[PATCH] KVM: Force real-mode cs limit to 64K
[linux-2.6/linux-2.6-openrd.git] / drivers / kvm / vmx.c
blob2d7c6d6f1273b26e629259f51783a057f36f4ad6
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <asm/io.h>
25 #include <asm/desc.h>
27 #include "segment_descriptor.h"
29 #define MSR_IA32_FEATURE_CONTROL 0x03a
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
37 #ifdef CONFIG_X86_64
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
43 static struct vmcs_descriptor {
44 int size;
45 int order;
46 u32 revision_id;
47 } vmcs_descriptor;
49 #define VMX_SEGMENT_FIELD(seg) \
50 [VCPU_SREG_##seg] = { \
51 .selector = GUEST_##seg##_SELECTOR, \
52 .base = GUEST_##seg##_BASE, \
53 .limit = GUEST_##seg##_LIMIT, \
54 .ar_bytes = GUEST_##seg##_AR_BYTES, \
57 static struct kvm_vmx_segment_field {
58 unsigned selector;
59 unsigned base;
60 unsigned limit;
61 unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63 VMX_SEGMENT_FIELD(CS),
64 VMX_SEGMENT_FIELD(DS),
65 VMX_SEGMENT_FIELD(ES),
66 VMX_SEGMENT_FIELD(FS),
67 VMX_SEGMENT_FIELD(GS),
68 VMX_SEGMENT_FIELD(SS),
69 VMX_SEGMENT_FIELD(TR),
70 VMX_SEGMENT_FIELD(LDTR),
73 static const u32 vmx_msr_index[] = {
74 #ifdef CONFIG_X86_64
75 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
76 #endif
77 MSR_EFER, MSR_K6_STAR,
79 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
81 static inline int is_page_fault(u32 intr_info)
83 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
84 INTR_INFO_VALID_MASK)) ==
85 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
88 static inline int is_external_interrupt(u32 intr_info)
90 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
91 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
94 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
96 int i;
98 for (i = 0; i < vcpu->nmsrs; ++i)
99 if (vcpu->guest_msrs[i].index == msr)
100 return &vcpu->guest_msrs[i];
101 return 0;
104 static void vmcs_clear(struct vmcs *vmcs)
106 u64 phys_addr = __pa(vmcs);
107 u8 error;
109 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
110 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
111 : "cc", "memory");
112 if (error)
113 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
114 vmcs, phys_addr);
117 static void __vcpu_clear(void *arg)
119 struct kvm_vcpu *vcpu = arg;
120 int cpu = smp_processor_id();
122 if (vcpu->cpu == cpu)
123 vmcs_clear(vcpu->vmcs);
124 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
125 per_cpu(current_vmcs, cpu) = NULL;
128 static unsigned long vmcs_readl(unsigned long field)
130 unsigned long value;
132 asm volatile (ASM_VMX_VMREAD_RDX_RAX
133 : "=a"(value) : "d"(field) : "cc");
134 return value;
137 static u16 vmcs_read16(unsigned long field)
139 return vmcs_readl(field);
142 static u32 vmcs_read32(unsigned long field)
144 return vmcs_readl(field);
147 static u64 vmcs_read64(unsigned long field)
149 #ifdef CONFIG_X86_64
150 return vmcs_readl(field);
151 #else
152 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
153 #endif
156 static void vmcs_writel(unsigned long field, unsigned long value)
158 u8 error;
160 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
161 : "=q"(error) : "a"(value), "d"(field) : "cc" );
162 if (error)
163 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
164 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
167 static void vmcs_write16(unsigned long field, u16 value)
169 vmcs_writel(field, value);
172 static void vmcs_write32(unsigned long field, u32 value)
174 vmcs_writel(field, value);
177 static void vmcs_write64(unsigned long field, u64 value)
179 #ifdef CONFIG_X86_64
180 vmcs_writel(field, value);
181 #else
182 vmcs_writel(field, value);
183 asm volatile ("");
184 vmcs_writel(field+1, value >> 32);
185 #endif
189 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
190 * vcpu mutex is already taken.
192 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
194 u64 phys_addr = __pa(vcpu->vmcs);
195 int cpu;
197 cpu = get_cpu();
199 if (vcpu->cpu != cpu) {
200 smp_call_function(__vcpu_clear, vcpu, 0, 1);
201 vcpu->launched = 0;
204 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
205 u8 error;
207 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
208 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
209 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
210 : "cc");
211 if (error)
212 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
213 vcpu->vmcs, phys_addr);
216 if (vcpu->cpu != cpu) {
217 struct descriptor_table dt;
218 unsigned long sysenter_esp;
220 vcpu->cpu = cpu;
222 * Linux uses per-cpu TSS and GDT, so set these when switching
223 * processors.
225 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
226 get_gdt(&dt);
227 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
229 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
230 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
232 return vcpu;
235 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
237 put_cpu();
240 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
242 return vmcs_readl(GUEST_RFLAGS);
245 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
247 vmcs_writel(GUEST_RFLAGS, rflags);
250 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
252 unsigned long rip;
253 u32 interruptibility;
255 rip = vmcs_readl(GUEST_RIP);
256 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
257 vmcs_writel(GUEST_RIP, rip);
260 * We emulated an instruction, so temporary interrupt blocking
261 * should be removed, if set.
263 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
264 if (interruptibility & 3)
265 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
266 interruptibility & ~3);
269 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
271 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
272 vmcs_readl(GUEST_RIP));
273 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
274 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
275 GP_VECTOR |
276 INTR_TYPE_EXCEPTION |
277 INTR_INFO_DELIEVER_CODE_MASK |
278 INTR_INFO_VALID_MASK);
282 * reads and returns guest's timestamp counter "register"
283 * guest_tsc = host_tsc + tsc_offset -- 21.3
285 static u64 guest_read_tsc(void)
287 u64 host_tsc, tsc_offset;
289 rdtscll(host_tsc);
290 tsc_offset = vmcs_read64(TSC_OFFSET);
291 return host_tsc + tsc_offset;
295 * writes 'guest_tsc' into guest's timestamp counter "register"
296 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
298 static void guest_write_tsc(u64 guest_tsc)
300 u64 host_tsc;
302 rdtscll(host_tsc);
303 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
306 static void reload_tss(void)
308 #ifndef CONFIG_X86_64
311 * VT restores TR but not its size. Useless.
313 struct descriptor_table gdt;
314 struct segment_descriptor *descs;
316 get_gdt(&gdt);
317 descs = (void *)gdt.base;
318 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
319 load_TR_desc();
320 #endif
324 * Reads an msr value (of 'msr_index') into 'pdata'.
325 * Returns 0 on success, non-0 otherwise.
326 * Assumes vcpu_load() was already called.
328 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
330 u64 data;
331 struct vmx_msr_entry *msr;
333 if (!pdata) {
334 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
335 return -EINVAL;
338 switch (msr_index) {
339 #ifdef CONFIG_X86_64
340 case MSR_FS_BASE:
341 data = vmcs_readl(GUEST_FS_BASE);
342 break;
343 case MSR_GS_BASE:
344 data = vmcs_readl(GUEST_GS_BASE);
345 break;
346 case MSR_EFER:
347 data = vcpu->shadow_efer;
348 break;
349 #endif
350 case MSR_IA32_TIME_STAMP_COUNTER:
351 data = guest_read_tsc();
352 break;
353 case MSR_IA32_SYSENTER_CS:
354 data = vmcs_read32(GUEST_SYSENTER_CS);
355 break;
356 case MSR_IA32_SYSENTER_EIP:
357 data = vmcs_read32(GUEST_SYSENTER_EIP);
358 break;
359 case MSR_IA32_SYSENTER_ESP:
360 data = vmcs_read32(GUEST_SYSENTER_ESP);
361 break;
362 case MSR_IA32_MC0_CTL:
363 case MSR_IA32_MCG_STATUS:
364 case MSR_IA32_MCG_CAP:
365 case MSR_IA32_MC0_MISC:
366 case MSR_IA32_MC0_MISC+4:
367 case MSR_IA32_MC0_MISC+8:
368 case MSR_IA32_MC0_MISC+12:
369 case MSR_IA32_MC0_MISC+16:
370 case MSR_IA32_UCODE_REV:
371 /* MTRR registers */
372 case 0xfe:
373 case 0x200 ... 0x2ff:
374 data = 0;
375 break;
376 case MSR_IA32_APICBASE:
377 data = vcpu->apic_base;
378 break;
379 default:
380 msr = find_msr_entry(vcpu, msr_index);
381 if (!msr) {
382 printk(KERN_ERR "kvm: unhandled rdmsr: %x\n", msr_index);
383 return 1;
385 data = msr->data;
386 break;
389 *pdata = data;
390 return 0;
394 * Writes msr value into into the appropriate "register".
395 * Returns 0 on success, non-0 otherwise.
396 * Assumes vcpu_load() was already called.
398 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
400 struct vmx_msr_entry *msr;
401 switch (msr_index) {
402 #ifdef CONFIG_X86_64
403 case MSR_FS_BASE:
404 vmcs_writel(GUEST_FS_BASE, data);
405 break;
406 case MSR_GS_BASE:
407 vmcs_writel(GUEST_GS_BASE, data);
408 break;
409 #endif
410 case MSR_IA32_SYSENTER_CS:
411 vmcs_write32(GUEST_SYSENTER_CS, data);
412 break;
413 case MSR_IA32_SYSENTER_EIP:
414 vmcs_write32(GUEST_SYSENTER_EIP, data);
415 break;
416 case MSR_IA32_SYSENTER_ESP:
417 vmcs_write32(GUEST_SYSENTER_ESP, data);
418 break;
419 #ifdef __x86_64
420 case MSR_EFER:
421 set_efer(vcpu, data);
422 break;
423 case MSR_IA32_MC0_STATUS:
424 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
425 , __FUNCTION__, data);
426 break;
427 #endif
428 case MSR_IA32_TIME_STAMP_COUNTER: {
429 guest_write_tsc(data);
430 break;
432 case MSR_IA32_UCODE_REV:
433 case MSR_IA32_UCODE_WRITE:
434 case 0x200 ... 0x2ff: /* MTRRs */
435 break;
436 case MSR_IA32_APICBASE:
437 vcpu->apic_base = data;
438 break;
439 default:
440 msr = find_msr_entry(vcpu, msr_index);
441 if (!msr) {
442 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr_index);
443 return 1;
445 msr->data = data;
446 break;
449 return 0;
453 * Sync the rsp and rip registers into the vcpu structure. This allows
454 * registers to be accessed by indexing vcpu->regs.
456 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
458 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
459 vcpu->rip = vmcs_readl(GUEST_RIP);
463 * Syncs rsp and rip back into the vmcs. Should be called after possible
464 * modification.
466 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
468 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
469 vmcs_writel(GUEST_RIP, vcpu->rip);
472 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
474 unsigned long dr7 = 0x400;
475 u32 exception_bitmap;
476 int old_singlestep;
478 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
479 old_singlestep = vcpu->guest_debug.singlestep;
481 vcpu->guest_debug.enabled = dbg->enabled;
482 if (vcpu->guest_debug.enabled) {
483 int i;
485 dr7 |= 0x200; /* exact */
486 for (i = 0; i < 4; ++i) {
487 if (!dbg->breakpoints[i].enabled)
488 continue;
489 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
490 dr7 |= 2 << (i*2); /* global enable */
491 dr7 |= 0 << (i*4+16); /* execution breakpoint */
494 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
496 vcpu->guest_debug.singlestep = dbg->singlestep;
497 } else {
498 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
499 vcpu->guest_debug.singlestep = 0;
502 if (old_singlestep && !vcpu->guest_debug.singlestep) {
503 unsigned long flags;
505 flags = vmcs_readl(GUEST_RFLAGS);
506 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
507 vmcs_writel(GUEST_RFLAGS, flags);
510 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
511 vmcs_writel(GUEST_DR7, dr7);
513 return 0;
516 static __init int cpu_has_kvm_support(void)
518 unsigned long ecx = cpuid_ecx(1);
519 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
522 static __init int vmx_disabled_by_bios(void)
524 u64 msr;
526 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
527 return (msr & 5) == 1; /* locked but not enabled */
530 static __init void hardware_enable(void *garbage)
532 int cpu = raw_smp_processor_id();
533 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
534 u64 old;
536 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
537 if ((old & 5) != 5)
538 /* enable and lock */
539 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
540 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
541 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
542 : "memory", "cc");
545 static void hardware_disable(void *garbage)
547 asm volatile (ASM_VMX_VMXOFF : : : "cc");
550 static __init void setup_vmcs_descriptor(void)
552 u32 vmx_msr_low, vmx_msr_high;
554 rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high);
555 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
556 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
557 vmcs_descriptor.revision_id = vmx_msr_low;
560 static struct vmcs *alloc_vmcs_cpu(int cpu)
562 int node = cpu_to_node(cpu);
563 struct page *pages;
564 struct vmcs *vmcs;
566 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
567 if (!pages)
568 return NULL;
569 vmcs = page_address(pages);
570 memset(vmcs, 0, vmcs_descriptor.size);
571 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
572 return vmcs;
575 static struct vmcs *alloc_vmcs(void)
577 return alloc_vmcs_cpu(smp_processor_id());
580 static void free_vmcs(struct vmcs *vmcs)
582 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
585 static __exit void free_kvm_area(void)
587 int cpu;
589 for_each_online_cpu(cpu)
590 free_vmcs(per_cpu(vmxarea, cpu));
593 extern struct vmcs *alloc_vmcs_cpu(int cpu);
595 static __init int alloc_kvm_area(void)
597 int cpu;
599 for_each_online_cpu(cpu) {
600 struct vmcs *vmcs;
602 vmcs = alloc_vmcs_cpu(cpu);
603 if (!vmcs) {
604 free_kvm_area();
605 return -ENOMEM;
608 per_cpu(vmxarea, cpu) = vmcs;
610 return 0;
613 static __init int hardware_setup(void)
615 setup_vmcs_descriptor();
616 return alloc_kvm_area();
619 static __exit void hardware_unsetup(void)
621 free_kvm_area();
624 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
626 if (vcpu->rmode.active)
627 vmcs_write32(EXCEPTION_BITMAP, ~0);
628 else
629 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
632 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
634 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
636 if (vmcs_readl(sf->base) == save->base) {
637 vmcs_write16(sf->selector, save->selector);
638 vmcs_writel(sf->base, save->base);
639 vmcs_write32(sf->limit, save->limit);
640 vmcs_write32(sf->ar_bytes, save->ar);
641 } else {
642 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
643 << AR_DPL_SHIFT;
644 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
648 static void enter_pmode(struct kvm_vcpu *vcpu)
650 unsigned long flags;
652 vcpu->rmode.active = 0;
654 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
655 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
656 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
658 flags = vmcs_readl(GUEST_RFLAGS);
659 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
660 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
661 vmcs_writel(GUEST_RFLAGS, flags);
663 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
664 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
666 update_exception_bitmap(vcpu);
668 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
669 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
670 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
671 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
673 vmcs_write16(GUEST_SS_SELECTOR, 0);
674 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
676 vmcs_write16(GUEST_CS_SELECTOR,
677 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
678 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
681 static int rmode_tss_base(struct kvm* kvm)
683 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
684 return base_gfn << PAGE_SHIFT;
687 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
689 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
691 save->selector = vmcs_read16(sf->selector);
692 save->base = vmcs_readl(sf->base);
693 save->limit = vmcs_read32(sf->limit);
694 save->ar = vmcs_read32(sf->ar_bytes);
695 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
696 vmcs_write32(sf->limit, 0xffff);
697 vmcs_write32(sf->ar_bytes, 0xf3);
700 static void enter_rmode(struct kvm_vcpu *vcpu)
702 unsigned long flags;
704 vcpu->rmode.active = 1;
706 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
707 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
709 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
710 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
712 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
713 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
715 flags = vmcs_readl(GUEST_RFLAGS);
716 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
718 flags |= IOPL_MASK | X86_EFLAGS_VM;
720 vmcs_writel(GUEST_RFLAGS, flags);
721 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
722 update_exception_bitmap(vcpu);
724 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
725 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
726 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
728 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
729 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
730 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
732 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
733 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
734 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
735 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
738 #ifdef CONFIG_X86_64
740 static void enter_lmode(struct kvm_vcpu *vcpu)
742 u32 guest_tr_ar;
744 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
745 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
746 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
747 __FUNCTION__);
748 vmcs_write32(GUEST_TR_AR_BYTES,
749 (guest_tr_ar & ~AR_TYPE_MASK)
750 | AR_TYPE_BUSY_64_TSS);
753 vcpu->shadow_efer |= EFER_LMA;
755 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
756 vmcs_write32(VM_ENTRY_CONTROLS,
757 vmcs_read32(VM_ENTRY_CONTROLS)
758 | VM_ENTRY_CONTROLS_IA32E_MASK);
761 static void exit_lmode(struct kvm_vcpu *vcpu)
763 vcpu->shadow_efer &= ~EFER_LMA;
765 vmcs_write32(VM_ENTRY_CONTROLS,
766 vmcs_read32(VM_ENTRY_CONTROLS)
767 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
770 #endif
772 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
774 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
775 enter_pmode(vcpu);
777 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
778 enter_rmode(vcpu);
780 #ifdef CONFIG_X86_64
781 if (vcpu->shadow_efer & EFER_LME) {
782 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
783 enter_lmode(vcpu);
784 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
785 exit_lmode(vcpu);
787 #endif
789 vmcs_writel(CR0_READ_SHADOW, cr0);
790 vmcs_writel(GUEST_CR0,
791 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
792 vcpu->cr0 = cr0;
796 * Used when restoring the VM to avoid corrupting segment registers
798 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
800 vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
801 update_exception_bitmap(vcpu);
802 vmcs_writel(CR0_READ_SHADOW, cr0);
803 vmcs_writel(GUEST_CR0,
804 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
805 vcpu->cr0 = cr0;
808 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
810 vmcs_writel(GUEST_CR3, cr3);
813 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
815 vmcs_writel(CR4_READ_SHADOW, cr4);
816 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
817 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
818 vcpu->cr4 = cr4;
821 #ifdef CONFIG_X86_64
823 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
825 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
827 vcpu->shadow_efer = efer;
828 if (efer & EFER_LMA) {
829 vmcs_write32(VM_ENTRY_CONTROLS,
830 vmcs_read32(VM_ENTRY_CONTROLS) |
831 VM_ENTRY_CONTROLS_IA32E_MASK);
832 msr->data = efer;
834 } else {
835 vmcs_write32(VM_ENTRY_CONTROLS,
836 vmcs_read32(VM_ENTRY_CONTROLS) &
837 ~VM_ENTRY_CONTROLS_IA32E_MASK);
839 msr->data = efer & ~EFER_LME;
843 #endif
845 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
847 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
849 return vmcs_readl(sf->base);
852 static void vmx_get_segment(struct kvm_vcpu *vcpu,
853 struct kvm_segment *var, int seg)
855 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
856 u32 ar;
858 var->base = vmcs_readl(sf->base);
859 var->limit = vmcs_read32(sf->limit);
860 var->selector = vmcs_read16(sf->selector);
861 ar = vmcs_read32(sf->ar_bytes);
862 if (ar & AR_UNUSABLE_MASK)
863 ar = 0;
864 var->type = ar & 15;
865 var->s = (ar >> 4) & 1;
866 var->dpl = (ar >> 5) & 3;
867 var->present = (ar >> 7) & 1;
868 var->avl = (ar >> 12) & 1;
869 var->l = (ar >> 13) & 1;
870 var->db = (ar >> 14) & 1;
871 var->g = (ar >> 15) & 1;
872 var->unusable = (ar >> 16) & 1;
875 static void vmx_set_segment(struct kvm_vcpu *vcpu,
876 struct kvm_segment *var, int seg)
878 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
879 u32 ar;
881 vmcs_writel(sf->base, var->base);
882 vmcs_write32(sf->limit, var->limit);
883 vmcs_write16(sf->selector, var->selector);
884 if (var->unusable)
885 ar = 1 << 16;
886 else {
887 ar = var->type & 15;
888 ar |= (var->s & 1) << 4;
889 ar |= (var->dpl & 3) << 5;
890 ar |= (var->present & 1) << 7;
891 ar |= (var->avl & 1) << 12;
892 ar |= (var->l & 1) << 13;
893 ar |= (var->db & 1) << 14;
894 ar |= (var->g & 1) << 15;
896 if (ar == 0) /* a 0 value means unusable */
897 ar = AR_UNUSABLE_MASK;
898 vmcs_write32(sf->ar_bytes, ar);
901 static int vmx_is_long_mode(struct kvm_vcpu *vcpu)
903 return vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_CONTROLS_IA32E_MASK;
906 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
908 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
910 *db = (ar >> 14) & 1;
911 *l = (ar >> 13) & 1;
914 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
916 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
917 dt->base = vmcs_readl(GUEST_IDTR_BASE);
920 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
922 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
923 vmcs_writel(GUEST_IDTR_BASE, dt->base);
926 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
928 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
929 dt->base = vmcs_readl(GUEST_GDTR_BASE);
932 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
934 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
935 vmcs_writel(GUEST_GDTR_BASE, dt->base);
938 static int init_rmode_tss(struct kvm* kvm)
940 struct page *p1, *p2, *p3;
941 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
942 char *page;
944 p1 = _gfn_to_page(kvm, fn++);
945 p2 = _gfn_to_page(kvm, fn++);
946 p3 = _gfn_to_page(kvm, fn);
948 if (!p1 || !p2 || !p3) {
949 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
950 return 0;
953 page = kmap_atomic(p1, KM_USER0);
954 memset(page, 0, PAGE_SIZE);
955 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
956 kunmap_atomic(page, KM_USER0);
958 page = kmap_atomic(p2, KM_USER0);
959 memset(page, 0, PAGE_SIZE);
960 kunmap_atomic(page, KM_USER0);
962 page = kmap_atomic(p3, KM_USER0);
963 memset(page, 0, PAGE_SIZE);
964 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
965 kunmap_atomic(page, KM_USER0);
967 return 1;
970 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
972 u32 msr_high, msr_low;
974 rdmsr(msr, msr_low, msr_high);
976 val &= msr_high;
977 val |= msr_low;
978 vmcs_write32(vmcs_field, val);
981 static void seg_setup(int seg)
983 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
985 vmcs_write16(sf->selector, 0);
986 vmcs_writel(sf->base, 0);
987 vmcs_write32(sf->limit, 0xffff);
988 vmcs_write32(sf->ar_bytes, 0x93);
992 * Sets up the vmcs for emulated real mode.
994 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
996 u32 host_sysenter_cs;
997 u32 junk;
998 unsigned long a;
999 struct descriptor_table dt;
1000 int i;
1001 int ret = 0;
1002 int nr_good_msrs;
1003 extern asmlinkage void kvm_vmx_return(void);
1005 if (!init_rmode_tss(vcpu->kvm)) {
1006 ret = -ENOMEM;
1007 goto out;
1010 memset(vcpu->regs, 0, sizeof(vcpu->regs));
1011 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1012 vcpu->cr8 = 0;
1013 vcpu->apic_base = 0xfee00000 |
1014 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1015 MSR_IA32_APICBASE_ENABLE;
1017 fx_init(vcpu);
1020 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1021 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1023 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1024 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1025 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1026 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1028 seg_setup(VCPU_SREG_DS);
1029 seg_setup(VCPU_SREG_ES);
1030 seg_setup(VCPU_SREG_FS);
1031 seg_setup(VCPU_SREG_GS);
1032 seg_setup(VCPU_SREG_SS);
1034 vmcs_write16(GUEST_TR_SELECTOR, 0);
1035 vmcs_writel(GUEST_TR_BASE, 0);
1036 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1037 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1039 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1040 vmcs_writel(GUEST_LDTR_BASE, 0);
1041 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1042 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1044 vmcs_write32(GUEST_SYSENTER_CS, 0);
1045 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1046 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1048 vmcs_writel(GUEST_RFLAGS, 0x02);
1049 vmcs_writel(GUEST_RIP, 0xfff0);
1050 vmcs_writel(GUEST_RSP, 0);
1052 vmcs_writel(GUEST_CR3, 0);
1054 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1055 vmcs_writel(GUEST_DR7, 0x400);
1057 vmcs_writel(GUEST_GDTR_BASE, 0);
1058 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1060 vmcs_writel(GUEST_IDTR_BASE, 0);
1061 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1063 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1064 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1065 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1067 /* I/O */
1068 vmcs_write64(IO_BITMAP_A, 0);
1069 vmcs_write64(IO_BITMAP_B, 0);
1071 guest_write_tsc(0);
1073 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1075 /* Special registers */
1076 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1078 /* Control */
1079 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR,
1080 PIN_BASED_VM_EXEC_CONTROL,
1081 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1082 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1084 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR,
1085 CPU_BASED_VM_EXEC_CONTROL,
1086 CPU_BASED_HLT_EXITING /* 20.6.2 */
1087 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1088 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1089 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1090 | CPU_BASED_INVDPG_EXITING
1091 | CPU_BASED_MOV_DR_EXITING
1092 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1095 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1096 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1097 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1098 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1100 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1101 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1102 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1104 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1105 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1106 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1107 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1108 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1109 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1110 #ifdef CONFIG_X86_64
1111 rdmsrl(MSR_FS_BASE, a);
1112 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1113 rdmsrl(MSR_GS_BASE, a);
1114 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1115 #else
1116 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1117 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1118 #endif
1120 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1122 get_idt(&dt);
1123 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1126 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1128 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1129 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1130 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1131 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1132 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1133 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1135 ret = -ENOMEM;
1136 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1137 if (!vcpu->guest_msrs)
1138 goto out;
1139 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1140 if (!vcpu->host_msrs)
1141 goto out_free_guest_msrs;
1143 for (i = 0; i < NR_VMX_MSR; ++i) {
1144 u32 index = vmx_msr_index[i];
1145 u32 data_low, data_high;
1146 u64 data;
1147 int j = vcpu->nmsrs;
1149 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1150 continue;
1151 data = data_low | ((u64)data_high << 32);
1152 vcpu->host_msrs[j].index = index;
1153 vcpu->host_msrs[j].reserved = 0;
1154 vcpu->host_msrs[j].data = data;
1155 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1156 ++vcpu->nmsrs;
1158 printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1160 nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1161 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1162 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1163 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1164 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1165 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1166 virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1167 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS,
1168 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1169 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1170 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1171 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1174 /* 22.2.1, 20.8.1 */
1175 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR,
1176 VM_ENTRY_CONTROLS, 0);
1177 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1179 #ifdef CONFIG_X86_64
1180 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1181 vmcs_writel(TPR_THRESHOLD, 0);
1182 #endif
1184 vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1185 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1187 vcpu->cr0 = 0x60000010;
1188 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1189 vmx_set_cr4(vcpu, 0);
1190 #ifdef CONFIG_X86_64
1191 vmx_set_efer(vcpu, 0);
1192 #endif
1194 return 0;
1196 out_free_guest_msrs:
1197 kfree(vcpu->guest_msrs);
1198 out:
1199 return ret;
1202 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1204 u16 ent[2];
1205 u16 cs;
1206 u16 ip;
1207 unsigned long flags;
1208 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1209 u16 sp = vmcs_readl(GUEST_RSP);
1210 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1212 if (sp > ss_limit || sp - 6 > sp) {
1213 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1214 __FUNCTION__,
1215 vmcs_readl(GUEST_RSP),
1216 vmcs_readl(GUEST_SS_BASE),
1217 vmcs_read32(GUEST_SS_LIMIT));
1218 return;
1221 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1222 sizeof(ent)) {
1223 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1224 return;
1227 flags = vmcs_readl(GUEST_RFLAGS);
1228 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1229 ip = vmcs_readl(GUEST_RIP);
1232 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1233 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1234 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1235 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1236 return;
1239 vmcs_writel(GUEST_RFLAGS, flags &
1240 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1241 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1242 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1243 vmcs_writel(GUEST_RIP, ent[0]);
1244 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1247 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1249 int word_index = __ffs(vcpu->irq_summary);
1250 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1251 int irq = word_index * BITS_PER_LONG + bit_index;
1253 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1254 if (!vcpu->irq_pending[word_index])
1255 clear_bit(word_index, &vcpu->irq_summary);
1257 if (vcpu->rmode.active) {
1258 inject_rmode_irq(vcpu, irq);
1259 return;
1261 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1262 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1265 static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
1267 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
1268 && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
1270 * Interrupts enabled, and not blocked by sti or mov ss. Good.
1272 kvm_do_inject_irq(vcpu);
1273 else
1275 * Interrupts blocked. Wait for unblock.
1277 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1278 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1279 | CPU_BASED_VIRTUAL_INTR_PENDING);
1282 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1284 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1286 set_debugreg(dbg->bp[0], 0);
1287 set_debugreg(dbg->bp[1], 1);
1288 set_debugreg(dbg->bp[2], 2);
1289 set_debugreg(dbg->bp[3], 3);
1291 if (dbg->singlestep) {
1292 unsigned long flags;
1294 flags = vmcs_readl(GUEST_RFLAGS);
1295 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1296 vmcs_writel(GUEST_RFLAGS, flags);
1300 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1301 int vec, u32 err_code)
1303 if (!vcpu->rmode.active)
1304 return 0;
1306 if (vec == GP_VECTOR && err_code == 0)
1307 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1308 return 1;
1309 return 0;
1312 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1314 u32 intr_info, error_code;
1315 unsigned long cr2, rip;
1316 u32 vect_info;
1317 enum emulation_result er;
1319 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1320 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1322 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1323 !is_page_fault(intr_info)) {
1324 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1325 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1328 if (is_external_interrupt(vect_info)) {
1329 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1330 set_bit(irq, vcpu->irq_pending);
1331 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1334 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1335 asm ("int $2");
1336 return 1;
1338 error_code = 0;
1339 rip = vmcs_readl(GUEST_RIP);
1340 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1341 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1342 if (is_page_fault(intr_info)) {
1343 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1345 spin_lock(&vcpu->kvm->lock);
1346 if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
1347 spin_unlock(&vcpu->kvm->lock);
1348 return 1;
1351 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1352 spin_unlock(&vcpu->kvm->lock);
1354 switch (er) {
1355 case EMULATE_DONE:
1356 return 1;
1357 case EMULATE_DO_MMIO:
1358 ++kvm_stat.mmio_exits;
1359 kvm_run->exit_reason = KVM_EXIT_MMIO;
1360 return 0;
1361 case EMULATE_FAIL:
1362 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1363 break;
1364 default:
1365 BUG();
1369 if (vcpu->rmode.active &&
1370 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1371 error_code))
1372 return 1;
1374 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1375 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1376 return 0;
1378 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1379 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1380 kvm_run->ex.error_code = error_code;
1381 return 0;
1384 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1385 struct kvm_run *kvm_run)
1387 ++kvm_stat.irq_exits;
1388 return 1;
1392 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1394 u64 inst;
1395 gva_t rip;
1396 int countr_size;
1397 int i, n;
1399 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1400 countr_size = 2;
1401 } else {
1402 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1404 countr_size = (cs_ar & AR_L_MASK) ? 8:
1405 (cs_ar & AR_DB_MASK) ? 4: 2;
1408 rip = vmcs_readl(GUEST_RIP);
1409 if (countr_size != 8)
1410 rip += vmcs_readl(GUEST_CS_BASE);
1412 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1414 for (i = 0; i < n; i++) {
1415 switch (((u8*)&inst)[i]) {
1416 case 0xf0:
1417 case 0xf2:
1418 case 0xf3:
1419 case 0x2e:
1420 case 0x36:
1421 case 0x3e:
1422 case 0x26:
1423 case 0x64:
1424 case 0x65:
1425 case 0x66:
1426 break;
1427 case 0x67:
1428 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1429 default:
1430 goto done;
1433 return 0;
1434 done:
1435 countr_size *= 8;
1436 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1437 return 1;
1440 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1442 u64 exit_qualification;
1444 ++kvm_stat.io_exits;
1445 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1446 kvm_run->exit_reason = KVM_EXIT_IO;
1447 if (exit_qualification & 8)
1448 kvm_run->io.direction = KVM_EXIT_IO_IN;
1449 else
1450 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1451 kvm_run->io.size = (exit_qualification & 7) + 1;
1452 kvm_run->io.string = (exit_qualification & 16) != 0;
1453 kvm_run->io.string_down
1454 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1455 kvm_run->io.rep = (exit_qualification & 32) != 0;
1456 kvm_run->io.port = exit_qualification >> 16;
1457 if (kvm_run->io.string) {
1458 if (!get_io_count(vcpu, &kvm_run->io.count))
1459 return 1;
1460 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1461 } else
1462 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1463 return 0;
1466 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1468 u64 address = vmcs_read64(EXIT_QUALIFICATION);
1469 int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1470 spin_lock(&vcpu->kvm->lock);
1471 vcpu->mmu.inval_page(vcpu, address);
1472 spin_unlock(&vcpu->kvm->lock);
1473 vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
1474 return 1;
1477 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1479 u64 exit_qualification;
1480 int cr;
1481 int reg;
1483 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1484 cr = exit_qualification & 15;
1485 reg = (exit_qualification >> 8) & 15;
1486 switch ((exit_qualification >> 4) & 3) {
1487 case 0: /* mov to cr */
1488 switch (cr) {
1489 case 0:
1490 vcpu_load_rsp_rip(vcpu);
1491 set_cr0(vcpu, vcpu->regs[reg]);
1492 skip_emulated_instruction(vcpu);
1493 return 1;
1494 case 3:
1495 vcpu_load_rsp_rip(vcpu);
1496 set_cr3(vcpu, vcpu->regs[reg]);
1497 skip_emulated_instruction(vcpu);
1498 return 1;
1499 case 4:
1500 vcpu_load_rsp_rip(vcpu);
1501 set_cr4(vcpu, vcpu->regs[reg]);
1502 skip_emulated_instruction(vcpu);
1503 return 1;
1504 case 8:
1505 vcpu_load_rsp_rip(vcpu);
1506 set_cr8(vcpu, vcpu->regs[reg]);
1507 skip_emulated_instruction(vcpu);
1508 return 1;
1510 break;
1511 case 1: /*mov from cr*/
1512 switch (cr) {
1513 case 3:
1514 vcpu_load_rsp_rip(vcpu);
1515 vcpu->regs[reg] = vcpu->cr3;
1516 vcpu_put_rsp_rip(vcpu);
1517 skip_emulated_instruction(vcpu);
1518 return 1;
1519 case 8:
1520 printk(KERN_DEBUG "handle_cr: read CR8 "
1521 "cpu erratum AA15\n");
1522 vcpu_load_rsp_rip(vcpu);
1523 vcpu->regs[reg] = vcpu->cr8;
1524 vcpu_put_rsp_rip(vcpu);
1525 skip_emulated_instruction(vcpu);
1526 return 1;
1528 break;
1529 case 3: /* lmsw */
1530 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1532 skip_emulated_instruction(vcpu);
1533 return 1;
1534 default:
1535 break;
1537 kvm_run->exit_reason = 0;
1538 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1539 (int)(exit_qualification >> 4) & 3, cr);
1540 return 0;
1543 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1545 u64 exit_qualification;
1546 unsigned long val;
1547 int dr, reg;
1550 * FIXME: this code assumes the host is debugging the guest.
1551 * need to deal with guest debugging itself too.
1553 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1554 dr = exit_qualification & 7;
1555 reg = (exit_qualification >> 8) & 15;
1556 vcpu_load_rsp_rip(vcpu);
1557 if (exit_qualification & 16) {
1558 /* mov from dr */
1559 switch (dr) {
1560 case 6:
1561 val = 0xffff0ff0;
1562 break;
1563 case 7:
1564 val = 0x400;
1565 break;
1566 default:
1567 val = 0;
1569 vcpu->regs[reg] = val;
1570 } else {
1571 /* mov to dr */
1573 vcpu_put_rsp_rip(vcpu);
1574 skip_emulated_instruction(vcpu);
1575 return 1;
1578 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1580 kvm_run->exit_reason = KVM_EXIT_CPUID;
1581 return 0;
1584 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1586 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1587 u64 data;
1589 if (vmx_get_msr(vcpu, ecx, &data)) {
1590 vmx_inject_gp(vcpu, 0);
1591 return 1;
1594 /* FIXME: handling of bits 32:63 of rax, rdx */
1595 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1596 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1597 skip_emulated_instruction(vcpu);
1598 return 1;
1601 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1603 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1604 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1605 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1607 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1608 vmx_inject_gp(vcpu, 0);
1609 return 1;
1612 skip_emulated_instruction(vcpu);
1613 return 1;
1616 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1617 struct kvm_run *kvm_run)
1619 /* Turn off interrupt window reporting. */
1620 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1621 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1622 & ~CPU_BASED_VIRTUAL_INTR_PENDING);
1623 return 1;
1626 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1628 skip_emulated_instruction(vcpu);
1629 if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
1630 return 1;
1632 kvm_run->exit_reason = KVM_EXIT_HLT;
1633 return 0;
1637 * The exit handlers return 1 if the exit was handled fully and guest execution
1638 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1639 * to be done to userspace and return 0.
1641 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1642 struct kvm_run *kvm_run) = {
1643 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1644 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1645 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1646 [EXIT_REASON_INVLPG] = handle_invlpg,
1647 [EXIT_REASON_CR_ACCESS] = handle_cr,
1648 [EXIT_REASON_DR_ACCESS] = handle_dr,
1649 [EXIT_REASON_CPUID] = handle_cpuid,
1650 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1651 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1652 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1653 [EXIT_REASON_HLT] = handle_halt,
1656 static const int kvm_vmx_max_exit_handlers =
1657 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1660 * The guest has exited. See if we can fix it or if we need userspace
1661 * assistance.
1663 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1665 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1666 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1668 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1669 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1670 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1671 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1672 kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1673 if (exit_reason < kvm_vmx_max_exit_handlers
1674 && kvm_vmx_exit_handlers[exit_reason])
1675 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1676 else {
1677 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1678 kvm_run->hw.hardware_exit_reason = exit_reason;
1680 return 0;
1683 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1685 u8 fail;
1686 u16 fs_sel, gs_sel, ldt_sel;
1687 int fs_gs_ldt_reload_needed;
1689 again:
1691 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1692 * allow segment selectors with cpl > 0 or ti == 1.
1694 fs_sel = read_fs();
1695 gs_sel = read_gs();
1696 ldt_sel = read_ldt();
1697 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1698 if (!fs_gs_ldt_reload_needed) {
1699 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1700 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1701 } else {
1702 vmcs_write16(HOST_FS_SELECTOR, 0);
1703 vmcs_write16(HOST_GS_SELECTOR, 0);
1706 #ifdef CONFIG_X86_64
1707 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1708 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1709 #else
1710 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1711 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1712 #endif
1714 if (vcpu->irq_summary &&
1715 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1716 kvm_try_inject_irq(vcpu);
1718 if (vcpu->guest_debug.enabled)
1719 kvm_guest_debug_pre(vcpu);
1721 fx_save(vcpu->host_fx_image);
1722 fx_restore(vcpu->guest_fx_image);
1724 save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1725 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1727 asm (
1728 /* Store host registers */
1729 "pushf \n\t"
1730 #ifdef CONFIG_X86_64
1731 "push %%rax; push %%rbx; push %%rdx;"
1732 "push %%rsi; push %%rdi; push %%rbp;"
1733 "push %%r8; push %%r9; push %%r10; push %%r11;"
1734 "push %%r12; push %%r13; push %%r14; push %%r15;"
1735 "push %%rcx \n\t"
1736 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1737 #else
1738 "pusha; push %%ecx \n\t"
1739 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1740 #endif
1741 /* Check if vmlaunch of vmresume is needed */
1742 "cmp $0, %1 \n\t"
1743 /* Load guest registers. Don't clobber flags. */
1744 #ifdef CONFIG_X86_64
1745 "mov %c[cr2](%3), %%rax \n\t"
1746 "mov %%rax, %%cr2 \n\t"
1747 "mov %c[rax](%3), %%rax \n\t"
1748 "mov %c[rbx](%3), %%rbx \n\t"
1749 "mov %c[rdx](%3), %%rdx \n\t"
1750 "mov %c[rsi](%3), %%rsi \n\t"
1751 "mov %c[rdi](%3), %%rdi \n\t"
1752 "mov %c[rbp](%3), %%rbp \n\t"
1753 "mov %c[r8](%3), %%r8 \n\t"
1754 "mov %c[r9](%3), %%r9 \n\t"
1755 "mov %c[r10](%3), %%r10 \n\t"
1756 "mov %c[r11](%3), %%r11 \n\t"
1757 "mov %c[r12](%3), %%r12 \n\t"
1758 "mov %c[r13](%3), %%r13 \n\t"
1759 "mov %c[r14](%3), %%r14 \n\t"
1760 "mov %c[r15](%3), %%r15 \n\t"
1761 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1762 #else
1763 "mov %c[cr2](%3), %%eax \n\t"
1764 "mov %%eax, %%cr2 \n\t"
1765 "mov %c[rax](%3), %%eax \n\t"
1766 "mov %c[rbx](%3), %%ebx \n\t"
1767 "mov %c[rdx](%3), %%edx \n\t"
1768 "mov %c[rsi](%3), %%esi \n\t"
1769 "mov %c[rdi](%3), %%edi \n\t"
1770 "mov %c[rbp](%3), %%ebp \n\t"
1771 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1772 #endif
1773 /* Enter guest mode */
1774 "jne launched \n\t"
1775 ASM_VMX_VMLAUNCH "\n\t"
1776 "jmp kvm_vmx_return \n\t"
1777 "launched: " ASM_VMX_VMRESUME "\n\t"
1778 ".globl kvm_vmx_return \n\t"
1779 "kvm_vmx_return: "
1780 /* Save guest registers, load host registers, keep flags */
1781 #ifdef CONFIG_X86_64
1782 "xchg %3, 0(%%rsp) \n\t"
1783 "mov %%rax, %c[rax](%3) \n\t"
1784 "mov %%rbx, %c[rbx](%3) \n\t"
1785 "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
1786 "mov %%rdx, %c[rdx](%3) \n\t"
1787 "mov %%rsi, %c[rsi](%3) \n\t"
1788 "mov %%rdi, %c[rdi](%3) \n\t"
1789 "mov %%rbp, %c[rbp](%3) \n\t"
1790 "mov %%r8, %c[r8](%3) \n\t"
1791 "mov %%r9, %c[r9](%3) \n\t"
1792 "mov %%r10, %c[r10](%3) \n\t"
1793 "mov %%r11, %c[r11](%3) \n\t"
1794 "mov %%r12, %c[r12](%3) \n\t"
1795 "mov %%r13, %c[r13](%3) \n\t"
1796 "mov %%r14, %c[r14](%3) \n\t"
1797 "mov %%r15, %c[r15](%3) \n\t"
1798 "mov %%cr2, %%rax \n\t"
1799 "mov %%rax, %c[cr2](%3) \n\t"
1800 "mov 0(%%rsp), %3 \n\t"
1802 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1803 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1804 "pop %%rbp; pop %%rdi; pop %%rsi;"
1805 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1806 #else
1807 "xchg %3, 0(%%esp) \n\t"
1808 "mov %%eax, %c[rax](%3) \n\t"
1809 "mov %%ebx, %c[rbx](%3) \n\t"
1810 "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
1811 "mov %%edx, %c[rdx](%3) \n\t"
1812 "mov %%esi, %c[rsi](%3) \n\t"
1813 "mov %%edi, %c[rdi](%3) \n\t"
1814 "mov %%ebp, %c[rbp](%3) \n\t"
1815 "mov %%cr2, %%eax \n\t"
1816 "mov %%eax, %c[cr2](%3) \n\t"
1817 "mov 0(%%esp), %3 \n\t"
1819 "pop %%ecx; popa \n\t"
1820 #endif
1821 "setbe %0 \n\t"
1822 "popf \n\t"
1823 : "=g" (fail)
1824 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1825 "c"(vcpu),
1826 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1827 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1828 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1829 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1830 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1831 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1832 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1833 #ifdef CONFIG_X86_64
1834 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1835 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1836 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1837 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1838 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1839 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1840 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1841 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1842 #endif
1843 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1844 : "cc", "memory" );
1846 ++kvm_stat.exits;
1848 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1849 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1851 fx_save(vcpu->guest_fx_image);
1852 fx_restore(vcpu->host_fx_image);
1854 #ifndef CONFIG_X86_64
1855 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1856 #endif
1858 kvm_run->exit_type = 0;
1859 if (fail) {
1860 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1861 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1862 } else {
1863 if (fs_gs_ldt_reload_needed) {
1864 load_ldt(ldt_sel);
1865 load_fs(fs_sel);
1867 * If we have to reload gs, we must take care to
1868 * preserve our gs base.
1870 local_irq_disable();
1871 load_gs(gs_sel);
1872 #ifdef CONFIG_X86_64
1873 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1874 #endif
1875 local_irq_enable();
1877 reload_tss();
1879 vcpu->launched = 1;
1880 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1881 if (kvm_handle_exit(kvm_run, vcpu)) {
1882 /* Give scheduler a change to reschedule. */
1883 if (signal_pending(current)) {
1884 ++kvm_stat.signal_exits;
1885 return -EINTR;
1887 kvm_resched(vcpu);
1888 goto again;
1891 return 0;
1894 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1896 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1899 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1900 unsigned long addr,
1901 u32 err_code)
1903 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1905 ++kvm_stat.pf_guest;
1907 if (is_page_fault(vect_info)) {
1908 printk(KERN_DEBUG "inject_page_fault: "
1909 "double fault 0x%lx @ 0x%lx\n",
1910 addr, vmcs_readl(GUEST_RIP));
1911 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1912 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1913 DF_VECTOR |
1914 INTR_TYPE_EXCEPTION |
1915 INTR_INFO_DELIEVER_CODE_MASK |
1916 INTR_INFO_VALID_MASK);
1917 return;
1919 vcpu->cr2 = addr;
1920 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1921 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1922 PF_VECTOR |
1923 INTR_TYPE_EXCEPTION |
1924 INTR_INFO_DELIEVER_CODE_MASK |
1925 INTR_INFO_VALID_MASK);
1929 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1931 if (vcpu->vmcs) {
1932 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1933 free_vmcs(vcpu->vmcs);
1934 vcpu->vmcs = NULL;
1938 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1940 vmx_free_vmcs(vcpu);
1943 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1945 struct vmcs *vmcs;
1947 vmcs = alloc_vmcs();
1948 if (!vmcs)
1949 return -ENOMEM;
1950 vmcs_clear(vmcs);
1951 vcpu->vmcs = vmcs;
1952 vcpu->launched = 0;
1953 return 0;
1956 static struct kvm_arch_ops vmx_arch_ops = {
1957 .cpu_has_kvm_support = cpu_has_kvm_support,
1958 .disabled_by_bios = vmx_disabled_by_bios,
1959 .hardware_setup = hardware_setup,
1960 .hardware_unsetup = hardware_unsetup,
1961 .hardware_enable = hardware_enable,
1962 .hardware_disable = hardware_disable,
1964 .vcpu_create = vmx_create_vcpu,
1965 .vcpu_free = vmx_free_vcpu,
1967 .vcpu_load = vmx_vcpu_load,
1968 .vcpu_put = vmx_vcpu_put,
1970 .set_guest_debug = set_guest_debug,
1971 .get_msr = vmx_get_msr,
1972 .set_msr = vmx_set_msr,
1973 .get_segment_base = vmx_get_segment_base,
1974 .get_segment = vmx_get_segment,
1975 .set_segment = vmx_set_segment,
1976 .is_long_mode = vmx_is_long_mode,
1977 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
1978 .set_cr0 = vmx_set_cr0,
1979 .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
1980 .set_cr3 = vmx_set_cr3,
1981 .set_cr4 = vmx_set_cr4,
1982 #ifdef CONFIG_X86_64
1983 .set_efer = vmx_set_efer,
1984 #endif
1985 .get_idt = vmx_get_idt,
1986 .set_idt = vmx_set_idt,
1987 .get_gdt = vmx_get_gdt,
1988 .set_gdt = vmx_set_gdt,
1989 .cache_regs = vcpu_load_rsp_rip,
1990 .decache_regs = vcpu_put_rsp_rip,
1991 .get_rflags = vmx_get_rflags,
1992 .set_rflags = vmx_set_rflags,
1994 .tlb_flush = vmx_flush_tlb,
1995 .inject_page_fault = vmx_inject_page_fault,
1997 .inject_gp = vmx_inject_gp,
1999 .run = vmx_vcpu_run,
2000 .skip_emulated_instruction = skip_emulated_instruction,
2001 .vcpu_setup = vmx_vcpu_setup,
2004 static int __init vmx_init(void)
2006 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2009 static void __exit vmx_exit(void)
2011 kvm_exit_arch();
2014 module_init(vmx_init)
2015 module_exit(vmx_exit)