2 * sched_clock for unstable cpu clocks
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
13 * Create a semi stable clock from a mixture of other events, including:
16 * - explicit idle events
18 * We use gtod as base and the unstable clock deltas. The deltas are filtered,
19 * making it monotonic and keeping it within an expected window.
21 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
22 * that is otherwise invisible (TSC gets stopped).
24 * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
25 * consistent between cpus (never more than 2 jiffies difference).
27 #include <linux/spinlock.h>
28 #include <linux/hardirq.h>
29 #include <linux/module.h>
30 #include <linux/percpu.h>
31 #include <linux/ktime.h>
32 #include <linux/sched.h>
35 * Scheduler clock - returns current time in nanosec units.
36 * This is default implementation.
37 * Architectures and sub-architectures can override this.
39 unsigned long long __attribute__((weak
)) sched_clock(void)
41 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
44 static __read_mostly
int sched_clock_running
;
46 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
47 __read_mostly
int sched_clock_stable
;
49 struct sched_clock_data
{
51 * Raw spinlock - this is a special case: this might be called
52 * from within instrumentation code so we dont want to do any
53 * instrumentation ourselves.
62 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data
, sched_clock_data
);
64 static inline struct sched_clock_data
*this_scd(void)
66 return &__get_cpu_var(sched_clock_data
);
69 static inline struct sched_clock_data
*cpu_sdc(int cpu
)
71 return &per_cpu(sched_clock_data
, cpu
);
74 void sched_clock_init(void)
76 u64 ktime_now
= ktime_to_ns(ktime_get());
79 for_each_possible_cpu(cpu
) {
80 struct sched_clock_data
*scd
= cpu_sdc(cpu
);
82 scd
->lock
= (raw_spinlock_t
)__RAW_SPIN_LOCK_UNLOCKED
;
84 scd
->tick_gtod
= ktime_now
;
85 scd
->clock
= ktime_now
;
88 sched_clock_running
= 1;
92 * min, max except they take wrapping into account
95 static inline u64
wrap_min(u64 x
, u64 y
)
97 return (s64
)(x
- y
) < 0 ? x
: y
;
100 static inline u64
wrap_max(u64 x
, u64 y
)
102 return (s64
)(x
- y
) > 0 ? x
: y
;
106 * update the percpu scd from the raw @now value
108 * - filter out backward motion
109 * - use the GTOD tick value to create a window to filter crazy TSC values
111 static u64
__update_sched_clock(struct sched_clock_data
*scd
, u64 now
)
113 s64 delta
= now
- scd
->tick_raw
;
114 u64 clock
, min_clock
, max_clock
;
116 if (unlikely(delta
< 0))
120 * scd->clock = clamp(scd->tick_gtod + delta,
121 * max(scd->tick_gtod, scd->clock),
122 * scd->tick_gtod + TICK_NSEC);
125 clock
= scd
->tick_gtod
+ delta
;
126 min_clock
= wrap_max(scd
->tick_gtod
, scd
->clock
);
127 max_clock
= wrap_max(scd
->clock
, scd
->tick_gtod
+ TICK_NSEC
);
129 clock
= wrap_max(clock
, min_clock
);
130 clock
= wrap_min(clock
, max_clock
);
137 static void lock_double_clock(struct sched_clock_data
*data1
,
138 struct sched_clock_data
*data2
)
141 __raw_spin_lock(&data1
->lock
);
142 __raw_spin_lock(&data2
->lock
);
144 __raw_spin_lock(&data2
->lock
);
145 __raw_spin_lock(&data1
->lock
);
149 u64
sched_clock_cpu(int cpu
)
151 u64 now
, clock
, this_clock
, remote_clock
;
152 struct sched_clock_data
*scd
;
154 if (sched_clock_stable
)
155 return sched_clock();
160 * Normally this is not called in NMI context - but if it is,
161 * trying to do any locking here is totally lethal.
163 if (unlikely(in_nmi()))
166 if (unlikely(!sched_clock_running
))
169 WARN_ON_ONCE(!irqs_disabled());
172 if (cpu
!= raw_smp_processor_id()) {
173 struct sched_clock_data
*my_scd
= this_scd();
175 lock_double_clock(scd
, my_scd
);
177 this_clock
= __update_sched_clock(my_scd
, now
);
178 remote_clock
= scd
->clock
;
181 * Use the opportunity that we have both locks
182 * taken to couple the two clocks: we take the
183 * larger time as the latest time for both
184 * runqueues. (this creates monotonic movement)
186 if (likely((s64
)(remote_clock
- this_clock
) < 0)) {
191 * Should be rare, but possible:
193 clock
= remote_clock
;
194 my_scd
->clock
= remote_clock
;
197 __raw_spin_unlock(&my_scd
->lock
);
199 __raw_spin_lock(&scd
->lock
);
200 clock
= __update_sched_clock(scd
, now
);
203 __raw_spin_unlock(&scd
->lock
);
208 void sched_clock_tick(void)
210 struct sched_clock_data
*scd
;
213 if (sched_clock_stable
)
216 if (unlikely(!sched_clock_running
))
219 WARN_ON_ONCE(!irqs_disabled());
222 now_gtod
= ktime_to_ns(ktime_get());
225 __raw_spin_lock(&scd
->lock
);
227 scd
->tick_gtod
= now_gtod
;
228 __update_sched_clock(scd
, now
);
229 __raw_spin_unlock(&scd
->lock
);
233 * We are going deep-idle (irqs are disabled):
235 void sched_clock_idle_sleep_event(void)
237 sched_clock_cpu(smp_processor_id());
239 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
242 * We just idled delta nanoseconds (called with irqs disabled):
244 void sched_clock_idle_wakeup_event(u64 delta_ns
)
246 if (timekeeping_suspended
)
250 touch_softlockup_watchdog();
252 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
254 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
256 void sched_clock_init(void)
258 sched_clock_running
= 1;
261 u64
sched_clock_cpu(int cpu
)
263 if (unlikely(!sched_clock_running
))
266 return sched_clock();
269 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
271 unsigned long long cpu_clock(int cpu
)
273 unsigned long long clock
;
276 local_irq_save(flags
);
277 clock
= sched_clock_cpu(cpu
);
278 local_irq_restore(flags
);
282 EXPORT_SYMBOL_GPL(cpu_clock
);