ring-buffer: have read page swap increment counter with page entries
[linux-2.6/linux-2.6-openrd.git] / kernel / rcutree.c
blob7f3266922572b150cb62e6e50b321b6bee88fd94
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <asm/atomic.h>
39 #include <linux/bitops.h>
40 #include <linux/module.h>
41 #include <linux/completion.h>
42 #include <linux/moduleparam.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/time.h>
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 static struct lock_class_key rcu_lock_key;
51 struct lockdep_map rcu_lock_map =
52 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
53 EXPORT_SYMBOL_GPL(rcu_lock_map);
54 #endif
56 /* Data structures. */
58 #define RCU_STATE_INITIALIZER(name) { \
59 .level = { &name.node[0] }, \
60 .levelcnt = { \
61 NUM_RCU_LVL_0, /* root of hierarchy. */ \
62 NUM_RCU_LVL_1, \
63 NUM_RCU_LVL_2, \
64 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
65 }, \
66 .signaled = RCU_SIGNAL_INIT, \
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
71 .n_force_qs = 0, \
72 .n_force_qs_ngp = 0, \
75 struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state);
76 DEFINE_PER_CPU(struct rcu_data, rcu_data);
78 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
82 * Increment the quiescent state counter.
83 * The counter is a bit degenerated: We do not need to know
84 * how many quiescent states passed, just if there was at least
85 * one since the start of the grace period. Thus just a flag.
87 void rcu_qsctr_inc(int cpu)
89 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
90 rdp->passed_quiesc = 1;
91 rdp->passed_quiesc_completed = rdp->completed;
94 void rcu_bh_qsctr_inc(int cpu)
96 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
97 rdp->passed_quiesc = 1;
98 rdp->passed_quiesc_completed = rdp->completed;
101 #ifdef CONFIG_NO_HZ
102 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
103 .dynticks_nesting = 1,
104 .dynticks = 1,
106 #endif /* #ifdef CONFIG_NO_HZ */
108 static int blimit = 10; /* Maximum callbacks per softirq. */
109 static int qhimark = 10000; /* If this many pending, ignore blimit. */
110 static int qlowmark = 100; /* Once only this many pending, use blimit. */
112 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
115 * Return the number of RCU batches processed thus far for debug & stats.
117 long rcu_batches_completed(void)
119 return rcu_state.completed;
121 EXPORT_SYMBOL_GPL(rcu_batches_completed);
124 * Return the number of RCU BH batches processed thus far for debug & stats.
126 long rcu_batches_completed_bh(void)
128 return rcu_bh_state.completed;
130 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
133 * Does the CPU have callbacks ready to be invoked?
135 static int
136 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
138 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
142 * Does the current CPU require a yet-as-unscheduled grace period?
144 static int
145 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
147 /* ACCESS_ONCE() because we are accessing outside of lock. */
148 return *rdp->nxttail[RCU_DONE_TAIL] &&
149 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
153 * Return the root node of the specified rcu_state structure.
155 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
157 return &rsp->node[0];
160 #ifdef CONFIG_SMP
163 * If the specified CPU is offline, tell the caller that it is in
164 * a quiescent state. Otherwise, whack it with a reschedule IPI.
165 * Grace periods can end up waiting on an offline CPU when that
166 * CPU is in the process of coming online -- it will be added to the
167 * rcu_node bitmasks before it actually makes it online. The same thing
168 * can happen while a CPU is in the process of coming online. Because this
169 * race is quite rare, we check for it after detecting that the grace
170 * period has been delayed rather than checking each and every CPU
171 * each and every time we start a new grace period.
173 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
176 * If the CPU is offline, it is in a quiescent state. We can
177 * trust its state not to change because interrupts are disabled.
179 if (cpu_is_offline(rdp->cpu)) {
180 rdp->offline_fqs++;
181 return 1;
184 /* The CPU is online, so send it a reschedule IPI. */
185 if (rdp->cpu != smp_processor_id())
186 smp_send_reschedule(rdp->cpu);
187 else
188 set_need_resched();
189 rdp->resched_ipi++;
190 return 0;
193 #endif /* #ifdef CONFIG_SMP */
195 #ifdef CONFIG_NO_HZ
196 static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
199 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
201 * Enter nohz mode, in other words, -leave- the mode in which RCU
202 * read-side critical sections can occur. (Though RCU read-side
203 * critical sections can occur in irq handlers in nohz mode, a possibility
204 * handled by rcu_irq_enter() and rcu_irq_exit()).
206 void rcu_enter_nohz(void)
208 unsigned long flags;
209 struct rcu_dynticks *rdtp;
211 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
212 local_irq_save(flags);
213 rdtp = &__get_cpu_var(rcu_dynticks);
214 rdtp->dynticks++;
215 rdtp->dynticks_nesting--;
216 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
217 local_irq_restore(flags);
221 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
223 * Exit nohz mode, in other words, -enter- the mode in which RCU
224 * read-side critical sections normally occur.
226 void rcu_exit_nohz(void)
228 unsigned long flags;
229 struct rcu_dynticks *rdtp;
231 local_irq_save(flags);
232 rdtp = &__get_cpu_var(rcu_dynticks);
233 rdtp->dynticks++;
234 rdtp->dynticks_nesting++;
235 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
236 local_irq_restore(flags);
237 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
241 * rcu_nmi_enter - inform RCU of entry to NMI context
243 * If the CPU was idle with dynamic ticks active, and there is no
244 * irq handler running, this updates rdtp->dynticks_nmi to let the
245 * RCU grace-period handling know that the CPU is active.
247 void rcu_nmi_enter(void)
249 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
251 if (rdtp->dynticks & 0x1)
252 return;
253 rdtp->dynticks_nmi++;
254 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs);
255 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
259 * rcu_nmi_exit - inform RCU of exit from NMI context
261 * If the CPU was idle with dynamic ticks active, and there is no
262 * irq handler running, this updates rdtp->dynticks_nmi to let the
263 * RCU grace-period handling know that the CPU is no longer active.
265 void rcu_nmi_exit(void)
267 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
269 if (rdtp->dynticks & 0x1)
270 return;
271 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
272 rdtp->dynticks_nmi++;
273 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs);
277 * rcu_irq_enter - inform RCU of entry to hard irq context
279 * If the CPU was idle with dynamic ticks active, this updates the
280 * rdtp->dynticks to let the RCU handling know that the CPU is active.
282 void rcu_irq_enter(void)
284 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
286 if (rdtp->dynticks_nesting++)
287 return;
288 rdtp->dynticks++;
289 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
290 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
294 * rcu_irq_exit - inform RCU of exit from hard irq context
296 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
297 * to put let the RCU handling be aware that the CPU is going back to idle
298 * with no ticks.
300 void rcu_irq_exit(void)
302 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
304 if (--rdtp->dynticks_nesting)
305 return;
306 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
307 rdtp->dynticks++;
308 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
310 /* If the interrupt queued a callback, get out of dyntick mode. */
311 if (__get_cpu_var(rcu_data).nxtlist ||
312 __get_cpu_var(rcu_bh_data).nxtlist)
313 set_need_resched();
317 * Record the specified "completed" value, which is later used to validate
318 * dynticks counter manipulations. Specify "rsp->completed - 1" to
319 * unconditionally invalidate any future dynticks manipulations (which is
320 * useful at the beginning of a grace period).
322 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
324 rsp->dynticks_completed = comp;
327 #ifdef CONFIG_SMP
330 * Recall the previously recorded value of the completion for dynticks.
332 static long dyntick_recall_completed(struct rcu_state *rsp)
334 return rsp->dynticks_completed;
338 * Snapshot the specified CPU's dynticks counter so that we can later
339 * credit them with an implicit quiescent state. Return 1 if this CPU
340 * is already in a quiescent state courtesy of dynticks idle mode.
342 static int dyntick_save_progress_counter(struct rcu_data *rdp)
344 int ret;
345 int snap;
346 int snap_nmi;
348 snap = rdp->dynticks->dynticks;
349 snap_nmi = rdp->dynticks->dynticks_nmi;
350 smp_mb(); /* Order sampling of snap with end of grace period. */
351 rdp->dynticks_snap = snap;
352 rdp->dynticks_nmi_snap = snap_nmi;
353 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
354 if (ret)
355 rdp->dynticks_fqs++;
356 return ret;
360 * Return true if the specified CPU has passed through a quiescent
361 * state by virtue of being in or having passed through an dynticks
362 * idle state since the last call to dyntick_save_progress_counter()
363 * for this same CPU.
365 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
367 long curr;
368 long curr_nmi;
369 long snap;
370 long snap_nmi;
372 curr = rdp->dynticks->dynticks;
373 snap = rdp->dynticks_snap;
374 curr_nmi = rdp->dynticks->dynticks_nmi;
375 snap_nmi = rdp->dynticks_nmi_snap;
376 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
379 * If the CPU passed through or entered a dynticks idle phase with
380 * no active irq/NMI handlers, then we can safely pretend that the CPU
381 * already acknowledged the request to pass through a quiescent
382 * state. Either way, that CPU cannot possibly be in an RCU
383 * read-side critical section that started before the beginning
384 * of the current RCU grace period.
386 if ((curr != snap || (curr & 0x1) == 0) &&
387 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
388 rdp->dynticks_fqs++;
389 return 1;
392 /* Go check for the CPU being offline. */
393 return rcu_implicit_offline_qs(rdp);
396 #endif /* #ifdef CONFIG_SMP */
398 #else /* #ifdef CONFIG_NO_HZ */
400 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
404 #ifdef CONFIG_SMP
407 * If there are no dynticks, then the only way that a CPU can passively
408 * be in a quiescent state is to be offline. Unlike dynticks idle, which
409 * is a point in time during the prior (already finished) grace period,
410 * an offline CPU is always in a quiescent state, and thus can be
411 * unconditionally applied. So just return the current value of completed.
413 static long dyntick_recall_completed(struct rcu_state *rsp)
415 return rsp->completed;
418 static int dyntick_save_progress_counter(struct rcu_data *rdp)
420 return 0;
423 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
425 return rcu_implicit_offline_qs(rdp);
428 #endif /* #ifdef CONFIG_SMP */
430 #endif /* #else #ifdef CONFIG_NO_HZ */
432 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
434 static void record_gp_stall_check_time(struct rcu_state *rsp)
436 rsp->gp_start = jiffies;
437 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
440 static void print_other_cpu_stall(struct rcu_state *rsp)
442 int cpu;
443 long delta;
444 unsigned long flags;
445 struct rcu_node *rnp = rcu_get_root(rsp);
446 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
447 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
449 /* Only let one CPU complain about others per time interval. */
451 spin_lock_irqsave(&rnp->lock, flags);
452 delta = jiffies - rsp->jiffies_stall;
453 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
454 spin_unlock_irqrestore(&rnp->lock, flags);
455 return;
457 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
458 spin_unlock_irqrestore(&rnp->lock, flags);
460 /* OK, time to rat on our buddy... */
462 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
463 for (; rnp_cur < rnp_end; rnp_cur++) {
464 if (rnp_cur->qsmask == 0)
465 continue;
466 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
467 if (rnp_cur->qsmask & (1UL << cpu))
468 printk(" %d", rnp_cur->grplo + cpu);
470 printk(" (detected by %d, t=%ld jiffies)\n",
471 smp_processor_id(), (long)(jiffies - rsp->gp_start));
472 force_quiescent_state(rsp, 0); /* Kick them all. */
475 static void print_cpu_stall(struct rcu_state *rsp)
477 unsigned long flags;
478 struct rcu_node *rnp = rcu_get_root(rsp);
480 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
481 smp_processor_id(), jiffies - rsp->gp_start);
482 dump_stack();
483 spin_lock_irqsave(&rnp->lock, flags);
484 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
485 rsp->jiffies_stall =
486 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
487 spin_unlock_irqrestore(&rnp->lock, flags);
488 set_need_resched(); /* kick ourselves to get things going. */
491 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
493 long delta;
494 struct rcu_node *rnp;
496 delta = jiffies - rsp->jiffies_stall;
497 rnp = rdp->mynode;
498 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
500 /* We haven't checked in, so go dump stack. */
501 print_cpu_stall(rsp);
503 } else if (rsp->gpnum != rsp->completed &&
504 delta >= RCU_STALL_RAT_DELAY) {
506 /* They had two time units to dump stack, so complain. */
507 print_other_cpu_stall(rsp);
511 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
513 static void record_gp_stall_check_time(struct rcu_state *rsp)
517 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
521 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
524 * Update CPU-local rcu_data state to record the newly noticed grace period.
525 * This is used both when we started the grace period and when we notice
526 * that someone else started the grace period.
528 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
530 rdp->qs_pending = 1;
531 rdp->passed_quiesc = 0;
532 rdp->gpnum = rsp->gpnum;
533 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
534 RCU_JIFFIES_TILL_FORCE_QS;
538 * Did someone else start a new RCU grace period start since we last
539 * checked? Update local state appropriately if so. Must be called
540 * on the CPU corresponding to rdp.
542 static int
543 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
545 unsigned long flags;
546 int ret = 0;
548 local_irq_save(flags);
549 if (rdp->gpnum != rsp->gpnum) {
550 note_new_gpnum(rsp, rdp);
551 ret = 1;
553 local_irq_restore(flags);
554 return ret;
558 * Start a new RCU grace period if warranted, re-initializing the hierarchy
559 * in preparation for detecting the next grace period. The caller must hold
560 * the root node's ->lock, which is released before return. Hard irqs must
561 * be disabled.
563 static void
564 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
565 __releases(rcu_get_root(rsp)->lock)
567 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
568 struct rcu_node *rnp = rcu_get_root(rsp);
569 struct rcu_node *rnp_cur;
570 struct rcu_node *rnp_end;
572 if (!cpu_needs_another_gp(rsp, rdp)) {
573 spin_unlock_irqrestore(&rnp->lock, flags);
574 return;
577 /* Advance to a new grace period and initialize state. */
578 rsp->gpnum++;
579 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
580 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
581 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
582 RCU_JIFFIES_TILL_FORCE_QS;
583 record_gp_stall_check_time(rsp);
584 dyntick_record_completed(rsp, rsp->completed - 1);
585 note_new_gpnum(rsp, rdp);
588 * Because we are first, we know that all our callbacks will
589 * be covered by this upcoming grace period, even the ones
590 * that were registered arbitrarily recently.
592 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
593 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
595 /* Special-case the common single-level case. */
596 if (NUM_RCU_NODES == 1) {
597 rnp->qsmask = rnp->qsmaskinit;
598 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
599 spin_unlock_irqrestore(&rnp->lock, flags);
600 return;
603 spin_unlock(&rnp->lock); /* leave irqs disabled. */
606 /* Exclude any concurrent CPU-hotplug operations. */
607 spin_lock(&rsp->onofflock); /* irqs already disabled. */
610 * Set the quiescent-state-needed bits in all the non-leaf RCU
611 * nodes for all currently online CPUs. This operation relies
612 * on the layout of the hierarchy within the rsp->node[] array.
613 * Note that other CPUs will access only the leaves of the
614 * hierarchy, which still indicate that no grace period is in
615 * progress. In addition, we have excluded CPU-hotplug operations.
617 * We therefore do not need to hold any locks. Any required
618 * memory barriers will be supplied by the locks guarding the
619 * leaf rcu_nodes in the hierarchy.
622 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
623 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
624 rnp_cur->qsmask = rnp_cur->qsmaskinit;
627 * Now set up the leaf nodes. Here we must be careful. First,
628 * we need to hold the lock in order to exclude other CPUs, which
629 * might be contending for the leaf nodes' locks. Second, as
630 * soon as we initialize a given leaf node, its CPUs might run
631 * up the rest of the hierarchy. We must therefore acquire locks
632 * for each node that we touch during this stage. (But we still
633 * are excluding CPU-hotplug operations.)
635 * Note that the grace period cannot complete until we finish
636 * the initialization process, as there will be at least one
637 * qsmask bit set in the root node until that time, namely the
638 * one corresponding to this CPU.
640 rnp_end = &rsp->node[NUM_RCU_NODES];
641 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
642 for (; rnp_cur < rnp_end; rnp_cur++) {
643 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
644 rnp_cur->qsmask = rnp_cur->qsmaskinit;
645 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
648 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
649 spin_unlock_irqrestore(&rsp->onofflock, flags);
653 * Advance this CPU's callbacks, but only if the current grace period
654 * has ended. This may be called only from the CPU to whom the rdp
655 * belongs.
657 static void
658 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
660 long completed_snap;
661 unsigned long flags;
663 local_irq_save(flags);
664 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
666 /* Did another grace period end? */
667 if (rdp->completed != completed_snap) {
669 /* Advance callbacks. No harm if list empty. */
670 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
671 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
672 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
674 /* Remember that we saw this grace-period completion. */
675 rdp->completed = completed_snap;
677 local_irq_restore(flags);
681 * Similar to cpu_quiet(), for which it is a helper function. Allows
682 * a group of CPUs to be quieted at one go, though all the CPUs in the
683 * group must be represented by the same leaf rcu_node structure.
684 * That structure's lock must be held upon entry, and it is released
685 * before return.
687 static void
688 cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
689 unsigned long flags)
690 __releases(rnp->lock)
692 /* Walk up the rcu_node hierarchy. */
693 for (;;) {
694 if (!(rnp->qsmask & mask)) {
696 /* Our bit has already been cleared, so done. */
697 spin_unlock_irqrestore(&rnp->lock, flags);
698 return;
700 rnp->qsmask &= ~mask;
701 if (rnp->qsmask != 0) {
703 /* Other bits still set at this level, so done. */
704 spin_unlock_irqrestore(&rnp->lock, flags);
705 return;
707 mask = rnp->grpmask;
708 if (rnp->parent == NULL) {
710 /* No more levels. Exit loop holding root lock. */
712 break;
714 spin_unlock_irqrestore(&rnp->lock, flags);
715 rnp = rnp->parent;
716 spin_lock_irqsave(&rnp->lock, flags);
720 * Get here if we are the last CPU to pass through a quiescent
721 * state for this grace period. Clean up and let rcu_start_gp()
722 * start up the next grace period if one is needed. Note that
723 * we still hold rnp->lock, as required by rcu_start_gp(), which
724 * will release it.
726 rsp->completed = rsp->gpnum;
727 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
728 rcu_start_gp(rsp, flags); /* releases rnp->lock. */
732 * Record a quiescent state for the specified CPU, which must either be
733 * the current CPU or an offline CPU. The lastcomp argument is used to
734 * make sure we are still in the grace period of interest. We don't want
735 * to end the current grace period based on quiescent states detected in
736 * an earlier grace period!
738 static void
739 cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
741 unsigned long flags;
742 unsigned long mask;
743 struct rcu_node *rnp;
745 rnp = rdp->mynode;
746 spin_lock_irqsave(&rnp->lock, flags);
747 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
750 * Someone beat us to it for this grace period, so leave.
751 * The race with GP start is resolved by the fact that we
752 * hold the leaf rcu_node lock, so that the per-CPU bits
753 * cannot yet be initialized -- so we would simply find our
754 * CPU's bit already cleared in cpu_quiet_msk() if this race
755 * occurred.
757 rdp->passed_quiesc = 0; /* try again later! */
758 spin_unlock_irqrestore(&rnp->lock, flags);
759 return;
761 mask = rdp->grpmask;
762 if ((rnp->qsmask & mask) == 0) {
763 spin_unlock_irqrestore(&rnp->lock, flags);
764 } else {
765 rdp->qs_pending = 0;
768 * This GP can't end until cpu checks in, so all of our
769 * callbacks can be processed during the next GP.
771 rdp = rsp->rda[smp_processor_id()];
772 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
774 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
779 * Check to see if there is a new grace period of which this CPU
780 * is not yet aware, and if so, set up local rcu_data state for it.
781 * Otherwise, see if this CPU has just passed through its first
782 * quiescent state for this grace period, and record that fact if so.
784 static void
785 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
787 /* If there is now a new grace period, record and return. */
788 if (check_for_new_grace_period(rsp, rdp))
789 return;
792 * Does this CPU still need to do its part for current grace period?
793 * If no, return and let the other CPUs do their part as well.
795 if (!rdp->qs_pending)
796 return;
799 * Was there a quiescent state since the beginning of the grace
800 * period? If no, then exit and wait for the next call.
802 if (!rdp->passed_quiesc)
803 return;
805 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
806 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
809 #ifdef CONFIG_HOTPLUG_CPU
812 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
813 * and move all callbacks from the outgoing CPU to the current one.
815 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
817 int i;
818 unsigned long flags;
819 long lastcomp;
820 unsigned long mask;
821 struct rcu_data *rdp = rsp->rda[cpu];
822 struct rcu_data *rdp_me;
823 struct rcu_node *rnp;
825 /* Exclude any attempts to start a new grace period. */
826 spin_lock_irqsave(&rsp->onofflock, flags);
828 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
829 rnp = rdp->mynode;
830 mask = rdp->grpmask; /* rnp->grplo is constant. */
831 do {
832 spin_lock(&rnp->lock); /* irqs already disabled. */
833 rnp->qsmaskinit &= ~mask;
834 if (rnp->qsmaskinit != 0) {
835 spin_unlock(&rnp->lock); /* irqs already disabled. */
836 break;
838 mask = rnp->grpmask;
839 spin_unlock(&rnp->lock); /* irqs already disabled. */
840 rnp = rnp->parent;
841 } while (rnp != NULL);
842 lastcomp = rsp->completed;
844 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
846 /* Being offline is a quiescent state, so go record it. */
847 cpu_quiet(cpu, rsp, rdp, lastcomp);
850 * Move callbacks from the outgoing CPU to the running CPU.
851 * Note that the outgoing CPU is now quiscent, so it is now
852 * (uncharacteristically) safe to access it rcu_data structure.
853 * Note also that we must carefully retain the order of the
854 * outgoing CPU's callbacks in order for rcu_barrier() to work
855 * correctly. Finally, note that we start all the callbacks
856 * afresh, even those that have passed through a grace period
857 * and are therefore ready to invoke. The theory is that hotplug
858 * events are rare, and that if they are frequent enough to
859 * indefinitely delay callbacks, you have far worse things to
860 * be worrying about.
862 rdp_me = rsp->rda[smp_processor_id()];
863 if (rdp->nxtlist != NULL) {
864 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
865 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
866 rdp->nxtlist = NULL;
867 for (i = 0; i < RCU_NEXT_SIZE; i++)
868 rdp->nxttail[i] = &rdp->nxtlist;
869 rdp_me->qlen += rdp->qlen;
870 rdp->qlen = 0;
872 local_irq_restore(flags);
876 * Remove the specified CPU from the RCU hierarchy and move any pending
877 * callbacks that it might have to the current CPU. This code assumes
878 * that at least one CPU in the system will remain running at all times.
879 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
881 static void rcu_offline_cpu(int cpu)
883 __rcu_offline_cpu(cpu, &rcu_state);
884 __rcu_offline_cpu(cpu, &rcu_bh_state);
887 #else /* #ifdef CONFIG_HOTPLUG_CPU */
889 static void rcu_offline_cpu(int cpu)
893 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
896 * Invoke any RCU callbacks that have made it to the end of their grace
897 * period. Thottle as specified by rdp->blimit.
899 static void rcu_do_batch(struct rcu_data *rdp)
901 unsigned long flags;
902 struct rcu_head *next, *list, **tail;
903 int count;
905 /* If no callbacks are ready, just return.*/
906 if (!cpu_has_callbacks_ready_to_invoke(rdp))
907 return;
910 * Extract the list of ready callbacks, disabling to prevent
911 * races with call_rcu() from interrupt handlers.
913 local_irq_save(flags);
914 list = rdp->nxtlist;
915 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
916 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
917 tail = rdp->nxttail[RCU_DONE_TAIL];
918 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
919 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
920 rdp->nxttail[count] = &rdp->nxtlist;
921 local_irq_restore(flags);
923 /* Invoke callbacks. */
924 count = 0;
925 while (list) {
926 next = list->next;
927 prefetch(next);
928 list->func(list);
929 list = next;
930 if (++count >= rdp->blimit)
931 break;
934 local_irq_save(flags);
936 /* Update count, and requeue any remaining callbacks. */
937 rdp->qlen -= count;
938 if (list != NULL) {
939 *tail = rdp->nxtlist;
940 rdp->nxtlist = list;
941 for (count = 0; count < RCU_NEXT_SIZE; count++)
942 if (&rdp->nxtlist == rdp->nxttail[count])
943 rdp->nxttail[count] = tail;
944 else
945 break;
948 /* Reinstate batch limit if we have worked down the excess. */
949 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
950 rdp->blimit = blimit;
952 local_irq_restore(flags);
954 /* Re-raise the RCU softirq if there are callbacks remaining. */
955 if (cpu_has_callbacks_ready_to_invoke(rdp))
956 raise_softirq(RCU_SOFTIRQ);
960 * Check to see if this CPU is in a non-context-switch quiescent state
961 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
962 * Also schedule the RCU softirq handler.
964 * This function must be called with hardirqs disabled. It is normally
965 * invoked from the scheduling-clock interrupt. If rcu_pending returns
966 * false, there is no point in invoking rcu_check_callbacks().
968 void rcu_check_callbacks(int cpu, int user)
970 if (user ||
971 (idle_cpu(cpu) && rcu_scheduler_active &&
972 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
975 * Get here if this CPU took its interrupt from user
976 * mode or from the idle loop, and if this is not a
977 * nested interrupt. In this case, the CPU is in
978 * a quiescent state, so count it.
980 * No memory barrier is required here because both
981 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference
982 * only CPU-local variables that other CPUs neither
983 * access nor modify, at least not while the corresponding
984 * CPU is online.
987 rcu_qsctr_inc(cpu);
988 rcu_bh_qsctr_inc(cpu);
990 } else if (!in_softirq()) {
993 * Get here if this CPU did not take its interrupt from
994 * softirq, in other words, if it is not interrupting
995 * a rcu_bh read-side critical section. This is an _bh
996 * critical section, so count it.
999 rcu_bh_qsctr_inc(cpu);
1001 raise_softirq(RCU_SOFTIRQ);
1004 #ifdef CONFIG_SMP
1007 * Scan the leaf rcu_node structures, processing dyntick state for any that
1008 * have not yet encountered a quiescent state, using the function specified.
1009 * Returns 1 if the current grace period ends while scanning (possibly
1010 * because we made it end).
1012 static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1013 int (*f)(struct rcu_data *))
1015 unsigned long bit;
1016 int cpu;
1017 unsigned long flags;
1018 unsigned long mask;
1019 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1020 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1022 for (; rnp_cur < rnp_end; rnp_cur++) {
1023 mask = 0;
1024 spin_lock_irqsave(&rnp_cur->lock, flags);
1025 if (rsp->completed != lastcomp) {
1026 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1027 return 1;
1029 if (rnp_cur->qsmask == 0) {
1030 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1031 continue;
1033 cpu = rnp_cur->grplo;
1034 bit = 1;
1035 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1036 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1037 mask |= bit;
1039 if (mask != 0 && rsp->completed == lastcomp) {
1041 /* cpu_quiet_msk() releases rnp_cur->lock. */
1042 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1043 continue;
1045 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1047 return 0;
1051 * Force quiescent states on reluctant CPUs, and also detect which
1052 * CPUs are in dyntick-idle mode.
1054 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1056 unsigned long flags;
1057 long lastcomp;
1058 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
1059 struct rcu_node *rnp = rcu_get_root(rsp);
1060 u8 signaled;
1062 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1063 return; /* No grace period in progress, nothing to force. */
1064 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1065 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1066 return; /* Someone else is already on the job. */
1068 if (relaxed &&
1069 (long)(rsp->jiffies_force_qs - jiffies) >= 0 &&
1070 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) >= 0)
1071 goto unlock_ret; /* no emergency and done recently. */
1072 rsp->n_force_qs++;
1073 spin_lock(&rnp->lock);
1074 lastcomp = rsp->completed;
1075 signaled = rsp->signaled;
1076 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1077 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
1078 RCU_JIFFIES_TILL_FORCE_QS;
1079 if (lastcomp == rsp->gpnum) {
1080 rsp->n_force_qs_ngp++;
1081 spin_unlock(&rnp->lock);
1082 goto unlock_ret; /* no GP in progress, time updated. */
1084 spin_unlock(&rnp->lock);
1085 switch (signaled) {
1086 case RCU_GP_INIT:
1088 break; /* grace period still initializing, ignore. */
1090 case RCU_SAVE_DYNTICK:
1092 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1093 break; /* So gcc recognizes the dead code. */
1095 /* Record dyntick-idle state. */
1096 if (rcu_process_dyntick(rsp, lastcomp,
1097 dyntick_save_progress_counter))
1098 goto unlock_ret;
1100 /* Update state, record completion counter. */
1101 spin_lock(&rnp->lock);
1102 if (lastcomp == rsp->completed) {
1103 rsp->signaled = RCU_FORCE_QS;
1104 dyntick_record_completed(rsp, lastcomp);
1106 spin_unlock(&rnp->lock);
1107 break;
1109 case RCU_FORCE_QS:
1111 /* Check dyntick-idle state, send IPI to laggarts. */
1112 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1113 rcu_implicit_dynticks_qs))
1114 goto unlock_ret;
1116 /* Leave state in case more forcing is required. */
1118 break;
1120 unlock_ret:
1121 spin_unlock_irqrestore(&rsp->fqslock, flags);
1124 #else /* #ifdef CONFIG_SMP */
1126 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1128 set_need_resched();
1131 #endif /* #else #ifdef CONFIG_SMP */
1134 * This does the RCU processing work from softirq context for the
1135 * specified rcu_state and rcu_data structures. This may be called
1136 * only from the CPU to whom the rdp belongs.
1138 static void
1139 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1141 unsigned long flags;
1144 * If an RCU GP has gone long enough, go check for dyntick
1145 * idle CPUs and, if needed, send resched IPIs.
1147 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1148 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)
1149 force_quiescent_state(rsp, 1);
1152 * Advance callbacks in response to end of earlier grace
1153 * period that some other CPU ended.
1155 rcu_process_gp_end(rsp, rdp);
1157 /* Update RCU state based on any recent quiescent states. */
1158 rcu_check_quiescent_state(rsp, rdp);
1160 /* Does this CPU require a not-yet-started grace period? */
1161 if (cpu_needs_another_gp(rsp, rdp)) {
1162 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1163 rcu_start_gp(rsp, flags); /* releases above lock */
1166 /* If there are callbacks ready, invoke them. */
1167 rcu_do_batch(rdp);
1171 * Do softirq processing for the current CPU.
1173 static void rcu_process_callbacks(struct softirq_action *unused)
1176 * Memory references from any prior RCU read-side critical sections
1177 * executed by the interrupted code must be seen before any RCU
1178 * grace-period manipulations below.
1180 smp_mb(); /* See above block comment. */
1182 __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data));
1183 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1186 * Memory references from any later RCU read-side critical sections
1187 * executed by the interrupted code must be seen after any RCU
1188 * grace-period manipulations above.
1190 smp_mb(); /* See above block comment. */
1193 static void
1194 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1195 struct rcu_state *rsp)
1197 unsigned long flags;
1198 struct rcu_data *rdp;
1200 head->func = func;
1201 head->next = NULL;
1203 smp_mb(); /* Ensure RCU update seen before callback registry. */
1206 * Opportunistically note grace-period endings and beginnings.
1207 * Note that we might see a beginning right after we see an
1208 * end, but never vice versa, since this CPU has to pass through
1209 * a quiescent state betweentimes.
1211 local_irq_save(flags);
1212 rdp = rsp->rda[smp_processor_id()];
1213 rcu_process_gp_end(rsp, rdp);
1214 check_for_new_grace_period(rsp, rdp);
1216 /* Add the callback to our list. */
1217 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1218 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1220 /* Start a new grace period if one not already started. */
1221 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1222 unsigned long nestflag;
1223 struct rcu_node *rnp_root = rcu_get_root(rsp);
1225 spin_lock_irqsave(&rnp_root->lock, nestflag);
1226 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1229 /* Force the grace period if too many callbacks or too long waiting. */
1230 if (unlikely(++rdp->qlen > qhimark)) {
1231 rdp->blimit = LONG_MAX;
1232 force_quiescent_state(rsp, 0);
1233 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1234 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)
1235 force_quiescent_state(rsp, 1);
1236 local_irq_restore(flags);
1240 * Queue an RCU callback for invocation after a grace period.
1242 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1244 __call_rcu(head, func, &rcu_state);
1246 EXPORT_SYMBOL_GPL(call_rcu);
1249 * Queue an RCU for invocation after a quicker grace period.
1251 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1253 __call_rcu(head, func, &rcu_bh_state);
1255 EXPORT_SYMBOL_GPL(call_rcu_bh);
1258 * Check to see if there is any immediate RCU-related work to be done
1259 * by the current CPU, for the specified type of RCU, returning 1 if so.
1260 * The checks are in order of increasing expense: checks that can be
1261 * carried out against CPU-local state are performed first. However,
1262 * we must check for CPU stalls first, else we might not get a chance.
1264 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1266 rdp->n_rcu_pending++;
1268 /* Check for CPU stalls, if enabled. */
1269 check_cpu_stall(rsp, rdp);
1271 /* Is the RCU core waiting for a quiescent state from this CPU? */
1272 if (rdp->qs_pending)
1273 return 1;
1275 /* Does this CPU have callbacks ready to invoke? */
1276 if (cpu_has_callbacks_ready_to_invoke(rdp))
1277 return 1;
1279 /* Has RCU gone idle with this CPU needing another grace period? */
1280 if (cpu_needs_another_gp(rsp, rdp))
1281 return 1;
1283 /* Has another RCU grace period completed? */
1284 if (ACCESS_ONCE(rsp->completed) != rdp->completed) /* outside of lock */
1285 return 1;
1287 /* Has a new RCU grace period started? */
1288 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) /* outside of lock */
1289 return 1;
1291 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1292 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
1293 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1294 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0))
1295 return 1;
1297 /* nothing to do */
1298 return 0;
1302 * Check to see if there is any immediate RCU-related work to be done
1303 * by the current CPU, returning 1 if so. This function is part of the
1304 * RCU implementation; it is -not- an exported member of the RCU API.
1306 int rcu_pending(int cpu)
1308 return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) ||
1309 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu));
1313 * Check to see if any future RCU-related work will need to be done
1314 * by the current CPU, even if none need be done immediately, returning
1315 * 1 if so. This function is part of the RCU implementation; it is -not-
1316 * an exported member of the RCU API.
1318 int rcu_needs_cpu(int cpu)
1320 /* RCU callbacks either ready or pending? */
1321 return per_cpu(rcu_data, cpu).nxtlist ||
1322 per_cpu(rcu_bh_data, cpu).nxtlist;
1326 * Initialize a CPU's per-CPU RCU data. We take this "scorched earth"
1327 * approach so that we don't have to worry about how long the CPU has
1328 * been gone, or whether it ever was online previously. We do trust the
1329 * ->mynode field, as it is constant for a given struct rcu_data and
1330 * initialized during early boot.
1332 * Note that only one online or offline event can be happening at a given
1333 * time. Note also that we can accept some slop in the rsp->completed
1334 * access due to the fact that this CPU cannot possibly have any RCU
1335 * callbacks in flight yet.
1337 static void __cpuinit
1338 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1340 unsigned long flags;
1341 int i;
1342 long lastcomp;
1343 unsigned long mask;
1344 struct rcu_data *rdp = rsp->rda[cpu];
1345 struct rcu_node *rnp = rcu_get_root(rsp);
1347 /* Set up local state, ensuring consistent view of global state. */
1348 spin_lock_irqsave(&rnp->lock, flags);
1349 lastcomp = rsp->completed;
1350 rdp->completed = lastcomp;
1351 rdp->gpnum = lastcomp;
1352 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1353 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1354 rdp->beenonline = 1; /* We have now been online. */
1355 rdp->passed_quiesc_completed = lastcomp - 1;
1356 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1357 rdp->nxtlist = NULL;
1358 for (i = 0; i < RCU_NEXT_SIZE; i++)
1359 rdp->nxttail[i] = &rdp->nxtlist;
1360 rdp->qlen = 0;
1361 rdp->blimit = blimit;
1362 #ifdef CONFIG_NO_HZ
1363 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1364 #endif /* #ifdef CONFIG_NO_HZ */
1365 rdp->cpu = cpu;
1366 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1369 * A new grace period might start here. If so, we won't be part
1370 * of it, but that is OK, as we are currently in a quiescent state.
1373 /* Exclude any attempts to start a new GP on large systems. */
1374 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1376 /* Add CPU to rcu_node bitmasks. */
1377 rnp = rdp->mynode;
1378 mask = rdp->grpmask;
1379 do {
1380 /* Exclude any attempts to start a new GP on small systems. */
1381 spin_lock(&rnp->lock); /* irqs already disabled. */
1382 rnp->qsmaskinit |= mask;
1383 mask = rnp->grpmask;
1384 spin_unlock(&rnp->lock); /* irqs already disabled. */
1385 rnp = rnp->parent;
1386 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1388 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1391 * A new grace period might start here. If so, we will be part of
1392 * it, and its gpnum will be greater than ours, so we will
1393 * participate. It is also possible for the gpnum to have been
1394 * incremented before this function was called, and the bitmasks
1395 * to not be filled out until now, in which case we will also
1396 * participate due to our gpnum being behind.
1399 /* Since it is coming online, the CPU is in a quiescent state. */
1400 cpu_quiet(cpu, rsp, rdp, lastcomp);
1401 local_irq_restore(flags);
1404 static void __cpuinit rcu_online_cpu(int cpu)
1406 rcu_init_percpu_data(cpu, &rcu_state);
1407 rcu_init_percpu_data(cpu, &rcu_bh_state);
1408 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1412 * Handle CPU online/offline notifcation events.
1414 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1415 unsigned long action, void *hcpu)
1417 long cpu = (long)hcpu;
1419 switch (action) {
1420 case CPU_UP_PREPARE:
1421 case CPU_UP_PREPARE_FROZEN:
1422 rcu_online_cpu(cpu);
1423 break;
1424 case CPU_DEAD:
1425 case CPU_DEAD_FROZEN:
1426 case CPU_UP_CANCELED:
1427 case CPU_UP_CANCELED_FROZEN:
1428 rcu_offline_cpu(cpu);
1429 break;
1430 default:
1431 break;
1433 return NOTIFY_OK;
1437 * Compute the per-level fanout, either using the exact fanout specified
1438 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1440 #ifdef CONFIG_RCU_FANOUT_EXACT
1441 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1443 int i;
1445 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1446 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1448 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1449 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1451 int ccur;
1452 int cprv;
1453 int i;
1455 cprv = NR_CPUS;
1456 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1457 ccur = rsp->levelcnt[i];
1458 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1459 cprv = ccur;
1462 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1465 * Helper function for rcu_init() that initializes one rcu_state structure.
1467 static void __init rcu_init_one(struct rcu_state *rsp)
1469 int cpustride = 1;
1470 int i;
1471 int j;
1472 struct rcu_node *rnp;
1474 /* Initialize the level-tracking arrays. */
1476 for (i = 1; i < NUM_RCU_LVLS; i++)
1477 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1478 rcu_init_levelspread(rsp);
1480 /* Initialize the elements themselves, starting from the leaves. */
1482 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1483 cpustride *= rsp->levelspread[i];
1484 rnp = rsp->level[i];
1485 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1486 spin_lock_init(&rnp->lock);
1487 rnp->qsmask = 0;
1488 rnp->qsmaskinit = 0;
1489 rnp->grplo = j * cpustride;
1490 rnp->grphi = (j + 1) * cpustride - 1;
1491 if (rnp->grphi >= NR_CPUS)
1492 rnp->grphi = NR_CPUS - 1;
1493 if (i == 0) {
1494 rnp->grpnum = 0;
1495 rnp->grpmask = 0;
1496 rnp->parent = NULL;
1497 } else {
1498 rnp->grpnum = j % rsp->levelspread[i - 1];
1499 rnp->grpmask = 1UL << rnp->grpnum;
1500 rnp->parent = rsp->level[i - 1] +
1501 j / rsp->levelspread[i - 1];
1503 rnp->level = i;
1509 * Helper macro for __rcu_init(). To be used nowhere else!
1510 * Assigns leaf node pointers into each CPU's rcu_data structure.
1512 #define RCU_DATA_PTR_INIT(rsp, rcu_data) \
1513 do { \
1514 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1515 j = 0; \
1516 for_each_possible_cpu(i) { \
1517 if (i > rnp[j].grphi) \
1518 j++; \
1519 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1520 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1522 } while (0)
1524 static struct notifier_block __cpuinitdata rcu_nb = {
1525 .notifier_call = rcu_cpu_notify,
1528 void __init __rcu_init(void)
1530 int i; /* All used by RCU_DATA_PTR_INIT(). */
1531 int j;
1532 struct rcu_node *rnp;
1534 printk(KERN_WARNING "Experimental hierarchical RCU implementation.\n");
1535 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1536 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1537 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1538 rcu_init_one(&rcu_state);
1539 RCU_DATA_PTR_INIT(&rcu_state, rcu_data);
1540 rcu_init_one(&rcu_bh_state);
1541 RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data);
1543 for_each_online_cpu(i)
1544 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i);
1545 /* Register notifier for non-boot CPUs */
1546 register_cpu_notifier(&rcu_nb);
1547 printk(KERN_WARNING "Experimental hierarchical RCU init done.\n");
1550 module_param(blimit, int, 0);
1551 module_param(qhimark, int, 0);
1552 module_param(qlowmark, int, 0);