4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6 * Manage the dynamic fd arrays in the process files_struct.
11 #include <linux/time.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/file.h>
15 #include <linux/bitops.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/rcupdate.h>
19 #include <linux/workqueue.h>
21 struct fdtable_defer
{
23 struct work_struct wq
;
27 int sysctl_nr_open __read_mostly
= 1024*1024;
30 * We use this list to defer free fdtables that have vmalloced
31 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
32 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
33 * this per-task structure.
35 static DEFINE_PER_CPU(struct fdtable_defer
, fdtable_defer_list
);
37 static inline void * alloc_fdmem(unsigned int size
)
39 if (size
<= PAGE_SIZE
)
40 return kmalloc(size
, GFP_KERNEL
);
45 static inline void free_fdarr(struct fdtable
*fdt
)
47 if (fdt
->max_fds
<= (PAGE_SIZE
/ sizeof(struct file
*)))
53 static inline void free_fdset(struct fdtable
*fdt
)
55 if (fdt
->max_fds
<= (PAGE_SIZE
* BITS_PER_BYTE
/ 2))
61 static void free_fdtable_work(struct work_struct
*work
)
63 struct fdtable_defer
*f
=
64 container_of(work
, struct fdtable_defer
, wq
);
67 spin_lock_bh(&f
->lock
);
70 spin_unlock_bh(&f
->lock
);
72 struct fdtable
*next
= fdt
->next
;
80 void free_fdtable_rcu(struct rcu_head
*rcu
)
82 struct fdtable
*fdt
= container_of(rcu
, struct fdtable
, rcu
);
83 struct fdtable_defer
*fddef
;
87 if (fdt
->max_fds
<= NR_OPEN_DEFAULT
) {
89 * This fdtable is embedded in the files structure and that
90 * structure itself is getting destroyed.
92 kmem_cache_free(files_cachep
,
93 container_of(fdt
, struct files_struct
, fdtab
));
96 if (fdt
->max_fds
<= (PAGE_SIZE
/ sizeof(struct file
*))) {
101 fddef
= &get_cpu_var(fdtable_defer_list
);
102 spin_lock(&fddef
->lock
);
103 fdt
->next
= fddef
->next
;
105 /* vmallocs are handled from the workqueue context */
106 schedule_work(&fddef
->wq
);
107 spin_unlock(&fddef
->lock
);
108 put_cpu_var(fdtable_defer_list
);
113 * Expand the fdset in the files_struct. Called with the files spinlock
116 static void copy_fdtable(struct fdtable
*nfdt
, struct fdtable
*ofdt
)
118 unsigned int cpy
, set
;
120 BUG_ON(nfdt
->max_fds
< ofdt
->max_fds
);
121 if (ofdt
->max_fds
== 0)
124 cpy
= ofdt
->max_fds
* sizeof(struct file
*);
125 set
= (nfdt
->max_fds
- ofdt
->max_fds
) * sizeof(struct file
*);
126 memcpy(nfdt
->fd
, ofdt
->fd
, cpy
);
127 memset((char *)(nfdt
->fd
) + cpy
, 0, set
);
129 cpy
= ofdt
->max_fds
/ BITS_PER_BYTE
;
130 set
= (nfdt
->max_fds
- ofdt
->max_fds
) / BITS_PER_BYTE
;
131 memcpy(nfdt
->open_fds
, ofdt
->open_fds
, cpy
);
132 memset((char *)(nfdt
->open_fds
) + cpy
, 0, set
);
133 memcpy(nfdt
->close_on_exec
, ofdt
->close_on_exec
, cpy
);
134 memset((char *)(nfdt
->close_on_exec
) + cpy
, 0, set
);
137 static struct fdtable
* alloc_fdtable(unsigned int nr
)
143 * Figure out how many fds we actually want to support in this fdtable.
144 * Allocation steps are keyed to the size of the fdarray, since it
145 * grows far faster than any of the other dynamic data. We try to fit
146 * the fdarray into comfortable page-tuned chunks: starting at 1024B
147 * and growing in powers of two from there on.
149 nr
/= (1024 / sizeof(struct file
*));
150 nr
= roundup_pow_of_two(nr
+ 1);
151 nr
*= (1024 / sizeof(struct file
*));
152 if (nr
> sysctl_nr_open
)
155 fdt
= kmalloc(sizeof(struct fdtable
), GFP_KERNEL
);
159 data
= alloc_fdmem(nr
* sizeof(struct file
*));
162 fdt
->fd
= (struct file
**)data
;
163 data
= alloc_fdmem(max_t(unsigned int,
164 2 * nr
/ BITS_PER_BYTE
, L1_CACHE_BYTES
));
167 fdt
->open_fds
= (fd_set
*)data
;
168 data
+= nr
/ BITS_PER_BYTE
;
169 fdt
->close_on_exec
= (fd_set
*)data
;
170 INIT_RCU_HEAD(&fdt
->rcu
);
184 * Expand the file descriptor table.
185 * This function will allocate a new fdtable and both fd array and fdset, of
187 * Return <0 error code on error; 1 on successful completion.
188 * The files->file_lock should be held on entry, and will be held on exit.
190 static int expand_fdtable(struct files_struct
*files
, int nr
)
191 __releases(files
->file_lock
)
192 __acquires(files
->file_lock
)
194 struct fdtable
*new_fdt
, *cur_fdt
;
196 spin_unlock(&files
->file_lock
);
197 new_fdt
= alloc_fdtable(nr
);
198 spin_lock(&files
->file_lock
);
202 * Check again since another task may have expanded the fd table while
203 * we dropped the lock
205 cur_fdt
= files_fdtable(files
);
206 if (nr
>= cur_fdt
->max_fds
) {
207 /* Continue as planned */
208 copy_fdtable(new_fdt
, cur_fdt
);
209 rcu_assign_pointer(files
->fdt
, new_fdt
);
210 if (cur_fdt
->max_fds
> NR_OPEN_DEFAULT
)
211 free_fdtable(cur_fdt
);
213 /* Somebody else expanded, so undo our attempt */
223 * This function will expand the file structures, if the requested size exceeds
224 * the current capacity and there is room for expansion.
225 * Return <0 error code on error; 0 when nothing done; 1 when files were
226 * expanded and execution may have blocked.
227 * The files->file_lock should be held on entry, and will be held on exit.
229 int expand_files(struct files_struct
*files
, int nr
)
233 fdt
= files_fdtable(files
);
234 /* Do we need to expand? */
235 if (nr
< fdt
->max_fds
)
238 if (nr
>= sysctl_nr_open
)
241 /* All good, so we try */
242 return expand_fdtable(files
, nr
);
245 static void __devinit
fdtable_defer_list_init(int cpu
)
247 struct fdtable_defer
*fddef
= &per_cpu(fdtable_defer_list
, cpu
);
248 spin_lock_init(&fddef
->lock
);
249 INIT_WORK(&fddef
->wq
, free_fdtable_work
);
253 void __init
files_defer_init(void)
256 for_each_possible_cpu(i
)
257 fdtable_defer_list_init(i
);