->nr_balance_failed = 0;
2354 return nr_moved;
2356 out_balanced:
2357 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2358 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2359 return -1;
2360 sd->nr_balance_failed = 0;
2361 return 0;
2365 * idle_balance is called by schedule() if this_cpu is about to become
2366 * idle. Attempts to pull tasks from other CPUs.
2368 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2370 struct sched_domain *sd;
2372 for_each_domain(this_cpu, sd) {
2373 if (sd->flags & SD_BALANCE_NEWIDLE) {
2374 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2375 /* We've pulled tasks over so stop searching */
2376 break;
2383 * active_load_balance is run by migration threads. It pushes running tasks
2384 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2385 * running on each physical CPU where possible, and avoids physical /
2386 * logical imbalances.
2388 * Called with busiest_rq locked.
2390 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2392 struct sched_domain *sd;
2393 runqueue_t *target_rq;
2394 int target_cpu = busiest_rq->push_cpu;
2396 if (busiest_rq->nr_running <= 1)
2397 /* no task to move */
2398 return;
2400 target_rq = cpu_rq(target_cpu);
2403 * This condition is "impossible", if it occurs
2404 * we need to fix it. Originally reported by
2405 * Bjorn Helgaas on a 128-cpu setup.
2407 BUG_ON(busiest_rq == target_rq);
2409 /* move a task from busiest_rq to target_rq */
2410 double_lock_balance(busiest_rq, target_rq);
2412 /* Search for an sd spanning us and the target CPU. */
2413 for_each_domain(target_cpu, sd)
2414 if ((sd->flags & SD_LOAD_BALANCE) &&
2415 cpu_isset(busiest_cpu, sd->span))
2416 break;
2418 if (unlikely(sd == NULL))
2419 goto out;
2421 schedstat_inc(sd, alb_cnt);
2423 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2424 schedstat_inc(sd, alb_pushed);
2425 else
2426 schedstat_inc(sd, alb_failed);
2427 out:
2428 spin_unlock(&target_rq->lock);
2432 * rebalance_tick will get called every timer tick, on every CPU.
2434 * It checks each scheduling domain to see if it is due to be balanced,
2435 * and initiates a balancing operation if so.
2437 * Balancing parameters are set up in arch_init_sched_domains.
2440 /* Don't have all balancing operations going off at once */
2441 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2443 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2444 enum idle_type idle)
2446 unsigned long old_load, this_load;
2447 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2448 struct sched_domain *sd;
2449 int i;
2451 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2452 /* Update our load */
2453 for (i = 0; i < 3; i++) {
2454 unsigned long new_load = this_load;
2455 int scale = 1 << i;
2456 old_load = this_rq->cpu_load[i];
2458 * Round up the averaging division if load is increasing. This
2459 * prevents us from getting stuck on 9 if the load is 10, for
2460 * example.
2462 if (new_load > old_load)
2463 new_load += scale-1;
2464 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2467 for_each_domain(this_cpu, sd) {
2468 unsigned long interval;
2470 if (!(sd->flags & SD_LOAD_BALANCE))
2471 continue;
2473 interval = sd->balance_interval;
2474 if (idle != SCHED_IDLE)
2475 interval *= sd->busy_factor;
2477 /* scale ms to jiffies */
2478 interval = msecs_to_jiffies(interval);
2479 if (unlikely(!interval))
2480 interval = 1;
2482 if (j - sd->last_balance >= interval) {
2483 if (load_balance(this_cpu, this_rq, sd, idle)) {
2485 * We've pulled tasks over so either we're no
2486 * longer idle, or one of our SMT siblings is
2487 * not idle.
2489 idle = NOT_IDLE;
2491 sd->last_balance += interval;
2495 #else
2497 * on UP we do not need to balance between CPUs:
2499 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2502 static inline void idle_balance(int cpu, runqueue_t *rq)
2505 #endif
2507 static inline int wake_priority_sleeper(runqueue_t *rq)
2509 int ret = 0;
2510 #ifdef CONFIG_SCHED_SMT
2511 spin_lock(&rq->lock);
2513 * If an SMT sibling task has been put to sleep for priority
2514 * reasons reschedule the idle task to see if it can now run.
2516 if (rq->nr_running) {
2517 resched_task(rq->idle);
2518 ret = 1;
2520 spin_unlock(&rq->lock);
2521 #endif
2522 return ret;
2525 DEFINE_PER_CPU(struct kernel_stat, kstat);
2527 EXPORT_PER_CPU_SYMBOL(kstat);
2530 * This is called on clock ticks and on context switches.
2531 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2533 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2534 unsigned long long now)
2536 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2537 p->sched_time += now - last;
2541 * Return current->sched_time plus any more ns on the sched_clock
2542 * that have not yet been banked.
2544 unsigned long long current_sched_time(const task_t *tsk)
2546 unsigned long long ns;
2547 unsigned long flags;
2548 local_irq_save(flags);
2549 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2550 ns = tsk->sched_time + (sched_clock() - ns);
2551 local_irq_restore(flags);
2552 return ns;
2556 * We place interactive tasks back into the active array, if possible.
2558 * To guarantee that this does not starve expired tasks we ignore the
2559 * interactivity of a task if the first expired task had to wait more
2560 * than a 'reasonable' amount of time. This deadline timeout is
2561 * load-dependent, as the frequency of array switched decreases with
2562 * increasing number of running tasks. We also ignore the interactivity
2563 * if a better static_prio task has expired:
2565 #define EXPIRED_STARVING(rq) \
2566 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2567 (jiffies - (rq)->expired_timestamp >= \
2568 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2569 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2572 * Account user cpu time to a process.
2573 * @p: the process that the cpu time gets accounted to
2574 * @hardirq_offset: the offset to subtract from hardirq_count()
2575 * @cputime: the cpu time spent in user space since the last update
2577 void account_user_time(struct task_struct *p, cputime_t cputime)
2579 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2580 cputime64_t tmp;
2582 p->utime = cputime_add(p->utime, cputime);
2584 /* Add user time to cpustat. */
2585 tmp = cputime_to_cputime64(cputime);
2586 if (TASK_NICE(p) > 0)
2587 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2588 else
2589 cpustat->user = cputime64_add(cpustat->user, tmp);
2593 * Account system cpu time to a process.
2594 * @p: the process that the cpu time gets accounted to
2595 * @hardirq_offset: the offset to subtract from hardirq_count()
2596 * @cputime: the cpu time spent in kernel space since the last update
2598 void account_system_time(struct task_struct *p, int hardirq_offset,
2599 cputime_t cputime)
2601 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2602 runqueue_t *rq = this_rq();
2603 cputime64_t tmp;
2605 p->stime = cputime_add(p->stime, cputime);
2607 /* Add system time to cpustat. */
2608 tmp = cputime_to_cputime64(cputime);
2609 if (hardirq_count() - hardirq_offset)
2610 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2611 else if (softirq_count())
2612 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2613 else if (p != rq->idle)
2614 cpustat->system = cputime64_add(cpustat->system, tmp);
2615 else if (atomic_read(&rq->nr_iowait) > 0)
2616 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2617 else
2618 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2619 /* Account for system time used */
2620 acct_update_integrals(p);
2624 * Account for involuntary wait time.
2625 * @p: the process from which the cpu time has been stolen
2626 * @steal: the cpu time spent in involuntary wait
2628 void account_steal_time(struct task_struct *p, cputime_t steal)
2630 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2631 cputime64_t tmp = cputime_to_cputime64(steal);
2632 runqueue_t *rq = this_rq();
2634 if (p == rq->idle) {
2635 p->stime = cputime_add(p->stime, steal);
2636 if (atomic_read(&rq->nr_iowait) > 0)
2637 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2638 else
2639 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2640 } else
2641 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2645 * This function gets called by the timer code, with HZ frequency.
2646 * We call it with interrupts disabled.
2648 * It also gets called by the fork code, when changing the parent's
2649 * timeslices.
2651 void scheduler_tick(void)
2653 int cpu = smp_processor_id();
2654 runqueue_t *rq = this_rq();
2655 task_t *p = current;
2656 unsigned long long now = sched_clock();
2658 update_cpu_clock(p, rq, now);
2660 rq->timestamp_last_tick = now;
2662 if (p == rq->idle) {
2663 if (wake_priority_sleeper(rq))
2664 goto out;
2665 rebalance_tick(cpu, rq, SCHED_IDLE);
2666 return;
2669 /* Task might have expired already, but not scheduled off yet */
2670 if (p->array != rq->active) {
2671 set_tsk_need_resched(p);
2672 goto out;
2674 spin_lock(&rq->lock);
2676 * The task was running during this tick - update the
2677 * time slice counter. Note: we do not update a thread's
2678 * priority until it either goes to sleep or uses up its
2679 * timeslice. This makes it possible for interactive tasks
2680 * to use up their timeslices at their highest priority levels.
2682 if (rt_task(p)) {
2684 * RR tasks need a special form of timeslice management.
2685 * FIFO tasks have no timeslices.
2687 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2688 p->time_slice = task_timeslice(p);
2689 p->first_time_slice = 0;
2690 set_tsk_need_resched(p);
2692 /* put it at the end of the queue: */
2693 requeue_task(p, rq->active);
2695 goto out_unlock;
2697 if (!--p->time_slice) {
2698 dequeue_task(p, rq->active);
2699 set_tsk_need_resched(p);
2700 p->prio = effective_prio(p);
2701 p->time_slice = task_timeslice(p);
2702 p->first_time_slice = 0;
2704 if (!rq->expired_timestamp)
2705 rq->expired_timestamp = jiffies;
2706 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2707 enqueue_task(p, rq->expired);
2708 if (p->static_prio < rq->best_expired_prio)
2709 rq->best_expired_prio = p->static_prio;
2710 } else
2711 enqueue_task(p, rq->active);
2712 } else {
2714 * Prevent a too long timeslice allowing a task to monopolize
2715 * the CPU. We do this by splitting up the timeslice into
2716 * smaller pieces.
2718 * Note: this does not mean the task's timeslices expire or
2719 * get lost in any way, they just might be preempted by
2720 * another task of equal priority. (one with higher
2721 * priority would have preempted this task already.) We
2722 * requeue this task to the end of the list on this priority
2723 * level, which is in essence a round-robin of tasks with
2724 * equal priority.
2726 * This only applies to tasks in the interactive
2727 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2729 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2730 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2731 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2732 (p->array == rq->active)) {
2734 requeue_task(p, rq->active);
2735 set_tsk_need_resched(p);
2738 out_unlock:
2739 spin_unlock(&rq->lock);
2740 out:
2741 rebalance_tick(cpu, rq, NOT_IDLE);
2744 #ifdef CONFIG_SCHED_SMT
2745 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2747 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2748 if (rq->curr == rq->idle && rq->nr_running)
2749 resched_task(rq->idle);
2752 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2754 struct sched_domain *tmp, *sd = NULL;
2755 cpumask_t sibling_map;
2756 int i;
2758 for_each_domain(this_cpu, tmp)
2759 if (tmp->flags & SD_SHARE_CPUPOWER)
2760 sd = tmp;
2762 if (!sd)
2763 return;
2766 * Unlock the current runqueue because we have to lock in
2767 * CPU order to avoid deadlocks. Caller knows that we might
2768 * unlock. We keep IRQs disabled.
2770 spin_unlock(&this_rq->lock);
2772 sibling_map = sd->span;
2774 for_each_cpu_mask(i, sibling_map)
2775 spin_lock(&cpu_rq(i)->lock);
2777 * We clear this CPU from the mask. This both simplifies the
2778 * inner loop and keps this_rq locked when we exit:
2780 cpu_clear(this_cpu, sibling_map);
2782 for_each_cpu_mask(i, sibling_map) {
2783 runqueue_t *smt_rq = cpu_rq(i);
2785 wakeup_busy_runqueue(smt_rq);
2788 for_each_cpu_mask(i, sibling_map)
2789 spin_unlock(&cpu_rq(i)->lock);
2791 * We exit with this_cpu's rq still held and IRQs
2792 * still disabled:
2797 * number of 'lost' timeslices this task wont be able to fully
2798 * utilize, if another task runs on a sibling. This models the
2799 * slowdown effect of other tasks running on siblings:
2801 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2803 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2806 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2808 struct sched_domain *tmp, *sd = NULL;
2809 cpumask_t sibling_map;
2810 prio_array_t *array;
2811 int ret = 0, i;
2812 task_t *p;
2814 for_each_domain(this_cpu, tmp)
2815 if (tmp->flags & SD_SHARE_CPUPOWER)
2816 sd = tmp;
2818 if (!sd)
2819 return 0;
2822 * The same locking rules and details apply as for
2823 * wake_sleeping_dependent():
2825 spin_unlock(&this_rq->lock);
2826 sibling_map = sd->span;
2827 for_each_cpu_mask(i, sibling_map)
2828 spin_lock(&cpu_rq(i)->lock);
2829 cpu_clear(this_cpu, sibling_map);
2832 * Establish next task to be run - it might have gone away because
2833 * we released the runqueue lock above:
2835 if (!this_rq->nr_running)
2836 goto out_unlock;
2837 array = this_rq->active;
2838 if (!array->nr_active)
2839 array = this_rq->expired;
2840 BUG_ON(!array->nr_active);
2842 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2843 task_t, run_list);
2845 for_each_cpu_mask(i, sibling_map) {
2846 runqueue_t *smt_rq = cpu_rq(i);
2847 task_t *smt_curr = smt_rq->curr;
2849 /* Kernel threads do not participate in dependent sleeping */
2850 if (!p->mm || !smt_curr->mm || rt_task(p))
2851 goto check_smt_task;
2854 * If a user task with lower static priority than the
2855 * running task on the SMT sibling is trying to schedule,
2856 * delay it till there is proportionately less timeslice
2857 * left of the sibling task to prevent a lower priority
2858 * task from using an unfair proportion of the
2859 * physical cpu's resources. -ck
2861 if (rt_task(smt_curr)) {
2863 * With real time tasks we run non-rt tasks only
2864 * per_cpu_gain% of the time.
2866 if ((jiffies % DEF_TIMESLICE) >
2867 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2868 ret = 1;
2869 } else
2870 if (smt_curr->static_prio < p->static_prio &&
2871 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2872 smt_slice(smt_curr, sd) > task_timeslice(p))
2873 ret = 1;
2875 check_smt_task:
2876 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2877 rt_task(smt_curr))
2878 continue;
2879 if (!p->mm) {
2880 wakeup_busy_runqueue(smt_rq);
2881 continue;
2885 * Reschedule a lower priority task on the SMT sibling for
2886 * it to be put to sleep, or wake it up if it has been put to
2887 * sleep for priority reasons to see if it should run now.
2889 if (rt_task(p)) {
2890 if ((jiffies % DEF_TIMESLICE) >
2891 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2892 resched_task(smt_curr);
2893 } else {
2894 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2895 smt_slice(p, sd) > task_timeslice(smt_curr))
2896 resched_task(smt_curr);
2897 else
2898 wakeup_busy_runqueue(smt_rq);
2901 out_unlock:
2902 for_each_cpu_mask(i, sibling_map)
2903 spin_unlock(&cpu_rq(i)->lock);
2904 return ret;
2906 #else
2907 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2911 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2913 return 0;
2915 #endif
2917 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2919 void fastcall add_preempt_count(int val)
2922 * Underflow?
2924 BUG_ON((preempt_count() < 0));
2925 preempt_count() += val;
2927 * Spinlock count overflowing soon?
2929 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2931 EXPORT_SYMBOL(add_preempt_count);
2933 void fastcall sub_preempt_count(int val)
2936 * Underflow?
2938 BUG_ON(val > preempt_count());
2940 * Is the spinlock portion underflowing?
2942 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2943 preempt_count() -= val;
2945 EXPORT_SYMBOL(sub_preempt_count);
2947 #endif
2950 * schedule() is the main scheduler function.
2952 asmlinkage void __sched schedule(void)
2954 long *switch_count;
2955 task_t *prev, *next;
2956 runqueue_t *rq;
2957 prio_array_t *array;
2958 struct list_head *queue;
2959 unsigned long long now;
2960 unsigned long run_time;
2961 int cpu, idx, new_prio;
2964 * Test if we are atomic. Since do_exit() needs to call into
2965 * schedule() atomically, we ignore that path for now.
2966 * Otherwise, whine if we are scheduling when we should not be.
2968 if (likely(!current->exit_state)) {
2969 if (unlikely(in_atomic())) {
2970 printk(KERN_ERR "scheduling while atomic: "
2971 "%s/0x%08x/%d\n",
2972 current->comm, preempt_count(), current->pid);
2973 dump_stack();
2976 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2978 need_resched:
2979 preempt_disable();
2980 prev = current;
2981 release_kernel_lock(prev);
2982 need_resched_nonpreemptible:
2983 rq = this_rq();
2986 * The idle thread is not allowed to schedule!
2987 * Remove this check after it has been exercised a bit.
2989 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2990 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2991 dump_stack();
2994 schedstat_inc(rq, sched_cnt);
2995 now = sched_clock();
2996 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2997 run_time = now - prev->timestamp;
2998 if (unlikely((long long)(now - prev->timestamp) < 0))
2999 run_time = 0;
3000 } else
3001 run_time = NS_MAX_SLEEP_AVG;
3004 * Tasks charged proportionately less run_time at high sleep_avg to
3005 * delay them losing their interactive status
3007 run_time /= (CURRENT_BONUS(prev) ? : 1);
3009 spin_lock_irq(&rq->lock);
3011 if (unlikely(prev->flags & PF_DEAD))
3012 prev->state = EXIT_DEAD;
3014 switch_count = &prev->nivcsw;
3015 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3016 switch_count = &prev->nvcsw;
3017 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3018 unlikely(signal_pending(prev))))
3019 prev->state = TASK_RUNNING;
3020 else {
3021 if (prev->state == TASK_UNINTERRUPTIBLE)
3022 rq->nr_uninterruptible++;
3023 deactivate_task(prev, rq);
3027 cpu = smp_processor_id();
3028 if (unlikely(!rq->nr_running)) {
3029 go_idle:
3030 idle_balance(cpu, rq);
3031 if (!rq->nr_running) {
3032 next = rq->idle;
3033 rq->expired_timestamp = 0;
3034 wake_sleeping_dependent(cpu, rq);
3036 * wake_sleeping_dependent() might have released
3037 * the runqueue, so break out if we got new
3038 * tasks meanwhile:
3040 if (!rq->nr_running)
3041 goto switch_tasks;
3043 } else {
3044 if (dependent_sleeper(cpu, rq)) {
3045 next = rq->idle;
3046 goto switch_tasks;
3049 * dependent_sleeper() releases and reacquires the runqueue
3050 * lock, hence go into the idle loop if the rq went
3051 * empty meanwhile:
3053 if (unlikely(!rq->nr_running))
3054 goto go_idle;
3057 array = rq->active;
3058 if (unlikely(!array->nr_active)) {
3060 * Switch the active and expired arrays.
3062 schedstat_inc(rq, sched_switch);
3063 rq->active = rq->expired;
3064 rq->expired = array;
3065 array = rq->active;
3066 rq->expired_timestamp = 0;
3067 rq->best_expired_prio = MAX_PRIO;
3070 idx = sched_find_first_bit(array->bitmap);
3071 queue = array->queue + idx;
3072 next = list_entry(queue->next, task_t, run_list);
3074 if (!rt_task(next) && next->activated > 0) {
3075 unsigned long long delta = now - next->timestamp;
3076 if (unlikely((long long)(now - next->timestamp) < 0))
3077 delta = 0;
3079 if (next->activated == 1)
3080 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3082 array = next->array;
3083 new_prio = recalc_task_prio(next, next->timestamp + delta);
3085 if (unlikely(next->prio != new_prio)) {
3086 dequeue_task(next, array);
3087 next->prio = new_prio;
3088 enqueue_task(next, array);
3089 } else
3090 requeue_task(next, array);
3092 next->activated = 0;
3093 switch_tasks:
3094 if (next == rq->idle)
3095 schedstat_inc(rq, sched_goidle);
3096 prefetch(next);
3097 prefetch_stack(next);
3098 clear_tsk_need_resched(prev);
3099 rcu_qsctr_inc(task_cpu(prev));
3101 update_cpu_clock(prev, rq, now);
3103 prev->sleep_avg -= run_time;
3104 if ((long)prev->sleep_avg <= 0)
3105 prev->sleep_avg = 0;
3106 prev->timestamp = prev->last_ran = now;
3108 sched_info_switch(prev, next);
3109 if (likely(prev != next)) {
3110 next->timestamp = now;
3111 rq->nr_switches++;
3112 rq->curr = next;
3113 ++*switch_count;
3115 prepare_task_switch(rq, next);
3116 prev = context_switch(rq, prev, next);
3117 barrier();
3119 * this_rq must be evaluated again because prev may have moved
3120 * CPUs since it called schedule(), thus the 'rq' on its stack
3121 * frame will be invalid.
3123 finish_task_switch(this_rq(), prev);
3124 } else
3125 spin_unlock_irq(&rq->lock);
3127 prev = current;
3128 if (unlikely(reacquire_kernel_lock(prev) < 0))
3129 goto need_resched_nonpreemptible;
3130 preempt_enable_no_resched();
3131 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3132 goto need_resched;
3135 EXPORT_SYMBOL(schedule);
3137 #ifdef CONFIG_PREEMPT
3139 * this is is the entry point to schedule() from in-kernel preemption
3140 * off of preempt_enable. Kernel preemptions off return from interrupt
3141 * occur there and call schedule directly.
3143 asmlinkage void __sched preempt_schedule(void)
3145 struct thread_info *ti = current_thread_info();
3146 #ifdef CONFIG_PREEMPT_BKL
3147 struct task_struct *task = current;
3148 int saved_lock_depth;
3149 #endif
3151 * If there is a non-zero preempt_count or interrupts are disabled,
3152 * we do not want to preempt the current task. Just return..
3154 if (unlikely(ti->preempt_count || irqs_disabled()))
3155 return;
3157 need_resched:
3158 add_preempt_count(PREEMPT_ACTIVE);
3160 * We keep the big kernel semaphore locked, but we
3161 * clear ->lock_depth so that schedule() doesnt
3162 * auto-release the semaphore:
3164 #ifdef CONFIG_PREEMPT_BKL
3165 saved_lock_depth = task->lock_depth;
3166 task->lock_depth = -1;
3167 #endif
3168 schedule();
3169 #ifdef CONFIG_PREEMPT_BKL
3170 task->lock_depth = saved_lock_depth;
3171 #endif
3172 sub_preempt_count(PREEMPT_ACTIVE);
3174 /* we could miss a preemption opportunity between schedule and now */
3175 barrier();
3176 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3177 goto need_resched;
3180 EXPORT_SYMBOL(preempt_schedule);
3183 * this is is the entry point to schedule() from kernel preemption
3184 * off of irq context.
3185 * Note, that this is called and return with irqs disabled. This will
3186 * protect us against recursive calling from irq.
3188 asmlinkage void __sched preempt_schedule_irq(void)
3190 struct thread_info *ti = current_thread_info();
3191 #ifdef CONFIG_PREEMPT_BKL
3192 struct task_struct *task = current;
3193 int saved_lock_depth;
3194 #endif
3195 /* Catch callers which need to be fixed*/
3196 BUG_ON(ti->preempt_count || !irqs_disabled());
3198 need_resched:
3199 add_preempt_count(PREEMPT_ACTIVE);
3201 * We keep the big kernel semaphore locked, but we
3202 * clear ->lock_depth so that schedule() doesnt
3203 * auto-release the semaphore:
3205 #ifdef CONFIG_PREEMPT_BKL
3206 saved_lock_depth = task->lock_depth;
3207 task->lock_depth = -1;
3208 #endif
3209 local_irq_enable();
3210 schedule();
3211 local_irq_disable();
3212 #ifdef CONFIG_PREEMPT_BKL
3213 task->lock_depth = saved_lock_depth;
3214 #endif
3215 sub_preempt_count(PREEMPT_ACTIVE);
3217 /* we could miss a preemption opportunity between schedule and now */
3218 barrier();
3219 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3220 goto need_resched;
3223 #endif /* CONFIG_PREEMPT */
3225 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3226 void *key)
3228 task_t *p = curr->private;
3229 return try_to_wake_up(p, mode, sync);
3232 EXPORT_SYMBOL(default_wake_function);
3235 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3236 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3237 * number) then we wake all the non-exclusive tasks and one exclusive task.
3239 * There are circumstances in which we can try to wake a task which has already
3240 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3241 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3243 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3244 int nr_exclusive, int sync, void *key)
3246 struct list_head *tmp, *next;
3248 list_for_each_safe(tmp, next, &q->task_list) {
3249 wait_queue_t *curr;
3250 unsigned flags;
3251 curr = list_entry(tmp, wait_queue_t, task_list);
3252 flags = curr->flags;
3253 if (curr->func(curr, mode, sync, key) &&
3254 (flags & WQ_FLAG_EXCLUSIVE) &&
3255 !--nr_exclusive)
3256 break;
3261 * __wake_up - wake up threads blocked on a waitqueue.
3262 * @q: the waitqueue
3263 * @mode: which threads
3264 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3265 * @key: is directly passed to the wakeup function
3267 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3268 int nr_exclusive, void *key)
3270 unsigned long flags;
3272 spin_lock_irqsave(&q->lock, flags);
3273 __wake_up_common(q, mode, nr_exclusive, 0, key);
3274 spin_unlock_irqrestore(&q->lock, flags);
3277 EXPORT_SYMBOL(__wake_up);
3280 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3282 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3284 __wake_up_common(q, mode, 1, 0, NULL);
3288 * __wake_up_sync - wake up threads blocked on a waitqueue.
3289 * @q: the waitqueue
3290 * @mode: which threads
3291 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3293 * The sync wakeup differs that the waker knows that it will schedule
3294 * away soon, so while the target thread will be woken up, it will not
3295 * be migrated to another CPU - ie. the two threads are 'synchronized'
3296 * with each other. This can prevent needless bouncing between CPUs.
3298 * On UP it can prevent extra preemption.
3300 void fastcall
3301 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3303 unsigned long flags;
3304 int sync = 1;
3306 if (unlikely(!q))
3307 return;
3309 if (unlikely(!nr_exclusive))
3310 sync = 0;
3312 spin_lock_irqsave(&q->lock, flags);
3313 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3314 spin_unlock_irqrestore(&q->lock, flags);
3316 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3318 void fastcall complete(struct completion *x)
3320 unsigned long flags;
3322 spin_lock_irqsave(&x->wait.lock, flags);
3323 x->done++;
3324 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3325 1, 0, NULL);
3326 spin_unlock_irqrestore(&x->wait.lock, flags);
3328 EXPORT_SYMBOL(complete);
3330 void fastcall complete_all(struct completion *x)
3332 unsigned long flags;
3334 spin_lock_irqsave(&x->wait.lock, flags);
3335 x->done += UINT_MAX/2;
3336 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3337 0, 0, NULL);
3338 spin_unlock_irqrestore(&x->wait.lock, flags);
3340 EXPORT_SYMBOL(complete_all);
3342 void fastcall __sched wait_for_completion(struct completion *x)
3344 might_sleep();
3345 spin_lock_irq(&x->wait.lock);
3346 if (!x->done) {
3347 DECLARE_WAITQUEUE(wait, current);
3349 wait.flags |= WQ_FLAG_EXCLUSIVE;
3350 __add_wait_queue_tail(&x->wait, &wait);
3351 do {
3352 __set_current_state(TASK_UNINTERRUPTIBLE);
3353 spin_unlock_irq(&x->wait.lock);
3354 schedule();
3355 spin_lock_irq(&x->wait.lock);
3356 } while (!x->done);
3357 __remove_wait_queue(&x->wait, &wait);
3359 x->done--;
3360 spin_unlock_irq(&x->wait.lock);
3362 EXPORT_SYMBOL(wait_for_completion);
3364 unsigned long fastcall __sched
3365 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3367 might_sleep();
3369 spin_lock_irq(&x->wait.lock);
3370 if (!x->done) {
3371 DECLARE_WAITQUEUE(wait, current);
3373 wait.flags |= WQ_FLAG_EXCLUSIVE;
3374 __add_wait_queue_tail(&x->wait, &wait);
3375 do {
3376 __set_current_state(TASK_UNINTERRUPTIBLE);
3377 spin_unlock_irq(&x->wait.lock);
3378 timeout = schedule_timeout(timeout);
3379 spin_lock_irq(&x->wait.lock);
3380 if (!timeout) {
3381 __remove_wait_queue(&x->wait, &wait);
3382 goto out;
3384 } while (!x->done);
3385 __remove_wait_queue(&x->wait, &wait);
3387 x->done--;
3388 out:
3389 spin_unlock_irq(&x->wait.lock);
3390 return timeout;
3392 EXPORT_SYMBOL(wait_for_completion_timeout);
3394 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3396 int ret = 0;
3398 might_sleep();
3400 spin_lock_irq(&x->wait.lock);
3401 if (!x->done) {
3402 DECLARE_WAITQUEUE(wait, current);
3404 wait.flags |= WQ_FLAG_EXCLUSIVE;
3405 __add_wait_queue_tail(&x->wait, &wait);
3406 do {
3407 if (signal_pending(current)) {
3408 ret = -ERESTARTSYS;
3409 __remove_wait_queue(&x->wait, &wait);
3410 goto out;
3412 __set_current_state(TASK_INTERRUPTIBLE);
3413 spin_unlock_irq(&x->wait.lock);
3414 schedule();
3415 spin_lock_irq(&x->wait.lock);
3416 } while (!x->done);
3417 __remove_wait_queue(&x->wait, &wait);
3419 x->done--;
3420 out:
3421 spin_unlock_irq(&x->wait.lock);
3423 return ret;
3425 EXPORT_SYMBOL(wait_for_completion_interruptible);
3427 unsigned long fastcall __sched
3428 wait_for_completion_interruptible_timeout(struct completion *x,
3429 unsigned long timeout)
3431 might_sleep();
3433 spin_lock_irq(&x->wait.lock);
3434 if (!x->done) {
3435 DECLARE_WAITQUEUE(wait, current);
3437 wait.flags |= WQ_FLAG_EXCLUSIVE;
3438 __add_wait_queue_tail(&x->wait, &wait);
3439 do {
3440 if (signal_pending(current)) {
3441 timeout = -ERESTARTSYS;
3442 __remove_wait_queue(&x->wait, &wait);
3443 goto out;
3445 __set_current_state(TASK_INTERRUPTIBLE);
3446 spin_unlock_irq(&x->wait.lock);
3447 timeout = schedule_timeout(timeout);
3448 spin_lock_irq(&x->wait.lock);
3449 if (!timeout) {
3450 __remove_wait_queue(&x->wait, &wait);
3451 goto out;
3453 } while (!x->done);
3454 __remove_wait_queue(&x->wait, &wait);
3456 x->done--;
3457 out:
3458 spin_unlock_irq(&x->wait.lock);
3459 return timeout;
3461 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3464 #define SLEEP_ON_VAR \
3465 unsigned long flags; \
3466 wait_queue_t wait; \
3467 init_waitqueue_entry(&wait, current);
3469 #define SLEEP_ON_HEAD \
3470 spin_lock_irqsave(&q->lock,flags); \
3471 __add_wait_queue(q, &wait); \
3472 spin_unlock(&q->lock);
3474 #define SLEEP_ON_TAIL \
3475 spin_lock_irq(&q->lock); \
3476 __remove_wait_queue(q, &wait); \
3477 spin_unlock_irqrestore(&q->lock, flags);
3479 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3481 SLEEP_ON_VAR
3483 current->state = TASK_INTERRUPTIBLE;
3485 SLEEP_ON_HEAD
3486 schedule();
3487 SLEEP_ON_TAIL
3490 EXPORT_SYMBOL(interruptible_sleep_on);
3492 long fastcall __sched
3493 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3495 SLEEP_ON_VAR
3497 current->state = TASK_INTERRUPTIBLE;
3499 SLEEP_ON_HEAD
3500 timeout = schedule_timeout(timeout);
3501 SLEEP_ON_TAIL
3503 return timeout;
3506 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3508 void fastcall __sched sleep_on(wait_queue_head_t *q)
3510 SLEEP_ON_VAR
3512 current->state = TASK_UNINTERRUPTIBLE;
3514 SLEEP_ON_HEAD
3515 schedule();
3516 SLEEP_ON_TAIL
3519 EXPORT_SYMBOL(sleep_on);
3521 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3523 SLEEP_ON_VAR
3525 current->state = TASK_UNINTERRUPTIBLE;
3527 SLEEP_ON_HEAD
3528 timeout = schedule_timeout(timeout);
3529 SLEEP_ON_TAIL
3531 return timeout;
3534 EXPORT_SYMBOL(sleep_on_timeout);
3536 void set_user_nice(task_t *p, long nice)
3538 unsigned long flags;
3539 prio_array_t *array;
3540 runqueue_t *rq;
3541 int old_prio, new_prio, delta;
3543 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3544 return;
3546 * We have to be careful, if called from sys_setpriority(),
3547 * the task might be in the middle of scheduling on another CPU.
3549 rq = task_rq_lock(p, &flags);
3551 * The RT priorities are set via sched_setscheduler(), but we still
3552 * allow the 'normal' nice value to be set - but as expected
3553 * it wont have any effect on scheduling until the task is
3554 * not SCHED_NORMAL:
3556 if (rt_task(p)) {
3557 p->static_prio = NICE_TO_PRIO(nice);
3558 goto out_unlock;
3560 array = p->array;
3561 if (array) {
3562 dequeue_task(p, array);
3563 dec_prio_bias(rq, p->static_prio);
3566 old_prio = p->prio;
3567 new_prio = NICE_TO_PRIO(nice);
3568 delta = new_prio - old_prio;
3569 p->static_prio = NICE_TO_PRIO(nice);
3570 p->prio += delta;
3572 if (array) {
3573 enqueue_task(p, array);
3574 inc_prio_bias(rq, p->static_prio);
3576 * If the task increased its priority or is running and
3577 * lowered its priority, then reschedule its CPU:
3579 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3580 resched_task(rq->curr);
3582 out_unlock:
3583 task_rq_unlock(rq, &flags);
3586 EXPORT_SYMBOL(set_user_nice);
3589 * can_nice - check if a task can reduce its nice value
3590 * @p: task
3591 * @nice: nice value
3593 int can_nice(const task_t *p, const int nice)
3595 /* convert nice value [19,-20] to rlimit style value [1,40] */
3596 int nice_rlim = 20 - nice;
3597 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3598 capable(CAP_SYS_NICE));
3601 #ifdef __ARCH_WANT_SYS_NICE
3604 * sys_nice - change the priority of the current process.
3605 * @increment: priority increment
3607 * sys_setpriority is a more generic, but much slower function that
3608 * does similar things.
3610 asmlinkage long sys_nice(int increment)
3612 int retval;
3613 long nice;
3616 * Setpriority might change our priority at the same moment.
3617 * We don't have to worry. Conceptually one call occurs first
3618 * and we have a single winner.
3620 if (increment < -40)
3621 increment = -40;
3622 if (increment > 40)
3623 increment = 40;
3625 nice = PRIO_TO_NICE(current->static_prio) + increment;
3626 if (nice < -20)
3627 nice = -20;
3628 if (nice > 19)
3629 nice = 19;
3631 if (increment < 0 && !can_nice(current, nice))
3632 return -EPERM;
3634 retval = security_task_setnice(current, nice);
3635 if (retval)
3636 return retval;
3638 set_user_nice(current, nice);
3639 return 0;
3642 #endif
3645 * task_prio - return the priority value of a given task.
3646 * @p: the task in question.
3648 * This is the priority value as seen by users in /proc.
3649 * RT tasks are offset by -200. Normal tasks are centered
3650 * around 0, value goes from -16 to +15.
3652 int task_prio(const task_t *p)
3654 return p->prio - MAX_RT_PRIO;
3658 * task_nice - return the nice value of a given task.
3659 * @p: the task in question.
3661 int task_nice(const task_t *p)
3663 return TASK_NICE(p);
3665 EXPORT_SYMBOL_GPL(task_nice);
3668 * idle_cpu - is a given cpu idle currently?
3669 * @cpu: the processor in question.
3671 int idle_cpu(int cpu)
3673 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3677 * idle_task - return the idle task for a given cpu.
3678 * @cpu: the processor in question.
3680 task_t *idle_task(int cpu)
3682 return cpu_rq(cpu)->idle;
3686 * find_process_by_pid - find a process with a matching PID value.
3687 * @pid: the pid in question.
3689 static inline task_t *find_process_by_pid(pid_t pid)
3691 return pid ? find_task_by_pid(pid) : current;
3694 /* Actually do priority change: must hold rq lock. */
3695 static void __setscheduler(struct task_struct *p, int policy, int prio)
3697 BUG_ON(p->array);
3698 p->policy = policy;
3699 p->rt_priority = prio;
3700 if (policy != SCHED_NORMAL)
3701 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3702 else
3703 p->prio = p->static_prio;
3707 * sched_setscheduler - change the scheduling policy and/or RT priority of
3708 * a thread.
3709 * @p: the task in question.
3710 * @policy: new policy.
3711 * @param: structure containing the new RT priority.
3713 int sched_setscheduler(struct task_struct *p, int policy,
3714 struct sched_param *param)
3716 int retval;
3717 int oldprio, oldpolicy = -1;
3718 prio_array_t *array;
3719 unsigned long flags;
3720 runqueue_t *rq;
3722 recheck:
3723 /* double check policy once rq lock held */
3724 if (policy < 0)
3725 policy = oldpolicy = p->policy;
3726 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3727 policy != SCHED_NORMAL)
3728 return -EINVAL;
3730 * Valid priorities for SCHED_FIFO and SCHED_RR are
3731 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3733 if (param->sched_priority < 0 ||
3734 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3735 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3736 return -EINVAL;
3737 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3738 return -EINVAL;
3741 * Allow unprivileged RT tasks to decrease priority:
3743 if (!capable(CAP_SYS_NICE)) {
3744 /* can't change policy */
3745 if (policy != p->policy &&
3746 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3747 return -EPERM;
3748 /* can't increase priority */
3749 if (policy != SCHED_NORMAL &&
3750 param->sched_priority > p->rt_priority &&
3751 param->sched_priority >
3752 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3753 return -EPERM;
3754 /* can't change other user's priorities */
3755 if ((current->euid != p->euid) &&
3756 (current->euid != p->uid))
3757 return -EPERM;
3760 retval = security_task_setscheduler(p, policy, param);
3761 if (retval)
3762 return retval;
3764 * To be able to change p->policy safely, the apropriate
3765 * runqueue lock must be held.
3767 rq = task_rq_lock(p, &flags);
3768 /* recheck policy now with rq lock held */
3769 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3770 policy = oldpolicy = -1;
3771 task_rq_unlock(rq, &flags);
3772 goto recheck;
3774 array = p->array;
3775 if (array)
3776 deactivate_task(p, rq);
3777 oldprio = p->prio;
3778 __setscheduler(p, policy, param->sched_priority);
3779 if (array) {
3780 __activate_task(p, rq);
3782 * Reschedule if we are currently running on this runqueue and
3783 * our priority decreased, or if we are not currently running on
3784 * this runqueue and our priority is higher than the current's
3786 if (task_running(rq, p)) {
3787 if (p->prio > oldprio)
3788 resched_task(rq->curr);
3789 } else if (TASK_PREEMPTS_CURR(p, rq))
3790 resched_task(rq->curr);
3792 task_rq_unlock(rq, &flags);
3793 return 0;
3795 EXPORT_SYMBOL_GPL(sched_setscheduler);
3797 static int
3798 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3800 int retval;
3801 struct sched_param lparam;
3802 struct task_struct *p;
3804 if (!param || pid < 0)
3805 return -EINVAL;
3806 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3807 return -EFAULT;
3808 read_lock_irq(&tasklist_lock);
3809 p = find_process_by_pid(pid);
3810 if (!p) {
3811 read_unlock_irq(&tasklist_lock);
3812 return -ESRCH;
3814 retval = sched_setscheduler(p, policy, &lparam);
3815 read_unlock_irq(&tasklist_lock);
3816 return retval;
3820 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3821 * @pid: the pid in question.
3822 * @policy: new policy.
3823 * @param: structure containing the new RT priority.
3825 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3826 struct sched_param __user *param)
3828 return do_sched_setscheduler(pid, policy, param);
3832 * sys_sched_setparam - set/change the RT priority of a thread
3833 * @pid: the pid in question.
3834 * @param: structure containing the new RT priority.
3836 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3838 return do_sched_setscheduler(pid, -1, param);
3842 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3843 * @pid: the pid in question.
3845 asmlinkage long sys_sched_getscheduler(pid_t pid)
3847 int retval = -EINVAL;
3848 task_t *p;
3850 if (pid < 0)
3851 goto out_nounlock;
3853 retval = -ESRCH;
3854 read_lock(&tasklist_lock);
3855 p = find_process_by_pid(pid);
3856 if (p) {
3857 retval = security_task_getscheduler(p);
3858 if (!retval)
3859 retval = p->policy;
3861 read_unlock(&tasklist_lock);
3863 out_nounlock:
3864 return retval;
3868 * sys_sched_getscheduler - get the RT priority of a thread
3869 * @pid: the pid in question.
3870 * @param: structure containing the RT priority.
3872 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3874 struct sched_param lp;
3875 int retval = -EINVAL;
3876 task_t *p;
3878 if (!param || pid < 0)
3879 goto out_nounlock;
3881 read_lock(&tasklist_lock);
3882 p = find_process_by_pid(pid);
3883 retval = -ESRCH;
3884 if (!p)
3885 goto out_unlock;
3887 retval = security_task_getscheduler(p);
3888 if (retval)
3889 goto out_unlock;
3891 lp.sched_priority = p->rt_priority;
3892 read_unlock(&tasklist_lock);
3895 * This one might sleep, we cannot do it with a spinlock held ...
3897 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3899 out_nounlock:
3900 return retval;
3902 out_unlock:
3903 read_unlock(&tasklist_lock);
3904 return retval;
3907 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3909 task_t *p;
3910 int retval;
3911 cpumask_t cpus_allowed;
3913 lock_cpu_hotplug();
3914 read_lock(&tasklist_lock);
3916 p = find_process_by_pid(pid);
3917 if (!p) {
3918 read_unlock(&tasklist_lock);
3919 unlock_cpu_hotplug();
3920 return -ESRCH;
3924 * It is not safe to call set_cpus_allowed with the
3925 * tasklist_lock held. We will bump the task_struct's
3926 * usage count and then drop tasklist_lock.
3928 get_task_struct(p);
3929 read_unlock(&tasklist_lock);
3931 retval = -EPERM;
3932 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3933 !capable(CAP_SYS_NICE))
3934 goto out_unlock;
3936 cpus_allowed = cpuset_cpus_allowed(p);
3937 cpus_and(new_mask, new_mask, cpus_allowed);
3938 retval = set_cpus_allowed(p, new_mask);
3940 out_unlock:
3941 put_task_struct(p);
3942 unlock_cpu_hotplug();
3943 return retval;
3946 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3947 cpumask_t *new_mask)
3949 if (len < sizeof(cpumask_t)) {
3950 memset(new_mask, 0, sizeof(cpumask_t));
3951 } else if (len > sizeof(cpumask_t)) {
3952 len = sizeof(cpumask_t);
3954 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3958 * sys_sched_setaffinity - set the cpu affinity of a process
3959 * @pid: pid of the process
3960 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3961 * @user_mask_ptr: user-space pointer to the new cpu mask
3963 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3964 unsigned long __user *user_mask_ptr)
3966 cpumask_t new_mask;
3967 int retval;
3969 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3970 if (retval)
3971 return retval;
3973 return sched_setaffinity(pid, new_mask);
3977 * Represents all cpu's present in the system
3978 * In systems capable of hotplug, this map could dynamically grow
3979 * as new cpu's are detected in the system via any platform specific
3980 * method, such as ACPI for e.g.
3983 cpumask_t cpu_present_map __read_mostly;
3984 EXPORT_SYMBOL(cpu_present_map);
3986 #ifndef CONFIG_SMP
3987 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3988 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3989 #endif
3991 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3993 int retval;
3994 task_t *p;
3996 lock_cpu_hotplug();
3997 read_lock(&tasklist_lock);
3999 retval = -ESRCH;
4000 p = find_process_by_pid(pid);
4001 if (!p)
4002 goto out_unlock;
4004 retval = 0;
4005 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
4007 out_unlock:
4008 read_unlock(&tasklist_lock);
4009 unlock_cpu_hotplug();
4010 if (retval)
4011 return retval;
4013 return 0;
4017 * sys_sched_getaffinity - get the cpu affinity of a process
4018 * @pid: pid of the process
4019 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4020 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4022 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4023 unsigned long __user *user_mask_ptr)
4025 int ret;
4026 cpumask_t mask;
4028 if (len < sizeof(cpumask_t))
4029 return -EINVAL;
4031 ret = sched_getaffinity(pid, &mask);
4032 if (ret < 0)
4033 return ret;
4035 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4036 return -EFAULT;
4038 return sizeof(cpumask_t);
4042 * sys_sched_yield - yield the current processor to other threads.
4044 * this function yields the current CPU by moving the calling thread
4045 * to the expired array. If there are no other threads running on this
4046 * CPU then this function will return.
4048 asmlinkage long sys_sched_yield(void)
4050 runqueue_t *rq = this_rq_lock();
4051 prio_array_t *array = current->array;
4052 prio_array_t *target = rq->expired;
4054 schedstat_inc(rq, yld_cnt);
4056 * We implement yielding by moving the task into the expired
4057 * queue.
4059 * (special rule: RT tasks will just roundrobin in the active
4060 * array.)
4062 if (rt_task(current))
4063 target = rq->active;
4065 if (array->nr_active == 1) {
4066 schedstat_inc(rq, yld_act_empty);
4067 if (!rq->expired->nr_active)
4068 schedstat_inc(rq, yld_both_empty);
4069 } else if (!rq->expired->nr_active)
4070 schedstat_inc(rq, yld_exp_empty);
4072 if (array != target) {
4073 dequeue_task(current, array);
4074 enqueue_task(current, target);
4075 } else
4077 * requeue_task is cheaper so perform that if possible.
4079 requeue_task(current, array);
4082 * Since we are going to call schedule() anyway, there's
4083 * no need to preempt or enable interrupts:
4085 __release(rq->lock);
4086 _raw_spin_unlock(&rq->lock);
4087 preempt_enable_no_resched();
4089 schedule();
4091 return 0;
4094 static inline void __cond_resched(void)
4097 * The BKS might be reacquired before we have dropped
4098 * PREEMPT_ACTIVE, which could trigger a second
4099 * cond_resched() call.
4101 if (unlikely(preempt_count()))
4102 return;
4103 do {
4104 add_preempt_count(PREEMPT_ACTIVE);
4105 schedule();
4106 sub_preempt_count(PREEMPT_ACTIVE);
4107 } while (need_resched());
4110 int __sched cond_resched(void)
4112 if (need_resched()) {
4113 __cond_resched();
4114 return 1;
4116 return 0;
4119 EXPORT_SYMBOL(cond_resched);
4122 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4123 * call schedule, and on return reacquire the lock.
4125 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4126 * operations here to prevent schedule() from being called twice (once via
4127 * spin_unlock(), once by hand).
4129 int cond_resched_lock(spinlock_t *lock)
4131 int ret = 0;
4133 if (need_lockbreak(lock)) {
4134 spin_unlock(lock);
4135 cpu_relax();
4136 ret = 1;
4137 spin_lock(lock);
4139 if (need_resched()) {
4140 _raw_spin_unlock(lock);
4141 preempt_enable_no_resched();
4142 __cond_resched();
4143 ret = 1;
4144 spin_lock(lock);
4146 return ret;
4149 EXPORT_SYMBOL(cond_resched_lock);
4151 int __sched cond_resched_softirq(void)
4153 BUG_ON(!in_softirq());
4155 if (need_resched()) {
4156 __local_bh_enable();
4157 __cond_resched();
4158 local_bh_disable();
4159 return 1;
4161 return 0;
4164 EXPORT_SYMBOL(cond_resched_softirq);
4168 * yield - yield the current processor to other threads.
4170 * this is a shortcut for kernel-space yielding - it marks the
4171 * thread runnable and calls sys_sched_yield().
4173 void __sched yield(void)
4175 set_current_state(TASK_RUNNING);
4176 sys_sched_yield();
4179 EXPORT_SYMBOL(yield);
4182 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4183 * that process accounting knows that this is a task in IO wait state.
4185 * But don't do that if it is a deliberate, throttling IO wait (this task
4186 * has set its backing_dev_info: the queue against which it should throttle)
4188 void __sched io_schedule(void)
4190 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4192 atomic_inc(&rq->nr_iowait);
4193 schedule();
4194 atomic_dec(&rq->nr_iowait);
4197 EXPORT_SYMBOL(io_schedule);
4199 long __sched io_schedule_timeout(long timeout)
4201 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4202 long ret;
4204 atomic_inc(&rq->nr_iowait);
4205 ret = schedule_timeout(timeout);
4206 atomic_dec(&rq->nr_iowait);
4207 return ret;
4211 * sys_sched_get_priority_max - return maximum RT priority.
4212 * @policy: scheduling class.
4214 * this syscall returns the maximum rt_priority that can be used
4215 * by a given scheduling class.
4217 asmlinkage long sys_sched_get_priority_max(int policy)
4219 int ret = -EINVAL;
4221 switch (policy) {
4222 case SCHED_FIFO:
4223 case SCHED_RR:
4224 ret = MAX_USER_RT_PRIO-1;
4225 break;
4226 case SCHED_NORMAL:
4227 ret = 0;
4228 break;
4230 return ret;
4234 * sys_sched_get_priority_min - return minimum RT priority.
4235 * @policy: scheduling class.
4237 * this syscall returns the minimum rt_priority that can be used
4238 * by a given scheduling class.
4240 asmlinkage long sys_sched_get_priority_min(int policy)
4242 int ret = -EINVAL;
4244 switch (policy) {
4245 case SCHED_FIFO:
4246 case SCHED_RR:
4247 ret = 1;
4248 break;
4249 case SCHED_NORMAL:
4250 ret = 0;
4252 return ret;
4256 * sys_sched_rr_get_interval - return the default timeslice of a process.
4257 * @pid: pid of the process.
4258 * @interval: userspace pointer to the timeslice value.
4260 * this syscall writes the default timeslice value of a given process
4261 * into the user-space timespec buffer. A value of '0' means infinity.
4263 asmlinkage
4264 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4266 int retval = -EINVAL;
4267 struct timespec t;
4268 task_t *p;
4270 if (pid < 0)
4271 goto out_nounlock;
4273 retval = -ESRCH;
4274 read_lock(&tasklist_lock);
4275 p = find_process_by_pid(pid);
4276 if (!p)
4277 goto out_unlock;
4279 retval = security_task_getscheduler(p);
4280 if (retval)
4281 goto out_unlock;
4283 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4284 0 : task_timeslice(p), &t);
4285 read_unlock(&tasklist_lock);
4286 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4287 out_nounlock:
4288 return retval;
4289 out_unlock:
4290 read_unlock(&tasklist_lock);
4291 return retval;
4294 static inline struct task_struct *eldest_child(struct task_struct *p)
4296 if (list_empty(&p->children)) return NULL;
4297 return list_entry(p->children.next,struct task_struct,sibling);
4300 static inline struct task_struct *older_sibling(struct task_struct *p)
4302 if (p->sibling.prev==&p->parent->children) return NULL;
4303 return list_entry(p->sibling.prev,struct task_struct,sibling);
4306 static inline struct task_struct *younger_sibling(struct task_struct *p)
4308 if (p->sibling.next==&p->parent->children) return NULL;
4309 return list_entry(p->sibling.next,struct task_struct,sibling);
4312 static void show_task(task_t *p)
4314 task_t *relative;
4315 unsigned state;
4316 unsigned long free = 0;
4317 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4319 printk("%-13.13s ", p->comm);
4320 state = p->state ? __ffs(p->state) + 1 : 0;
4321 if (state < ARRAY_SIZE(stat_nam))
4322 printk(stat_nam[state]);
4323 else
4324 printk("?");
4325 #if (BITS_PER_LONG == 32)
4326 if (state == TASK_RUNNING)
4327 printk(" running ");
4328 else
4329 printk(" %08lX ", thread_saved_pc(p));
4330 #else
4331 if (state == TASK_RUNNING)
4332 printk(" running task ");
4333 else
4334 printk(" %016lx ", thread_saved_pc(p));
4335 #endif
4336 #ifdef CONFIG_DEBUG_STACK_USAGE
4338 unsigned long *n = end_of_stack(p);
4339 while (!*n)
4340 n++;
4341 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4343 #endif
4344 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4345 if ((relative = eldest_child(p)))
4346 printk("%5d ", relative->pid);
4347 else
4348 printk(" ");
4349 if ((relative = younger_sibling(p)))
4350 printk("%7d", relative->pid);
4351 else
4352 printk(" ");
4353 if ((relative = older_sibling(p)))
4354 printk(" %5d", relative->pid);
4355 else
4356 printk(" ");
4357 if (!p->mm)
4358 printk(" (L-TLB)\n");
4359 else
4360 printk(" (NOTLB)\n");
4362 if (state != TASK_RUNNING)
4363 show_stack(p, NULL);
4366 void show_state(void)
4368 task_t *g, *p;
4370 #if (BITS_PER_LONG == 32)
4371 printk("\n"
4372 " sibling\n");
4373 printk(" task PC pid father child younger older\n");
4374 #else
4375 printk("\n"
4376 " sibling\n");
4377 printk(" task PC pid father child younger older\n");
4378 #endif
4379 read_lock(&tasklist_lock);
4380 do_each_thread(g, p) {
4382 * reset the NMI-timeout, listing all files on a slow
4383 * console might take alot of time:
4385 touch_nmi_watchdog();
4386 show_task(p);
4387 } while_each_thread(g, p);
4389 read_unlock(&tasklist_lock);
4390 mutex_debug_show_all_locks();
4394 * init_idle - set up an idle thread for a given CPU
4395 * @idle: task in question
4396 * @cpu: cpu the idle task belongs to
4398 * NOTE: this function does not set the idle thread's NEED_RESCHED
4399 * flag, to make booting more robust.
4401 void __devinit init_idle(task_t *idle, int cpu)
4403 runqueue_t *rq = cpu_rq(cpu);
4404 unsigned long flags;
4406 idle->sleep_avg = 0;
4407 idle->array = NULL;
4408 idle->prio = MAX_PRIO;
4409 idle->state = TASK_RUNNING;
4410 idle->cpus_allowed = cpumask_of_cpu(cpu);
4411 set_task_cpu(idle, cpu);
4413 spin_lock_irqsave(&rq->lock, flags);
4414 rq->curr = rq->idle = idle;
4415 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4416 idle->oncpu = 1;
4417 #endif
4418 spin_unlock_irqrestore(&rq->lock, flags);
4420 /* Set the preempt count _outside_ the spinlocks! */
4421 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4422 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4423 #else
4424 task_thread_info(idle)->preempt_count = 0;
4425 #endif
4429 * In a system that switches off the HZ timer nohz_cpu_mask
4430 * indicates which cpus entered this state. This is used
4431 * in the rcu update to wait only for active cpus. For system
4432 * which do not switch off the HZ timer nohz_cpu_mask should
4433 * always be CPU_MASK_NONE.
4435 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4437 #ifdef CONFIG_SMP
4439 * This is how migration works:
4441 * 1) we queue a migration_req_t structure in the source CPU's
4442 * runqueue and wake up that CPU's migration thread.
4443 * 2) we down() the locked semaphore => thread blocks.
4444 * 3) migration thread wakes up (implicitly it forces the migrated
4445 * thread off the CPU)
4446 * 4) it gets the migration request and checks whether the migrated
4447 * task is still in the wrong runqueue.
4448 * 5) if it's in the wrong runqueue then the migration thread removes
4449 * it and puts it into the right queue.
4450 * 6) migration thread up()s the semaphore.
4451 * 7) we wake up and the migration is done.
4455 * Change a given task's CPU affinity. Migrate the thread to a
4456 * proper CPU and schedule it away if the CPU it's executing on
4457 * is removed from the allowed bitmask.
4459 * NOTE: the caller must have a valid reference to the task, the
4460 * task must not exit() & deallocate itself prematurely. The
4461 * call is not atomic; no spinlocks may be held.
4463 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4465 unsigned long flags;
4466 int ret = 0;
4467 migration_req_t req;
4468 runqueue_t *rq;
4470 rq = task_rq_lock(p, &flags);
4471 if (!cpus_intersects(new_mask, cpu_online_map)) {
4472 ret = -EINVAL;
4473 goto out;
4476 p->cpus_allowed = new_mask;
4477 /* Can the task run on the task's current CPU? If so, we're done */
4478 if (cpu_isset(task_cpu(p), new_mask))
4479 goto out;
4481 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4482 /* Need help from migration thread: drop lock and wait. */
4483 task_rq_unlock(rq, &flags);
4484 wake_up_process(rq->migration_thread);
4485 wait_for_completion(&req.done);
4486 tlb_migrate_finish(p->mm);
4487 return 0;
4489 out:
4490 task_rq_unlock(rq, &flags);
4491 return ret;
4494 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4497 * Move (not current) task off this cpu, onto dest cpu. We're doing
4498 * this because either it can't run here any more (set_cpus_allowed()
4499 * away from this CPU, or CPU going down), or because we're
4500 * attempting to rebalance this task on exec (sched_exec).
4502 * So we race with normal scheduler movements, but that's OK, as long
4503 * as the task is no longer on this CPU.
4505 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4507 runqueue_t *rq_dest, *rq_src;
4509 if (unlikely(cpu_is_offline(dest_cpu)))
4510 return;
4512 rq_src = cpu_rq(src_cpu);
4513 rq_dest = cpu_rq(dest_cpu);
4515 double_rq_lock(rq_src, rq_dest);
4516 /* Already moved. */
4517 if (task_cpu(p) != src_cpu)
4518 goto out;
4519 /* Affinity changed (again). */
4520 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4521 goto out;
4523 set_task_cpu(p, dest_cpu);
4524 if (p->array) {
4526 * Sync timestamp with rq_dest's before activating.
4527 * The same thing could be achieved by doing this step
4528 * afterwards, and pretending it was a local activate.
4529 * This way is cleaner and logically correct.
4531 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4532 + rq_dest->timestamp_last_tick;
4533 deactivate_task(p, rq_src);
4534 activate_task(p, rq_dest, 0);
4535 if (TASK_PREEMPTS_CURR(p, rq_dest))
4536 resched_task(rq_dest->curr);
4539 out:
4540 double_rq_unlock(rq_src, rq_dest);
4544 * migration_thread - this is a highprio system thread that performs
4545 * thread migration by bumping thread off CPU then 'pushing' onto
4546 * another runqueue.
4548 static int migration_thread(void *data)
4550 runqueue_t *rq;
4551 int cpu = (long)data;
4553 rq = cpu_rq(cpu);
4554 BUG_ON(rq->migration_thread != current);
4556 set_current_state(TASK_INTERRUPTIBLE);
4557 while (!kthread_should_stop()) {
4558 struct list_head *head;
4559 migration_req_t *req;
4561 try_to_freeze();
4563 spin_lock_irq(&rq->lock);
4565 if (cpu_is_offline(cpu)) {
4566 spin_unlock_irq(&rq->lock);
4567 goto wait_to_die;
4570 if (rq->active_balance) {
4571 active_load_balance(rq, cpu);
4572 rq->active_balance = 0;
4575 head = &rq->migration_queue;
4577 if (list_empty(head)) {
4578 spin_unlock_irq(&rq->lock);
4579 schedule();
4580 set_current_state(TASK_INTERRUPTIBLE);
4581 continue;
4583 req = list_entry(head->next, migration_req_t, list);
4584 list_del_init(head->next);
4586 spin_unlock(&rq->lock);
4587 __migrate_task(req->task, cpu, req->dest_cpu);
4588 local_irq_enable();
4590 complete(&req->done);
4592 __set_current_state(TASK_RUNNING);
4593 return 0;
4595 wait_to_die:
4596 /* Wait for kthread_stop */
4597 set_current_state(TASK_INTERRUPTIBLE);
4598 while (!kthread_should_stop()) {
4599 schedule();
4600 set_current_state(TASK_INTERRUPTIBLE);
4602 __set_current_state(TASK_RUNNING);
4603 return 0;
4606 #ifdef CONFIG_HOTPLUG_CPU
4607 /* Figure out where task on dead CPU should go, use force if neccessary. */
4608 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4610 int dest_cpu;
4611 cpumask_t mask;
4613 /* On same node? */
4614 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4615 cpus_and(mask, mask, tsk->cpus_allowed);
4616 dest_cpu = any_online_cpu(mask);
4618 /* On any allowed CPU? */
4619 if (dest_cpu == NR_CPUS)
4620 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4622 /* No more Mr. Nice Guy. */
4623 if (dest_cpu == NR_CPUS) {
4624 cpus_setall(tsk->cpus_allowed);
4625 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4628 * Don't tell them about moving exiting tasks or
4629 * kernel threads (both mm NULL), since they never
4630 * leave kernel.
4632 if (tsk->mm && printk_ratelimit())
4633 printk(KERN_INFO "process %d (%s) no "
4634 "longer affine to cpu%d\n",
4635 tsk->pid, tsk->comm, dead_cpu);
4637 __migrate_task(tsk, dead_cpu, dest_cpu);
4641 * While a dead CPU has no uninterruptible tasks queued at this point,
4642 * it might still have a nonzero ->nr_uninterruptible counter, because
4643 * for performance reasons the counter is not stricly tracking tasks to
4644 * their home CPUs. So we just add the counter to another CPU's counter,
4645 * to keep the global sum constant after CPU-down:
4647 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4649 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4650 unsigned long flags;
4652 local_irq_save(flags);
4653 double_rq_lock(rq_src, rq_dest);
4654 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4655 rq_src->nr_uninterruptible = 0;
4656 double_rq_unlock(rq_src, rq_dest);
4657 local_irq_restore(flags);
4660 /* Run through task list and migrate tasks from the dead cpu. */
4661 static void migrate_live_tasks(int src_cpu)
4663 struct task_struct *tsk, *t;
4665 write_lock_irq(&tasklist_lock);
4667 do_each_thread(t, tsk) {
4668 if (tsk == current)
4669 continue;
4671 if (task_cpu(tsk) == src_cpu)
4672 move_task_off_dead_cpu(src_cpu, tsk);
4673 } while_each_thread(t, tsk);
4675 write_unlock_irq(&tasklist_lock);
4678 /* Schedules idle task to be the next runnable task on current CPU.
4679 * It does so by boosting its priority to highest possible and adding it to
4680 * the _front_ of runqueue. Used by CPU offline code.
4682 void sched_idle_next(void)
4684 int cpu = smp_processor_id();
4685 runqueue_t *rq = this_rq();
4686 struct task_struct *p = rq->idle;
4687 unsigned long flags;
4689 /* cpu has to be offline */
4690 BUG_ON(cpu_online(cpu));
4692 /* Strictly not necessary since rest of the CPUs are stopped by now
4693 * and interrupts disabled on current cpu.
4695 spin_lock_irqsave(&rq->lock, flags);
4697 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4698 /* Add idle task to _front_ of it's priority queue */
4699 __activate_idle_task(p, rq);
4701 spin_unlock_irqrestore(&rq->lock, flags);
4704 /* Ensures that the idle task is using init_mm right before its cpu goes
4705 * offline.
4707 void idle_task_exit(void)
4709 struct mm_struct *mm = current->active_mm;
4711 BUG_ON(cpu_online(smp_processor_id()));
4713 if (mm != &init_mm)
4714 switch_mm(mm, &init_mm, current);
4715 mmdrop(mm);
4718 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4720 struct runqueue *rq = cpu_rq(dead_cpu);
4722 /* Must be exiting, otherwise would be on tasklist. */
4723 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4725 /* Cannot have done final schedule yet: would have vanished. */
4726 BUG_ON(tsk->flags & PF_DEAD);
4728 get_task_struct(tsk);
4731 * Drop lock around migration; if someone else moves it,
4732 * that's OK. No task can be added to this CPU, so iteration is
4733 * fine.
4735 spin_unlock_irq(&rq->lock);
4736 move_task_off_dead_cpu(dead_cpu, tsk);
4737 spin_lock_irq(&rq->lock);
4739 put_task_struct(tsk);
4742 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4743 static void migrate_dead_tasks(unsigned int dead_cpu)
4745 unsigned arr, i;
4746 struct runqueue *rq = cpu_rq(dead_cpu);
4748 for (arr = 0; arr < 2; arr++) {
4749 for (i = 0; i < MAX_PRIO; i++) {
4750 struct list_head *list = &rq->arrays[arr].queue[i];
4751 while (!list_empty(list))
4752 migrate_dead(dead_cpu,
4753 list_entry(list->next, task_t,
4754 run_list));
4758 #endif /* CONFIG_HOTPLUG_CPU */
4761 * migration_call - callback that gets triggered when a CPU is added.
4762 * Here we can start up the necessary migration thread for the new CPU.
4764 static int migration_call(struct notifier_block *nfb, unsigned long action,
4765 void *hcpu)
4767 int cpu = (long)hcpu;
4768 struct task_struct *p;
4769 struct runqueue *rq;
4770 unsigned long flags;
4772 switch (action) {
4773 case CPU_UP_PREPARE:
4774 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4775 if (IS_ERR(p))
4776 return NOTIFY_BAD;
4777 p->flags |= PF_NOFREEZE;
4778 kthread_bind(p, cpu);
4779 /* Must be high prio: stop_machine expects to yield to it. */
4780 rq = task_rq_lock(p, &flags);
4781 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4782 task_rq_unlock(rq, &flags);
4783 cpu_rq(cpu)->migration_thread = p;
4784 break;
4785 case CPU_ONLINE:
4786 /* Strictly unneccessary, as first user will wake it. */
4787 wake_up_process(cpu_rq(cpu)->migration_thread);
4788 break;
4789 #ifdef CONFIG_HOTPLUG_CPU
4790 case CPU_UP_CANCELED:
4791 /* Unbind it from offline cpu so it can run. Fall thru. */
4792 kthread_bind(cpu_rq(cpu)->migration_thread,
4793 any_online_cpu(cpu_online_map));
4794 kthread_stop(cpu_rq(cpu)->migration_thread);
4795 cpu_rq(cpu)->migration_thread = NULL;
4796 break;
4797 case CPU_DEAD:
4798 migrate_live_tasks(cpu);
4799 rq = cpu_rq(cpu);
4800 kthread_stop(rq->migration_thread);
4801 rq->migration_thread = NULL;
4802 /* Idle task back to normal (off runqueue, low prio) */
4803 rq = task_rq_lock(rq->idle, &flags);
4804 deactivate_task(rq->idle, rq);
4805 rq->idle->static_prio = MAX_PRIO;
4806 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4807 migrate_dead_tasks(cpu);
4808 task_rq_unlock(rq, &flags);
4809 migrate_nr_uninterruptible(rq);
4810 BUG_ON(rq->nr_running != 0);
4812 /* No need to migrate the tasks: it was best-effort if
4813 * they didn't do lock_cpu_hotplug(). Just wake up
4814 * the requestors. */
4815 spin_lock_irq(&rq->lock);
4816 while (!list_empty(&rq->migration_queue)) {
4817 migration_req_t *req;
4818 req = list_entry(rq->migration_queue.next,
4819 migration_req_t, list);
4820 list_del_init(&req->list);
4821 complete(&req->done);
4823 spin_unlock_irq(&rq->lock);
4824 break;
4825 #endif
4827 return NOTIFY_OK;
4830 /* Register at highest priority so that task migration (migrate_all_tasks)
4831 * happens before everything else.
4833 static struct notifier_block __devinitdata migration_notifier = {
4834 .notifier_call = migration_call,
4835 .priority = 10
4838 int __init migration_init(void)
4840 void *cpu = (void *)(long)smp_processor_id();
4841 /* Start one for boot CPU. */
4842 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4843 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4844 register_cpu_notifier(&migration_notifier);
4845 return 0;
4847 #endif
4849 #ifdef CONFIG_SMP
4850 #undef SCHED_DOMAIN_DEBUG
4851 #ifdef SCHED_DOMAIN_DEBUG
4852 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4854 int level = 0;
4856 if (!sd) {
4857 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4858 return;
4861 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4863 do {
4864 int i;
4865 char str[NR_CPUS];
4866 struct sched_group *group = sd->groups;
4867 cpumask_t groupmask;
4869 cpumask_scnprintf(str, NR_CPUS, sd->span);
4870 cpus_clear(groupmask);
4872 printk(KERN_DEBUG);
4873 for (i = 0; i < level + 1; i++)
4874 printk(" ");
4875 printk("domain %d: ", level);
4877 if (!(sd->flags & SD_LOAD_BALANCE)) {
4878 printk("does not load-balance\n");
4879 if (sd->parent)
4880 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4881 break;
4884 printk("span %s\n", str);
4886 if (!cpu_isset(cpu, sd->span))
4887 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4888 if (!cpu_isset(cpu, group->cpumask))
4889 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4891 printk(KERN_DEBUG);
4892 for (i = 0; i < level + 2; i++)
4893 printk(" ");
4894 printk("groups:");
4895 do {
4896 if (!group) {
4897 printk("\n");
4898 printk(KERN_ERR "ERROR: group is NULL\n");
4899 break;
4902 if (!group->cpu_power) {
4903 printk("\n");
4904 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4907 if (!cpus_weight(group->cpumask)) {
4908 printk("\n");
4909 printk(KERN_ERR "ERROR: empty group\n");
4912 if (cpus_intersects(groupmask, group->cpumask)) {
4913 printk("\n");
4914 printk(KERN_ERR "ERROR: repeated CPUs\n");
4917 cpus_or(groupmask, groupmask, group->cpumask);
4919 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4920 printk(" %s", str);
4922 group = group->next;
4923 } while (group != sd->groups);
4924 printk("\n");
4926 if (!cpus_equal(sd->span, groupmask))
4927 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4929 level++;
4930 sd = sd->parent;
4932 if (sd) {
4933 if (!cpus_subset(groupmask, sd->span))
4934 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4937 } while (sd);
4939 #else
4940 #define sched_domain_debug(sd, cpu) {}
4941 #endif
4943 static int sd_degenerate(struct sched_domain *sd)
4945 if (cpus_weight(sd->span) == 1)
4946 return 1;
4948 /* Following flags need at least 2 groups */
4949 if (sd->flags & (SD_LOAD_BALANCE |
4950 SD_BALANCE_NEWIDLE |
4951 SD_BALANCE_FORK |
4952 SD_BALANCE_EXEC)) {
4953 if (sd->groups != sd->groups->next)
4954 return 0;
4957 /* Following flags don't use groups */
4958 if (sd->flags & (SD_WAKE_IDLE |
4959 SD_WAKE_AFFINE |
4960 SD_WAKE_BALANCE))
4961 return 0;
4963 return 1;
4966 static int sd_parent_degenerate(struct sched_domain *sd,
4967 struct sched_domain *parent)
4969 unsigned long cflags = sd->flags, pflags = parent->flags;
4971 if (sd_degenerate(parent))
4972 return 1;
4974 if (!cpus_equal(sd->span, parent->span))
4975 return 0;
4977 /* Does parent contain flags not in child? */
4978 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4979 if (cflags & SD_WAKE_AFFINE)
4980 pflags &= ~SD_WAKE_BALANCE;
4981 /* Flags needing groups don't count if only 1 group in parent */
4982 if (parent->groups == parent->groups->next) {
4983 pflags &= ~(SD_LOAD_BALANCE |
4984 SD_BALANCE_NEWIDLE |
4985 SD_BALANCE_FORK |
4986 SD_BALANCE_EXEC);
4988 if (~cflags & pflags)
4989 return 0;
4991 return 1;
4995 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4996 * hold the hotplug lock.
4998 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5000 runqueue_t *rq = cpu_rq(cpu);
5001 struct sched_domain *tmp;
5003 /* Remove the sched domains which do not contribute to scheduling. */
5004 for (tmp = sd; tmp; tmp = tmp->parent) {
5005 struct sched_domain *parent = tmp->parent;
5006 if (!parent)
5007 break;
5008 if (sd_parent_degenerate(tmp, parent))
5009 tmp->parent = parent->parent;
5012 if (sd && sd_degenerate(sd))
5013 sd = sd->parent;
5015 sched_domain_debug(sd, cpu);
5017 rcu_assign_pointer(rq->sd, sd);
5020 /* cpus with isolated domains */
5021 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5023 /* Setup the mask of cpus configured for isolated domains */
5024 static int __init isolated_cpu_setup(char *str)
5026 int ints[NR_CPUS], i;
5028 str = get_options(str, ARRAY_SIZE(ints), ints);
5029 cpus_clear(cpu_isolated_map);
5030 for (i = 1; i <= ints[0]; i++)
5031 if (ints[i] < NR_CPUS)
5032 cpu_set(ints[i], cpu_isolated_map);
5033 return 1;
5036 __setup ("isolcpus=", isolated_cpu_setup);
5039 * init_sched_build_groups takes an array of groups, the cpumask we wish
5040 * to span, and a pointer to a function which identifies what group a CPU
5041 * belongs to. The return value of group_fn must be a valid index into the
5042 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5043 * keep track of groups covered with a cpumask_t).
5045 * init_sched_build_groups will build a circular linked list of the groups
5046 * covered by the given span, and will set each group's ->cpumask correctly,
5047 * and ->cpu_power to 0.
5049 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5050 int (*group_fn)(int cpu))
5052 struct sched_group *first = NULL, *last = NULL;
5053 cpumask_t covered = CPU_MASK_NONE;
5054 int i;
5056 for_each_cpu_mask(i, span) {
5057 int group = group_fn(i);
5058 struct sched_group *sg = &groups[group];
5059 int j;
5061 if (cpu_isset(i, covered))
5062 continue;
5064 sg->cpumask = CPU_MASK_NONE;
5065 sg->cpu_power = 0;
5067 for_each_cpu_mask(j, span) {
5068 if (group_fn(j) != group)
5069 continue;
5071 cpu_set(j, covered);
5072 cpu_set(j, sg->cpumask);
5074 if (!first)
5075 first = sg;
5076 if (last)
5077 last->next = sg;
5078 last = sg;
5080 last->next = first;
5083 #define SD_NODES_PER_DOMAIN 16
5085 #ifdef CONFIG_NUMA
5087 * find_next_best_node - find the next node to include in a sched_domain
5088 * @node: node whose sched_domain we're building
5089 * @used_nodes: nodes already in the sched_domain
5091 * Find the next node to include in a given scheduling domain. Simply
5092 * finds the closest node not already in the @used_nodes map.
5094 * Should use nodemask_t.
5096 static int find_next_best_node(int node, unsigned long *used_nodes)
5098 int i, n, val, min_val, best_node = 0;
5100 min_val = INT_MAX;
5102 for (i = 0; i < MAX_NUMNODES; i++) {
5103 /* Start at @node */
5104 n = (node + i) % MAX_NUMNODES;
5106 if (!nr_cpus_node(n))
5107 continue;
5109 /* Skip already used nodes */
5110 if (test_bit(n, used_nodes))
5111 continue;
5113 /* Simple min distance search */
5114 val = node_distance(node, n);
5116 if (val < min_val) {
5117 min_val = val;
5118 best_node = n;
5122 set_bit(best_node, used_nodes);
5123 return best_node;
5127 * sched_domain_node_span - get a cpumask for a node's sched_domain
5128 * @node: node whose cpumask we're constructing
5129 * @size: number of nodes to include in this span
5131 * Given a node, construct a good cpumask for its sched_domain to span. It
5132 * should be one that prevents unnecessary balancing, but also spreads tasks
5133 * out optimally.
5135 static cpumask_t sched_domain_node_span(int node)
5137 int i;
5138 cpumask_t span, nodemask;
5139 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5141 cpus_clear(span);
5142 bitmap_zero(used_nodes, MAX_NUMNODES);
5144 nodemask = node_to_cpumask(node);
5145 cpus_or(span, span, nodemask);
5146 set_bit(node, used_nodes);
5148 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5149 int next_node = find_next_best_node(node, used_nodes);
5150 nodemask = node_to_cpumask(next_node);
5151 cpus_or(span, span, nodemask);
5154 return span;
5156 #endif
5159 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5160 * can switch it on easily if needed.
5162 #ifdef CONFIG_SCHED_SMT
5163 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5164 static struct sched_group sched_group_cpus[NR_CPUS];
5165 static int cpu_to_cpu_group(int cpu)
5167 return cpu;
5169 #endif
5171 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5172 static struct sched_group sched_group_phys[NR_CPUS];
5173 static int cpu_to_phys_group(int cpu)
5175 #ifdef CONFIG_SCHED_SMT
5176 return first_cpu(cpu_sibling_map[cpu]);
5177 #else
5178 return cpu;
5179 #endif
5182 #ifdef CONFIG_NUMA
5184 * The init_sched_build_groups can't handle what we want to do with node
5185 * groups, so roll our own. Now each node has its own list of groups which
5186 * gets dynamically allocated.
5188 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5189 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5191 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5192 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5194 static int cpu_to_allnodes_group(int cpu)
5196 return cpu_to_node(cpu);
5198 #endif
5201 * Build sched domains for a given set of cpus and attach the sched domains
5202 * to the individual cpus
5204 void build_sched_domains(const cpumask_t *cpu_map)
5206 int i;
5207 #ifdef CONFIG_NUMA
5208 struct sched_group **sched_group_nodes = NULL;
5209 struct sched_group *sched_group_allnodes = NULL;
5212 * Allocate the per-node list of sched groups
5214 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5215 GFP_ATOMIC);
5216 if (!sched_group_nodes) {
5217 printk(KERN_WARNING "Can not alloc sched group node list\n");
5218 return;
5220 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5221 #endif
5224 * Set up domains for cpus specified by the cpu_map.
5226 for_each_cpu_mask(i, *cpu_map) {
5227 int group;
5228 struct sched_domain *sd = NULL, *p;
5229 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5231 cpus_and(nodemask, nodemask, *cpu_map);
5233 #ifdef CONFIG_NUMA
5234 if (cpus_weight(*cpu_map)
5235 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5236 if (!sched_group_allnodes) {
5237 sched_group_allnodes
5238 = kmalloc(sizeof(struct sched_group)
5239 * MAX_NUMNODES,
5240 GFP_KERNEL);
5241 if (!sched_group_allnodes) {
5242 printk(KERN_WARNING
5243 "Can not alloc allnodes sched group\n");
5244 break;
5246 sched_group_allnodes_bycpu[i]
5247 = sched_group_allnodes;
5249 sd = &per_cpu(allnodes_domains, i);
5250 *sd = SD_ALLNODES_INIT;
5251 sd->span = *cpu_map;
5252 group = cpu_to_allnodes_group(i);
5253 sd->groups = &sched_group_allnodes[group];
5254 p = sd;
5255 } else
5256 p = NULL;
5258 sd = &per_cpu(node_domains, i);
5259 *sd = SD_NODE_INIT;
5260 sd->span = sched_domain_node_span(cpu_to_node(i));
5261 sd->parent = p;
5262 cpus_and(sd->span, sd->span, *cpu_map);
5263 #endif
5265 p = sd;
5266 sd = &per_cpu(phys_domains, i);
5267 group = cpu_to_phys_group(i);
5268 *sd = SD_CPU_INIT;
5269 sd->span = nodemask;
5270 sd->parent = p;
5271 sd->groups = &sched_group_phys[group];
5273 #ifdef CONFIG_SCHED_SMT
5274 p = sd;
5275 sd = &per_cpu(cpu_domains, i);
5276 group = cpu_to_cpu_group(i);
5277 *sd = SD_SIBLING_INIT;
5278 sd->span = cpu_sibling_map[i];
5279 cpus_and(sd->span, sd->span, *cpu_map);
5280 sd->parent = p;
5281 sd->groups = &sched_group_cpus[group];
5282 #endif
5285 #ifdef CONFIG_SCHED_SMT
5286 /* Set up CPU (sibling) groups */
5287 for_each_cpu_mask(i, *cpu_map) {
5288 cpumask_t this_sibling_map = cpu_sibling_map[i];
5289 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5290 if (i != first_cpu(this_sibling_map))
5291 continue;
5293 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5294 &cpu_to_cpu_group);
5296 #endif
5298 /* Set up physical groups */
5299 for (i = 0; i < MAX_NUMNODES; i++) {
5300 cpumask_t nodemask = node_to_cpumask(i);
5302 cpus_and(nodemask, nodemask, *cpu_map);
5303 if (cpus_empty(nodemask))
5304 continue;
5306 init_sched_build_groups(sched_group_phys, nodemask,
5307 &cpu_to_phys_group);
5310 #ifdef CONFIG_NUMA
5311 /* Set up node groups */
5312 if (sched_group_allnodes)
5313 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5314 &cpu_to_allnodes_group);
5316 for (i = 0; i < MAX_NUMNODES; i++) {
5317 /* Set up node groups */
5318 struct sched_group *sg, *prev;
5319 cpumask_t nodemask = node_to_cpumask(i);
5320 cpumask_t domainspan;
5321 cpumask_t covered = CPU_MASK_NONE;
5322 int j;
5324 cpus_and(nodemask, nodemask, *cpu_map);
5325 if (cpus_empty(nodemask)) {
5326 sched_group_nodes[i] = NULL;
5327 continue;
5330 domainspan = sched_domain_node_span(i);
5331 cpus_and(domainspan, domainspan, *cpu_map);
5333 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5334 sched_group_nodes[i] = sg;
5335 for_each_cpu_mask(j, nodemask) {
5336 struct sched_domain *sd;
5337 sd = &per_cpu(node_domains, j);
5338 sd->groups = sg;
5339 if (sd->groups == NULL) {
5340 /* Turn off balancing if we have no groups */
5341 sd->flags = 0;
5344 if (!sg) {
5345 printk(KERN_WARNING
5346 "Can not alloc domain group for node %d\n", i);
5347 continue;
5349 sg->cpu_power = 0;
5350 sg->cpumask = nodemask;
5351 cpus_or(covered, covered, nodemask);
5352 prev = sg;
5354 for (j = 0; j < MAX_NUMNODES; j++) {
5355 cpumask_t tmp, notcovered;
5356 int n = (i + j) % MAX_NUMNODES;
5358 cpus_complement(notcovered, covered);
5359 cpus_and(tmp, notcovered, *cpu_map);
5360 cpus_and(tmp, tmp, domainspan);
5361 if (cpus_empty(tmp))
5362 break;
5364 nodemask = node_to_cpumask(n);
5365 cpus_and(tmp, tmp, nodemask);
5366 if (cpus_empty(tmp))
5367 continue;
5369 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5370 if (!sg) {
5371 printk(KERN_WARNING
5372 "Can not alloc domain group for node %d\n", j);
5373 break;
5375 sg->cpu_power = 0;
5376 sg->cpumask = tmp;
5377 cpus_or(covered, covered, tmp);
5378 prev->next = sg;
5379 prev = sg;
5381 prev->next = sched_group_nodes[i];
5383 #endif
5385 /* Calculate CPU power for physical packages and nodes */
5386 for_each_cpu_mask(i, *cpu_map) {
5387 int power;
5388 struct sched_domain *sd;
5389 #ifdef CONFIG_SCHED_SMT
5390 sd = &per_cpu(cpu_domains, i);
5391 power = SCHED_LOAD_SCALE;
5392 sd->groups->cpu_power = power;
5393 #endif
5395 sd = &per_cpu(phys_domains, i);
5396 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5397 (cpus_weight(sd->groups->cpumask)-1) / 10;
5398 sd->groups->cpu_power = power;
5400 #ifdef CONFIG_NUMA
5401 sd = &per_cpu(allnodes_domains, i);
5402 if (sd->groups) {
5403 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5404 (cpus_weight(sd->groups->cpumask)-1) / 10;
5405 sd->groups->cpu_power = power;
5407 #endif
5410 #ifdef CONFIG_NUMA
5411 for (i = 0; i < MAX_NUMNODES; i++) {
5412 struct sched_group *sg = sched_group_nodes[i];
5413 int j;
5415 if (sg == NULL)
5416 continue;
5417 next_sg:
5418 for_each_cpu_mask(j, sg->cpumask) {
5419 struct sched_domain *sd;
5420 int power;
5422 sd = &per_cpu(phys_domains, j);
5423 if (j != first_cpu(sd->groups->cpumask)) {
5425 * Only add "power" once for each
5426 * physical package.
5428 continue;
5430 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5431 (cpus_weight(sd->groups->cpumask)-1) / 10;
5433 sg->cpu_power += power;
5435 sg = sg->next;
5436 if (sg != sched_group_nodes[i])
5437 goto next_sg;
5439 #endif
5441 /* Attach the domains */
5442 for_each_cpu_mask(i, *cpu_map) {
5443 struct sched_domain *sd;
5444 #ifdef CONFIG_SCHED_SMT
5445 sd = &per_cpu(cpu_domains, i);
5446 #else
5447 sd = &per_cpu(phys_domains, i);
5448 #endif
5449 cpu_attach_domain(sd, i);
5453 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5455 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5457 cpumask_t cpu_default_map;
5460 * Setup mask for cpus without special case scheduling requirements.
5461 * For now this just excludes isolated cpus, but could be used to
5462 * exclude other special cases in the future.
5464 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5466 build_sched_domains(&cpu_default_map);
5469 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5471 #ifdef CONFIG_NUMA
5472 int i;
5473 int cpu;
5475 for_each_cpu_mask(cpu, *cpu_map) {
5476 struct sched_group *sched_group_allnodes
5477 = sched_group_allnodes_bycpu[cpu];
5478 struct sched_group **sched_group_nodes
5479 = sched_group_nodes_bycpu[cpu];
5481 if (sched_group_allnodes) {
5482 kfree(sched_group_allnodes);
5483 sched_group_allnodes_bycpu[cpu] = NULL;
5486 if (!sched_group_nodes)
5487 continue;
5489 for (i = 0; i < MAX_NUMNODES; i++) {
5490 cpumask_t nodemask = node_to_cpumask(i);
5491 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5493 cpus_and(nodemask, nodemask, *cpu_map);
5494 if (cpus_empty(nodemask))
5495 continue;
5497 if (sg == NULL)
5498 continue;
5499 sg = sg->next;
5500 next_sg:
5501 oldsg = sg;
5502 sg = sg->next;
5503 kfree(oldsg);
5504 if (oldsg != sched_group_nodes[i])
5505 goto next_sg;
5507 kfree(sched_group_nodes);
5508 sched_group_nodes_bycpu[cpu] = NULL;
5510 #endif
5514 * Detach sched domains from a group of cpus specified in cpu_map
5515 * These cpus will now be attached to the NULL domain
5517 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5519 int i;
5521 for_each_cpu_mask(i, *cpu_map)
5522 cpu_attach_domain(NULL, i);
5523 synchronize_sched();
5524 arch_destroy_sched_domains(cpu_map);
5528 * Partition sched domains as specified by the cpumasks below.
5529 * This attaches all cpus from the cpumasks to the NULL domain,
5530 * waits for a RCU quiescent period, recalculates sched
5531 * domain information and then attaches them back to the
5532 * correct sched domains
5533 * Call with hotplug lock held
5535 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5537 cpumask_t change_map;
5539 cpus_and(*partition1, *partition1, cpu_online_map);
5540 cpus_and(*partition2, *partition2, cpu_online_map);
5541 cpus_or(change_map, *partition1, *partition2);
5543 /* Detach sched domains from all of the affected cpus */
5544 detach_destroy_domains(&change_map);
5545 if (!cpus_empty(*partition1))
5546 build_sched_domains(partition1);
5547 if (!cpus_empty(*partition2))
5548 build_sched_domains(partition2);
5551 #ifdef CONFIG_HOTPLUG_CPU
5553 * Force a reinitialization of the sched domains hierarchy. The domains
5554 * and groups cannot be updated in place without racing with the balancing
5555 * code, so we temporarily attach all running cpus to the NULL domain
5556 * which will prevent rebalancing while the sched domains are recalculated.
5558 static int update_sched_domains(struct notifier_block *nfb,
5559 unsigned long action, void *hcpu)
5561 switch (action) {
5562 case CPU_UP_PREPARE:
5563 case CPU_DOWN_PREPARE:
5564 detach_destroy_domains(&cpu_online_map);
5565 return NOTIFY_OK;
5567 case CPU_UP_CANCELED:
5568 case CPU_DOWN_FAILED:
5569 case CPU_ONLINE:
5570 case CPU_DEAD:
5572 * Fall through and re-initialise the domains.
5574 break;
5575 default:
5576 return NOTIFY_DONE;
5579 /* The hotplug lock is already held by cpu_up/cpu_down */
5580 arch_init_sched_domains(&cpu_online_map);
5582 return NOTIFY_OK;
5584 #endif
5586 void __init sched_init_smp(void)
5588 lock_cpu_hotplug();
5589 arch_init_sched_domains(&cpu_online_map);
5590 unlock_cpu_hotplug();
5591 /* XXX: Theoretical race here - CPU may be hotplugged now */
5592 hotcpu_notifier(update_sched_domains, 0);
5594 #else
5595 void __init sched_init_smp(void)
5598 #endif /* CONFIG_SMP */
5600 int in_sched_functions(unsigned long addr)
5602 /* Linker adds these: start and end of __sched functions */
5603 extern char __sched_text_start[], __sched_text_end[];
5604 return in_lock_functions(addr) ||
5605 (addr >= (unsigned long)__sched_text_start
5606 && addr < (unsigned long)__sched_text_end);
5609 void __init sched_init(void)
5611 runqueue_t *rq;
5612 int i, j, k;
5614 for (i = 0; i < NR_CPUS; i++) {
5615 prio_array_t *array;
5617 rq = cpu_rq(i);
5618 spin_lock_init(&rq->lock);
5619 rq->nr_running = 0;
5620 rq->active = rq->arrays;
5621 rq->expired = rq->arrays + 1;
5622 rq->best_expired_prio = MAX_PRIO;
5624 #ifdef CONFIG_SMP
5625 rq->sd = NULL;
5626 for (j = 1; j < 3; j++)
5627 rq->cpu_load[j] = 0;
5628 rq->active_balance = 0;
5629 rq->push_cpu = 0;
5630 rq->migration_thread = NULL;
5631 INIT_LIST_HEAD(&rq->migration_queue);
5632 #endif
5633 atomic_set(&rq->nr_iowait, 0);
5635 for (j = 0; j < 2; j++) {
5636 array = rq->arrays + j;
5637 for (k = 0; k < MAX_PRIO; k++) {
5638 INIT_LIST_HEAD(array->queue + k);
5639 __clear_bit(k, array->bitmap);
5641 // delimiter for bitsearch
5642 __set_bit(MAX_PRIO, array->bitmap);
5647 * The boot idle thread does lazy MMU switching as well:
5649 atomic_inc(&init_mm.mm_count);
5650 enter_lazy_tlb(&init_mm, current);
5653 * Make us the idle thread. Technically, schedule() should not be
5654 * called from this thread, however somewhere below it might be,
5655 * but because we are the idle thread, we just pick up running again
5656 * when this runqueue becomes "idle".
5658 init_idle(current, smp_processor_id());
5661 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5662 void __might_sleep(char *file, int line)
5664 #if defined(in_atomic)
5665 static unsigned long prev_jiffy; /* ratelimiting */
5667 if ((in_atomic() || irqs_disabled()) &&
5668 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5669 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5670 return;
5671 prev_jiffy = jiffies;
5672 printk(KERN_ERR "Debug: sleeping function called from invalid"
5673 " context at %s:%d\n", file, line);
5674 printk("in_atomic():%d, irqs_disabled():%d\n",
5675 in_atomic(), irqs_disabled());
5676 dump_stack();
5678 #endif
5680 EXPORT_SYMBOL(__might_sleep);
5681 #endif
5683 #ifdef CONFIG_MAGIC_SYSRQ
5684 void normalize_rt_tasks(void)
5686 struct task_struct *p;
5687 prio_array_t *array;
5688 unsigned long flags;
5689 runqueue_t *rq;
5691 read_lock_irq(&tasklist_lock);
5692 for_each_process (p) {
5693 if (!rt_task(p))
5694 continue;
5696 rq = task_rq_lock(p, &flags);
5698 array = p->array;
5699 if (array)
5700 deactivate_task(p, task_rq(p));
5701 __setscheduler(p, SCHED_NORMAL, 0);
5702 if (array) {
5703 __activate_task(p, task_rq(p));
5704 resched_task(rq->curr);
5707 task_rq_unlock(rq, &flags);
5709 read_unlock_irq(&tasklist_lock);
5712 #endif /* CONFIG_MAGIC_SYSRQ */
5714 #ifdef CONFIG_IA64
5716 * These functions are only useful for the IA64 MCA handling.
5718 * They can only be called when the whole system has been
5719 * stopped - every CPU needs to be quiescent, and no scheduling
5720 * activity can take place. Using them for anything else would
5721 * be a serious bug, and as a result, they aren't even visible
5722 * under any other configuration.
5726 * curr_task - return the current task for a given cpu.
5727 * @cpu: the processor in question.
5729 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5731 task_t *curr_task(int cpu)
5733 return cpu_curr(cpu);
5737 * set_curr_task - set the current task for a given cpu.
5738 * @cpu: the processor in question.
5739 * @p: the task pointer to set.
5741 * Description: This function must only be used when non-maskable interrupts
5742 * are serviced on a separate stack. It allows the architecture to switch the
5743 * notion of the current task on a cpu in a non-blocking manner. This function
5744 * must be called with all CPU's synchronized, and interrupts disabled, the
5745 * and caller must save the original value of the current task (see
5746 * curr_task() above) and restore that value before reenabling interrupts and
5747 * re-starting the system.
5749 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5751 void set_curr_task(int cpu, task_t *p)
5753 cpu_curr(cpu) = p;
5756 #endif