2 * Copyright (C) 2005-2006 by Texas Instruments
4 * This file implements a DMA interface using TI's CPPI DMA.
5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
11 #include "musb_core.h"
12 #include "musb_debug.h"
16 /* CPPI DMA status 7-mar-2006:
18 * - See musb_{host,gadget}.c for more info
20 * - Correct RX DMA generally forces the engine into irq-per-packet mode,
21 * which can easily saturate the CPU under non-mass-storage loads.
23 * NOTES 24-aug-2006 (2.6.18-rc4):
25 * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
26 * evidently after the 1 byte packet was received and acked, the queue
27 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003,
28 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
29 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx
30 * of its next (512 byte) packet. IRQ issues?
32 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will
33 * evidently also directly update the RX and TX CSRs ... so audit all
34 * host and peripheral side DMA code to avoid CSR access after DMA has
38 /* REVISIT now we can avoid preallocating these descriptors; or
39 * more simply, switch to a global freelist not per-channel ones.
40 * Note: at full speed, 64 descriptors == 4K bulk data.
42 #define NUM_TXCHAN_BD 64
43 #define NUM_RXCHAN_BD 64
45 static inline void cpu_drain_writebuffer(void)
48 #ifdef CONFIG_CPU_ARM926T
49 /* REVISIT this "should not be needed",
50 * but lack of it sure seemed to hurt ...
52 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
56 static inline struct cppi_descriptor
*cppi_bd_alloc(struct cppi_channel
*c
)
58 struct cppi_descriptor
*bd
= c
->freelist
;
61 c
->freelist
= bd
->next
;
66 cppi_bd_free(struct cppi_channel
*c
, struct cppi_descriptor
*bd
)
70 bd
->next
= c
->freelist
;
75 * Start DMA controller
77 * Initialize the DMA controller as necessary.
80 /* zero out entire rx state RAM entry for the channel */
81 static void cppi_reset_rx(struct cppi_rx_stateram __iomem
*rx
)
83 musb_writel(&rx
->rx_skipbytes
, 0, 0);
84 musb_writel(&rx
->rx_head
, 0, 0);
85 musb_writel(&rx
->rx_sop
, 0, 0);
86 musb_writel(&rx
->rx_current
, 0, 0);
87 musb_writel(&rx
->rx_buf_current
, 0, 0);
88 musb_writel(&rx
->rx_len_len
, 0, 0);
89 musb_writel(&rx
->rx_cnt_cnt
, 0, 0);
92 /* zero out entire tx state RAM entry for the channel */
93 static void cppi_reset_tx(struct cppi_tx_stateram __iomem
*tx
, u32 ptr
)
95 musb_writel(&tx
->tx_head
, 0, 0);
96 musb_writel(&tx
->tx_buf
, 0, 0);
97 musb_writel(&tx
->tx_current
, 0, 0);
98 musb_writel(&tx
->tx_buf_current
, 0, 0);
99 musb_writel(&tx
->tx_info
, 0, 0);
100 musb_writel(&tx
->tx_rem_len
, 0, 0);
101 /* musb_writel(&tx->tx_dummy, 0, 0); */
102 musb_writel(&tx
->tx_complete
, 0, ptr
);
105 static void __init
cppi_pool_init(struct cppi
*cppi
, struct cppi_channel
*c
)
109 /* initialize channel fields */
112 c
->last_processed
= NULL
;
113 c
->channel
.status
= MUSB_DMA_STATUS_UNKNOWN
;
114 c
->controller
= cppi
;
118 /* build the BD Free list for the channel */
119 for (j
= 0; j
< NUM_TXCHAN_BD
+ 1; j
++) {
120 struct cppi_descriptor
*bd
;
123 bd
= dma_pool_alloc(cppi
->pool
, GFP_KERNEL
, &dma
);
129 static int cppi_channel_abort(struct dma_channel
*);
131 static void cppi_pool_free(struct cppi_channel
*c
)
133 struct cppi
*cppi
= c
->controller
;
134 struct cppi_descriptor
*bd
;
136 (void) cppi_channel_abort(&c
->channel
);
137 c
->channel
.status
= MUSB_DMA_STATUS_UNKNOWN
;
138 c
->controller
= NULL
;
140 /* free all its bds */
141 bd
= c
->last_processed
;
144 dma_pool_free(cppi
->pool
, bd
, bd
->dma
);
145 bd
= cppi_bd_alloc(c
);
147 c
->last_processed
= NULL
;
150 static int __init
cppi_controller_start(struct dma_controller
*c
)
152 struct cppi
*controller
;
153 void __iomem
*tibase
;
156 controller
= container_of(c
, struct cppi
, controller
);
158 /* do whatever is necessary to start controller */
159 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
160 controller
->tx
[i
].transmit
= true;
161 controller
->tx
[i
].index
= i
;
163 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++) {
164 controller
->rx
[i
].transmit
= false;
165 controller
->rx
[i
].index
= i
;
168 /* setup BD list on a per channel basis */
169 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++)
170 cppi_pool_init(controller
, controller
->tx
+ i
);
171 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++)
172 cppi_pool_init(controller
, controller
->rx
+ i
);
174 tibase
= controller
->tibase
;
175 INIT_LIST_HEAD(&controller
->tx_complete
);
177 /* initialise tx/rx channel head pointers to zero */
178 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
179 struct cppi_channel
*tx_ch
= controller
->tx
+ i
;
180 struct cppi_tx_stateram __iomem
*tx
;
182 INIT_LIST_HEAD(&tx_ch
->tx_complete
);
184 tx
= tibase
+ DAVINCI_TXCPPI_STATERAM_OFFSET(i
);
185 tx_ch
->state_ram
= tx
;
186 cppi_reset_tx(tx
, 0);
188 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++) {
189 struct cppi_channel
*rx_ch
= controller
->rx
+ i
;
190 struct cppi_rx_stateram __iomem
*rx
;
192 INIT_LIST_HEAD(&rx_ch
->tx_complete
);
194 rx
= tibase
+ DAVINCI_RXCPPI_STATERAM_OFFSET(i
);
195 rx_ch
->state_ram
= rx
;
199 /* enable individual cppi channels */
200 musb_writel(tibase
, DAVINCI_TXCPPI_INTENAB_REG
,
201 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
202 musb_writel(tibase
, DAVINCI_RXCPPI_INTENAB_REG
,
203 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
205 /* enable tx/rx CPPI control */
206 musb_writel(tibase
, DAVINCI_TXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_ENABLE
);
207 musb_writel(tibase
, DAVINCI_RXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_ENABLE
);
209 /* disable RNDIS mode, also host rx RNDIS autorequest */
210 musb_writel(tibase
, DAVINCI_RNDIS_REG
, 0);
211 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, 0);
217 * Stop DMA controller
219 * De-Init the DMA controller as necessary.
222 static int cppi_controller_stop(struct dma_controller
*c
)
224 struct cppi
*controller
;
225 void __iomem
*tibase
;
228 controller
= container_of(c
, struct cppi
, controller
);
230 tibase
= controller
->tibase
;
231 /* DISABLE INDIVIDUAL CHANNEL Interrupts */
232 musb_writel(tibase
, DAVINCI_TXCPPI_INTCLR_REG
,
233 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
234 musb_writel(tibase
, DAVINCI_RXCPPI_INTCLR_REG
,
235 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
237 DBG(1, "Tearing down RX and TX Channels\n");
238 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
239 /* FIXME restructure of txdma to use bds like rxdma */
240 controller
->tx
[i
].last_processed
= NULL
;
241 cppi_pool_free(controller
->tx
+ i
);
243 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++)
244 cppi_pool_free(controller
->rx
+ i
);
246 /* in Tx Case proper teardown is supported. We resort to disabling
247 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
248 * complete TX CPPI cannot be disabled.
250 /*disable tx/rx cppi */
251 musb_writel(tibase
, DAVINCI_TXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_DISABLE
);
252 musb_writel(tibase
, DAVINCI_RXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_DISABLE
);
257 /* While dma channel is allocated, we only want the core irqs active
258 * for fault reports, otherwise we'd get irqs that we don't care about.
259 * Except for TX irqs, where dma done != fifo empty and reusable ...
261 * NOTE: docs don't say either way, but irq masking **enables** irqs.
263 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
265 static inline void core_rxirq_disable(void __iomem
*tibase
, unsigned epnum
)
267 musb_writel(tibase
, DAVINCI_USB_INT_MASK_CLR_REG
, 1 << (epnum
+ 8));
270 static inline void core_rxirq_enable(void __iomem
*tibase
, unsigned epnum
)
272 musb_writel(tibase
, DAVINCI_USB_INT_MASK_SET_REG
, 1 << (epnum
+ 8));
277 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to
278 * each transfer direction of a non-control endpoint, so allocating
279 * (and deallocating) is mostly a way to notice bad housekeeping on
280 * the software side. We assume the irqs are always active.
282 static struct dma_channel
*
283 cppi_channel_allocate(struct dma_controller
*c
,
284 struct musb_hw_ep
*ep
, u8 transmit
)
286 struct cppi
*controller
;
288 struct cppi_channel
*cppi_ch
;
289 void __iomem
*tibase
;
291 controller
= container_of(c
, struct cppi
, controller
);
292 tibase
= controller
->tibase
;
294 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
295 index
= ep
->epnum
- 1;
297 /* return the corresponding CPPI Channel Handle, and
298 * probably disable the non-CPPI irq until we need it.
301 if (index
>= ARRAY_SIZE(controller
->tx
)) {
302 DBG(1, "no %cX%d CPPI channel\n", 'T', index
);
305 cppi_ch
= controller
->tx
+ index
;
307 if (index
>= ARRAY_SIZE(controller
->rx
)) {
308 DBG(1, "no %cX%d CPPI channel\n", 'R', index
);
311 cppi_ch
= controller
->rx
+ index
;
312 core_rxirq_disable(tibase
, ep
->epnum
);
315 /* REVISIT make this an error later once the same driver code works
316 * with the other DMA engine too
319 DBG(1, "re-allocating DMA%d %cX channel %p\n",
320 index
, transmit
? 'T' : 'R', cppi_ch
);
322 cppi_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
324 DBG(4, "Allocate CPPI%d %cX\n", index
, transmit
? 'T' : 'R');
325 return &cppi_ch
->channel
;
328 /* Release a CPPI Channel. */
329 static void cppi_channel_release(struct dma_channel
*channel
)
331 struct cppi_channel
*c
;
332 void __iomem
*tibase
;
334 /* REVISIT: for paranoia, check state and abort if needed... */
336 c
= container_of(channel
, struct cppi_channel
, channel
);
337 tibase
= c
->controller
->tibase
;
339 DBG(1, "releasing idle DMA channel %p\n", c
);
340 else if (!c
->transmit
)
341 core_rxirq_enable(tibase
, c
->index
+ 1);
343 /* for now, leave its cppi IRQ enabled (we won't trigger it) */
345 channel
->status
= MUSB_DMA_STATUS_UNKNOWN
;
348 /* Context: controller irqlocked */
350 cppi_dump_rx(int level
, struct cppi_channel
*c
, const char *tag
)
352 void __iomem
*base
= c
->controller
->mregs
;
353 struct cppi_rx_stateram __iomem
*rx
= c
->state_ram
;
355 musb_ep_select(base
, c
->index
+ 1);
357 DBG(level
, "RX DMA%d%s: %d left, csr %04x, "
358 "%08x H%08x S%08x C%08x, "
359 "B%08x L%08x %08x .. %08x"
362 musb_readl(c
->controller
->tibase
,
363 DAVINCI_RXCPPI_BUFCNT0_REG
+ 4 * c
->index
),
364 musb_readw(c
->hw_ep
->regs
, MUSB_RXCSR
),
366 musb_readl(&rx
->rx_skipbytes
, 0),
367 musb_readl(&rx
->rx_head
, 0),
368 musb_readl(&rx
->rx_sop
, 0),
369 musb_readl(&rx
->rx_current
, 0),
371 musb_readl(&rx
->rx_buf_current
, 0),
372 musb_readl(&rx
->rx_len_len
, 0),
373 musb_readl(&rx
->rx_cnt_cnt
, 0),
374 musb_readl(&rx
->rx_complete
, 0)
378 /* Context: controller irqlocked */
380 cppi_dump_tx(int level
, struct cppi_channel
*c
, const char *tag
)
382 void __iomem
*base
= c
->controller
->mregs
;
383 struct cppi_tx_stateram __iomem
*tx
= c
->state_ram
;
385 musb_ep_select(base
, c
->index
+ 1);
387 DBG(level
, "TX DMA%d%s: csr %04x, "
388 "H%08x S%08x C%08x %08x, "
389 "F%08x L%08x .. %08x"
392 musb_readw(c
->hw_ep
->regs
, MUSB_TXCSR
),
394 musb_readl(&tx
->tx_head
, 0),
395 musb_readl(&tx
->tx_buf
, 0),
396 musb_readl(&tx
->tx_current
, 0),
397 musb_readl(&tx
->tx_buf_current
, 0),
399 musb_readl(&tx
->tx_info
, 0),
400 musb_readl(&tx
->tx_rem_len
, 0),
401 /* dummy/unused word 6 */
402 musb_readl(&tx
->tx_complete
, 0)
406 /* Context: controller irqlocked */
408 cppi_rndis_update(struct cppi_channel
*c
, int is_rx
,
409 void __iomem
*tibase
, int is_rndis
)
411 /* we may need to change the rndis flag for this cppi channel */
412 if (c
->is_rndis
!= is_rndis
) {
413 u32 value
= musb_readl(tibase
, DAVINCI_RNDIS_REG
);
414 u32 temp
= 1 << (c
->index
);
422 musb_writel(tibase
, DAVINCI_RNDIS_REG
, value
);
423 c
->is_rndis
= is_rndis
;
427 #ifdef CONFIG_USB_MUSB_DEBUG
428 static void cppi_dump_rxbd(const char *tag
, struct cppi_descriptor
*bd
)
430 pr_debug("RXBD/%s %08x: "
431 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
433 bd
->hw_next
, bd
->hw_bufp
, bd
->hw_off_len
,
438 static void cppi_dump_rxq(int level
, const char *tag
, struct cppi_channel
*rx
)
440 #ifdef CONFIG_USB_MUSB_DEBUG
441 struct cppi_descriptor
*bd
;
443 if (!_dbg_level(level
))
445 cppi_dump_rx(level
, rx
, tag
);
446 if (rx
->last_processed
)
447 cppi_dump_rxbd("last", rx
->last_processed
);
448 for (bd
= rx
->head
; bd
; bd
= bd
->next
)
449 cppi_dump_rxbd("active", bd
);
454 /* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
455 * so we won't ever use it (see "CPPI RX Woes" below).
457 static inline int cppi_autoreq_update(struct cppi_channel
*rx
,
458 void __iomem
*tibase
, int onepacket
, unsigned n_bds
)
462 #ifdef RNDIS_RX_IS_USABLE
464 /* assert(is_host_active(musb)) */
466 /* start from "AutoReq never" */
467 tmp
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
468 val
= tmp
& ~((0x3) << (rx
->index
* 2));
470 /* HCD arranged reqpkt for packet #1. we arrange int
471 * for all but the last one, maybe in two segments.
475 /* use two segments, autoreq "all" then the last "never" */
476 val
|= ((0x3) << (rx
->index
* 2));
479 /* one segment, autoreq "all-but-last" */
480 val
|= ((0x1) << (rx
->index
* 2));
487 /* make sure that autoreq is updated before continuing */
488 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, val
);
490 tmp
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
498 /* REQPKT is turned off after each segment */
499 if (n_bds
&& rx
->channel
.actual_len
) {
500 void __iomem
*regs
= rx
->hw_ep
->regs
;
502 val
= musb_readw(regs
, MUSB_RXCSR
);
503 if (!(val
& MUSB_RXCSR_H_REQPKT
)) {
504 val
|= MUSB_RXCSR_H_REQPKT
| MUSB_RXCSR_H_WZC_BITS
;
505 musb_writew(regs
, MUSB_RXCSR
, val
);
506 /* flush writebufer */
507 val
= musb_readw(regs
, MUSB_RXCSR
);
514 /* Buffer enqueuing Logic:
516 * - RX builds new queues each time, to help handle routine "early
517 * termination" cases (faults, including errors and short reads)
520 * - for now, TX reuses the same queue of BDs every time
522 * REVISIT long term, we want a normal dynamic model.
523 * ... the goal will be to append to the
524 * existing queue, processing completed "dma buffers" (segments) on the fly.
526 * Otherwise we force an IRQ latency between requests, which slows us a lot
527 * (especially in "transparent" dma). Unfortunately that model seems to be
528 * inherent in the DMA model from the Mentor code, except in the rare case
529 * of transfers big enough (~128+ KB) that we could append "middle" segments
530 * in the TX paths. (RX can't do this, see below.)
532 * That's true even in the CPPI- friendly iso case, where most urbs have
533 * several small segments provided in a group and where the "packet at a time"
534 * "transparent" DMA model is always correct, even on the RX side.
540 * TX is a lot more reasonable than RX; it doesn't need to run in
541 * irq-per-packet mode very often. RNDIS mode seems to behave too
542 * (except how it handles the exactly-N-packets case). Building a
543 * txdma queue with multiple requests (urb or usb_request) looks
544 * like it would work ... but fault handling would need much testing.
546 * The main issue with TX mode RNDIS relates to transfer lengths that
547 * are an exact multiple of the packet length. It appears that there's
548 * a hiccup in that case (maybe the DMA completes before the ZLP gets
549 * written?) boiling down to not being able to rely on CPPI writing any
550 * terminating zero length packet before the next transfer is written.
551 * So that's punted to PIO; better yet, gadget drivers can avoid it.
553 * Plus, there's allegedly an undocumented constraint that rndis transfer
554 * length be a multiple of 64 bytes ... but the chip doesn't act that
555 * way, and we really don't _want_ that behavior anyway.
557 * On TX, "transparent" mode works ... although experiments have shown
558 * problems trying to use the SOP/EOP bits in different USB packets.
560 * REVISIT try to handle terminating zero length packets using CPPI
561 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet
562 * links avoid that issue by forcing them to avoid zlps.)
565 cppi_next_tx_segment(struct musb
*musb
, struct cppi_channel
*tx
)
567 unsigned maxpacket
= tx
->maxpacket
;
568 dma_addr_t addr
= tx
->buf_dma
+ tx
->offset
;
569 size_t length
= tx
->buf_len
- tx
->offset
;
570 struct cppi_descriptor
*bd
;
573 struct cppi_tx_stateram __iomem
*tx_ram
= tx
->state_ram
;
576 /* TX can use the CPPI "rndis" mode, where we can probably fit this
577 * transfer in one BD and one IRQ. The only time we would NOT want
578 * to use it is when hardware constraints prevent it, or if we'd
579 * trigger the "send a ZLP?" confusion.
581 rndis
= (maxpacket
& 0x3f) == 0
583 && (length
% maxpacket
) != 0;
589 n_bds
= length
/ maxpacket
;
590 if (!length
|| (length
% maxpacket
))
592 n_bds
= min(n_bds
, (unsigned) NUM_TXCHAN_BD
);
593 length
= min(n_bds
* maxpacket
, length
);
596 DBG(4, "TX DMA%d, pktSz %d %s bds %d dma 0x%x len %u\n",
599 rndis
? "rndis" : "transparent",
603 cppi_rndis_update(tx
, 0, musb
->ctrl_base
, rndis
);
605 /* assuming here that channel_program is called during
606 * transfer initiation ... current code maintains state
607 * for one outstanding request only (no queues, not even
608 * the implicit ones of an iso urb).
613 tx
->last_processed
= NULL
;
615 /* FIXME use BD pool like RX side does, and just queue
616 * the minimum number for this request.
619 /* Prepare queue of BDs first, then hand it to hardware.
620 * All BDs except maybe the last should be of full packet
621 * size; for RNDIS there _is_ only that last packet.
623 for (i
= 0; i
< n_bds
; ) {
624 if (++i
< n_bds
&& bd
->next
)
625 bd
->hw_next
= bd
->next
->dma
;
629 bd
->hw_bufp
= tx
->buf_dma
+ tx
->offset
;
631 /* FIXME set EOP only on the last packet,
632 * SOP only on the first ... avoid IRQs
634 if ((tx
->offset
+ maxpacket
) <= tx
->buf_len
) {
635 tx
->offset
+= maxpacket
;
636 bd
->hw_off_len
= maxpacket
;
637 bd
->hw_options
= CPPI_SOP_SET
| CPPI_EOP_SET
638 | CPPI_OWN_SET
| maxpacket
;
640 /* only this one may be a partial USB Packet */
643 partial_len
= tx
->buf_len
- tx
->offset
;
644 tx
->offset
= tx
->buf_len
;
645 bd
->hw_off_len
= partial_len
;
647 bd
->hw_options
= CPPI_SOP_SET
| CPPI_EOP_SET
648 | CPPI_OWN_SET
| partial_len
;
649 if (partial_len
== 0)
650 bd
->hw_options
|= CPPI_ZERO_SET
;
653 DBG(5, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
654 bd
, bd
->hw_next
, bd
->hw_bufp
,
655 bd
->hw_off_len
, bd
->hw_options
);
657 /* update the last BD enqueued to the list */
662 /* BDs live in DMA-coherent memory, but writes might be pending */
663 cpu_drain_writebuffer();
665 /* Write to the HeadPtr in state RAM to trigger */
666 musb_writel(&tx_ram
->tx_head
, 0, (u32
)tx
->freelist
->dma
);
668 cppi_dump_tx(5, tx
, "/S");
674 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte
675 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
676 * (Full speed transfers have similar scenarios.)
678 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
679 * and the next packet goes into a buffer that's queued later; while (b) fills
680 * the buffer with 1024 bytes. How to do that with CPPI?
682 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
683 * (b) loses **BADLY** because nothing (!) happens when that second packet
684 * fills the buffer, much less when a third one arrives. (Which makes this
685 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination
686 * is optional, and it's fine if peripherals -- not hosts! -- pad messages
687 * out to end-of-buffer. Standard PCI host controller DMA descriptors
688 * implement that mode by default ... which is no accident.)
690 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
691 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX
692 * ignores SOP/EOP markings and processes both of those BDs; so both packets
693 * are loaded into the buffer (with a 212 byte gap between them), and the next
694 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
695 * are intended as outputs for RX queues, not inputs...)
697 * - A variant of "transparent" mode -- one BD at a time -- is the only way to
698 * reliably make both cases work, with software handling both cases correctly
699 * and at the significant penalty of needing an IRQ per packet. (The lack of
700 * I/O overlap can be slightly ameliorated by enabling double buffering.)
702 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could
703 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
704 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
705 * with guaranteed driver level fault recovery and scrubbing out what's left
706 * of that garbaged datastream.
708 * But there seems to be no way to identify the cases where CPPI RNDIS mode
709 * is appropriate -- which do NOT include RNDIS host drivers, but do include
710 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
711 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
712 * that applies best on the peripheral side (and which could fail rudely).
714 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
715 * cases other than mass storage class. Otherwise we're correct but slow,
716 * since CPPI penalizes our need for a "true RNDIS" default mode.
720 /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
723 * (a) peripheral mode ... since rndis peripherals could pad their
724 * writes to hosts, causing i/o failure; or we'd have to cope with
725 * a largely unknowable variety of host side protocol variants
726 * (b) and short reads are NOT errors ... since full reads would
727 * cause those same i/o failures
728 * (c) and read length is
729 * - less than 64KB (max per cppi descriptor)
730 * - not a multiple of 4096 (g_zero default, full reads typical)
731 * - N (>1) packets long, ditto (full reads not EXPECTED)
735 * Cost of heuristic failing: RXDMA wedges at the end of transfers that
736 * fill out the whole buffer. Buggy host side usb network drivers could
737 * trigger that, but "in the field" such bugs seem to be all but unknown.
739 * So this module parameter lets the heuristic be disabled. When using
740 * gadgetfs, the heuristic will probably need to be disabled.
742 static int cppi_rx_rndis
= 1;
744 module_param(cppi_rx_rndis
, bool, 0);
745 MODULE_PARM_DESC(cppi_rx_rndis
, "enable/disable RX RNDIS heuristic");
749 * cppi_next_rx_segment - dma read for the next chunk of a buffer
750 * @musb: the controller
752 * @onepacket: true unless caller treats short reads as errors, and
753 * performs fault recovery above usbcore.
754 * Context: controller irqlocked
756 * See above notes about why we can't use multi-BD RX queues except in
757 * rare cases (mass storage class), and can never use the hardware "rndis"
758 * mode (since it's not a "true" RNDIS mode) with complete safety..
760 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
761 * code to recover from corrupted datastreams after each short transfer.
764 cppi_next_rx_segment(struct musb
*musb
, struct cppi_channel
*rx
, int onepacket
)
766 unsigned maxpacket
= rx
->maxpacket
;
767 dma_addr_t addr
= rx
->buf_dma
+ rx
->offset
;
768 size_t length
= rx
->buf_len
- rx
->offset
;
769 struct cppi_descriptor
*bd
, *tail
;
772 void __iomem
*tibase
= musb
->ctrl_base
;
774 struct cppi_rx_stateram __iomem
*rx_ram
= rx
->state_ram
;
777 /* almost every USB driver, host or peripheral side */
780 /* maybe apply the heuristic above */
782 && is_peripheral_active(musb
)
783 && length
> maxpacket
784 && (length
& ~0xffff) == 0
785 && (length
& 0x0fff) != 0
786 && (length
& (maxpacket
- 1)) == 0) {
791 /* virtually nothing except mass storage class */
792 if (length
> 0xffff) {
793 n_bds
= 0xffff / maxpacket
;
794 length
= n_bds
* maxpacket
;
796 n_bds
= length
/ maxpacket
;
797 if (length
% maxpacket
)
803 n_bds
= min(n_bds
, (unsigned) NUM_RXCHAN_BD
);
806 /* In host mode, autorequest logic can generate some IN tokens; it's
807 * tricky since we can't leave REQPKT set in RXCSR after the transfer
808 * finishes. So: multipacket transfers involve two or more segments.
809 * And always at least two IRQs ... RNDIS mode is not an option.
811 if (is_host_active(musb
))
812 n_bds
= cppi_autoreq_update(rx
, tibase
, onepacket
, n_bds
);
814 cppi_rndis_update(rx
, 1, musb
->ctrl_base
, is_rndis
);
816 length
= min(n_bds
* maxpacket
, length
);
818 DBG(4, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
819 "dma 0x%x len %u %u/%u\n",
820 rx
->index
, maxpacket
,
822 ? (is_rndis
? "rndis" : "onepacket")
826 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
828 addr
, length
, rx
->channel
.actual_len
, rx
->buf_len
);
830 /* only queue one segment at a time, since the hardware prevents
831 * correct queue shutdown after unexpected short packets
833 bd
= cppi_bd_alloc(rx
);
836 /* Build BDs for all packets in this segment */
837 for (i
= 0, tail
= NULL
; bd
&& i
< n_bds
; i
++, tail
= bd
) {
841 bd
= cppi_bd_alloc(rx
);
845 tail
->hw_next
= bd
->dma
;
849 /* all but the last packet will be maxpacket size */
850 if (maxpacket
< length
)
857 rx
->offset
+= bd_len
;
859 bd
->hw_off_len
= (0 /*offset*/ << 16) + bd_len
;
862 bd
->hw_options
= CPPI_OWN_SET
| (i
== 0 ? length
: 0);
866 /* we always expect at least one reusable BD! */
868 WARNING("rx dma%d -- no BDs? need %d\n", rx
->index
, n_bds
);
870 } else if (i
< n_bds
)
871 WARNING("rx dma%d -- only %d of %d BDs\n", rx
->index
, i
, n_bds
);
879 /* short reads and other faults should terminate this entire
880 * dma segment. we want one "dma packet" per dma segment, not
881 * one per USB packet, terminating the whole queue at once...
882 * NOTE that current hardware seems to ignore SOP and EOP.
884 bd
->hw_options
|= CPPI_SOP_SET
;
885 tail
->hw_options
|= CPPI_EOP_SET
;
887 #ifdef CONFIG_USB_MUSB_DEBUG
889 struct cppi_descriptor
*d
;
891 for (d
= rx
->head
; d
; d
= d
->next
)
892 cppi_dump_rxbd("S", d
);
896 /* in case the preceding transfer left some state... */
897 tail
= rx
->last_processed
;
900 tail
->hw_next
= bd
->dma
;
903 core_rxirq_enable(tibase
, rx
->index
+ 1);
905 /* BDs live in DMA-coherent memory, but writes might be pending */
906 cpu_drain_writebuffer();
908 /* REVISIT specs say to write this AFTER the BUFCNT register
909 * below ... but that loses badly.
911 musb_writel(&rx_ram
->rx_head
, 0, bd
->dma
);
913 /* bufferCount must be at least 3, and zeroes on completion
914 * unless it underflows below zero, or stops at two, or keeps
917 i
= musb_readl(tibase
,
918 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
923 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
925 else if (n_bds
> (i
- 3))
927 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
930 i
= musb_readl(tibase
,
931 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
933 if (i
< (2 + n_bds
)) {
934 DBG(2, "bufcnt%d underrun - %d (for %d)\n",
935 rx
->index
, i
, n_bds
);
937 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
941 cppi_dump_rx(4, rx
, "/S");
945 * cppi_channel_program - program channel for data transfer
947 * @maxpacket: max packet size
948 * @mode: For RX, 1 unless the usb protocol driver promised to treat
949 * all short reads as errors and kick in high level fault recovery.
950 * For TX, ignored because of RNDIS mode races/glitches.
951 * @dma_addr: dma address of buffer
952 * @len: length of buffer
953 * Context: controller irqlocked
955 static int cppi_channel_program(struct dma_channel
*ch
,
956 u16 maxpacket
, u8 mode
,
957 dma_addr_t dma_addr
, u32 len
)
959 struct cppi_channel
*cppi_ch
;
960 struct cppi
*controller
;
963 cppi_ch
= container_of(ch
, struct cppi_channel
, channel
);
964 controller
= cppi_ch
->controller
;
965 musb
= controller
->musb
;
967 switch (ch
->status
) {
968 case MUSB_DMA_STATUS_BUS_ABORT
:
969 case MUSB_DMA_STATUS_CORE_ABORT
:
970 /* fault irq handler should have handled cleanup */
971 WARNING("%cX DMA%d not cleaned up after abort!\n",
972 cppi_ch
->transmit
? 'T' : 'R',
976 case MUSB_DMA_STATUS_BUSY
:
977 WARNING("program active channel? %cX DMA%d\n",
978 cppi_ch
->transmit
? 'T' : 'R',
982 case MUSB_DMA_STATUS_UNKNOWN
:
983 DBG(1, "%cX DMA%d not allocated!\n",
984 cppi_ch
->transmit
? 'T' : 'R',
987 case MUSB_DMA_STATUS_FREE
:
991 ch
->status
= MUSB_DMA_STATUS_BUSY
;
993 /* set transfer parameters, then queue up its first segment */
994 cppi_ch
->buf_dma
= dma_addr
;
996 cppi_ch
->maxpacket
= maxpacket
;
997 cppi_ch
->buf_len
= len
;
998 cppi_ch
->channel
.actual_len
= 0;
1000 /* TX channel? or RX? */
1001 if (cppi_ch
->transmit
)
1002 cppi_next_tx_segment(musb
, cppi_ch
);
1004 cppi_next_rx_segment(musb
, cppi_ch
, mode
);
1009 static bool cppi_rx_scan(struct cppi
*cppi
, unsigned ch
)
1011 struct cppi_channel
*rx
= &cppi
->rx
[ch
];
1012 struct cppi_rx_stateram __iomem
*state
= rx
->state_ram
;
1013 struct cppi_descriptor
*bd
;
1014 struct cppi_descriptor
*last
= rx
->last_processed
;
1015 bool completed
= false;
1018 dma_addr_t safe2ack
;
1019 void __iomem
*regs
= rx
->hw_ep
->regs
;
1021 cppi_dump_rx(6, rx
, "/K");
1023 bd
= last
? last
->next
: rx
->head
;
1027 /* run through all completed BDs */
1028 for (i
= 0, safe2ack
= musb_readl(&state
->rx_complete
, 0);
1029 (safe2ack
|| completed
) && bd
&& i
< NUM_RXCHAN_BD
;
1030 i
++, bd
= bd
->next
) {
1033 /* catch latest BD writes from CPPI */
1035 if (!completed
&& (bd
->hw_options
& CPPI_OWN_SET
))
1038 DBG(5, "C/RXBD %08x: nxt %08x buf %08x "
1039 "off.len %08x opt.len %08x (%d)\n",
1040 bd
->dma
, bd
->hw_next
, bd
->hw_bufp
,
1041 bd
->hw_off_len
, bd
->hw_options
,
1042 rx
->channel
.actual_len
);
1044 /* actual packet received length */
1045 if ((bd
->hw_options
& CPPI_SOP_SET
) && !completed
)
1046 len
= bd
->hw_off_len
& CPPI_RECV_PKTLEN_MASK
;
1050 if (bd
->hw_options
& CPPI_EOQ_MASK
)
1053 if (!completed
&& len
< bd
->buflen
) {
1054 /* NOTE: when we get a short packet, RXCSR_H_REQPKT
1055 * must have been cleared, and no more DMA packets may
1056 * active be in the queue... TI docs didn't say, but
1057 * CPPI ignores those BDs even though OWN is still set.
1060 DBG(3, "rx short %d/%d (%d)\n",
1062 rx
->channel
.actual_len
);
1065 /* If we got here, we expect to ack at least one BD; meanwhile
1066 * CPPI may completing other BDs while we scan this list...
1068 * RACE: we can notice OWN cleared before CPPI raises the
1069 * matching irq by writing that BD as the completion pointer.
1070 * In such cases, stop scanning and wait for the irq, avoiding
1071 * lost acks and states where BD ownership is unclear.
1073 if (bd
->dma
== safe2ack
) {
1074 musb_writel(&state
->rx_complete
, 0, safe2ack
);
1075 safe2ack
= musb_readl(&state
->rx_complete
, 0);
1077 if (bd
->dma
== safe2ack
)
1081 rx
->channel
.actual_len
+= len
;
1083 cppi_bd_free(rx
, last
);
1086 /* stop scanning on end-of-segment */
1087 if (bd
->hw_next
== 0)
1090 rx
->last_processed
= last
;
1092 /* dma abort, lost ack, or ... */
1093 if (!acked
&& last
) {
1096 if (safe2ack
== 0 || safe2ack
== rx
->last_processed
->dma
)
1097 musb_writel(&state
->rx_complete
, 0, safe2ack
);
1098 if (safe2ack
== 0) {
1099 cppi_bd_free(rx
, last
);
1100 rx
->last_processed
= NULL
;
1102 /* if we land here on the host side, H_REQPKT will
1103 * be clear and we need to restart the queue...
1107 musb_ep_select(cppi
->mregs
, rx
->index
+ 1);
1108 csr
= musb_readw(regs
, MUSB_RXCSR
);
1109 if (csr
& MUSB_RXCSR_DMAENAB
) {
1110 DBG(4, "list%d %p/%p, last %08x%s, csr %04x\n",
1114 ? rx
->last_processed
->dma
1116 completed
? ", completed" : "",
1118 cppi_dump_rxq(4, "/what?", rx
);
1126 /* REVISIT seems like "autoreq all but EOP" doesn't...
1127 * setting it here "should" be racey, but seems to work
1129 csr
= musb_readw(rx
->hw_ep
->regs
, MUSB_RXCSR
);
1130 if (is_host_active(cppi
->musb
)
1132 && !(csr
& MUSB_RXCSR_H_REQPKT
)) {
1133 csr
|= MUSB_RXCSR_H_REQPKT
;
1134 musb_writew(regs
, MUSB_RXCSR
,
1135 MUSB_RXCSR_H_WZC_BITS
| csr
);
1136 csr
= musb_readw(rx
->hw_ep
->regs
, MUSB_RXCSR
);
1143 cppi_dump_rx(6, rx
, completed
? "/completed" : "/cleaned");
1147 void cppi_completion(struct musb
*musb
, u32 rx
, u32 tx
)
1149 void __iomem
*tibase
;
1152 struct musb_hw_ep
*hw_ep
= NULL
;
1154 cppi
= container_of(musb
->dma_controller
, struct cppi
, controller
);
1156 tibase
= musb
->ctrl_base
;
1158 /* process TX channels */
1159 for (index
= 0; tx
; tx
= tx
>> 1, index
++) {
1160 struct cppi_channel
*tx_ch
;
1161 struct cppi_tx_stateram __iomem
*tx_ram
;
1162 bool completed
= false;
1163 struct cppi_descriptor
*bd
;
1168 tx_ch
= cppi
->tx
+ index
;
1169 tx_ram
= tx_ch
->state_ram
;
1171 /* FIXME need a cppi_tx_scan() routine, which
1172 * can also be called from abort code
1175 cppi_dump_tx(5, tx_ch
, "/E");
1180 DBG(1, "null BD\n");
1184 /* run through all completed BDs */
1185 for (i
= 0; !completed
&& bd
&& i
< NUM_TXCHAN_BD
;
1186 i
++, bd
= bd
->next
) {
1189 /* catch latest BD writes from CPPI */
1191 if (bd
->hw_options
& CPPI_OWN_SET
)
1194 DBG(5, "C/TXBD %p n %x b %x off %x opt %x\n",
1195 bd
, bd
->hw_next
, bd
->hw_bufp
,
1196 bd
->hw_off_len
, bd
->hw_options
);
1198 len
= bd
->hw_off_len
& CPPI_BUFFER_LEN_MASK
;
1199 tx_ch
->channel
.actual_len
+= len
;
1201 tx_ch
->last_processed
= bd
;
1203 /* write completion register to acknowledge
1204 * processing of completed BDs, and possibly
1205 * release the IRQ; EOQ might not be set ...
1207 * REVISIT use the same ack strategy as rx
1209 * REVISIT have observed bit 18 set; huh??
1211 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1212 musb_writel(&tx_ram
->tx_complete
, 0, bd
->dma
);
1214 /* stop scanning on end-of-segment */
1215 if (bd
->hw_next
== 0)
1219 /* on end of segment, maybe go to next one */
1221 /* cppi_dump_tx(4, tx_ch, "/complete"); */
1223 /* transfer more, or report completion */
1224 if (tx_ch
->offset
>= tx_ch
->buf_len
) {
1227 tx_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
1229 hw_ep
= tx_ch
->hw_ep
;
1231 /* Peripheral role never repurposes the
1232 * endpoint, so immediate completion is
1233 * safe. Host role waits for the fifo
1234 * to empty (TXPKTRDY irq) before going
1235 * to the next queued bulk transfer.
1237 if (is_host_active(cppi
->musb
)) {
1239 /* WORKAROUND because we may
1240 * not always get TXKPTRDY ...
1244 csr
= musb_readw(hw_ep
->regs
,
1246 if (csr
& MUSB_TXCSR_TXPKTRDY
)
1251 musb_dma_completion(musb
, index
+ 1, 1);
1254 /* Bigger transfer than we could fit in
1255 * that first batch of descriptors...
1257 cppi_next_tx_segment(musb
, tx_ch
);
1263 /* Start processing the RX block */
1264 for (index
= 0; rx
; rx
= rx
>> 1, index
++) {
1267 struct cppi_channel
*rx_ch
;
1269 rx_ch
= cppi
->rx
+ index
;
1271 /* let incomplete dma segments finish */
1272 if (!cppi_rx_scan(cppi
, index
))
1275 /* start another dma segment if needed */
1276 if (rx_ch
->channel
.actual_len
!= rx_ch
->buf_len
1277 && rx_ch
->channel
.actual_len
1279 cppi_next_rx_segment(musb
, rx_ch
, 1);
1283 /* all segments completed! */
1284 rx_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
1286 hw_ep
= rx_ch
->hw_ep
;
1288 core_rxirq_disable(tibase
, index
+ 1);
1289 musb_dma_completion(musb
, index
+ 1, 0);
1293 /* write to CPPI EOI register to re-enable interrupts */
1294 musb_writel(tibase
, DAVINCI_CPPI_EOI_REG
, 0);
1297 /* Instantiate a software object representing a DMA controller. */
1298 struct dma_controller
*__init
1299 dma_controller_create(struct musb
*musb
, void __iomem
*mregs
)
1301 struct cppi
*controller
;
1303 controller
= kzalloc(sizeof *controller
, GFP_KERNEL
);
1307 controller
->mregs
= mregs
;
1308 controller
->tibase
= mregs
- DAVINCI_BASE_OFFSET
;
1310 controller
->musb
= musb
;
1311 controller
->controller
.start
= cppi_controller_start
;
1312 controller
->controller
.stop
= cppi_controller_stop
;
1313 controller
->controller
.channel_alloc
= cppi_channel_allocate
;
1314 controller
->controller
.channel_release
= cppi_channel_release
;
1315 controller
->controller
.channel_program
= cppi_channel_program
;
1316 controller
->controller
.channel_abort
= cppi_channel_abort
;
1318 /* NOTE: allocating from on-chip SRAM would give the least
1319 * contention for memory access, if that ever matters here.
1322 /* setup BufferPool */
1323 controller
->pool
= dma_pool_create("cppi",
1324 controller
->musb
->controller
,
1325 sizeof(struct cppi_descriptor
),
1326 CPPI_DESCRIPTOR_ALIGN
, 0);
1327 if (!controller
->pool
) {
1332 return &controller
->controller
;
1336 * Destroy a previously-instantiated DMA controller.
1338 void dma_controller_destroy(struct dma_controller
*c
)
1342 cppi
= container_of(c
, struct cppi
, controller
);
1344 /* assert: caller stopped the controller first */
1345 dma_pool_destroy(cppi
->pool
);
1351 * Context: controller irqlocked, endpoint selected
1353 static int cppi_channel_abort(struct dma_channel
*channel
)
1355 struct cppi_channel
*cppi_ch
;
1356 struct cppi
*controller
;
1357 void __iomem
*mbase
;
1358 void __iomem
*tibase
;
1361 struct cppi_descriptor
*queue
;
1363 cppi_ch
= container_of(channel
, struct cppi_channel
, channel
);
1365 controller
= cppi_ch
->controller
;
1367 switch (channel
->status
) {
1368 case MUSB_DMA_STATUS_BUS_ABORT
:
1369 case MUSB_DMA_STATUS_CORE_ABORT
:
1370 /* from RX or TX fault irq handler */
1371 case MUSB_DMA_STATUS_BUSY
:
1372 /* the hardware needs shutting down */
1373 regs
= cppi_ch
->hw_ep
->regs
;
1375 case MUSB_DMA_STATUS_UNKNOWN
:
1376 case MUSB_DMA_STATUS_FREE
:
1382 if (!cppi_ch
->transmit
&& cppi_ch
->head
)
1383 cppi_dump_rxq(3, "/abort", cppi_ch
);
1385 mbase
= controller
->mregs
;
1386 tibase
= controller
->tibase
;
1388 queue
= cppi_ch
->head
;
1389 cppi_ch
->head
= NULL
;
1390 cppi_ch
->tail
= NULL
;
1392 /* REVISIT should rely on caller having done this,
1393 * and caller should rely on us not changing it.
1394 * peripheral code is safe ... check host too.
1396 musb_ep_select(mbase
, cppi_ch
->index
+ 1);
1398 if (cppi_ch
->transmit
) {
1399 struct cppi_tx_stateram __iomem
*tx_ram
;
1402 /* mask interrupts raised to signal teardown complete. */
1403 enabled
= musb_readl(tibase
, DAVINCI_TXCPPI_INTENAB_REG
)
1404 & (1 << cppi_ch
->index
);
1406 musb_writel(tibase
, DAVINCI_TXCPPI_INTCLR_REG
,
1407 (1 << cppi_ch
->index
));
1409 /* REVISIT put timeouts on these controller handshakes */
1411 cppi_dump_tx(6, cppi_ch
, " (teardown)");
1413 /* teardown DMA engine then usb core */
1415 value
= musb_readl(tibase
, DAVINCI_TXCPPI_TEAR_REG
);
1416 } while (!(value
& CPPI_TEAR_READY
));
1417 musb_writel(tibase
, DAVINCI_TXCPPI_TEAR_REG
, cppi_ch
->index
);
1419 tx_ram
= cppi_ch
->state_ram
;
1421 value
= musb_readl(&tx_ram
->tx_complete
, 0);
1422 } while (0xFFFFFFFC != value
);
1423 musb_writel(&tx_ram
->tx_complete
, 0, 0xFFFFFFFC);
1425 /* FIXME clean up the transfer state ... here?
1426 * the completion routine should get called with
1427 * an appropriate status code.
1430 value
= musb_readw(regs
, MUSB_TXCSR
);
1431 value
&= ~MUSB_TXCSR_DMAENAB
;
1432 value
|= MUSB_TXCSR_FLUSHFIFO
;
1433 musb_writew(regs
, MUSB_TXCSR
, value
);
1434 musb_writew(regs
, MUSB_TXCSR
, value
);
1436 /* re-enable interrupt */
1438 musb_writel(tibase
, DAVINCI_TXCPPI_INTENAB_REG
,
1439 (1 << cppi_ch
->index
));
1441 /* While we scrub the TX state RAM, ensure that we clean
1442 * up any interrupt that's currently asserted:
1443 * 1. Write to completion Ptr value 0x1(bit 0 set)
1445 * 2. Write to completion Ptr value 0x0(bit 0 cleared)
1447 * Value written is compared(for bits 31:2) and when
1448 * equal, interrupt is deasserted.
1450 cppi_reset_tx(tx_ram
, 1);
1451 musb_writel(&tx_ram
->tx_complete
, 0, 0);
1453 cppi_dump_tx(5, cppi_ch
, " (done teardown)");
1455 /* REVISIT tx side _should_ clean up the same way
1456 * as the RX side ... this does no cleanup at all!
1462 /* NOTE: docs don't guarantee any of this works ... we
1463 * expect that if the usb core stops telling the cppi core
1464 * to pull more data from it, then it'll be safe to flush
1465 * current RX DMA state iff any pending fifo transfer is done.
1468 core_rxirq_disable(tibase
, cppi_ch
->index
+ 1);
1470 /* for host, ensure ReqPkt is never set again */
1471 if (is_host_active(cppi_ch
->controller
->musb
)) {
1472 value
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
1473 value
&= ~((0x3) << (cppi_ch
->index
* 2));
1474 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, value
);
1477 csr
= musb_readw(regs
, MUSB_RXCSR
);
1479 /* for host, clear (just) ReqPkt at end of current packet(s) */
1480 if (is_host_active(cppi_ch
->controller
->musb
)) {
1481 csr
|= MUSB_RXCSR_H_WZC_BITS
;
1482 csr
&= ~MUSB_RXCSR_H_REQPKT
;
1484 csr
|= MUSB_RXCSR_P_WZC_BITS
;
1486 /* clear dma enable */
1487 csr
&= ~(MUSB_RXCSR_DMAENAB
);
1488 musb_writew(regs
, MUSB_RXCSR
, csr
);
1489 csr
= musb_readw(regs
, MUSB_RXCSR
);
1491 /* Quiesce: wait for current dma to finish (if not cleanup).
1492 * We can't use bit zero of stateram->rx_sop, since that
1493 * refers to an entire "DMA packet" not just emptying the
1494 * current fifo. Most segments need multiple usb packets.
1496 if (channel
->status
== MUSB_DMA_STATUS_BUSY
)
1499 /* scan the current list, reporting any data that was
1500 * transferred and acking any IRQ
1502 cppi_rx_scan(controller
, cppi_ch
->index
);
1504 /* clobber the existing state once it's idle
1506 * NOTE: arguably, we should also wait for all the other
1507 * RX channels to quiesce (how??) and then temporarily
1508 * disable RXCPPI_CTRL_REG ... but it seems that we can
1509 * rely on the controller restarting from state ram, with
1510 * only RXCPPI_BUFCNT state being bogus. BUFCNT will
1511 * correct itself after the next DMA transfer though.
1513 * REVISIT does using rndis mode change that?
1515 cppi_reset_rx(cppi_ch
->state_ram
);
1517 /* next DMA request _should_ load cppi head ptr */
1519 /* ... we don't "free" that list, only mutate it in place. */
1520 cppi_dump_rx(5, cppi_ch
, " (done abort)");
1522 /* clean up previously pending bds */
1523 cppi_bd_free(cppi_ch
, cppi_ch
->last_processed
);
1524 cppi_ch
->last_processed
= NULL
;
1527 struct cppi_descriptor
*tmp
= queue
->next
;
1529 cppi_bd_free(cppi_ch
, queue
);
1534 channel
->status
= MUSB_DMA_STATUS_FREE
;
1535 cppi_ch
->buf_dma
= 0;
1536 cppi_ch
->offset
= 0;
1537 cppi_ch
->buf_len
= 0;
1538 cppi_ch
->maxpacket
= 0;
1544 * Power Management ... probably turn off cppi during suspend, restart;
1545 * check state ram? Clocking is presumably shared with usb core.