x86, mce: print number of MCE banks
[linux-2.6/linux-2.6-openrd.git] / drivers / w1 / masters / ds2490.c
blob59ad6e95af8f0b0dded05413115c45bee2d2276b
1 /*
2 * dscore.c
4 * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/usb.h>
27 #include "../w1_int.h"
28 #include "../w1.h"
30 /* COMMAND TYPE CODES */
31 #define CONTROL_CMD 0x00
32 #define COMM_CMD 0x01
33 #define MODE_CMD 0x02
35 /* CONTROL COMMAND CODES */
36 #define CTL_RESET_DEVICE 0x0000
37 #define CTL_START_EXE 0x0001
38 #define CTL_RESUME_EXE 0x0002
39 #define CTL_HALT_EXE_IDLE 0x0003
40 #define CTL_HALT_EXE_DONE 0x0004
41 #define CTL_FLUSH_COMM_CMDS 0x0007
42 #define CTL_FLUSH_RCV_BUFFER 0x0008
43 #define CTL_FLUSH_XMT_BUFFER 0x0009
44 #define CTL_GET_COMM_CMDS 0x000A
46 /* MODE COMMAND CODES */
47 #define MOD_PULSE_EN 0x0000
48 #define MOD_SPEED_CHANGE_EN 0x0001
49 #define MOD_1WIRE_SPEED 0x0002
50 #define MOD_STRONG_PU_DURATION 0x0003
51 #define MOD_PULLDOWN_SLEWRATE 0x0004
52 #define MOD_PROG_PULSE_DURATION 0x0005
53 #define MOD_WRITE1_LOWTIME 0x0006
54 #define MOD_DSOW0_TREC 0x0007
56 /* COMMUNICATION COMMAND CODES */
57 #define COMM_ERROR_ESCAPE 0x0601
58 #define COMM_SET_DURATION 0x0012
59 #define COMM_BIT_IO 0x0020
60 #define COMM_PULSE 0x0030
61 #define COMM_1_WIRE_RESET 0x0042
62 #define COMM_BYTE_IO 0x0052
63 #define COMM_MATCH_ACCESS 0x0064
64 #define COMM_BLOCK_IO 0x0074
65 #define COMM_READ_STRAIGHT 0x0080
66 #define COMM_DO_RELEASE 0x6092
67 #define COMM_SET_PATH 0x00A2
68 #define COMM_WRITE_SRAM_PAGE 0x00B2
69 #define COMM_WRITE_EPROM 0x00C4
70 #define COMM_READ_CRC_PROT_PAGE 0x00D4
71 #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
72 #define COMM_SEARCH_ACCESS 0x00F4
74 /* Communication command bits */
75 #define COMM_TYPE 0x0008
76 #define COMM_SE 0x0008
77 #define COMM_D 0x0008
78 #define COMM_Z 0x0008
79 #define COMM_CH 0x0008
80 #define COMM_SM 0x0008
81 #define COMM_R 0x0008
82 #define COMM_IM 0x0001
84 #define COMM_PS 0x4000
85 #define COMM_PST 0x4000
86 #define COMM_CIB 0x4000
87 #define COMM_RTS 0x4000
88 #define COMM_DT 0x2000
89 #define COMM_SPU 0x1000
90 #define COMM_F 0x0800
91 #define COMM_NTF 0x0400
92 #define COMM_ICP 0x0200
93 #define COMM_RST 0x0100
95 #define PULSE_PROG 0x01
96 #define PULSE_SPUE 0x02
98 #define BRANCH_MAIN 0xCC
99 #define BRANCH_AUX 0x33
101 /* Status flags */
102 #define ST_SPUA 0x01 /* Strong Pull-up is active */
103 #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
104 #define ST_12VP 0x04 /* external 12V programming voltage is present */
105 #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
106 #define ST_HALT 0x10 /* DS2490 is currently halted */
107 #define ST_IDLE 0x20 /* DS2490 is currently idle */
108 #define ST_EPOF 0x80
110 /* Result Register flags */
111 #define RR_DETECT 0xA5 /* New device detected */
112 #define RR_NRS 0x01 /* Reset no presence or ... */
113 #define RR_SH 0x02 /* short on reset or set path */
114 #define RR_APP 0x04 /* alarming presence on reset */
115 #define RR_VPP 0x08 /* 12V expected not seen */
116 #define RR_CMP 0x10 /* compare error */
117 #define RR_CRC 0x20 /* CRC error detected */
118 #define RR_RDP 0x40 /* redirected page */
119 #define RR_EOS 0x80 /* end of search error */
121 #define SPEED_NORMAL 0x00
122 #define SPEED_FLEXIBLE 0x01
123 #define SPEED_OVERDRIVE 0x02
125 #define NUM_EP 4
126 #define EP_CONTROL 0
127 #define EP_STATUS 1
128 #define EP_DATA_OUT 2
129 #define EP_DATA_IN 3
131 struct ds_device
133 struct list_head ds_entry;
135 struct usb_device *udev;
136 struct usb_interface *intf;
138 int ep[NUM_EP];
140 /* Strong PullUp
141 * 0: pullup not active, else duration in milliseconds
143 int spu_sleep;
144 /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
145 * should be active or not for writes.
147 u16 spu_bit;
149 struct w1_bus_master master;
152 struct ds_status
154 u8 enable;
155 u8 speed;
156 u8 pullup_dur;
157 u8 ppuls_dur;
158 u8 pulldown_slew;
159 u8 write1_time;
160 u8 write0_time;
161 u8 reserved0;
162 u8 status;
163 u8 command0;
164 u8 command1;
165 u8 command_buffer_status;
166 u8 data_out_buffer_status;
167 u8 data_in_buffer_status;
168 u8 reserved1;
169 u8 reserved2;
173 static struct usb_device_id ds_id_table [] = {
174 { USB_DEVICE(0x04fa, 0x2490) },
175 { },
177 MODULE_DEVICE_TABLE(usb, ds_id_table);
179 static int ds_probe(struct usb_interface *, const struct usb_device_id *);
180 static void ds_disconnect(struct usb_interface *);
182 static int ds_send_control(struct ds_device *, u16, u16);
183 static int ds_send_control_cmd(struct ds_device *, u16, u16);
185 static LIST_HEAD(ds_devices);
186 static DEFINE_MUTEX(ds_mutex);
188 static struct usb_driver ds_driver = {
189 .name = "DS9490R",
190 .probe = ds_probe,
191 .disconnect = ds_disconnect,
192 .id_table = ds_id_table,
195 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
197 int err;
199 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
200 CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
201 if (err < 0) {
202 printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
203 value, index, err);
204 return err;
207 return err;
210 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
212 int err;
214 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
215 MODE_CMD, 0x40, value, index, NULL, 0, 1000);
216 if (err < 0) {
217 printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
218 value, index, err);
219 return err;
222 return err;
225 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
227 int err;
229 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
230 COMM_CMD, 0x40, value, index, NULL, 0, 1000);
231 if (err < 0) {
232 printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
233 value, index, err);
234 return err;
237 return err;
240 static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
241 unsigned char *buf, int size)
243 int count, err;
245 memset(st, 0, sizeof(*st));
247 count = 0;
248 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
249 if (err < 0) {
250 printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
251 return err;
254 if (count >= sizeof(*st))
255 memcpy(st, buf, sizeof(*st));
257 return count;
260 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
262 printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
265 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
267 int i;
269 printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
270 for (i=0; i<count; ++i)
271 printk("%02x ", buf[i]);
272 printk(KERN_INFO "\n");
274 if (count >= 16) {
275 ds_print_msg(buf, "enable flag", 0);
276 ds_print_msg(buf, "1-wire speed", 1);
277 ds_print_msg(buf, "strong pullup duration", 2);
278 ds_print_msg(buf, "programming pulse duration", 3);
279 ds_print_msg(buf, "pulldown slew rate control", 4);
280 ds_print_msg(buf, "write-1 low time", 5);
281 ds_print_msg(buf, "data sample offset/write-0 recovery time",
283 ds_print_msg(buf, "reserved (test register)", 7);
284 ds_print_msg(buf, "device status flags", 8);
285 ds_print_msg(buf, "communication command byte 1", 9);
286 ds_print_msg(buf, "communication command byte 2", 10);
287 ds_print_msg(buf, "communication command buffer status", 11);
288 ds_print_msg(buf, "1-wire data output buffer status", 12);
289 ds_print_msg(buf, "1-wire data input buffer status", 13);
290 ds_print_msg(buf, "reserved", 14);
291 ds_print_msg(buf, "reserved", 15);
293 for (i = 16; i < count; ++i) {
294 if (buf[i] == RR_DETECT) {
295 ds_print_msg(buf, "new device detect", i);
296 continue;
298 ds_print_msg(buf, "Result Register Value: ", i);
299 if (buf[i] & RR_NRS)
300 printk(KERN_INFO "NRS: Reset no presence or ...\n");
301 if (buf[i] & RR_SH)
302 printk(KERN_INFO "SH: short on reset or set path\n");
303 if (buf[i] & RR_APP)
304 printk(KERN_INFO "APP: alarming presence on reset\n");
305 if (buf[i] & RR_VPP)
306 printk(KERN_INFO "VPP: 12V expected not seen\n");
307 if (buf[i] & RR_CMP)
308 printk(KERN_INFO "CMP: compare error\n");
309 if (buf[i] & RR_CRC)
310 printk(KERN_INFO "CRC: CRC error detected\n");
311 if (buf[i] & RR_RDP)
312 printk(KERN_INFO "RDP: redirected page\n");
313 if (buf[i] & RR_EOS)
314 printk(KERN_INFO "EOS: end of search error\n");
318 static void ds_reset_device(struct ds_device *dev)
320 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
321 /* Always allow strong pullup which allow individual writes to use
322 * the strong pullup.
324 if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
325 printk(KERN_ERR "ds_reset_device: "
326 "Error allowing strong pullup\n");
327 /* Chip strong pullup time was cleared. */
328 if (dev->spu_sleep) {
329 /* lower 4 bits are 0, see ds_set_pullup */
330 u8 del = dev->spu_sleep>>4;
331 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
332 printk(KERN_ERR "ds_reset_device: "
333 "Error setting duration\n");
337 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
339 int count, err;
340 struct ds_status st;
342 /* Careful on size. If size is less than what is available in
343 * the input buffer, the device fails the bulk transfer and
344 * clears the input buffer. It could read the maximum size of
345 * the data buffer, but then do you return the first, last, or
346 * some set of the middle size bytes? As long as the rest of
347 * the code is correct there will be size bytes waiting. A
348 * call to ds_wait_status will wait until the device is idle
349 * and any data to be received would have been available.
351 count = 0;
352 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
353 buf, size, &count, 1000);
354 if (err < 0) {
355 u8 buf[0x20];
356 int count;
358 printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
359 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
361 count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
362 ds_dump_status(dev, buf, count);
363 return err;
366 #if 0
368 int i;
370 printk("%s: count=%d: ", __func__, count);
371 for (i=0; i<count; ++i)
372 printk("%02x ", buf[i]);
373 printk("\n");
375 #endif
376 return count;
379 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
381 int count, err;
383 count = 0;
384 err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
385 if (err < 0) {
386 printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
387 "err=%d.\n", dev->ep[EP_DATA_OUT], err);
388 return err;
391 return err;
394 #if 0
396 int ds_stop_pulse(struct ds_device *dev, int limit)
398 struct ds_status st;
399 int count = 0, err = 0;
400 u8 buf[0x20];
402 do {
403 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
404 if (err)
405 break;
406 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
407 if (err)
408 break;
409 err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
410 if (err)
411 break;
413 if ((st.status & ST_SPUA) == 0) {
414 err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
415 if (err)
416 break;
418 } while(++count < limit);
420 return err;
423 int ds_detect(struct ds_device *dev, struct ds_status *st)
425 int err;
427 err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
428 if (err)
429 return err;
431 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
432 if (err)
433 return err;
435 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
436 if (err)
437 return err;
439 err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
440 if (err)
441 return err;
443 err = ds_dump_status(dev, st);
445 return err;
448 #endif /* 0 */
450 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
452 u8 buf[0x20];
453 int err, count = 0;
455 do {
456 err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
457 #if 0
458 if (err >= 0) {
459 int i;
460 printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
461 for (i=0; i<err; ++i)
462 printk("%02x ", buf[i]);
463 printk("\n");
465 #endif
466 } while (!(buf[0x08] & ST_IDLE) && !(err < 0) && ++count < 100);
468 if (err >= 16 && st->status & ST_EPOF) {
469 printk(KERN_INFO "Resetting device after ST_EPOF.\n");
470 ds_reset_device(dev);
471 /* Always dump the device status. */
472 count = 101;
475 /* Dump the status for errors or if there is extended return data.
476 * The extended status includes new device detection (maybe someone
477 * can do something with it).
479 if (err > 16 || count >= 100 || err < 0)
480 ds_dump_status(dev, buf, err);
482 /* Extended data isn't an error. Well, a short is, but the dump
483 * would have already told the user that and we can't do anything
484 * about it in software anyway.
486 if (count >= 100 || err < 0)
487 return -1;
488 else
489 return 0;
492 static int ds_reset(struct ds_device *dev)
494 int err;
496 /* Other potentionally interesting flags for reset.
498 * COMM_NTF: Return result register feedback. This could be used to
499 * detect some conditions such as short, alarming presence, or
500 * detect if a new device was detected.
502 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
503 * Select the data transfer rate.
505 err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
506 if (err)
507 return err;
509 return 0;
512 #if 0
513 static int ds_set_speed(struct ds_device *dev, int speed)
515 int err;
517 if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
518 return -EINVAL;
520 if (speed != SPEED_OVERDRIVE)
521 speed = SPEED_FLEXIBLE;
523 speed &= 0xff;
525 err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
526 if (err)
527 return err;
529 return err;
531 #endif /* 0 */
533 static int ds_set_pullup(struct ds_device *dev, int delay)
535 int err = 0;
536 u8 del = 1 + (u8)(delay >> 4);
537 /* Just storing delay would not get the trunication and roundup. */
538 int ms = del<<4;
540 /* Enable spu_bit if a delay is set. */
541 dev->spu_bit = delay ? COMM_SPU : 0;
542 /* If delay is zero, it has already been disabled, if the time is
543 * the same as the hardware was last programmed to, there is also
544 * nothing more to do. Compare with the recalculated value ms
545 * rather than del or delay which can have a different value.
547 if (delay == 0 || ms == dev->spu_sleep)
548 return err;
550 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
551 if (err)
552 return err;
554 dev->spu_sleep = ms;
556 return err;
559 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
561 int err;
562 struct ds_status st;
564 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
566 if (err)
567 return err;
569 ds_wait_status(dev, &st);
571 err = ds_recv_data(dev, tbit, sizeof(*tbit));
572 if (err < 0)
573 return err;
575 return 0;
578 #if 0
579 static int ds_write_bit(struct ds_device *dev, u8 bit)
581 int err;
582 struct ds_status st;
584 /* Set COMM_ICP to write without a readback. Note, this will
585 * produce one time slot, a down followed by an up with COMM_D
586 * only determing the timing.
588 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
589 (bit ? COMM_D : 0), 0);
590 if (err)
591 return err;
593 ds_wait_status(dev, &st);
595 return 0;
597 #endif
599 static int ds_write_byte(struct ds_device *dev, u8 byte)
601 int err;
602 struct ds_status st;
603 u8 rbyte;
605 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
606 if (err)
607 return err;
609 if (dev->spu_bit)
610 msleep(dev->spu_sleep);
612 err = ds_wait_status(dev, &st);
613 if (err)
614 return err;
616 err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
617 if (err < 0)
618 return err;
620 return !(byte == rbyte);
623 static int ds_read_byte(struct ds_device *dev, u8 *byte)
625 int err;
626 struct ds_status st;
628 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
629 if (err)
630 return err;
632 ds_wait_status(dev, &st);
634 err = ds_recv_data(dev, byte, sizeof(*byte));
635 if (err < 0)
636 return err;
638 return 0;
641 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
643 struct ds_status st;
644 int err;
646 if (len > 64*1024)
647 return -E2BIG;
649 memset(buf, 0xFF, len);
651 err = ds_send_data(dev, buf, len);
652 if (err < 0)
653 return err;
655 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
656 if (err)
657 return err;
659 ds_wait_status(dev, &st);
661 memset(buf, 0x00, len);
662 err = ds_recv_data(dev, buf, len);
664 return err;
667 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
669 int err;
670 struct ds_status st;
672 err = ds_send_data(dev, buf, len);
673 if (err < 0)
674 return err;
676 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
677 if (err)
678 return err;
680 if (dev->spu_bit)
681 msleep(dev->spu_sleep);
683 ds_wait_status(dev, &st);
685 err = ds_recv_data(dev, buf, len);
686 if (err < 0)
687 return err;
689 return !(err == len);
692 #if 0
694 static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
696 int err;
697 u16 value, index;
698 struct ds_status st;
700 memset(buf, 0, sizeof(buf));
702 err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
703 if (err)
704 return err;
706 ds_wait_status(ds_dev, &st);
708 value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
709 index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
710 err = ds_send_control(ds_dev, value, index);
711 if (err)
712 return err;
714 ds_wait_status(ds_dev, &st);
716 err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
717 if (err < 0)
718 return err;
720 return err/8;
723 static int ds_match_access(struct ds_device *dev, u64 init)
725 int err;
726 struct ds_status st;
728 err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
729 if (err)
730 return err;
732 ds_wait_status(dev, &st);
734 err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
735 if (err)
736 return err;
738 ds_wait_status(dev, &st);
740 return 0;
743 static int ds_set_path(struct ds_device *dev, u64 init)
745 int err;
746 struct ds_status st;
747 u8 buf[9];
749 memcpy(buf, &init, 8);
750 buf[8] = BRANCH_MAIN;
752 err = ds_send_data(dev, buf, sizeof(buf));
753 if (err)
754 return err;
756 ds_wait_status(dev, &st);
758 err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
759 if (err)
760 return err;
762 ds_wait_status(dev, &st);
764 return 0;
767 #endif /* 0 */
769 static u8 ds9490r_touch_bit(void *data, u8 bit)
771 u8 ret;
772 struct ds_device *dev = data;
774 if (ds_touch_bit(dev, bit, &ret))
775 return 0;
777 return ret;
780 #if 0
781 static void ds9490r_write_bit(void *data, u8 bit)
783 struct ds_device *dev = data;
785 ds_write_bit(dev, bit);
788 static u8 ds9490r_read_bit(void *data)
790 struct ds_device *dev = data;
791 int err;
792 u8 bit = 0;
794 err = ds_touch_bit(dev, 1, &bit);
795 if (err)
796 return 0;
798 return bit & 1;
800 #endif
802 static void ds9490r_write_byte(void *data, u8 byte)
804 struct ds_device *dev = data;
806 ds_write_byte(dev, byte);
809 static u8 ds9490r_read_byte(void *data)
811 struct ds_device *dev = data;
812 int err;
813 u8 byte = 0;
815 err = ds_read_byte(dev, &byte);
816 if (err)
817 return 0;
819 return byte;
822 static void ds9490r_write_block(void *data, const u8 *buf, int len)
824 struct ds_device *dev = data;
826 ds_write_block(dev, (u8 *)buf, len);
829 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
831 struct ds_device *dev = data;
832 int err;
834 err = ds_read_block(dev, buf, len);
835 if (err < 0)
836 return 0;
838 return len;
841 static u8 ds9490r_reset(void *data)
843 struct ds_device *dev = data;
844 int err;
846 err = ds_reset(dev);
847 if (err)
848 return 1;
850 return 0;
853 static u8 ds9490r_set_pullup(void *data, int delay)
855 struct ds_device *dev = data;
857 if (ds_set_pullup(dev, delay))
858 return 1;
860 return 0;
863 static int ds_w1_init(struct ds_device *dev)
865 memset(&dev->master, 0, sizeof(struct w1_bus_master));
867 /* Reset the device as it can be in a bad state.
868 * This is necessary because a block write will wait for data
869 * to be placed in the output buffer and block any later
870 * commands which will keep accumulating and the device will
871 * not be idle. Another case is removing the ds2490 module
872 * while a bus search is in progress, somehow a few commands
873 * get through, but the input transfers fail leaving data in
874 * the input buffer. This will cause the next read to fail
875 * see the note in ds_recv_data.
877 ds_reset_device(dev);
879 dev->master.data = dev;
880 dev->master.touch_bit = &ds9490r_touch_bit;
881 /* read_bit and write_bit in w1_bus_master are expected to set and
882 * sample the line level. For write_bit that means it is expected to
883 * set it to that value and leave it there. ds2490 only supports an
884 * individual time slot at the lowest level. The requirement from
885 * pulling the bus state down to reading the state is 15us, something
886 * that isn't realistic on the USB bus anyway.
887 dev->master.read_bit = &ds9490r_read_bit;
888 dev->master.write_bit = &ds9490r_write_bit;
890 dev->master.read_byte = &ds9490r_read_byte;
891 dev->master.write_byte = &ds9490r_write_byte;
892 dev->master.read_block = &ds9490r_read_block;
893 dev->master.write_block = &ds9490r_write_block;
894 dev->master.reset_bus = &ds9490r_reset;
895 dev->master.set_pullup = &ds9490r_set_pullup;
897 return w1_add_master_device(&dev->master);
900 static void ds_w1_fini(struct ds_device *dev)
902 w1_remove_master_device(&dev->master);
905 static int ds_probe(struct usb_interface *intf,
906 const struct usb_device_id *udev_id)
908 struct usb_device *udev = interface_to_usbdev(intf);
909 struct usb_endpoint_descriptor *endpoint;
910 struct usb_host_interface *iface_desc;
911 struct ds_device *dev;
912 int i, err;
914 dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
915 if (!dev) {
916 printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
917 return -ENOMEM;
919 dev->spu_sleep = 0;
920 dev->spu_bit = 0;
921 dev->udev = usb_get_dev(udev);
922 if (!dev->udev) {
923 err = -ENOMEM;
924 goto err_out_free;
926 memset(dev->ep, 0, sizeof(dev->ep));
928 usb_set_intfdata(intf, dev);
930 err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
931 if (err) {
932 printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
933 intf->altsetting[0].desc.bInterfaceNumber, err);
934 goto err_out_clear;
937 err = usb_reset_configuration(dev->udev);
938 if (err) {
939 printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
940 goto err_out_clear;
943 iface_desc = &intf->altsetting[0];
944 if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
945 printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
946 err = -EINVAL;
947 goto err_out_clear;
951 * This loop doesn'd show control 0 endpoint,
952 * so we will fill only 1-3 endpoints entry.
954 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
955 endpoint = &iface_desc->endpoint[i].desc;
957 dev->ep[i+1] = endpoint->bEndpointAddress;
958 #if 0
959 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
960 i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
961 (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
962 endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
963 #endif
966 err = ds_w1_init(dev);
967 if (err)
968 goto err_out_clear;
970 mutex_lock(&ds_mutex);
971 list_add_tail(&dev->ds_entry, &ds_devices);
972 mutex_unlock(&ds_mutex);
974 return 0;
976 err_out_clear:
977 usb_set_intfdata(intf, NULL);
978 usb_put_dev(dev->udev);
979 err_out_free:
980 kfree(dev);
981 return err;
984 static void ds_disconnect(struct usb_interface *intf)
986 struct ds_device *dev;
988 dev = usb_get_intfdata(intf);
989 if (!dev)
990 return;
992 mutex_lock(&ds_mutex);
993 list_del(&dev->ds_entry);
994 mutex_unlock(&ds_mutex);
996 ds_w1_fini(dev);
998 usb_set_intfdata(intf, NULL);
1000 usb_put_dev(dev->udev);
1001 kfree(dev);
1004 static int ds_init(void)
1006 int err;
1008 err = usb_register(&ds_driver);
1009 if (err) {
1010 printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
1011 return err;
1014 return 0;
1017 static void ds_fini(void)
1019 usb_deregister(&ds_driver);
1022 module_init(ds_init);
1023 module_exit(ds_fini);
1025 MODULE_LICENSE("GPL");
1026 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
1027 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");