Define and use PCI_DEVICE_ID_MARVELL_88ALP01_CCIC for CAFÉ camera driver
[linux-2.6/linux-2.6-openrd.git] / drivers / media / video / cafe_ccic.c
blobea0db819184c2f23bc7a4e61554c7a38af4d01c8
1 /*
2 * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3 * multifunction chip. Currently works with the Omnivision OV7670
4 * sensor.
6 * The data sheet for this device can be found at:
7 * http://www.marvell.com/products/pcconn/88ALP01.jsp
9 * Copyright 2006 One Laptop Per Child Association, Inc.
10 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
12 * Written by Jonathan Corbet, corbet@lwn.net.
14 * This file may be distributed under the terms of the GNU General
15 * Public License, version 2.
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/fs.h>
22 #include <linux/pci.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/videodev2.h>
27 #include <media/v4l2-common.h>
28 #include <media/v4l2-ioctl.h>
29 #include <media/v4l2-chip-ident.h>
30 #include <linux/device.h>
31 #include <linux/wait.h>
32 #include <linux/list.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/delay.h>
35 #include <linux/debugfs.h>
36 #include <linux/jiffies.h>
37 #include <linux/vmalloc.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
42 #include "cafe_ccic-regs.h"
44 #define CAFE_VERSION 0x000002
48 * Parameters.
50 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
51 MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
52 MODULE_LICENSE("GPL");
53 MODULE_SUPPORTED_DEVICE("Video");
56 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
57 * we must have physically contiguous buffers to bring frames into.
58 * These parameters control how many buffers we use, whether we
59 * allocate them at load time (better chance of success, but nails down
60 * memory) or when somebody tries to use the camera (riskier), and,
61 * for load-time allocation, how big they should be.
63 * The controller can cycle through three buffers. We could use
64 * more by flipping pointers around, but it probably makes little
65 * sense.
68 #define MAX_DMA_BUFS 3
69 static int alloc_bufs_at_read;
70 module_param(alloc_bufs_at_read, bool, 0444);
71 MODULE_PARM_DESC(alloc_bufs_at_read,
72 "Non-zero value causes DMA buffers to be allocated when the "
73 "video capture device is read, rather than at module load "
74 "time. This saves memory, but decreases the chances of "
75 "successfully getting those buffers.");
77 static int n_dma_bufs = 3;
78 module_param(n_dma_bufs, uint, 0644);
79 MODULE_PARM_DESC(n_dma_bufs,
80 "The number of DMA buffers to allocate. Can be either two "
81 "(saves memory, makes timing tighter) or three.");
83 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
84 module_param(dma_buf_size, uint, 0444);
85 MODULE_PARM_DESC(dma_buf_size,
86 "The size of the allocated DMA buffers. If actual operating "
87 "parameters require larger buffers, an attempt to reallocate "
88 "will be made.");
90 static int min_buffers = 1;
91 module_param(min_buffers, uint, 0644);
92 MODULE_PARM_DESC(min_buffers,
93 "The minimum number of streaming I/O buffers we are willing "
94 "to work with.");
96 static int max_buffers = 10;
97 module_param(max_buffers, uint, 0644);
98 MODULE_PARM_DESC(max_buffers,
99 "The maximum number of streaming I/O buffers an application "
100 "will be allowed to allocate. These buffers are big and live "
101 "in vmalloc space.");
103 static int flip;
104 module_param(flip, bool, 0444);
105 MODULE_PARM_DESC(flip,
106 "If set, the sensor will be instructed to flip the image "
107 "vertically.");
110 enum cafe_state {
111 S_NOTREADY, /* Not yet initialized */
112 S_IDLE, /* Just hanging around */
113 S_FLAKED, /* Some sort of problem */
114 S_SINGLEREAD, /* In read() */
115 S_SPECREAD, /* Speculative read (for future read()) */
116 S_STREAMING /* Streaming data */
120 * Tracking of streaming I/O buffers.
122 struct cafe_sio_buffer {
123 struct list_head list;
124 struct v4l2_buffer v4lbuf;
125 char *buffer; /* Where it lives in kernel space */
126 int mapcount;
127 struct cafe_camera *cam;
131 * A description of one of our devices.
132 * Locking: controlled by s_mutex. Certain fields, however, require
133 * the dev_lock spinlock; they are marked as such by comments.
134 * dev_lock is also required for access to device registers.
136 struct cafe_camera
138 enum cafe_state state;
139 unsigned long flags; /* Buffer status, mainly (dev_lock) */
140 int users; /* How many open FDs */
141 struct file *owner; /* Who has data access (v4l2) */
144 * Subsystem structures.
146 struct pci_dev *pdev;
147 struct video_device v4ldev;
148 struct i2c_adapter i2c_adapter;
149 struct i2c_client *sensor;
151 unsigned char __iomem *regs;
152 struct list_head dev_list; /* link to other devices */
154 /* DMA buffers */
155 unsigned int nbufs; /* How many are alloc'd */
156 int next_buf; /* Next to consume (dev_lock) */
157 unsigned int dma_buf_size; /* allocated size */
158 void *dma_bufs[MAX_DMA_BUFS]; /* Internal buffer addresses */
159 dma_addr_t dma_handles[MAX_DMA_BUFS]; /* Buffer bus addresses */
160 unsigned int specframes; /* Unconsumed spec frames (dev_lock) */
161 unsigned int sequence; /* Frame sequence number */
162 unsigned int buf_seq[MAX_DMA_BUFS]; /* Sequence for individual buffers */
164 /* Streaming buffers */
165 unsigned int n_sbufs; /* How many we have */
166 struct cafe_sio_buffer *sb_bufs; /* The array of housekeeping structs */
167 struct list_head sb_avail; /* Available for data (we own) (dev_lock) */
168 struct list_head sb_full; /* With data (user space owns) (dev_lock) */
169 struct tasklet_struct s_tasklet;
171 /* Current operating parameters */
172 u32 sensor_type; /* Currently ov7670 only */
173 struct v4l2_pix_format pix_format;
175 /* Locks */
176 struct mutex s_mutex; /* Access to this structure */
177 spinlock_t dev_lock; /* Access to device */
179 /* Misc */
180 wait_queue_head_t smbus_wait; /* Waiting on i2c events */
181 wait_queue_head_t iowait; /* Waiting on frame data */
182 #ifdef CONFIG_VIDEO_ADV_DEBUG
183 struct dentry *dfs_regs;
184 struct dentry *dfs_cam_regs;
185 #endif
189 * Status flags. Always manipulated with bit operations.
191 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
192 #define CF_BUF1_VALID 1
193 #define CF_BUF2_VALID 2
194 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
195 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
200 * Start over with DMA buffers - dev_lock needed.
202 static void cafe_reset_buffers(struct cafe_camera *cam)
204 int i;
206 cam->next_buf = -1;
207 for (i = 0; i < cam->nbufs; i++)
208 clear_bit(i, &cam->flags);
209 cam->specframes = 0;
212 static inline int cafe_needs_config(struct cafe_camera *cam)
214 return test_bit(CF_CONFIG_NEEDED, &cam->flags);
217 static void cafe_set_config_needed(struct cafe_camera *cam, int needed)
219 if (needed)
220 set_bit(CF_CONFIG_NEEDED, &cam->flags);
221 else
222 clear_bit(CF_CONFIG_NEEDED, &cam->flags);
229 * Debugging and related.
231 #define cam_err(cam, fmt, arg...) \
232 dev_err(&(cam)->pdev->dev, fmt, ##arg);
233 #define cam_warn(cam, fmt, arg...) \
234 dev_warn(&(cam)->pdev->dev, fmt, ##arg);
235 #define cam_dbg(cam, fmt, arg...) \
236 dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
239 /* ---------------------------------------------------------------------*/
241 * We keep a simple list of known devices to search at open time.
243 static LIST_HEAD(cafe_dev_list);
244 static DEFINE_MUTEX(cafe_dev_list_lock);
246 static void cafe_add_dev(struct cafe_camera *cam)
248 mutex_lock(&cafe_dev_list_lock);
249 list_add_tail(&cam->dev_list, &cafe_dev_list);
250 mutex_unlock(&cafe_dev_list_lock);
253 static void cafe_remove_dev(struct cafe_camera *cam)
255 mutex_lock(&cafe_dev_list_lock);
256 list_del(&cam->dev_list);
257 mutex_unlock(&cafe_dev_list_lock);
260 static struct cafe_camera *cafe_find_dev(int minor)
262 struct cafe_camera *cam;
264 mutex_lock(&cafe_dev_list_lock);
265 list_for_each_entry(cam, &cafe_dev_list, dev_list) {
266 if (cam->v4ldev.minor == minor)
267 goto done;
269 cam = NULL;
270 done:
271 mutex_unlock(&cafe_dev_list_lock);
272 return cam;
276 static struct cafe_camera *cafe_find_by_pdev(struct pci_dev *pdev)
278 struct cafe_camera *cam;
280 mutex_lock(&cafe_dev_list_lock);
281 list_for_each_entry(cam, &cafe_dev_list, dev_list) {
282 if (cam->pdev == pdev)
283 goto done;
285 cam = NULL;
286 done:
287 mutex_unlock(&cafe_dev_list_lock);
288 return cam;
292 /* ------------------------------------------------------------------------ */
294 * Device register I/O
296 static inline void cafe_reg_write(struct cafe_camera *cam, unsigned int reg,
297 unsigned int val)
299 iowrite32(val, cam->regs + reg);
302 static inline unsigned int cafe_reg_read(struct cafe_camera *cam,
303 unsigned int reg)
305 return ioread32(cam->regs + reg);
309 static inline void cafe_reg_write_mask(struct cafe_camera *cam, unsigned int reg,
310 unsigned int val, unsigned int mask)
312 unsigned int v = cafe_reg_read(cam, reg);
314 v = (v & ~mask) | (val & mask);
315 cafe_reg_write(cam, reg, v);
318 static inline void cafe_reg_clear_bit(struct cafe_camera *cam,
319 unsigned int reg, unsigned int val)
321 cafe_reg_write_mask(cam, reg, 0, val);
324 static inline void cafe_reg_set_bit(struct cafe_camera *cam,
325 unsigned int reg, unsigned int val)
327 cafe_reg_write_mask(cam, reg, val, val);
332 /* -------------------------------------------------------------------- */
334 * The I2C/SMBUS interface to the camera itself starts here. The
335 * controller handles SMBUS itself, presenting a relatively simple register
336 * interface; all we have to do is to tell it where to route the data.
338 #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
340 static int cafe_smbus_write_done(struct cafe_camera *cam)
342 unsigned long flags;
343 int c1;
346 * We must delay after the interrupt, or the controller gets confused
347 * and never does give us good status. Fortunately, we don't do this
348 * often.
350 udelay(20);
351 spin_lock_irqsave(&cam->dev_lock, flags);
352 c1 = cafe_reg_read(cam, REG_TWSIC1);
353 spin_unlock_irqrestore(&cam->dev_lock, flags);
354 return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
357 static int cafe_smbus_write_data(struct cafe_camera *cam,
358 u16 addr, u8 command, u8 value)
360 unsigned int rval;
361 unsigned long flags;
362 DEFINE_WAIT(the_wait);
364 spin_lock_irqsave(&cam->dev_lock, flags);
365 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
366 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
368 * Marvell sez set clkdiv to all 1's for now.
370 rval |= TWSIC0_CLKDIV;
371 cafe_reg_write(cam, REG_TWSIC0, rval);
372 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
373 rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
374 cafe_reg_write(cam, REG_TWSIC1, rval);
375 spin_unlock_irqrestore(&cam->dev_lock, flags);
378 * Time to wait for the write to complete. THIS IS A RACY
379 * WAY TO DO IT, but the sad fact is that reading the TWSIC1
380 * register too quickly after starting the operation sends
381 * the device into a place that may be kinder and better, but
382 * which is absolutely useless for controlling the sensor. In
383 * practice we have plenty of time to get into our sleep state
384 * before the interrupt hits, and the worst case is that we
385 * time out and then see that things completed, so this seems
386 * the best way for now.
388 do {
389 prepare_to_wait(&cam->smbus_wait, &the_wait,
390 TASK_UNINTERRUPTIBLE);
391 schedule_timeout(1); /* even 1 jiffy is too long */
392 finish_wait(&cam->smbus_wait, &the_wait);
393 } while (!cafe_smbus_write_done(cam));
395 #ifdef IF_THE_CAFE_HARDWARE_WORKED_RIGHT
396 wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(cam),
397 CAFE_SMBUS_TIMEOUT);
398 #endif
399 spin_lock_irqsave(&cam->dev_lock, flags);
400 rval = cafe_reg_read(cam, REG_TWSIC1);
401 spin_unlock_irqrestore(&cam->dev_lock, flags);
403 if (rval & TWSIC1_WSTAT) {
404 cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
405 command, value);
406 return -EIO;
408 if (rval & TWSIC1_ERROR) {
409 cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
410 command, value);
411 return -EIO;
413 return 0;
418 static int cafe_smbus_read_done(struct cafe_camera *cam)
420 unsigned long flags;
421 int c1;
424 * We must delay after the interrupt, or the controller gets confused
425 * and never does give us good status. Fortunately, we don't do this
426 * often.
428 udelay(20);
429 spin_lock_irqsave(&cam->dev_lock, flags);
430 c1 = cafe_reg_read(cam, REG_TWSIC1);
431 spin_unlock_irqrestore(&cam->dev_lock, flags);
432 return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
437 static int cafe_smbus_read_data(struct cafe_camera *cam,
438 u16 addr, u8 command, u8 *value)
440 unsigned int rval;
441 unsigned long flags;
443 spin_lock_irqsave(&cam->dev_lock, flags);
444 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
445 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
447 * Marvel sez set clkdiv to all 1's for now.
449 rval |= TWSIC0_CLKDIV;
450 cafe_reg_write(cam, REG_TWSIC0, rval);
451 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
452 rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
453 cafe_reg_write(cam, REG_TWSIC1, rval);
454 spin_unlock_irqrestore(&cam->dev_lock, flags);
456 wait_event_timeout(cam->smbus_wait,
457 cafe_smbus_read_done(cam), CAFE_SMBUS_TIMEOUT);
458 spin_lock_irqsave(&cam->dev_lock, flags);
459 rval = cafe_reg_read(cam, REG_TWSIC1);
460 spin_unlock_irqrestore(&cam->dev_lock, flags);
462 if (rval & TWSIC1_ERROR) {
463 cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
464 return -EIO;
466 if (! (rval & TWSIC1_RVALID)) {
467 cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
468 command);
469 return -EIO;
471 *value = rval & 0xff;
472 return 0;
476 * Perform a transfer over SMBUS. This thing is called under
477 * the i2c bus lock, so we shouldn't race with ourselves...
479 static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
480 unsigned short flags, char rw, u8 command,
481 int size, union i2c_smbus_data *data)
483 struct cafe_camera *cam = i2c_get_adapdata(adapter);
484 int ret = -EINVAL;
487 * Refuse to talk to anything but OV cam chips. We should
488 * never even see an attempt to do so, but one never knows.
490 if (cam->sensor && addr != cam->sensor->addr) {
491 cam_err(cam, "funky smbus addr %d\n", addr);
492 return -EINVAL;
495 * This interface would appear to only do byte data ops. OK
496 * it can do word too, but the cam chip has no use for that.
498 if (size != I2C_SMBUS_BYTE_DATA) {
499 cam_err(cam, "funky xfer size %d\n", size);
500 return -EINVAL;
503 if (rw == I2C_SMBUS_WRITE)
504 ret = cafe_smbus_write_data(cam, addr, command, data->byte);
505 else if (rw == I2C_SMBUS_READ)
506 ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
507 return ret;
511 static void cafe_smbus_enable_irq(struct cafe_camera *cam)
513 unsigned long flags;
515 spin_lock_irqsave(&cam->dev_lock, flags);
516 cafe_reg_set_bit(cam, REG_IRQMASK, TWSIIRQS);
517 spin_unlock_irqrestore(&cam->dev_lock, flags);
520 static u32 cafe_smbus_func(struct i2c_adapter *adapter)
522 return I2C_FUNC_SMBUS_READ_BYTE_DATA |
523 I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
526 static struct i2c_algorithm cafe_smbus_algo = {
527 .smbus_xfer = cafe_smbus_xfer,
528 .functionality = cafe_smbus_func
531 /* Somebody is on the bus */
532 static int cafe_cam_init(struct cafe_camera *cam);
533 static void cafe_ctlr_stop_dma(struct cafe_camera *cam);
534 static void cafe_ctlr_power_down(struct cafe_camera *cam);
536 static int cafe_smbus_attach(struct i2c_client *client)
538 struct cafe_camera *cam = i2c_get_adapdata(client->adapter);
541 * Don't talk to chips we don't recognize.
543 if (client->driver->id == I2C_DRIVERID_OV7670) {
544 cam->sensor = client;
545 return cafe_cam_init(cam);
547 return -EINVAL;
550 static int cafe_smbus_detach(struct i2c_client *client)
552 struct cafe_camera *cam = i2c_get_adapdata(client->adapter);
554 if (cam->sensor == client) {
555 cafe_ctlr_stop_dma(cam);
556 cafe_ctlr_power_down(cam);
557 cam_err(cam, "lost the sensor!\n");
558 cam->sensor = NULL; /* Bummer, no camera */
559 cam->state = S_NOTREADY;
561 return 0;
564 static int cafe_smbus_setup(struct cafe_camera *cam)
566 struct i2c_adapter *adap = &cam->i2c_adapter;
567 int ret;
569 cafe_smbus_enable_irq(cam);
570 adap->id = I2C_HW_SMBUS_CAFE;
571 adap->class = I2C_CLASS_CAM_DIGITAL;
572 adap->owner = THIS_MODULE;
573 adap->client_register = cafe_smbus_attach;
574 adap->client_unregister = cafe_smbus_detach;
575 adap->algo = &cafe_smbus_algo;
576 strcpy(adap->name, "cafe_ccic");
577 adap->dev.parent = &cam->pdev->dev;
578 i2c_set_adapdata(adap, cam);
579 ret = i2c_add_adapter(adap);
580 if (ret)
581 printk(KERN_ERR "Unable to register cafe i2c adapter\n");
582 return ret;
585 static void cafe_smbus_shutdown(struct cafe_camera *cam)
587 i2c_del_adapter(&cam->i2c_adapter);
591 /* ------------------------------------------------------------------- */
593 * Deal with the controller.
597 * Do everything we think we need to have the interface operating
598 * according to the desired format.
600 static void cafe_ctlr_dma(struct cafe_camera *cam)
603 * Store the first two Y buffers (we aren't supporting
604 * planar formats for now, so no UV bufs). Then either
605 * set the third if it exists, or tell the controller
606 * to just use two.
608 cafe_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
609 cafe_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
610 if (cam->nbufs > 2) {
611 cafe_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
612 cafe_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
614 else
615 cafe_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
616 cafe_reg_write(cam, REG_UBAR, 0); /* 32 bits only for now */
619 static void cafe_ctlr_image(struct cafe_camera *cam)
621 int imgsz;
622 struct v4l2_pix_format *fmt = &cam->pix_format;
624 imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
625 (fmt->bytesperline & IMGSZ_H_MASK);
626 cafe_reg_write(cam, REG_IMGSIZE, imgsz);
627 cafe_reg_write(cam, REG_IMGOFFSET, 0);
628 /* YPITCH just drops the last two bits */
629 cafe_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
630 IMGP_YP_MASK);
632 * Tell the controller about the image format we are using.
634 switch (cam->pix_format.pixelformat) {
635 case V4L2_PIX_FMT_YUYV:
636 cafe_reg_write_mask(cam, REG_CTRL0,
637 C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
638 C0_DF_MASK);
639 break;
641 case V4L2_PIX_FMT_RGB444:
642 cafe_reg_write_mask(cam, REG_CTRL0,
643 C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
644 C0_DF_MASK);
645 /* Alpha value? */
646 break;
648 case V4L2_PIX_FMT_RGB565:
649 cafe_reg_write_mask(cam, REG_CTRL0,
650 C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
651 C0_DF_MASK);
652 break;
654 default:
655 cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
656 break;
659 * Make sure it knows we want to use hsync/vsync.
661 cafe_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
662 C0_SIFM_MASK);
667 * Configure the controller for operation; caller holds the
668 * device mutex.
670 static int cafe_ctlr_configure(struct cafe_camera *cam)
672 unsigned long flags;
674 spin_lock_irqsave(&cam->dev_lock, flags);
675 cafe_ctlr_dma(cam);
676 cafe_ctlr_image(cam);
677 cafe_set_config_needed(cam, 0);
678 spin_unlock_irqrestore(&cam->dev_lock, flags);
679 return 0;
682 static void cafe_ctlr_irq_enable(struct cafe_camera *cam)
685 * Clear any pending interrupts, since we do not
686 * expect to have I/O active prior to enabling.
688 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
689 cafe_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
692 static void cafe_ctlr_irq_disable(struct cafe_camera *cam)
694 cafe_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
698 * Make the controller start grabbing images. Everything must
699 * be set up before doing this.
701 static void cafe_ctlr_start(struct cafe_camera *cam)
703 /* set_bit performs a read, so no other barrier should be
704 needed here */
705 cafe_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
708 static void cafe_ctlr_stop(struct cafe_camera *cam)
710 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
713 static void cafe_ctlr_init(struct cafe_camera *cam)
715 unsigned long flags;
717 spin_lock_irqsave(&cam->dev_lock, flags);
719 * Added magic to bring up the hardware on the B-Test board
721 cafe_reg_write(cam, 0x3038, 0x8);
722 cafe_reg_write(cam, 0x315c, 0x80008);
724 * Go through the dance needed to wake the device up.
725 * Note that these registers are global and shared
726 * with the NAND and SD devices. Interaction between the
727 * three still needs to be examined.
729 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
730 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
731 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
733 * Here we must wait a bit for the controller to come around.
735 spin_unlock_irqrestore(&cam->dev_lock, flags);
736 msleep(5);
737 spin_lock_irqsave(&cam->dev_lock, flags);
739 cafe_reg_write(cam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
740 cafe_reg_set_bit(cam, REG_GL_IMASK, GIMSK_CCIC_EN);
742 * Make sure it's not powered down.
744 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
746 * Turn off the enable bit. It sure should be off anyway,
747 * but it's good to be sure.
749 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
751 * Mask all interrupts.
753 cafe_reg_write(cam, REG_IRQMASK, 0);
755 * Clock the sensor appropriately. Controller clock should
756 * be 48MHz, sensor "typical" value is half that.
758 cafe_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
759 spin_unlock_irqrestore(&cam->dev_lock, flags);
764 * Stop the controller, and don't return until we're really sure that no
765 * further DMA is going on.
767 static void cafe_ctlr_stop_dma(struct cafe_camera *cam)
769 unsigned long flags;
772 * Theory: stop the camera controller (whether it is operating
773 * or not). Delay briefly just in case we race with the SOF
774 * interrupt, then wait until no DMA is active.
776 spin_lock_irqsave(&cam->dev_lock, flags);
777 cafe_ctlr_stop(cam);
778 spin_unlock_irqrestore(&cam->dev_lock, flags);
779 mdelay(1);
780 wait_event_timeout(cam->iowait,
781 !test_bit(CF_DMA_ACTIVE, &cam->flags), HZ);
782 if (test_bit(CF_DMA_ACTIVE, &cam->flags))
783 cam_err(cam, "Timeout waiting for DMA to end\n");
784 /* This would be bad news - what now? */
785 spin_lock_irqsave(&cam->dev_lock, flags);
786 cam->state = S_IDLE;
787 cafe_ctlr_irq_disable(cam);
788 spin_unlock_irqrestore(&cam->dev_lock, flags);
792 * Power up and down.
794 static void cafe_ctlr_power_up(struct cafe_camera *cam)
796 unsigned long flags;
798 spin_lock_irqsave(&cam->dev_lock, flags);
799 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
801 * Part one of the sensor dance: turn the global
802 * GPIO signal on.
804 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
805 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
807 * Put the sensor into operational mode (assumes OLPC-style
808 * wiring). Control 0 is reset - set to 1 to operate.
809 * Control 1 is power down, set to 0 to operate.
811 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
812 // mdelay(1); /* Marvell says 1ms will do it */
813 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
814 // mdelay(1); /* Enough? */
815 spin_unlock_irqrestore(&cam->dev_lock, flags);
816 msleep(5); /* Just to be sure */
819 static void cafe_ctlr_power_down(struct cafe_camera *cam)
821 unsigned long flags;
823 spin_lock_irqsave(&cam->dev_lock, flags);
824 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
825 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
826 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT);
827 cafe_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
828 spin_unlock_irqrestore(&cam->dev_lock, flags);
831 /* -------------------------------------------------------------------- */
833 * Communications with the sensor.
836 static int __cafe_cam_cmd(struct cafe_camera *cam, int cmd, void *arg)
838 struct i2c_client *sc = cam->sensor;
839 int ret;
841 if (sc == NULL || sc->driver == NULL || sc->driver->command == NULL)
842 return -EINVAL;
843 ret = sc->driver->command(sc, cmd, arg);
844 if (ret == -EPERM) /* Unsupported command */
845 return 0;
846 return ret;
849 static int __cafe_cam_reset(struct cafe_camera *cam)
851 int zero = 0;
852 return __cafe_cam_cmd(cam, VIDIOC_INT_RESET, &zero);
856 * We have found the sensor on the i2c. Let's try to have a
857 * conversation.
859 static int cafe_cam_init(struct cafe_camera *cam)
861 struct v4l2_chip_ident chip = { V4L2_CHIP_MATCH_I2C_ADDR, 0, 0, 0 };
862 int ret;
864 mutex_lock(&cam->s_mutex);
865 if (cam->state != S_NOTREADY)
866 cam_warn(cam, "Cam init with device in funky state %d",
867 cam->state);
868 ret = __cafe_cam_reset(cam);
869 if (ret)
870 goto out;
871 chip.match_chip = cam->sensor->addr;
872 ret = __cafe_cam_cmd(cam, VIDIOC_G_CHIP_IDENT, &chip);
873 if (ret)
874 goto out;
875 cam->sensor_type = chip.ident;
876 // if (cam->sensor->addr != OV7xx0_SID) {
877 if (cam->sensor_type != V4L2_IDENT_OV7670) {
878 cam_err(cam, "Unsupported sensor type %d", cam->sensor->addr);
879 ret = -EINVAL;
880 goto out;
882 /* Get/set parameters? */
883 ret = 0;
884 cam->state = S_IDLE;
885 out:
886 cafe_ctlr_power_down(cam);
887 mutex_unlock(&cam->s_mutex);
888 return ret;
892 * Configure the sensor to match the parameters we have. Caller should
893 * hold s_mutex
895 static int cafe_cam_set_flip(struct cafe_camera *cam)
897 struct v4l2_control ctrl;
899 memset(&ctrl, 0, sizeof(ctrl));
900 ctrl.id = V4L2_CID_VFLIP;
901 ctrl.value = flip;
902 return __cafe_cam_cmd(cam, VIDIOC_S_CTRL, &ctrl);
906 static int cafe_cam_configure(struct cafe_camera *cam)
908 struct v4l2_format fmt;
909 int ret, zero = 0;
911 if (cam->state != S_IDLE)
912 return -EINVAL;
913 fmt.fmt.pix = cam->pix_format;
914 ret = __cafe_cam_cmd(cam, VIDIOC_INT_INIT, &zero);
915 if (ret == 0)
916 ret = __cafe_cam_cmd(cam, VIDIOC_S_FMT, &fmt);
918 * OV7670 does weird things if flip is set *before* format...
920 ret += cafe_cam_set_flip(cam);
921 return ret;
924 /* -------------------------------------------------------------------- */
926 * DMA buffer management. These functions need s_mutex held.
929 /* FIXME: this is inefficient as hell, since dma_alloc_coherent just
930 * does a get_free_pages() call, and we waste a good chunk of an orderN
931 * allocation. Should try to allocate the whole set in one chunk.
933 static int cafe_alloc_dma_bufs(struct cafe_camera *cam, int loadtime)
935 int i;
937 cafe_set_config_needed(cam, 1);
938 if (loadtime)
939 cam->dma_buf_size = dma_buf_size;
940 else
941 cam->dma_buf_size = cam->pix_format.sizeimage;
942 if (n_dma_bufs > 3)
943 n_dma_bufs = 3;
945 cam->nbufs = 0;
946 for (i = 0; i < n_dma_bufs; i++) {
947 cam->dma_bufs[i] = dma_alloc_coherent(&cam->pdev->dev,
948 cam->dma_buf_size, cam->dma_handles + i,
949 GFP_KERNEL);
950 if (cam->dma_bufs[i] == NULL) {
951 cam_warn(cam, "Failed to allocate DMA buffer\n");
952 break;
954 /* For debug, remove eventually */
955 memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size);
956 (cam->nbufs)++;
959 switch (cam->nbufs) {
960 case 1:
961 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
962 cam->dma_bufs[0], cam->dma_handles[0]);
963 cam->nbufs = 0;
964 case 0:
965 cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
966 return -ENOMEM;
968 case 2:
969 if (n_dma_bufs > 2)
970 cam_warn(cam, "Will limp along with only 2 buffers\n");
971 break;
973 return 0;
976 static void cafe_free_dma_bufs(struct cafe_camera *cam)
978 int i;
980 for (i = 0; i < cam->nbufs; i++) {
981 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
982 cam->dma_bufs[i], cam->dma_handles[i]);
983 cam->dma_bufs[i] = NULL;
985 cam->nbufs = 0;
992 /* ----------------------------------------------------------------------- */
994 * Here starts the V4L2 interface code.
998 * Read an image from the device.
1000 static ssize_t cafe_deliver_buffer(struct cafe_camera *cam,
1001 char __user *buffer, size_t len, loff_t *pos)
1003 int bufno;
1004 unsigned long flags;
1006 spin_lock_irqsave(&cam->dev_lock, flags);
1007 if (cam->next_buf < 0) {
1008 cam_err(cam, "deliver_buffer: No next buffer\n");
1009 spin_unlock_irqrestore(&cam->dev_lock, flags);
1010 return -EIO;
1012 bufno = cam->next_buf;
1013 clear_bit(bufno, &cam->flags);
1014 if (++(cam->next_buf) >= cam->nbufs)
1015 cam->next_buf = 0;
1016 if (! test_bit(cam->next_buf, &cam->flags))
1017 cam->next_buf = -1;
1018 cam->specframes = 0;
1019 spin_unlock_irqrestore(&cam->dev_lock, flags);
1021 if (len > cam->pix_format.sizeimage)
1022 len = cam->pix_format.sizeimage;
1023 if (copy_to_user(buffer, cam->dma_bufs[bufno], len))
1024 return -EFAULT;
1025 (*pos) += len;
1026 return len;
1030 * Get everything ready, and start grabbing frames.
1032 static int cafe_read_setup(struct cafe_camera *cam, enum cafe_state state)
1034 int ret;
1035 unsigned long flags;
1038 * Configuration. If we still don't have DMA buffers,
1039 * make one last, desperate attempt.
1041 if (cam->nbufs == 0)
1042 if (cafe_alloc_dma_bufs(cam, 0))
1043 return -ENOMEM;
1045 if (cafe_needs_config(cam)) {
1046 cafe_cam_configure(cam);
1047 ret = cafe_ctlr_configure(cam);
1048 if (ret)
1049 return ret;
1053 * Turn it loose.
1055 spin_lock_irqsave(&cam->dev_lock, flags);
1056 cafe_reset_buffers(cam);
1057 cafe_ctlr_irq_enable(cam);
1058 cam->state = state;
1059 cafe_ctlr_start(cam);
1060 spin_unlock_irqrestore(&cam->dev_lock, flags);
1061 return 0;
1065 static ssize_t cafe_v4l_read(struct file *filp,
1066 char __user *buffer, size_t len, loff_t *pos)
1068 struct cafe_camera *cam = filp->private_data;
1069 int ret = 0;
1072 * Perhaps we're in speculative read mode and already
1073 * have data?
1075 mutex_lock(&cam->s_mutex);
1076 if (cam->state == S_SPECREAD) {
1077 if (cam->next_buf >= 0) {
1078 ret = cafe_deliver_buffer(cam, buffer, len, pos);
1079 if (ret != 0)
1080 goto out_unlock;
1082 } else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) {
1083 ret = -EIO;
1084 goto out_unlock;
1085 } else if (cam->state != S_IDLE) {
1086 ret = -EBUSY;
1087 goto out_unlock;
1091 * v4l2: multiple processes can open the device, but only
1092 * one gets to grab data from it.
1094 if (cam->owner && cam->owner != filp) {
1095 ret = -EBUSY;
1096 goto out_unlock;
1098 cam->owner = filp;
1101 * Do setup if need be.
1103 if (cam->state != S_SPECREAD) {
1104 ret = cafe_read_setup(cam, S_SINGLEREAD);
1105 if (ret)
1106 goto out_unlock;
1109 * Wait for something to happen. This should probably
1110 * be interruptible (FIXME).
1112 wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ);
1113 if (cam->next_buf < 0) {
1114 cam_err(cam, "read() operation timed out\n");
1115 cafe_ctlr_stop_dma(cam);
1116 ret = -EIO;
1117 goto out_unlock;
1120 * Give them their data and we should be done.
1122 ret = cafe_deliver_buffer(cam, buffer, len, pos);
1124 out_unlock:
1125 mutex_unlock(&cam->s_mutex);
1126 return ret;
1137 * Streaming I/O support.
1142 static int cafe_vidioc_streamon(struct file *filp, void *priv,
1143 enum v4l2_buf_type type)
1145 struct cafe_camera *cam = filp->private_data;
1146 int ret = -EINVAL;
1148 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1149 goto out;
1150 mutex_lock(&cam->s_mutex);
1151 if (cam->state != S_IDLE || cam->n_sbufs == 0)
1152 goto out_unlock;
1154 cam->sequence = 0;
1155 ret = cafe_read_setup(cam, S_STREAMING);
1157 out_unlock:
1158 mutex_unlock(&cam->s_mutex);
1159 out:
1160 return ret;
1164 static int cafe_vidioc_streamoff(struct file *filp, void *priv,
1165 enum v4l2_buf_type type)
1167 struct cafe_camera *cam = filp->private_data;
1168 int ret = -EINVAL;
1170 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1171 goto out;
1172 mutex_lock(&cam->s_mutex);
1173 if (cam->state != S_STREAMING)
1174 goto out_unlock;
1176 cafe_ctlr_stop_dma(cam);
1177 ret = 0;
1179 out_unlock:
1180 mutex_unlock(&cam->s_mutex);
1181 out:
1182 return ret;
1187 static int cafe_setup_siobuf(struct cafe_camera *cam, int index)
1189 struct cafe_sio_buffer *buf = cam->sb_bufs + index;
1191 INIT_LIST_HEAD(&buf->list);
1192 buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage);
1193 buf->buffer = vmalloc_user(buf->v4lbuf.length);
1194 if (buf->buffer == NULL)
1195 return -ENOMEM;
1196 buf->mapcount = 0;
1197 buf->cam = cam;
1199 buf->v4lbuf.index = index;
1200 buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1201 buf->v4lbuf.field = V4L2_FIELD_NONE;
1202 buf->v4lbuf.memory = V4L2_MEMORY_MMAP;
1204 * Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg
1205 * just uses the length times the index, but the spec warns
1206 * against doing just that - vma merging problems. So we
1207 * leave a gap between each pair of buffers.
1209 buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length;
1210 return 0;
1213 static int cafe_free_sio_buffers(struct cafe_camera *cam)
1215 int i;
1218 * If any buffers are mapped, we cannot free them at all.
1220 for (i = 0; i < cam->n_sbufs; i++)
1221 if (cam->sb_bufs[i].mapcount > 0)
1222 return -EBUSY;
1224 * OK, let's do it.
1226 for (i = 0; i < cam->n_sbufs; i++)
1227 vfree(cam->sb_bufs[i].buffer);
1228 cam->n_sbufs = 0;
1229 kfree(cam->sb_bufs);
1230 cam->sb_bufs = NULL;
1231 INIT_LIST_HEAD(&cam->sb_avail);
1232 INIT_LIST_HEAD(&cam->sb_full);
1233 return 0;
1238 static int cafe_vidioc_reqbufs(struct file *filp, void *priv,
1239 struct v4l2_requestbuffers *req)
1241 struct cafe_camera *cam = filp->private_data;
1242 int ret = 0; /* Silence warning */
1245 * Make sure it's something we can do. User pointers could be
1246 * implemented without great pain, but that's not been done yet.
1248 if (req->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1249 return -EINVAL;
1250 if (req->memory != V4L2_MEMORY_MMAP)
1251 return -EINVAL;
1253 * If they ask for zero buffers, they really want us to stop streaming
1254 * (if it's happening) and free everything. Should we check owner?
1256 mutex_lock(&cam->s_mutex);
1257 if (req->count == 0) {
1258 if (cam->state == S_STREAMING)
1259 cafe_ctlr_stop_dma(cam);
1260 ret = cafe_free_sio_buffers (cam);
1261 goto out;
1264 * Device needs to be idle and working. We *could* try to do the
1265 * right thing in S_SPECREAD by shutting things down, but it
1266 * probably doesn't matter.
1268 if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) {
1269 ret = -EBUSY;
1270 goto out;
1272 cam->owner = filp;
1274 if (req->count < min_buffers)
1275 req->count = min_buffers;
1276 else if (req->count > max_buffers)
1277 req->count = max_buffers;
1278 if (cam->n_sbufs > 0) {
1279 ret = cafe_free_sio_buffers(cam);
1280 if (ret)
1281 goto out;
1284 cam->sb_bufs = kzalloc(req->count*sizeof(struct cafe_sio_buffer),
1285 GFP_KERNEL);
1286 if (cam->sb_bufs == NULL) {
1287 ret = -ENOMEM;
1288 goto out;
1290 for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) {
1291 ret = cafe_setup_siobuf(cam, cam->n_sbufs);
1292 if (ret)
1293 break;
1296 if (cam->n_sbufs == 0) /* no luck at all - ret already set */
1297 kfree(cam->sb_bufs);
1298 req->count = cam->n_sbufs; /* In case of partial success */
1300 out:
1301 mutex_unlock(&cam->s_mutex);
1302 return ret;
1306 static int cafe_vidioc_querybuf(struct file *filp, void *priv,
1307 struct v4l2_buffer *buf)
1309 struct cafe_camera *cam = filp->private_data;
1310 int ret = -EINVAL;
1312 mutex_lock(&cam->s_mutex);
1313 if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1314 goto out;
1315 if (buf->index < 0 || buf->index >= cam->n_sbufs)
1316 goto out;
1317 *buf = cam->sb_bufs[buf->index].v4lbuf;
1318 ret = 0;
1319 out:
1320 mutex_unlock(&cam->s_mutex);
1321 return ret;
1324 static int cafe_vidioc_qbuf(struct file *filp, void *priv,
1325 struct v4l2_buffer *buf)
1327 struct cafe_camera *cam = filp->private_data;
1328 struct cafe_sio_buffer *sbuf;
1329 int ret = -EINVAL;
1330 unsigned long flags;
1332 mutex_lock(&cam->s_mutex);
1333 if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1334 goto out;
1335 if (buf->index < 0 || buf->index >= cam->n_sbufs)
1336 goto out;
1337 sbuf = cam->sb_bufs + buf->index;
1338 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) {
1339 ret = 0; /* Already queued?? */
1340 goto out;
1342 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) {
1343 /* Spec doesn't say anything, seems appropriate tho */
1344 ret = -EBUSY;
1345 goto out;
1347 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED;
1348 spin_lock_irqsave(&cam->dev_lock, flags);
1349 list_add(&sbuf->list, &cam->sb_avail);
1350 spin_unlock_irqrestore(&cam->dev_lock, flags);
1351 ret = 0;
1352 out:
1353 mutex_unlock(&cam->s_mutex);
1354 return ret;
1357 static int cafe_vidioc_dqbuf(struct file *filp, void *priv,
1358 struct v4l2_buffer *buf)
1360 struct cafe_camera *cam = filp->private_data;
1361 struct cafe_sio_buffer *sbuf;
1362 int ret = -EINVAL;
1363 unsigned long flags;
1365 mutex_lock(&cam->s_mutex);
1366 if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1367 goto out_unlock;
1368 if (cam->state != S_STREAMING)
1369 goto out_unlock;
1370 if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) {
1371 ret = -EAGAIN;
1372 goto out_unlock;
1375 while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) {
1376 mutex_unlock(&cam->s_mutex);
1377 if (wait_event_interruptible(cam->iowait,
1378 !list_empty(&cam->sb_full))) {
1379 ret = -ERESTARTSYS;
1380 goto out;
1382 mutex_lock(&cam->s_mutex);
1385 if (cam->state != S_STREAMING)
1386 ret = -EINTR;
1387 else {
1388 spin_lock_irqsave(&cam->dev_lock, flags);
1389 /* Should probably recheck !list_empty() here */
1390 sbuf = list_entry(cam->sb_full.next,
1391 struct cafe_sio_buffer, list);
1392 list_del_init(&sbuf->list);
1393 spin_unlock_irqrestore(&cam->dev_lock, flags);
1394 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE;
1395 *buf = sbuf->v4lbuf;
1396 ret = 0;
1399 out_unlock:
1400 mutex_unlock(&cam->s_mutex);
1401 out:
1402 return ret;
1407 static void cafe_v4l_vm_open(struct vm_area_struct *vma)
1409 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1411 * Locking: done under mmap_sem, so we don't need to
1412 * go back to the camera lock here.
1414 sbuf->mapcount++;
1418 static void cafe_v4l_vm_close(struct vm_area_struct *vma)
1420 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1422 mutex_lock(&sbuf->cam->s_mutex);
1423 sbuf->mapcount--;
1424 /* Docs say we should stop I/O too... */
1425 if (sbuf->mapcount == 0)
1426 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED;
1427 mutex_unlock(&sbuf->cam->s_mutex);
1430 static struct vm_operations_struct cafe_v4l_vm_ops = {
1431 .open = cafe_v4l_vm_open,
1432 .close = cafe_v4l_vm_close
1436 static int cafe_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
1438 struct cafe_camera *cam = filp->private_data;
1439 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1440 int ret = -EINVAL;
1441 int i;
1442 struct cafe_sio_buffer *sbuf = NULL;
1444 if (! (vma->vm_flags & VM_WRITE) || ! (vma->vm_flags & VM_SHARED))
1445 return -EINVAL;
1447 * Find the buffer they are looking for.
1449 mutex_lock(&cam->s_mutex);
1450 for (i = 0; i < cam->n_sbufs; i++)
1451 if (cam->sb_bufs[i].v4lbuf.m.offset == offset) {
1452 sbuf = cam->sb_bufs + i;
1453 break;
1455 if (sbuf == NULL)
1456 goto out;
1458 ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
1459 if (ret)
1460 goto out;
1461 vma->vm_flags |= VM_DONTEXPAND;
1462 vma->vm_private_data = sbuf;
1463 vma->vm_ops = &cafe_v4l_vm_ops;
1464 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED;
1465 cafe_v4l_vm_open(vma);
1466 ret = 0;
1467 out:
1468 mutex_unlock(&cam->s_mutex);
1469 return ret;
1474 static int cafe_v4l_open(struct inode *inode, struct file *filp)
1476 struct cafe_camera *cam;
1478 cam = cafe_find_dev(iminor(inode));
1479 if (cam == NULL)
1480 return -ENODEV;
1481 filp->private_data = cam;
1483 mutex_lock(&cam->s_mutex);
1484 if (cam->users == 0) {
1485 cafe_ctlr_power_up(cam);
1486 __cafe_cam_reset(cam);
1487 cafe_set_config_needed(cam, 1);
1488 /* FIXME make sure this is complete */
1490 (cam->users)++;
1491 mutex_unlock(&cam->s_mutex);
1492 return 0;
1496 static int cafe_v4l_release(struct inode *inode, struct file *filp)
1498 struct cafe_camera *cam = filp->private_data;
1500 mutex_lock(&cam->s_mutex);
1501 (cam->users)--;
1502 if (filp == cam->owner) {
1503 cafe_ctlr_stop_dma(cam);
1504 cafe_free_sio_buffers(cam);
1505 cam->owner = NULL;
1507 if (cam->users == 0) {
1508 cafe_ctlr_power_down(cam);
1509 if (alloc_bufs_at_read)
1510 cafe_free_dma_bufs(cam);
1512 mutex_unlock(&cam->s_mutex);
1513 return 0;
1518 static unsigned int cafe_v4l_poll(struct file *filp,
1519 struct poll_table_struct *pt)
1521 struct cafe_camera *cam = filp->private_data;
1523 poll_wait(filp, &cam->iowait, pt);
1524 if (cam->next_buf >= 0)
1525 return POLLIN | POLLRDNORM;
1526 return 0;
1531 static int cafe_vidioc_queryctrl(struct file *filp, void *priv,
1532 struct v4l2_queryctrl *qc)
1534 struct cafe_camera *cam = filp->private_data;
1535 int ret;
1537 mutex_lock(&cam->s_mutex);
1538 ret = __cafe_cam_cmd(cam, VIDIOC_QUERYCTRL, qc);
1539 mutex_unlock(&cam->s_mutex);
1540 return ret;
1544 static int cafe_vidioc_g_ctrl(struct file *filp, void *priv,
1545 struct v4l2_control *ctrl)
1547 struct cafe_camera *cam = filp->private_data;
1548 int ret;
1550 mutex_lock(&cam->s_mutex);
1551 ret = __cafe_cam_cmd(cam, VIDIOC_G_CTRL, ctrl);
1552 mutex_unlock(&cam->s_mutex);
1553 return ret;
1557 static int cafe_vidioc_s_ctrl(struct file *filp, void *priv,
1558 struct v4l2_control *ctrl)
1560 struct cafe_camera *cam = filp->private_data;
1561 int ret;
1563 mutex_lock(&cam->s_mutex);
1564 ret = __cafe_cam_cmd(cam, VIDIOC_S_CTRL, ctrl);
1565 mutex_unlock(&cam->s_mutex);
1566 return ret;
1573 static int cafe_vidioc_querycap(struct file *file, void *priv,
1574 struct v4l2_capability *cap)
1576 strcpy(cap->driver, "cafe_ccic");
1577 strcpy(cap->card, "cafe_ccic");
1578 cap->version = CAFE_VERSION;
1579 cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
1580 V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
1581 return 0;
1586 * The default format we use until somebody says otherwise.
1588 static struct v4l2_pix_format cafe_def_pix_format = {
1589 .width = VGA_WIDTH,
1590 .height = VGA_HEIGHT,
1591 .pixelformat = V4L2_PIX_FMT_YUYV,
1592 .field = V4L2_FIELD_NONE,
1593 .bytesperline = VGA_WIDTH*2,
1594 .sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
1597 static int cafe_vidioc_enum_fmt_vid_cap(struct file *filp,
1598 void *priv, struct v4l2_fmtdesc *fmt)
1600 struct cafe_camera *cam = priv;
1601 int ret;
1603 if (fmt->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1604 return -EINVAL;
1605 mutex_lock(&cam->s_mutex);
1606 ret = __cafe_cam_cmd(cam, VIDIOC_ENUM_FMT, fmt);
1607 mutex_unlock(&cam->s_mutex);
1608 return ret;
1612 static int cafe_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1613 struct v4l2_format *fmt)
1615 struct cafe_camera *cam = priv;
1616 int ret;
1618 mutex_lock(&cam->s_mutex);
1619 ret = __cafe_cam_cmd(cam, VIDIOC_TRY_FMT, fmt);
1620 mutex_unlock(&cam->s_mutex);
1621 return ret;
1624 static int cafe_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1625 struct v4l2_format *fmt)
1627 struct cafe_camera *cam = priv;
1628 int ret;
1631 * Can't do anything if the device is not idle
1632 * Also can't if there are streaming buffers in place.
1634 if (cam->state != S_IDLE || cam->n_sbufs > 0)
1635 return -EBUSY;
1637 * See if the formatting works in principle.
1639 ret = cafe_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1640 if (ret)
1641 return ret;
1643 * Now we start to change things for real, so let's do it
1644 * under lock.
1646 mutex_lock(&cam->s_mutex);
1647 cam->pix_format = fmt->fmt.pix;
1649 * Make sure we have appropriate DMA buffers.
1651 ret = -ENOMEM;
1652 if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
1653 cafe_free_dma_bufs(cam);
1654 if (cam->nbufs == 0) {
1655 if (cafe_alloc_dma_bufs(cam, 0))
1656 goto out;
1659 * It looks like this might work, so let's program the sensor.
1661 ret = cafe_cam_configure(cam);
1662 if (! ret)
1663 ret = cafe_ctlr_configure(cam);
1664 out:
1665 mutex_unlock(&cam->s_mutex);
1666 return ret;
1670 * Return our stored notion of how the camera is/should be configured.
1671 * The V4l2 spec wants us to be smarter, and actually get this from
1672 * the camera (and not mess with it at open time). Someday.
1674 static int cafe_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1675 struct v4l2_format *f)
1677 struct cafe_camera *cam = priv;
1679 f->fmt.pix = cam->pix_format;
1680 return 0;
1684 * We only have one input - the sensor - so minimize the nonsense here.
1686 static int cafe_vidioc_enum_input(struct file *filp, void *priv,
1687 struct v4l2_input *input)
1689 if (input->index != 0)
1690 return -EINVAL;
1692 input->type = V4L2_INPUT_TYPE_CAMERA;
1693 input->std = V4L2_STD_ALL; /* Not sure what should go here */
1694 strcpy(input->name, "Camera");
1695 return 0;
1698 static int cafe_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1700 *i = 0;
1701 return 0;
1704 static int cafe_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1706 if (i != 0)
1707 return -EINVAL;
1708 return 0;
1711 /* from vivi.c */
1712 static int cafe_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
1714 return 0;
1718 * G/S_PARM. Most of this is done by the sensor, but we are
1719 * the level which controls the number of read buffers.
1721 static int cafe_vidioc_g_parm(struct file *filp, void *priv,
1722 struct v4l2_streamparm *parms)
1724 struct cafe_camera *cam = priv;
1725 int ret;
1727 mutex_lock(&cam->s_mutex);
1728 ret = __cafe_cam_cmd(cam, VIDIOC_G_PARM, parms);
1729 mutex_unlock(&cam->s_mutex);
1730 parms->parm.capture.readbuffers = n_dma_bufs;
1731 return ret;
1734 static int cafe_vidioc_s_parm(struct file *filp, void *priv,
1735 struct v4l2_streamparm *parms)
1737 struct cafe_camera *cam = priv;
1738 int ret;
1740 mutex_lock(&cam->s_mutex);
1741 ret = __cafe_cam_cmd(cam, VIDIOC_S_PARM, parms);
1742 mutex_unlock(&cam->s_mutex);
1743 parms->parm.capture.readbuffers = n_dma_bufs;
1744 return ret;
1748 static void cafe_v4l_dev_release(struct video_device *vd)
1750 struct cafe_camera *cam = container_of(vd, struct cafe_camera, v4ldev);
1752 kfree(cam);
1757 * This template device holds all of those v4l2 methods; we
1758 * clone it for specific real devices.
1761 static const struct file_operations cafe_v4l_fops = {
1762 .owner = THIS_MODULE,
1763 .open = cafe_v4l_open,
1764 .release = cafe_v4l_release,
1765 .read = cafe_v4l_read,
1766 .poll = cafe_v4l_poll,
1767 .mmap = cafe_v4l_mmap,
1768 .ioctl = video_ioctl2,
1769 .llseek = no_llseek,
1772 static const struct v4l2_ioctl_ops cafe_v4l_ioctl_ops = {
1773 .vidioc_querycap = cafe_vidioc_querycap,
1774 .vidioc_enum_fmt_vid_cap = cafe_vidioc_enum_fmt_vid_cap,
1775 .vidioc_try_fmt_vid_cap = cafe_vidioc_try_fmt_vid_cap,
1776 .vidioc_s_fmt_vid_cap = cafe_vidioc_s_fmt_vid_cap,
1777 .vidioc_g_fmt_vid_cap = cafe_vidioc_g_fmt_vid_cap,
1778 .vidioc_enum_input = cafe_vidioc_enum_input,
1779 .vidioc_g_input = cafe_vidioc_g_input,
1780 .vidioc_s_input = cafe_vidioc_s_input,
1781 .vidioc_s_std = cafe_vidioc_s_std,
1782 .vidioc_reqbufs = cafe_vidioc_reqbufs,
1783 .vidioc_querybuf = cafe_vidioc_querybuf,
1784 .vidioc_qbuf = cafe_vidioc_qbuf,
1785 .vidioc_dqbuf = cafe_vidioc_dqbuf,
1786 .vidioc_streamon = cafe_vidioc_streamon,
1787 .vidioc_streamoff = cafe_vidioc_streamoff,
1788 .vidioc_queryctrl = cafe_vidioc_queryctrl,
1789 .vidioc_g_ctrl = cafe_vidioc_g_ctrl,
1790 .vidioc_s_ctrl = cafe_vidioc_s_ctrl,
1791 .vidioc_g_parm = cafe_vidioc_g_parm,
1792 .vidioc_s_parm = cafe_vidioc_s_parm,
1795 static struct video_device cafe_v4l_template = {
1796 .name = "cafe",
1797 .minor = -1, /* Get one dynamically */
1798 .tvnorms = V4L2_STD_NTSC_M,
1799 .current_norm = V4L2_STD_NTSC_M, /* make mplayer happy */
1801 .fops = &cafe_v4l_fops,
1802 .ioctl_ops = &cafe_v4l_ioctl_ops,
1803 .release = cafe_v4l_dev_release,
1812 /* ---------------------------------------------------------------------- */
1814 * Interrupt handler stuff
1819 static void cafe_frame_tasklet(unsigned long data)
1821 struct cafe_camera *cam = (struct cafe_camera *) data;
1822 int i;
1823 unsigned long flags;
1824 struct cafe_sio_buffer *sbuf;
1826 spin_lock_irqsave(&cam->dev_lock, flags);
1827 for (i = 0; i < cam->nbufs; i++) {
1828 int bufno = cam->next_buf;
1829 if (bufno < 0) { /* "will never happen" */
1830 cam_err(cam, "No valid bufs in tasklet!\n");
1831 break;
1833 if (++(cam->next_buf) >= cam->nbufs)
1834 cam->next_buf = 0;
1835 if (! test_bit(bufno, &cam->flags))
1836 continue;
1837 if (list_empty(&cam->sb_avail))
1838 break; /* Leave it valid, hope for better later */
1839 clear_bit(bufno, &cam->flags);
1840 sbuf = list_entry(cam->sb_avail.next,
1841 struct cafe_sio_buffer, list);
1843 * Drop the lock during the big copy. This *should* be safe...
1845 spin_unlock_irqrestore(&cam->dev_lock, flags);
1846 memcpy(sbuf->buffer, cam->dma_bufs[bufno],
1847 cam->pix_format.sizeimage);
1848 sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage;
1849 sbuf->v4lbuf.sequence = cam->buf_seq[bufno];
1850 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED;
1851 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE;
1852 spin_lock_irqsave(&cam->dev_lock, flags);
1853 list_move_tail(&sbuf->list, &cam->sb_full);
1855 if (! list_empty(&cam->sb_full))
1856 wake_up(&cam->iowait);
1857 spin_unlock_irqrestore(&cam->dev_lock, flags);
1862 static void cafe_frame_complete(struct cafe_camera *cam, int frame)
1865 * Basic frame housekeeping.
1867 if (test_bit(frame, &cam->flags) && printk_ratelimit())
1868 cam_err(cam, "Frame overrun on %d, frames lost\n", frame);
1869 set_bit(frame, &cam->flags);
1870 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1871 if (cam->next_buf < 0)
1872 cam->next_buf = frame;
1873 cam->buf_seq[frame] = ++(cam->sequence);
1875 switch (cam->state) {
1877 * If in single read mode, try going speculative.
1879 case S_SINGLEREAD:
1880 cam->state = S_SPECREAD;
1881 cam->specframes = 0;
1882 wake_up(&cam->iowait);
1883 break;
1886 * If we are already doing speculative reads, and nobody is
1887 * reading them, just stop.
1889 case S_SPECREAD:
1890 if (++(cam->specframes) >= cam->nbufs) {
1891 cafe_ctlr_stop(cam);
1892 cafe_ctlr_irq_disable(cam);
1893 cam->state = S_IDLE;
1895 wake_up(&cam->iowait);
1896 break;
1898 * For the streaming case, we defer the real work to the
1899 * camera tasklet.
1901 * FIXME: if the application is not consuming the buffers,
1902 * we should eventually put things on hold and restart in
1903 * vidioc_dqbuf().
1905 case S_STREAMING:
1906 tasklet_schedule(&cam->s_tasklet);
1907 break;
1909 default:
1910 cam_err(cam, "Frame interrupt in non-operational state\n");
1911 break;
1918 static void cafe_frame_irq(struct cafe_camera *cam, unsigned int irqs)
1920 unsigned int frame;
1922 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1924 * Handle any frame completions. There really should
1925 * not be more than one of these, or we have fallen
1926 * far behind.
1928 for (frame = 0; frame < cam->nbufs; frame++)
1929 if (irqs & (IRQ_EOF0 << frame))
1930 cafe_frame_complete(cam, frame);
1932 * If a frame starts, note that we have DMA active. This
1933 * code assumes that we won't get multiple frame interrupts
1934 * at once; may want to rethink that.
1936 if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2))
1937 set_bit(CF_DMA_ACTIVE, &cam->flags);
1942 static irqreturn_t cafe_irq(int irq, void *data)
1944 struct cafe_camera *cam = data;
1945 unsigned int irqs;
1947 spin_lock(&cam->dev_lock);
1948 irqs = cafe_reg_read(cam, REG_IRQSTAT);
1949 if ((irqs & ALLIRQS) == 0) {
1950 spin_unlock(&cam->dev_lock);
1951 return IRQ_NONE;
1953 if (irqs & FRAMEIRQS)
1954 cafe_frame_irq(cam, irqs);
1955 if (irqs & TWSIIRQS) {
1956 cafe_reg_write(cam, REG_IRQSTAT, TWSIIRQS);
1957 wake_up(&cam->smbus_wait);
1959 spin_unlock(&cam->dev_lock);
1960 return IRQ_HANDLED;
1964 /* -------------------------------------------------------------------------- */
1965 #ifdef CONFIG_VIDEO_ADV_DEBUG
1967 * Debugfs stuff.
1970 static char cafe_debug_buf[1024];
1971 static struct dentry *cafe_dfs_root;
1973 static void cafe_dfs_setup(void)
1975 cafe_dfs_root = debugfs_create_dir("cafe_ccic", NULL);
1976 if (IS_ERR(cafe_dfs_root)) {
1977 cafe_dfs_root = NULL; /* Never mind */
1978 printk(KERN_NOTICE "cafe_ccic unable to set up debugfs\n");
1982 static void cafe_dfs_shutdown(void)
1984 if (cafe_dfs_root)
1985 debugfs_remove(cafe_dfs_root);
1988 static int cafe_dfs_open(struct inode *inode, struct file *file)
1990 file->private_data = inode->i_private;
1991 return 0;
1994 static ssize_t cafe_dfs_read_regs(struct file *file,
1995 char __user *buf, size_t count, loff_t *ppos)
1997 struct cafe_camera *cam = file->private_data;
1998 char *s = cafe_debug_buf;
1999 int offset;
2001 for (offset = 0; offset < 0x44; offset += 4)
2002 s += sprintf(s, "%02x: %08x\n", offset,
2003 cafe_reg_read(cam, offset));
2004 for (offset = 0x88; offset <= 0x90; offset += 4)
2005 s += sprintf(s, "%02x: %08x\n", offset,
2006 cafe_reg_read(cam, offset));
2007 for (offset = 0xb4; offset <= 0xbc; offset += 4)
2008 s += sprintf(s, "%02x: %08x\n", offset,
2009 cafe_reg_read(cam, offset));
2010 for (offset = 0x3000; offset <= 0x300c; offset += 4)
2011 s += sprintf(s, "%04x: %08x\n", offset,
2012 cafe_reg_read(cam, offset));
2013 return simple_read_from_buffer(buf, count, ppos, cafe_debug_buf,
2014 s - cafe_debug_buf);
2017 static const struct file_operations cafe_dfs_reg_ops = {
2018 .owner = THIS_MODULE,
2019 .read = cafe_dfs_read_regs,
2020 .open = cafe_dfs_open
2023 static ssize_t cafe_dfs_read_cam(struct file *file,
2024 char __user *buf, size_t count, loff_t *ppos)
2026 struct cafe_camera *cam = file->private_data;
2027 char *s = cafe_debug_buf;
2028 int offset;
2030 if (! cam->sensor)
2031 return -EINVAL;
2032 for (offset = 0x0; offset < 0x8a; offset++)
2034 u8 v;
2036 cafe_smbus_read_data(cam, cam->sensor->addr, offset, &v);
2037 s += sprintf(s, "%02x: %02x\n", offset, v);
2039 return simple_read_from_buffer(buf, count, ppos, cafe_debug_buf,
2040 s - cafe_debug_buf);
2043 static const struct file_operations cafe_dfs_cam_ops = {
2044 .owner = THIS_MODULE,
2045 .read = cafe_dfs_read_cam,
2046 .open = cafe_dfs_open
2051 static void cafe_dfs_cam_setup(struct cafe_camera *cam)
2053 char fname[40];
2055 if (!cafe_dfs_root)
2056 return;
2057 sprintf(fname, "regs-%d", cam->v4ldev.minor);
2058 cam->dfs_regs = debugfs_create_file(fname, 0444, cafe_dfs_root,
2059 cam, &cafe_dfs_reg_ops);
2060 sprintf(fname, "cam-%d", cam->v4ldev.minor);
2061 cam->dfs_cam_regs = debugfs_create_file(fname, 0444, cafe_dfs_root,
2062 cam, &cafe_dfs_cam_ops);
2066 static void cafe_dfs_cam_shutdown(struct cafe_camera *cam)
2068 if (! IS_ERR(cam->dfs_regs))
2069 debugfs_remove(cam->dfs_regs);
2070 if (! IS_ERR(cam->dfs_cam_regs))
2071 debugfs_remove(cam->dfs_cam_regs);
2074 #else
2076 #define cafe_dfs_setup()
2077 #define cafe_dfs_shutdown()
2078 #define cafe_dfs_cam_setup(cam)
2079 #define cafe_dfs_cam_shutdown(cam)
2080 #endif /* CONFIG_VIDEO_ADV_DEBUG */
2085 /* ------------------------------------------------------------------------*/
2087 * PCI interface stuff.
2090 static int cafe_pci_probe(struct pci_dev *pdev,
2091 const struct pci_device_id *id)
2093 int ret;
2094 struct cafe_camera *cam;
2097 * Start putting together one of our big camera structures.
2099 ret = -ENOMEM;
2100 cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
2101 if (cam == NULL)
2102 goto out;
2103 mutex_init(&cam->s_mutex);
2104 mutex_lock(&cam->s_mutex);
2105 spin_lock_init(&cam->dev_lock);
2106 cam->state = S_NOTREADY;
2107 cafe_set_config_needed(cam, 1);
2108 init_waitqueue_head(&cam->smbus_wait);
2109 init_waitqueue_head(&cam->iowait);
2110 cam->pdev = pdev;
2111 cam->pix_format = cafe_def_pix_format;
2112 INIT_LIST_HEAD(&cam->dev_list);
2113 INIT_LIST_HEAD(&cam->sb_avail);
2114 INIT_LIST_HEAD(&cam->sb_full);
2115 tasklet_init(&cam->s_tasklet, cafe_frame_tasklet, (unsigned long) cam);
2117 * Get set up on the PCI bus.
2119 ret = pci_enable_device(pdev);
2120 if (ret)
2121 goto out_free;
2122 pci_set_master(pdev);
2124 ret = -EIO;
2125 cam->regs = pci_iomap(pdev, 0, 0);
2126 if (! cam->regs) {
2127 printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
2128 goto out_free;
2130 ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
2131 if (ret)
2132 goto out_iounmap;
2134 * Initialize the controller and leave it powered up. It will
2135 * stay that way until the sensor driver shows up.
2137 cafe_ctlr_init(cam);
2138 cafe_ctlr_power_up(cam);
2140 * Set up I2C/SMBUS communications. We have to drop the mutex here
2141 * because the sensor could attach in this call chain, leading to
2142 * unsightly deadlocks.
2144 mutex_unlock(&cam->s_mutex); /* attach can deadlock */
2145 ret = cafe_smbus_setup(cam);
2146 if (ret)
2147 goto out_freeirq;
2149 * Get the v4l2 setup done.
2151 mutex_lock(&cam->s_mutex);
2152 cam->v4ldev = cafe_v4l_template;
2153 cam->v4ldev.debug = 0;
2154 // cam->v4ldev.debug = V4L2_DEBUG_IOCTL_ARG;
2155 cam->v4ldev.parent = &pdev->dev;
2156 ret = video_register_device(&cam->v4ldev, VFL_TYPE_GRABBER, -1);
2157 if (ret)
2158 goto out_smbus;
2160 * If so requested, try to get our DMA buffers now.
2162 if (!alloc_bufs_at_read) {
2163 if (cafe_alloc_dma_bufs(cam, 1))
2164 cam_warn(cam, "Unable to alloc DMA buffers at load"
2165 " will try again later.");
2168 cafe_dfs_cam_setup(cam);
2169 mutex_unlock(&cam->s_mutex);
2170 cafe_add_dev(cam);
2171 return 0;
2173 out_smbus:
2174 cafe_smbus_shutdown(cam);
2175 out_freeirq:
2176 cafe_ctlr_power_down(cam);
2177 free_irq(pdev->irq, cam);
2178 out_iounmap:
2179 pci_iounmap(pdev, cam->regs);
2180 out_free:
2181 kfree(cam);
2182 out:
2183 return ret;
2188 * Shut down an initialized device
2190 static void cafe_shutdown(struct cafe_camera *cam)
2192 /* FIXME: Make sure we take care of everything here */
2193 cafe_dfs_cam_shutdown(cam);
2194 if (cam->n_sbufs > 0)
2195 /* What if they are still mapped? Shouldn't be, but... */
2196 cafe_free_sio_buffers(cam);
2197 cafe_remove_dev(cam);
2198 cafe_ctlr_stop_dma(cam);
2199 cafe_ctlr_power_down(cam);
2200 cafe_smbus_shutdown(cam);
2201 cafe_free_dma_bufs(cam);
2202 free_irq(cam->pdev->irq, cam);
2203 pci_iounmap(cam->pdev, cam->regs);
2204 video_unregister_device(&cam->v4ldev);
2205 /* kfree(cam); done in v4l_release () */
2209 static void cafe_pci_remove(struct pci_dev *pdev)
2211 struct cafe_camera *cam = cafe_find_by_pdev(pdev);
2213 if (cam == NULL) {
2214 printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
2215 return;
2217 mutex_lock(&cam->s_mutex);
2218 if (cam->users > 0)
2219 cam_warn(cam, "Removing a device with users!\n");
2220 cafe_shutdown(cam);
2221 /* No unlock - it no longer exists */
2225 #ifdef CONFIG_PM
2227 * Basic power management.
2229 static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2231 struct cafe_camera *cam = cafe_find_by_pdev(pdev);
2232 int ret;
2233 enum cafe_state cstate;
2235 ret = pci_save_state(pdev);
2236 if (ret)
2237 return ret;
2238 cstate = cam->state; /* HACK - stop_dma sets to idle */
2239 cafe_ctlr_stop_dma(cam);
2240 cafe_ctlr_power_down(cam);
2241 pci_disable_device(pdev);
2242 cam->state = cstate;
2243 return 0;
2247 static int cafe_pci_resume(struct pci_dev *pdev)
2249 struct cafe_camera *cam = cafe_find_by_pdev(pdev);
2250 int ret = 0;
2252 ret = pci_restore_state(pdev);
2253 if (ret)
2254 return ret;
2255 ret = pci_enable_device(pdev);
2257 if (ret) {
2258 cam_warn(cam, "Unable to re-enable device on resume!\n");
2259 return ret;
2261 cafe_ctlr_init(cam);
2262 cafe_ctlr_power_down(cam);
2264 mutex_lock(&cam->s_mutex);
2265 if (cam->users > 0) {
2266 cafe_ctlr_power_up(cam);
2267 __cafe_cam_reset(cam);
2269 mutex_unlock(&cam->s_mutex);
2271 set_bit(CF_CONFIG_NEEDED, &cam->flags);
2272 if (cam->state == S_SPECREAD)
2273 cam->state = S_IDLE; /* Don't bother restarting */
2274 else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING)
2275 ret = cafe_read_setup(cam, cam->state);
2276 return ret;
2279 #endif /* CONFIG_PM */
2282 static struct pci_device_id cafe_ids[] = {
2283 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL,
2284 PCI_DEVICE_ID_MARVELL_88ALP01_CCIC) },
2285 { 0, }
2288 MODULE_DEVICE_TABLE(pci, cafe_ids);
2290 static struct pci_driver cafe_pci_driver = {
2291 .name = "cafe1000-ccic",
2292 .id_table = cafe_ids,
2293 .probe = cafe_pci_probe,
2294 .remove = cafe_pci_remove,
2295 #ifdef CONFIG_PM
2296 .suspend = cafe_pci_suspend,
2297 .resume = cafe_pci_resume,
2298 #endif
2304 static int __init cafe_init(void)
2306 int ret;
2308 printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
2309 CAFE_VERSION);
2310 cafe_dfs_setup();
2311 ret = pci_register_driver(&cafe_pci_driver);
2312 if (ret) {
2313 printk(KERN_ERR "Unable to register cafe_ccic driver\n");
2314 goto out;
2316 request_module("ov7670"); /* FIXME want something more general */
2317 ret = 0;
2319 out:
2320 return ret;
2324 static void __exit cafe_exit(void)
2326 pci_unregister_driver(&cafe_pci_driver);
2327 cafe_dfs_shutdown();
2330 module_init(cafe_init);
2331 module_exit(cafe_exit);