[PATCH] libata-hp-prep: make probing related functions global
[linux-2.6/linux-2.6-openrd.git] / drivers / spi / spi_bitbang.c
blobdd2f950b21a734ca753a48ddf55fdd31d1b573bc
1 /*
2 * spi_bitbang.c - polling/bitbanging SPI master controller driver utilities
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/spinlock.h>
22 #include <linux/workqueue.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/platform_device.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi_bitbang.h>
32 /*----------------------------------------------------------------------*/
35 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
36 * Use this for GPIO or shift-register level hardware APIs.
38 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
39 * to glue code. These bitbang setup() and cleanup() routines are always
40 * used, though maybe they're called from controller-aware code.
42 * chipselect() and friends may use use spi_device->controller_data and
43 * controller registers as appropriate.
46 * NOTE: SPI controller pins can often be used as GPIO pins instead,
47 * which means you could use a bitbang driver either to get hardware
48 * working quickly, or testing for differences that aren't speed related.
51 struct spi_bitbang_cs {
52 unsigned nsecs; /* (clock cycle time)/2 */
53 u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
54 u32 word, u8 bits);
55 unsigned (*txrx_bufs)(struct spi_device *,
56 u32 (*txrx_word)(
57 struct spi_device *spi,
58 unsigned nsecs,
59 u32 word, u8 bits),
60 unsigned, struct spi_transfer *);
63 static unsigned bitbang_txrx_8(
64 struct spi_device *spi,
65 u32 (*txrx_word)(struct spi_device *spi,
66 unsigned nsecs,
67 u32 word, u8 bits),
68 unsigned ns,
69 struct spi_transfer *t
70 ) {
71 unsigned bits = spi->bits_per_word;
72 unsigned count = t->len;
73 const u8 *tx = t->tx_buf;
74 u8 *rx = t->rx_buf;
76 while (likely(count > 0)) {
77 u8 word = 0;
79 if (tx)
80 word = *tx++;
81 word = txrx_word(spi, ns, word, bits);
82 if (rx)
83 *rx++ = word;
84 count -= 1;
86 return t->len - count;
89 static unsigned bitbang_txrx_16(
90 struct spi_device *spi,
91 u32 (*txrx_word)(struct spi_device *spi,
92 unsigned nsecs,
93 u32 word, u8 bits),
94 unsigned ns,
95 struct spi_transfer *t
96 ) {
97 unsigned bits = spi->bits_per_word;
98 unsigned count = t->len;
99 const u16 *tx = t->tx_buf;
100 u16 *rx = t->rx_buf;
102 while (likely(count > 1)) {
103 u16 word = 0;
105 if (tx)
106 word = *tx++;
107 word = txrx_word(spi, ns, word, bits);
108 if (rx)
109 *rx++ = word;
110 count -= 2;
112 return t->len - count;
115 static unsigned bitbang_txrx_32(
116 struct spi_device *spi,
117 u32 (*txrx_word)(struct spi_device *spi,
118 unsigned nsecs,
119 u32 word, u8 bits),
120 unsigned ns,
121 struct spi_transfer *t
123 unsigned bits = spi->bits_per_word;
124 unsigned count = t->len;
125 const u32 *tx = t->tx_buf;
126 u32 *rx = t->rx_buf;
128 while (likely(count > 3)) {
129 u32 word = 0;
131 if (tx)
132 word = *tx++;
133 word = txrx_word(spi, ns, word, bits);
134 if (rx)
135 *rx++ = word;
136 count -= 4;
138 return t->len - count;
141 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
143 struct spi_bitbang_cs *cs = spi->controller_state;
144 u8 bits_per_word;
145 u32 hz;
147 if (t) {
148 bits_per_word = t->bits_per_word;
149 hz = t->speed_hz;
150 } else {
151 bits_per_word = 0;
152 hz = 0;
155 /* spi_transfer level calls that work per-word */
156 if (!bits_per_word)
157 bits_per_word = spi->bits_per_word;
158 if (bits_per_word <= 8)
159 cs->txrx_bufs = bitbang_txrx_8;
160 else if (bits_per_word <= 16)
161 cs->txrx_bufs = bitbang_txrx_16;
162 else if (bits_per_word <= 32)
163 cs->txrx_bufs = bitbang_txrx_32;
164 else
165 return -EINVAL;
167 /* nsecs = (clock period)/2 */
168 if (!hz)
169 hz = spi->max_speed_hz;
170 if (hz) {
171 cs->nsecs = (1000000000/2) / hz;
172 if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
173 return -EINVAL;
176 return 0;
178 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
181 * spi_bitbang_setup - default setup for per-word I/O loops
183 int spi_bitbang_setup(struct spi_device *spi)
185 struct spi_bitbang_cs *cs = spi->controller_state;
186 struct spi_bitbang *bitbang;
187 int retval;
189 bitbang = spi_master_get_devdata(spi->master);
191 /* REVISIT: some systems will want to support devices using lsb-first
192 * bit encodings on the wire. In pure software that would be trivial,
193 * just bitbang_txrx_le_cphaX() routines shifting the other way, and
194 * some hardware controllers also have this support.
196 if ((spi->mode & SPI_LSB_FIRST) != 0)
197 return -EINVAL;
199 if (!cs) {
200 cs = kzalloc(sizeof *cs, SLAB_KERNEL);
201 if (!cs)
202 return -ENOMEM;
203 spi->controller_state = cs;
206 if (!spi->bits_per_word)
207 spi->bits_per_word = 8;
209 /* per-word shift register access, in hardware or bitbanging */
210 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
211 if (!cs->txrx_word)
212 return -EINVAL;
214 retval = spi_bitbang_setup_transfer(spi, NULL);
215 if (retval < 0)
216 return retval;
218 dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u nsec/bit\n",
219 __FUNCTION__, spi->mode & (SPI_CPOL | SPI_CPHA),
220 spi->bits_per_word, 2 * cs->nsecs);
222 /* NOTE we _need_ to call chipselect() early, ideally with adapter
223 * setup, unless the hardware defaults cooperate to avoid confusion
224 * between normal (active low) and inverted chipselects.
227 /* deselect chip (low or high) */
228 spin_lock(&bitbang->lock);
229 if (!bitbang->busy) {
230 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
231 ndelay(cs->nsecs);
233 spin_unlock(&bitbang->lock);
235 return 0;
237 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
240 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
242 void spi_bitbang_cleanup(const struct spi_device *spi)
244 kfree(spi->controller_state);
246 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
248 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
250 struct spi_bitbang_cs *cs = spi->controller_state;
251 unsigned nsecs = cs->nsecs;
253 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
256 /*----------------------------------------------------------------------*/
259 * SECOND PART ... simple transfer queue runner.
261 * This costs a task context per controller, running the queue by
262 * performing each transfer in sequence. Smarter hardware can queue
263 * several DMA transfers at once, and process several controller queues
264 * in parallel; this driver doesn't match such hardware very well.
266 * Drivers can provide word-at-a-time i/o primitives, or provide
267 * transfer-at-a-time ones to leverage dma or fifo hardware.
269 static void bitbang_work(void *_bitbang)
271 struct spi_bitbang *bitbang = _bitbang;
272 unsigned long flags;
274 spin_lock_irqsave(&bitbang->lock, flags);
275 bitbang->busy = 1;
276 while (!list_empty(&bitbang->queue)) {
277 struct spi_message *m;
278 struct spi_device *spi;
279 unsigned nsecs;
280 struct spi_transfer *t = NULL;
281 unsigned tmp;
282 unsigned cs_change;
283 int status;
284 int (*setup_transfer)(struct spi_device *,
285 struct spi_transfer *);
287 m = container_of(bitbang->queue.next, struct spi_message,
288 queue);
289 list_del_init(&m->queue);
290 spin_unlock_irqrestore(&bitbang->lock, flags);
292 /* FIXME this is made-up ... the correct value is known to
293 * word-at-a-time bitbang code, and presumably chipselect()
294 * should enforce these requirements too?
296 nsecs = 100;
298 spi = m->spi;
299 tmp = 0;
300 cs_change = 1;
301 status = 0;
302 setup_transfer = NULL;
304 list_for_each_entry (t, &m->transfers, transfer_list) {
305 if (bitbang->shutdown) {
306 status = -ESHUTDOWN;
307 break;
310 /* override or restore speed and wordsize */
311 if (t->speed_hz || t->bits_per_word) {
312 setup_transfer = bitbang->setup_transfer;
313 if (!setup_transfer) {
314 status = -ENOPROTOOPT;
315 break;
318 if (setup_transfer) {
319 status = setup_transfer(spi, t);
320 if (status < 0)
321 break;
324 /* set up default clock polarity, and activate chip;
325 * this implicitly updates clock and spi modes as
326 * previously recorded for this device via setup().
327 * (and also deselects any other chip that might be
328 * selected ...)
330 if (cs_change) {
331 bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
332 ndelay(nsecs);
334 cs_change = t->cs_change;
335 if (!t->tx_buf && !t->rx_buf && t->len) {
336 status = -EINVAL;
337 break;
340 /* transfer data. the lower level code handles any
341 * new dma mappings it needs. our caller always gave
342 * us dma-safe buffers.
344 if (t->len) {
345 /* REVISIT dma API still needs a designated
346 * DMA_ADDR_INVALID; ~0 might be better.
348 if (!m->is_dma_mapped)
349 t->rx_dma = t->tx_dma = 0;
350 status = bitbang->txrx_bufs(spi, t);
352 if (status != t->len) {
353 if (status > 0)
354 status = -EMSGSIZE;
355 break;
357 m->actual_length += status;
358 status = 0;
360 /* protocol tweaks before next transfer */
361 if (t->delay_usecs)
362 udelay(t->delay_usecs);
364 if (!cs_change)
365 continue;
366 if (t->transfer_list.next == &m->transfers)
367 break;
369 /* sometimes a short mid-message deselect of the chip
370 * may be needed to terminate a mode or command
372 ndelay(nsecs);
373 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
374 ndelay(nsecs);
377 m->status = status;
378 m->complete(m->context);
380 /* restore speed and wordsize */
381 if (setup_transfer)
382 setup_transfer(spi, NULL);
384 /* normally deactivate chipselect ... unless no error and
385 * cs_change has hinted that the next message will probably
386 * be for this chip too.
388 if (!(status == 0 && cs_change)) {
389 ndelay(nsecs);
390 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
391 ndelay(nsecs);
394 spin_lock_irqsave(&bitbang->lock, flags);
396 bitbang->busy = 0;
397 spin_unlock_irqrestore(&bitbang->lock, flags);
401 * spi_bitbang_transfer - default submit to transfer queue
403 int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
405 struct spi_bitbang *bitbang;
406 unsigned long flags;
407 int status = 0;
409 m->actual_length = 0;
410 m->status = -EINPROGRESS;
412 bitbang = spi_master_get_devdata(spi->master);
413 if (bitbang->shutdown)
414 return -ESHUTDOWN;
416 spin_lock_irqsave(&bitbang->lock, flags);
417 if (!spi->max_speed_hz)
418 status = -ENETDOWN;
419 else {
420 list_add_tail(&m->queue, &bitbang->queue);
421 queue_work(bitbang->workqueue, &bitbang->work);
423 spin_unlock_irqrestore(&bitbang->lock, flags);
425 return status;
427 EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
429 /*----------------------------------------------------------------------*/
432 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
433 * @bitbang: driver handle
435 * Caller should have zero-initialized all parts of the structure, and then
436 * provided callbacks for chip selection and I/O loops. If the master has
437 * a transfer method, its final step should call spi_bitbang_transfer; or,
438 * that's the default if the transfer routine is not initialized. It should
439 * also set up the bus number and number of chipselects.
441 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
442 * hardware that basically exposes a shift register) or per-spi_transfer
443 * (which takes better advantage of hardware like fifos or DMA engines).
445 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup and
446 * spi_bitbang_cleanup to handle those spi master methods. Those methods are
447 * the defaults if the bitbang->txrx_bufs routine isn't initialized.
449 * This routine registers the spi_master, which will process requests in a
450 * dedicated task, keeping IRQs unblocked most of the time. To stop
451 * processing those requests, call spi_bitbang_stop().
453 int spi_bitbang_start(struct spi_bitbang *bitbang)
455 int status;
457 if (!bitbang->master || !bitbang->chipselect)
458 return -EINVAL;
460 INIT_WORK(&bitbang->work, bitbang_work, bitbang);
461 spin_lock_init(&bitbang->lock);
462 INIT_LIST_HEAD(&bitbang->queue);
464 if (!bitbang->master->transfer)
465 bitbang->master->transfer = spi_bitbang_transfer;
466 if (!bitbang->txrx_bufs) {
467 bitbang->use_dma = 0;
468 bitbang->txrx_bufs = spi_bitbang_bufs;
469 if (!bitbang->master->setup) {
470 if (!bitbang->setup_transfer)
471 bitbang->setup_transfer =
472 spi_bitbang_setup_transfer;
473 bitbang->master->setup = spi_bitbang_setup;
474 bitbang->master->cleanup = spi_bitbang_cleanup;
476 } else if (!bitbang->master->setup)
477 return -EINVAL;
479 /* this task is the only thing to touch the SPI bits */
480 bitbang->busy = 0;
481 bitbang->workqueue = create_singlethread_workqueue(
482 bitbang->master->cdev.dev->bus_id);
483 if (bitbang->workqueue == NULL) {
484 status = -EBUSY;
485 goto err1;
488 /* driver may get busy before register() returns, especially
489 * if someone registered boardinfo for devices
491 status = spi_register_master(bitbang->master);
492 if (status < 0)
493 goto err2;
495 return status;
497 err2:
498 destroy_workqueue(bitbang->workqueue);
499 err1:
500 return status;
502 EXPORT_SYMBOL_GPL(spi_bitbang_start);
505 * spi_bitbang_stop - stops the task providing spi communication
507 int spi_bitbang_stop(struct spi_bitbang *bitbang)
509 unsigned limit = 500;
511 spin_lock_irq(&bitbang->lock);
512 bitbang->shutdown = 0;
513 while (!list_empty(&bitbang->queue) && limit--) {
514 spin_unlock_irq(&bitbang->lock);
516 dev_dbg(bitbang->master->cdev.dev, "wait for queue\n");
517 msleep(10);
519 spin_lock_irq(&bitbang->lock);
521 spin_unlock_irq(&bitbang->lock);
522 if (!list_empty(&bitbang->queue)) {
523 dev_err(bitbang->master->cdev.dev, "queue didn't empty\n");
524 return -EBUSY;
527 destroy_workqueue(bitbang->workqueue);
529 spi_unregister_master(bitbang->master);
531 return 0;
533 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
535 MODULE_LICENSE("GPL");