2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
13 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
15 void update_rlimit_cpu(unsigned long rlim_new
)
19 cputime
= secs_to_cputime(rlim_new
);
20 if (cputime_eq(current
->signal
->it_prof_expires
, cputime_zero
) ||
21 cputime_gt(current
->signal
->it_prof_expires
, cputime
)) {
22 spin_lock_irq(¤t
->sighand
->siglock
);
23 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
24 spin_unlock_irq(¤t
->sighand
->siglock
);
28 static int check_clock(const clockid_t which_clock
)
31 struct task_struct
*p
;
32 const pid_t pid
= CPUCLOCK_PID(which_clock
);
34 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
40 read_lock(&tasklist_lock
);
41 p
= find_task_by_vpid(pid
);
42 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
43 same_thread_group(p
, current
) : thread_group_leader(p
))) {
46 read_unlock(&tasklist_lock
);
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
54 union cpu_time_count ret
;
55 ret
.sched
= 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
57 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
59 ret
.cpu
= timespec_to_cputime(tp
);
64 static void sample_to_timespec(const clockid_t which_clock
,
65 union cpu_time_count cpu
,
68 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
69 *tp
= ns_to_timespec(cpu
.sched
);
71 cputime_to_timespec(cpu
.cpu
, tp
);
74 static inline int cpu_time_before(const clockid_t which_clock
,
75 union cpu_time_count now
,
76 union cpu_time_count then
)
78 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
79 return now
.sched
< then
.sched
;
81 return cputime_lt(now
.cpu
, then
.cpu
);
84 static inline void cpu_time_add(const clockid_t which_clock
,
85 union cpu_time_count
*acc
,
86 union cpu_time_count val
)
88 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
89 acc
->sched
+= val
.sched
;
91 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
94 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
95 union cpu_time_count a
,
96 union cpu_time_count b
)
98 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
101 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
107 * Divide and limit the result to res >= 1
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
112 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
114 cputime_t res
= cputime_div(time
, div
);
116 return max_t(cputime_t
, res
, 1);
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
123 static void bump_cpu_timer(struct k_itimer
*timer
,
124 union cpu_time_count now
)
128 if (timer
->it
.cpu
.incr
.sched
== 0)
131 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
132 unsigned long long delta
, incr
;
134 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
136 incr
= timer
->it
.cpu
.incr
.sched
;
137 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i
= 0; incr
< delta
- incr
; i
++)
141 for (; i
>= 0; incr
>>= 1, i
--) {
144 timer
->it
.cpu
.expires
.sched
+= incr
;
145 timer
->it_overrun
+= 1 << i
;
149 cputime_t delta
, incr
;
151 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
153 incr
= timer
->it
.cpu
.incr
.cpu
;
154 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
155 timer
->it
.cpu
.expires
.cpu
);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
158 incr
= cputime_add(incr
, incr
);
159 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
160 if (cputime_lt(delta
, incr
))
162 timer
->it
.cpu
.expires
.cpu
=
163 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
164 timer
->it_overrun
+= 1 << i
;
165 delta
= cputime_sub(delta
, incr
);
170 static inline cputime_t
prof_ticks(struct task_struct
*p
)
172 return cputime_add(p
->utime
, p
->stime
);
174 static inline cputime_t
virt_ticks(struct task_struct
*p
)
179 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
181 int error
= check_clock(which_clock
);
184 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
185 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
197 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
203 int error
= check_clock(which_clock
);
212 * Sample a per-thread clock for the given task.
214 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
215 union cpu_time_count
*cpu
)
217 switch (CPUCLOCK_WHICH(which_clock
)) {
221 cpu
->cpu
= prof_ticks(p
);
224 cpu
->cpu
= virt_ticks(p
);
227 cpu
->sched
= task_sched_runtime(p
);
233 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
235 struct sighand_struct
*sighand
;
236 struct signal_struct
*sig
;
237 struct task_struct
*t
;
239 *times
= INIT_CPUTIME
;
242 sighand
= rcu_dereference(tsk
->sighand
);
250 times
->utime
= cputime_add(times
->utime
, t
->utime
);
251 times
->stime
= cputime_add(times
->stime
, t
->stime
);
252 times
->sum_exec_runtime
+= t
->se
.sum_exec_runtime
;
257 times
->utime
= cputime_add(times
->utime
, sig
->utime
);
258 times
->stime
= cputime_add(times
->stime
, sig
->stime
);
259 times
->sum_exec_runtime
+= sig
->sum_sched_runtime
;
264 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
266 if (cputime_gt(b
->utime
, a
->utime
))
269 if (cputime_gt(b
->stime
, a
->stime
))
272 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
273 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
276 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
278 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
279 struct task_cputime sum
;
282 spin_lock_irqsave(&cputimer
->lock
, flags
);
283 if (!cputimer
->running
) {
284 cputimer
->running
= 1;
286 * The POSIX timer interface allows for absolute time expiry
287 * values through the TIMER_ABSTIME flag, therefore we have
288 * to synchronize the timer to the clock every time we start
291 thread_group_cputime(tsk
, &sum
);
292 update_gt_cputime(&cputimer
->cputime
, &sum
);
294 *times
= cputimer
->cputime
;
295 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
299 * Sample a process (thread group) clock for the given group_leader task.
300 * Must be called with tasklist_lock held for reading.
302 static int cpu_clock_sample_group(const clockid_t which_clock
,
303 struct task_struct
*p
,
304 union cpu_time_count
*cpu
)
306 struct task_cputime cputime
;
308 switch (CPUCLOCK_WHICH(which_clock
)) {
312 thread_group_cputime(p
, &cputime
);
313 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
316 thread_group_cputime(p
, &cputime
);
317 cpu
->cpu
= cputime
.utime
;
320 cpu
->sched
= thread_group_sched_runtime(p
);
327 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
329 const pid_t pid
= CPUCLOCK_PID(which_clock
);
331 union cpu_time_count rtn
;
335 * Special case constant value for our own clocks.
336 * We don't have to do any lookup to find ourselves.
338 if (CPUCLOCK_PERTHREAD(which_clock
)) {
340 * Sampling just ourselves we can do with no locking.
342 error
= cpu_clock_sample(which_clock
,
345 read_lock(&tasklist_lock
);
346 error
= cpu_clock_sample_group(which_clock
,
348 read_unlock(&tasklist_lock
);
352 * Find the given PID, and validate that the caller
353 * should be able to see it.
355 struct task_struct
*p
;
357 p
= find_task_by_vpid(pid
);
359 if (CPUCLOCK_PERTHREAD(which_clock
)) {
360 if (same_thread_group(p
, current
)) {
361 error
= cpu_clock_sample(which_clock
,
365 read_lock(&tasklist_lock
);
366 if (thread_group_leader(p
) && p
->signal
) {
368 cpu_clock_sample_group(which_clock
,
371 read_unlock(&tasklist_lock
);
379 sample_to_timespec(which_clock
, rtn
, tp
);
385 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
386 * This is called from sys_timer_create with the new timer already locked.
388 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
391 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
392 struct task_struct
*p
;
394 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
397 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
398 new_timer
->it
.cpu
.incr
.sched
= 0;
399 new_timer
->it
.cpu
.expires
.sched
= 0;
401 read_lock(&tasklist_lock
);
402 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
406 p
= find_task_by_vpid(pid
);
407 if (p
&& !same_thread_group(p
, current
))
412 p
= current
->group_leader
;
414 p
= find_task_by_vpid(pid
);
415 if (p
&& !thread_group_leader(p
))
419 new_timer
->it
.cpu
.task
= p
;
425 read_unlock(&tasklist_lock
);
431 * Clean up a CPU-clock timer that is about to be destroyed.
432 * This is called from timer deletion with the timer already locked.
433 * If we return TIMER_RETRY, it's necessary to release the timer's lock
434 * and try again. (This happens when the timer is in the middle of firing.)
436 int posix_cpu_timer_del(struct k_itimer
*timer
)
438 struct task_struct
*p
= timer
->it
.cpu
.task
;
441 if (likely(p
!= NULL
)) {
442 read_lock(&tasklist_lock
);
443 if (unlikely(p
->signal
== NULL
)) {
445 * We raced with the reaping of the task.
446 * The deletion should have cleared us off the list.
448 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
450 spin_lock(&p
->sighand
->siglock
);
451 if (timer
->it
.cpu
.firing
)
454 list_del(&timer
->it
.cpu
.entry
);
455 spin_unlock(&p
->sighand
->siglock
);
457 read_unlock(&tasklist_lock
);
467 * Clean out CPU timers still ticking when a thread exited. The task
468 * pointer is cleared, and the expiry time is replaced with the residual
469 * time for later timer_gettime calls to return.
470 * This must be called with the siglock held.
472 static void cleanup_timers(struct list_head
*head
,
473 cputime_t utime
, cputime_t stime
,
474 unsigned long long sum_exec_runtime
)
476 struct cpu_timer_list
*timer
, *next
;
477 cputime_t ptime
= cputime_add(utime
, stime
);
479 list_for_each_entry_safe(timer
, next
, head
, entry
) {
480 list_del_init(&timer
->entry
);
481 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
482 timer
->expires
.cpu
= cputime_zero
;
484 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
490 list_for_each_entry_safe(timer
, next
, head
, entry
) {
491 list_del_init(&timer
->entry
);
492 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
493 timer
->expires
.cpu
= cputime_zero
;
495 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
501 list_for_each_entry_safe(timer
, next
, head
, entry
) {
502 list_del_init(&timer
->entry
);
503 if (timer
->expires
.sched
< sum_exec_runtime
) {
504 timer
->expires
.sched
= 0;
506 timer
->expires
.sched
-= sum_exec_runtime
;
512 * These are both called with the siglock held, when the current thread
513 * is being reaped. When the final (leader) thread in the group is reaped,
514 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
516 void posix_cpu_timers_exit(struct task_struct
*tsk
)
518 cleanup_timers(tsk
->cpu_timers
,
519 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
522 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
524 struct task_cputime cputime
;
526 thread_group_cputimer(tsk
, &cputime
);
527 cleanup_timers(tsk
->signal
->cpu_timers
,
528 cputime
.utime
, cputime
.stime
, cputime
.sum_exec_runtime
);
531 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
534 * That's all for this thread or process.
535 * We leave our residual in expires to be reported.
537 put_task_struct(timer
->it
.cpu
.task
);
538 timer
->it
.cpu
.task
= NULL
;
539 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
540 timer
->it
.cpu
.expires
,
545 * Insert the timer on the appropriate list before any timers that
546 * expire later. This must be called with the tasklist_lock held
547 * for reading, and interrupts disabled.
549 static void arm_timer(struct k_itimer
*timer
, union cpu_time_count now
)
551 struct task_struct
*p
= timer
->it
.cpu
.task
;
552 struct list_head
*head
, *listpos
;
553 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
554 struct cpu_timer_list
*next
;
557 head
= (CPUCLOCK_PERTHREAD(timer
->it_clock
) ?
558 p
->cpu_timers
: p
->signal
->cpu_timers
);
559 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
561 BUG_ON(!irqs_disabled());
562 spin_lock(&p
->sighand
->siglock
);
565 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
566 list_for_each_entry(next
, head
, entry
) {
567 if (next
->expires
.sched
> nt
->expires
.sched
)
569 listpos
= &next
->entry
;
572 list_for_each_entry(next
, head
, entry
) {
573 if (cputime_gt(next
->expires
.cpu
, nt
->expires
.cpu
))
575 listpos
= &next
->entry
;
578 list_add(&nt
->entry
, listpos
);
580 if (listpos
== head
) {
582 * We are the new earliest-expiring timer.
583 * If we are a thread timer, there can always
584 * be a process timer telling us to stop earlier.
587 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
588 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
592 if (cputime_eq(p
->cputime_expires
.prof_exp
,
594 cputime_gt(p
->cputime_expires
.prof_exp
,
596 p
->cputime_expires
.prof_exp
=
600 if (cputime_eq(p
->cputime_expires
.virt_exp
,
602 cputime_gt(p
->cputime_expires
.virt_exp
,
604 p
->cputime_expires
.virt_exp
=
608 if (p
->cputime_expires
.sched_exp
== 0 ||
609 p
->cputime_expires
.sched_exp
>
611 p
->cputime_expires
.sched_exp
=
617 * For a process timer, set the cached expiration time.
619 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
623 if (!cputime_eq(p
->signal
->it_virt_expires
,
625 cputime_lt(p
->signal
->it_virt_expires
,
626 timer
->it
.cpu
.expires
.cpu
))
628 p
->signal
->cputime_expires
.virt_exp
=
629 timer
->it
.cpu
.expires
.cpu
;
632 if (!cputime_eq(p
->signal
->it_prof_expires
,
634 cputime_lt(p
->signal
->it_prof_expires
,
635 timer
->it
.cpu
.expires
.cpu
))
637 i
= p
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
;
638 if (i
!= RLIM_INFINITY
&&
639 i
<= cputime_to_secs(timer
->it
.cpu
.expires
.cpu
))
641 p
->signal
->cputime_expires
.prof_exp
=
642 timer
->it
.cpu
.expires
.cpu
;
645 p
->signal
->cputime_expires
.sched_exp
=
646 timer
->it
.cpu
.expires
.sched
;
652 spin_unlock(&p
->sighand
->siglock
);
656 * The timer is locked, fire it and arrange for its reload.
658 static void cpu_timer_fire(struct k_itimer
*timer
)
660 if (unlikely(timer
->sigq
== NULL
)) {
662 * This a special case for clock_nanosleep,
663 * not a normal timer from sys_timer_create.
665 wake_up_process(timer
->it_process
);
666 timer
->it
.cpu
.expires
.sched
= 0;
667 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
669 * One-shot timer. Clear it as soon as it's fired.
671 posix_timer_event(timer
, 0);
672 timer
->it
.cpu
.expires
.sched
= 0;
673 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
675 * The signal did not get queued because the signal
676 * was ignored, so we won't get any callback to
677 * reload the timer. But we need to keep it
678 * ticking in case the signal is deliverable next time.
680 posix_cpu_timer_schedule(timer
);
685 * Sample a process (thread group) timer for the given group_leader task.
686 * Must be called with tasklist_lock held for reading.
688 static int cpu_timer_sample_group(const clockid_t which_clock
,
689 struct task_struct
*p
,
690 union cpu_time_count
*cpu
)
692 struct task_cputime cputime
;
694 thread_group_cputimer(p
, &cputime
);
695 switch (CPUCLOCK_WHICH(which_clock
)) {
699 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
702 cpu
->cpu
= cputime
.utime
;
705 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
712 * Guts of sys_timer_settime for CPU timers.
713 * This is called with the timer locked and interrupts disabled.
714 * If we return TIMER_RETRY, it's necessary to release the timer's lock
715 * and try again. (This happens when the timer is in the middle of firing.)
717 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
718 struct itimerspec
*new, struct itimerspec
*old
)
720 struct task_struct
*p
= timer
->it
.cpu
.task
;
721 union cpu_time_count old_expires
, new_expires
, val
;
724 if (unlikely(p
== NULL
)) {
726 * Timer refers to a dead task's clock.
731 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
733 read_lock(&tasklist_lock
);
735 * We need the tasklist_lock to protect against reaping that
736 * clears p->signal. If p has just been reaped, we can no
737 * longer get any information about it at all.
739 if (unlikely(p
->signal
== NULL
)) {
740 read_unlock(&tasklist_lock
);
742 timer
->it
.cpu
.task
= NULL
;
747 * Disarm any old timer after extracting its expiry time.
749 BUG_ON(!irqs_disabled());
752 spin_lock(&p
->sighand
->siglock
);
753 old_expires
= timer
->it
.cpu
.expires
;
754 if (unlikely(timer
->it
.cpu
.firing
)) {
755 timer
->it
.cpu
.firing
= -1;
758 list_del_init(&timer
->it
.cpu
.entry
);
759 spin_unlock(&p
->sighand
->siglock
);
762 * We need to sample the current value to convert the new
763 * value from to relative and absolute, and to convert the
764 * old value from absolute to relative. To set a process
765 * timer, we need a sample to balance the thread expiry
766 * times (in arm_timer). With an absolute time, we must
767 * check if it's already passed. In short, we need a sample.
769 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
770 cpu_clock_sample(timer
->it_clock
, p
, &val
);
772 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
776 if (old_expires
.sched
== 0) {
777 old
->it_value
.tv_sec
= 0;
778 old
->it_value
.tv_nsec
= 0;
781 * Update the timer in case it has
782 * overrun already. If it has,
783 * we'll report it as having overrun
784 * and with the next reloaded timer
785 * already ticking, though we are
786 * swallowing that pending
787 * notification here to install the
790 bump_cpu_timer(timer
, val
);
791 if (cpu_time_before(timer
->it_clock
, val
,
792 timer
->it
.cpu
.expires
)) {
793 old_expires
= cpu_time_sub(
795 timer
->it
.cpu
.expires
, val
);
796 sample_to_timespec(timer
->it_clock
,
800 old
->it_value
.tv_nsec
= 1;
801 old
->it_value
.tv_sec
= 0;
808 * We are colliding with the timer actually firing.
809 * Punt after filling in the timer's old value, and
810 * disable this firing since we are already reporting
811 * it as an overrun (thanks to bump_cpu_timer above).
813 read_unlock(&tasklist_lock
);
817 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
818 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
822 * Install the new expiry time (or zero).
823 * For a timer with no notification action, we don't actually
824 * arm the timer (we'll just fake it for timer_gettime).
826 timer
->it
.cpu
.expires
= new_expires
;
827 if (new_expires
.sched
!= 0 &&
828 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
829 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
830 arm_timer(timer
, val
);
833 read_unlock(&tasklist_lock
);
836 * Install the new reload setting, and
837 * set up the signal and overrun bookkeeping.
839 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
843 * This acts as a modification timestamp for the timer,
844 * so any automatic reload attempt will punt on seeing
845 * that we have reset the timer manually.
847 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
849 timer
->it_overrun_last
= 0;
850 timer
->it_overrun
= -1;
852 if (new_expires
.sched
!= 0 &&
853 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
854 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
856 * The designated time already passed, so we notify
857 * immediately, even if the thread never runs to
858 * accumulate more time on this clock.
860 cpu_timer_fire(timer
);
866 sample_to_timespec(timer
->it_clock
,
867 timer
->it
.cpu
.incr
, &old
->it_interval
);
872 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
874 union cpu_time_count now
;
875 struct task_struct
*p
= timer
->it
.cpu
.task
;
879 * Easy part: convert the reload time.
881 sample_to_timespec(timer
->it_clock
,
882 timer
->it
.cpu
.incr
, &itp
->it_interval
);
884 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
885 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
889 if (unlikely(p
== NULL
)) {
891 * This task already died and the timer will never fire.
892 * In this case, expires is actually the dead value.
895 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
901 * Sample the clock to take the difference with the expiry time.
903 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
904 cpu_clock_sample(timer
->it_clock
, p
, &now
);
905 clear_dead
= p
->exit_state
;
907 read_lock(&tasklist_lock
);
908 if (unlikely(p
->signal
== NULL
)) {
910 * The process has been reaped.
911 * We can't even collect a sample any more.
912 * Call the timer disarmed, nothing else to do.
915 timer
->it
.cpu
.task
= NULL
;
916 timer
->it
.cpu
.expires
.sched
= 0;
917 read_unlock(&tasklist_lock
);
920 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
921 clear_dead
= (unlikely(p
->exit_state
) &&
922 thread_group_empty(p
));
924 read_unlock(&tasklist_lock
);
927 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
928 if (timer
->it
.cpu
.incr
.sched
== 0 &&
929 cpu_time_before(timer
->it_clock
,
930 timer
->it
.cpu
.expires
, now
)) {
932 * Do-nothing timer expired and has no reload,
933 * so it's as if it was never set.
935 timer
->it
.cpu
.expires
.sched
= 0;
936 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
940 * Account for any expirations and reloads that should
943 bump_cpu_timer(timer
, now
);
946 if (unlikely(clear_dead
)) {
948 * We've noticed that the thread is dead, but
949 * not yet reaped. Take this opportunity to
952 clear_dead_task(timer
, now
);
956 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
957 sample_to_timespec(timer
->it_clock
,
958 cpu_time_sub(timer
->it_clock
,
959 timer
->it
.cpu
.expires
, now
),
963 * The timer should have expired already, but the firing
964 * hasn't taken place yet. Say it's just about to expire.
966 itp
->it_value
.tv_nsec
= 1;
967 itp
->it_value
.tv_sec
= 0;
972 * Check for any per-thread CPU timers that have fired and move them off
973 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
974 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
976 static void check_thread_timers(struct task_struct
*tsk
,
977 struct list_head
*firing
)
980 struct list_head
*timers
= tsk
->cpu_timers
;
981 struct signal_struct
*const sig
= tsk
->signal
;
984 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
985 while (!list_empty(timers
)) {
986 struct cpu_timer_list
*t
= list_first_entry(timers
,
987 struct cpu_timer_list
,
989 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
990 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
994 list_move_tail(&t
->entry
, firing
);
999 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
1000 while (!list_empty(timers
)) {
1001 struct cpu_timer_list
*t
= list_first_entry(timers
,
1002 struct cpu_timer_list
,
1004 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
1005 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
1009 list_move_tail(&t
->entry
, firing
);
1014 tsk
->cputime_expires
.sched_exp
= 0;
1015 while (!list_empty(timers
)) {
1016 struct cpu_timer_list
*t
= list_first_entry(timers
,
1017 struct cpu_timer_list
,
1019 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
1020 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
1024 list_move_tail(&t
->entry
, firing
);
1028 * Check for the special case thread timers.
1030 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
!= RLIM_INFINITY
) {
1031 unsigned long hard
= sig
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1032 unsigned long *soft
= &sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1034 if (hard
!= RLIM_INFINITY
&&
1035 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
1037 * At the hard limit, we just die.
1038 * No need to calculate anything else now.
1040 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1043 if (tsk
->rt
.timeout
> DIV_ROUND_UP(*soft
, USEC_PER_SEC
/HZ
)) {
1045 * At the soft limit, send a SIGXCPU every second.
1047 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
1048 < sig
->rlim
[RLIMIT_RTTIME
].rlim_max
) {
1049 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
+=
1053 "RT Watchdog Timeout: %s[%d]\n",
1054 tsk
->comm
, task_pid_nr(tsk
));
1055 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1060 static void stop_process_timers(struct task_struct
*tsk
)
1062 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
1063 unsigned long flags
;
1065 if (!cputimer
->running
)
1068 spin_lock_irqsave(&cputimer
->lock
, flags
);
1069 cputimer
->running
= 0;
1070 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
1074 * Check for any per-thread CPU timers that have fired and move them
1075 * off the tsk->*_timers list onto the firing list. Per-thread timers
1076 * have already been taken off.
1078 static void check_process_timers(struct task_struct
*tsk
,
1079 struct list_head
*firing
)
1082 struct signal_struct
*const sig
= tsk
->signal
;
1083 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1084 unsigned long long sum_sched_runtime
, sched_expires
;
1085 struct list_head
*timers
= sig
->cpu_timers
;
1086 struct task_cputime cputime
;
1089 * Don't sample the current process CPU clocks if there are no timers.
1091 if (list_empty(&timers
[CPUCLOCK_PROF
]) &&
1092 cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1093 sig
->rlim
[RLIMIT_CPU
].rlim_cur
== RLIM_INFINITY
&&
1094 list_empty(&timers
[CPUCLOCK_VIRT
]) &&
1095 cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1096 list_empty(&timers
[CPUCLOCK_SCHED
])) {
1097 stop_process_timers(tsk
);
1102 * Collect the current process totals.
1104 thread_group_cputimer(tsk
, &cputime
);
1105 utime
= cputime
.utime
;
1106 ptime
= cputime_add(utime
, cputime
.stime
);
1107 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1109 prof_expires
= cputime_zero
;
1110 while (!list_empty(timers
)) {
1111 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1112 struct cpu_timer_list
,
1114 if (!--maxfire
|| cputime_lt(ptime
, tl
->expires
.cpu
)) {
1115 prof_expires
= tl
->expires
.cpu
;
1119 list_move_tail(&tl
->entry
, firing
);
1124 virt_expires
= cputime_zero
;
1125 while (!list_empty(timers
)) {
1126 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1127 struct cpu_timer_list
,
1129 if (!--maxfire
|| cputime_lt(utime
, tl
->expires
.cpu
)) {
1130 virt_expires
= tl
->expires
.cpu
;
1134 list_move_tail(&tl
->entry
, firing
);
1140 while (!list_empty(timers
)) {
1141 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1142 struct cpu_timer_list
,
1144 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1145 sched_expires
= tl
->expires
.sched
;
1149 list_move_tail(&tl
->entry
, firing
);
1153 * Check for the special case process timers.
1155 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1156 if (cputime_ge(ptime
, sig
->it_prof_expires
)) {
1157 /* ITIMER_PROF fires and reloads. */
1158 sig
->it_prof_expires
= sig
->it_prof_incr
;
1159 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1160 sig
->it_prof_expires
= cputime_add(
1161 sig
->it_prof_expires
, ptime
);
1163 __group_send_sig_info(SIGPROF
, SEND_SIG_PRIV
, tsk
);
1165 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1166 (cputime_eq(prof_expires
, cputime_zero
) ||
1167 cputime_lt(sig
->it_prof_expires
, prof_expires
))) {
1168 prof_expires
= sig
->it_prof_expires
;
1171 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1172 if (cputime_ge(utime
, sig
->it_virt_expires
)) {
1173 /* ITIMER_VIRTUAL fires and reloads. */
1174 sig
->it_virt_expires
= sig
->it_virt_incr
;
1175 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1176 sig
->it_virt_expires
= cputime_add(
1177 sig
->it_virt_expires
, utime
);
1179 __group_send_sig_info(SIGVTALRM
, SEND_SIG_PRIV
, tsk
);
1181 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1182 (cputime_eq(virt_expires
, cputime_zero
) ||
1183 cputime_lt(sig
->it_virt_expires
, virt_expires
))) {
1184 virt_expires
= sig
->it_virt_expires
;
1187 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1188 unsigned long psecs
= cputime_to_secs(ptime
);
1190 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1192 * At the hard limit, we just die.
1193 * No need to calculate anything else now.
1195 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1198 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_cur
) {
1200 * At the soft limit, send a SIGXCPU every second.
1202 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1203 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
1204 < sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1205 sig
->rlim
[RLIMIT_CPU
].rlim_cur
++;
1208 x
= secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1209 if (cputime_eq(prof_expires
, cputime_zero
) ||
1210 cputime_lt(x
, prof_expires
)) {
1215 if (!cputime_eq(prof_expires
, cputime_zero
) &&
1216 (cputime_eq(sig
->cputime_expires
.prof_exp
, cputime_zero
) ||
1217 cputime_gt(sig
->cputime_expires
.prof_exp
, prof_expires
)))
1218 sig
->cputime_expires
.prof_exp
= prof_expires
;
1219 if (!cputime_eq(virt_expires
, cputime_zero
) &&
1220 (cputime_eq(sig
->cputime_expires
.virt_exp
, cputime_zero
) ||
1221 cputime_gt(sig
->cputime_expires
.virt_exp
, virt_expires
)))
1222 sig
->cputime_expires
.virt_exp
= virt_expires
;
1223 if (sched_expires
!= 0 &&
1224 (sig
->cputime_expires
.sched_exp
== 0 ||
1225 sig
->cputime_expires
.sched_exp
> sched_expires
))
1226 sig
->cputime_expires
.sched_exp
= sched_expires
;
1230 * This is called from the signal code (via do_schedule_next_timer)
1231 * when the last timer signal was delivered and we have to reload the timer.
1233 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1235 struct task_struct
*p
= timer
->it
.cpu
.task
;
1236 union cpu_time_count now
;
1238 if (unlikely(p
== NULL
))
1240 * The task was cleaned up already, no future firings.
1245 * Fetch the current sample and update the timer's expiry time.
1247 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1248 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1249 bump_cpu_timer(timer
, now
);
1250 if (unlikely(p
->exit_state
)) {
1251 clear_dead_task(timer
, now
);
1254 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1256 read_lock(&tasklist_lock
);
1257 if (unlikely(p
->signal
== NULL
)) {
1259 * The process has been reaped.
1260 * We can't even collect a sample any more.
1263 timer
->it
.cpu
.task
= p
= NULL
;
1264 timer
->it
.cpu
.expires
.sched
= 0;
1266 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1268 * We've noticed that the thread is dead, but
1269 * not yet reaped. Take this opportunity to
1270 * drop our task ref.
1272 clear_dead_task(timer
, now
);
1275 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1276 bump_cpu_timer(timer
, now
);
1277 /* Leave the tasklist_lock locked for the call below. */
1281 * Now re-arm for the new expiry time.
1283 arm_timer(timer
, now
);
1286 read_unlock(&tasklist_lock
);
1289 timer
->it_overrun_last
= timer
->it_overrun
;
1290 timer
->it_overrun
= -1;
1291 ++timer
->it_requeue_pending
;
1295 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1297 * @cputime: The struct to compare.
1299 * Checks @cputime to see if all fields are zero. Returns true if all fields
1300 * are zero, false if any field is nonzero.
1302 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1304 if (cputime_eq(cputime
->utime
, cputime_zero
) &&
1305 cputime_eq(cputime
->stime
, cputime_zero
) &&
1306 cputime
->sum_exec_runtime
== 0)
1312 * task_cputime_expired - Compare two task_cputime entities.
1314 * @sample: The task_cputime structure to be checked for expiration.
1315 * @expires: Expiration times, against which @sample will be checked.
1317 * Checks @sample against @expires to see if any field of @sample has expired.
1318 * Returns true if any field of the former is greater than the corresponding
1319 * field of the latter if the latter field is set. Otherwise returns false.
1321 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1322 const struct task_cputime
*expires
)
1324 if (!cputime_eq(expires
->utime
, cputime_zero
) &&
1325 cputime_ge(sample
->utime
, expires
->utime
))
1327 if (!cputime_eq(expires
->stime
, cputime_zero
) &&
1328 cputime_ge(cputime_add(sample
->utime
, sample
->stime
),
1331 if (expires
->sum_exec_runtime
!= 0 &&
1332 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1338 * fastpath_timer_check - POSIX CPU timers fast path.
1340 * @tsk: The task (thread) being checked.
1342 * Check the task and thread group timers. If both are zero (there are no
1343 * timers set) return false. Otherwise snapshot the task and thread group
1344 * timers and compare them with the corresponding expiration times. Return
1345 * true if a timer has expired, else return false.
1347 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1349 struct signal_struct
*sig
;
1351 /* tsk == current, ensure it is safe to use ->signal/sighand */
1352 if (unlikely(tsk
->exit_state
))
1355 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1356 struct task_cputime task_sample
= {
1357 .utime
= tsk
->utime
,
1358 .stime
= tsk
->stime
,
1359 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1362 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1367 if (!task_cputime_zero(&sig
->cputime_expires
)) {
1368 struct task_cputime group_sample
;
1370 thread_group_cputimer(tsk
, &group_sample
);
1371 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1375 return sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
;
1379 * This is called from the timer interrupt handler. The irq handler has
1380 * already updated our counts. We need to check if any timers fire now.
1381 * Interrupts are disabled.
1383 void run_posix_cpu_timers(struct task_struct
*tsk
)
1386 struct k_itimer
*timer
, *next
;
1388 BUG_ON(!irqs_disabled());
1391 * The fast path checks that there are no expired thread or thread
1392 * group timers. If that's so, just return.
1394 if (!fastpath_timer_check(tsk
))
1397 spin_lock(&tsk
->sighand
->siglock
);
1399 * Here we take off tsk->signal->cpu_timers[N] and
1400 * tsk->cpu_timers[N] all the timers that are firing, and
1401 * put them on the firing list.
1403 check_thread_timers(tsk
, &firing
);
1404 check_process_timers(tsk
, &firing
);
1407 * We must release these locks before taking any timer's lock.
1408 * There is a potential race with timer deletion here, as the
1409 * siglock now protects our private firing list. We have set
1410 * the firing flag in each timer, so that a deletion attempt
1411 * that gets the timer lock before we do will give it up and
1412 * spin until we've taken care of that timer below.
1414 spin_unlock(&tsk
->sighand
->siglock
);
1417 * Now that all the timers on our list have the firing flag,
1418 * noone will touch their list entries but us. We'll take
1419 * each timer's lock before clearing its firing flag, so no
1420 * timer call will interfere.
1422 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1424 spin_lock(&timer
->it_lock
);
1425 list_del_init(&timer
->it
.cpu
.entry
);
1426 firing
= timer
->it
.cpu
.firing
;
1427 timer
->it
.cpu
.firing
= 0;
1429 * The firing flag is -1 if we collided with a reset
1430 * of the timer, which already reported this
1431 * almost-firing as an overrun. So don't generate an event.
1433 if (likely(firing
>= 0)) {
1434 cpu_timer_fire(timer
);
1436 spin_unlock(&timer
->it_lock
);
1441 * Set one of the process-wide special case CPU timers.
1442 * The tsk->sighand->siglock must be held by the caller.
1443 * The *newval argument is relative and we update it to be absolute, *oldval
1444 * is absolute and we update it to be relative.
1446 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1447 cputime_t
*newval
, cputime_t
*oldval
)
1449 union cpu_time_count now
;
1450 struct list_head
*head
;
1452 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1453 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1456 if (!cputime_eq(*oldval
, cputime_zero
)) {
1457 if (cputime_le(*oldval
, now
.cpu
)) {
1458 /* Just about to fire. */
1459 *oldval
= jiffies_to_cputime(1);
1461 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1465 if (cputime_eq(*newval
, cputime_zero
))
1467 *newval
= cputime_add(*newval
, now
.cpu
);
1470 * If the RLIMIT_CPU timer will expire before the
1471 * ITIMER_PROF timer, we have nothing else to do.
1473 if (tsk
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
1474 < cputime_to_secs(*newval
))
1479 * Check whether there are any process timers already set to fire
1480 * before this one. If so, we don't have anything more to do.
1482 head
= &tsk
->signal
->cpu_timers
[clock_idx
];
1483 if (list_empty(head
) ||
1484 cputime_ge(list_first_entry(head
,
1485 struct cpu_timer_list
, entry
)->expires
.cpu
,
1487 switch (clock_idx
) {
1489 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1492 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1498 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1499 struct timespec
*rqtp
, struct itimerspec
*it
)
1501 struct k_itimer timer
;
1505 * Set up a temporary timer and then wait for it to go off.
1507 memset(&timer
, 0, sizeof timer
);
1508 spin_lock_init(&timer
.it_lock
);
1509 timer
.it_clock
= which_clock
;
1510 timer
.it_overrun
= -1;
1511 error
= posix_cpu_timer_create(&timer
);
1512 timer
.it_process
= current
;
1514 static struct itimerspec zero_it
;
1516 memset(it
, 0, sizeof *it
);
1517 it
->it_value
= *rqtp
;
1519 spin_lock_irq(&timer
.it_lock
);
1520 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1522 spin_unlock_irq(&timer
.it_lock
);
1526 while (!signal_pending(current
)) {
1527 if (timer
.it
.cpu
.expires
.sched
== 0) {
1529 * Our timer fired and was reset.
1531 spin_unlock_irq(&timer
.it_lock
);
1536 * Block until cpu_timer_fire (or a signal) wakes us.
1538 __set_current_state(TASK_INTERRUPTIBLE
);
1539 spin_unlock_irq(&timer
.it_lock
);
1541 spin_lock_irq(&timer
.it_lock
);
1545 * We were interrupted by a signal.
1547 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1548 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1549 spin_unlock_irq(&timer
.it_lock
);
1551 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1553 * It actually did fire already.
1558 error
= -ERESTART_RESTARTBLOCK
;
1564 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1565 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1567 struct restart_block
*restart_block
=
1568 ¤t_thread_info()->restart_block
;
1569 struct itimerspec it
;
1573 * Diagnose required errors first.
1575 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1576 (CPUCLOCK_PID(which_clock
) == 0 ||
1577 CPUCLOCK_PID(which_clock
) == current
->pid
))
1580 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1582 if (error
== -ERESTART_RESTARTBLOCK
) {
1584 if (flags
& TIMER_ABSTIME
)
1585 return -ERESTARTNOHAND
;
1587 * Report back to the user the time still remaining.
1589 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1592 restart_block
->fn
= posix_cpu_nsleep_restart
;
1593 restart_block
->arg0
= which_clock
;
1594 restart_block
->arg1
= (unsigned long) rmtp
;
1595 restart_block
->arg2
= rqtp
->tv_sec
;
1596 restart_block
->arg3
= rqtp
->tv_nsec
;
1601 long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1603 clockid_t which_clock
= restart_block
->arg0
;
1604 struct timespec __user
*rmtp
;
1606 struct itimerspec it
;
1609 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1610 t
.tv_sec
= restart_block
->arg2
;
1611 t
.tv_nsec
= restart_block
->arg3
;
1613 restart_block
->fn
= do_no_restart_syscall
;
1614 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1616 if (error
== -ERESTART_RESTARTBLOCK
) {
1618 * Report back to the user the time still remaining.
1620 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1623 restart_block
->fn
= posix_cpu_nsleep_restart
;
1624 restart_block
->arg0
= which_clock
;
1625 restart_block
->arg1
= (unsigned long) rmtp
;
1626 restart_block
->arg2
= t
.tv_sec
;
1627 restart_block
->arg3
= t
.tv_nsec
;
1634 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1635 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1637 static int process_cpu_clock_getres(const clockid_t which_clock
,
1638 struct timespec
*tp
)
1640 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1642 static int process_cpu_clock_get(const clockid_t which_clock
,
1643 struct timespec
*tp
)
1645 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1647 static int process_cpu_timer_create(struct k_itimer
*timer
)
1649 timer
->it_clock
= PROCESS_CLOCK
;
1650 return posix_cpu_timer_create(timer
);
1652 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1653 struct timespec
*rqtp
,
1654 struct timespec __user
*rmtp
)
1656 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1658 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1662 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1663 struct timespec
*tp
)
1665 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1667 static int thread_cpu_clock_get(const clockid_t which_clock
,
1668 struct timespec
*tp
)
1670 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1672 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1674 timer
->it_clock
= THREAD_CLOCK
;
1675 return posix_cpu_timer_create(timer
);
1677 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1678 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1682 static long thread_cpu_nsleep_restart(struct restart_block
*restart_block
)
1687 static __init
int init_posix_cpu_timers(void)
1689 struct k_clock process
= {
1690 .clock_getres
= process_cpu_clock_getres
,
1691 .clock_get
= process_cpu_clock_get
,
1692 .clock_set
= do_posix_clock_nosettime
,
1693 .timer_create
= process_cpu_timer_create
,
1694 .nsleep
= process_cpu_nsleep
,
1695 .nsleep_restart
= process_cpu_nsleep_restart
,
1697 struct k_clock thread
= {
1698 .clock_getres
= thread_cpu_clock_getres
,
1699 .clock_get
= thread_cpu_clock_get
,
1700 .clock_set
= do_posix_clock_nosettime
,
1701 .timer_create
= thread_cpu_timer_create
,
1702 .nsleep
= thread_cpu_nsleep
,
1703 .nsleep_restart
= thread_cpu_nsleep_restart
,
1706 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1707 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1711 __initcall(init_posix_cpu_timers
);