[PATCH] powerpc: Merge vdso's and add vdso support to 32 bits kernel
[linux-2.6/linux-2.6-openrd.git] / arch / powerpc / kernel / time.c
blob070b4b458aafe73f9de49d0005ab23d6484fefc6
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/config.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/param.h>
41 #include <linux/string.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/timex.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/time.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
54 #include <asm/io.h>
55 #include <asm/processor.h>
56 #include <asm/nvram.h>
57 #include <asm/cache.h>
58 #include <asm/machdep.h>
59 #include <asm/uaccess.h>
60 #include <asm/time.h>
61 #include <asm/prom.h>
62 #include <asm/irq.h>
63 #include <asm/div64.h>
64 #include <asm/smp.h>
65 #include <asm/vdso_datapage.h>
66 #ifdef CONFIG_PPC64
67 #include <asm/firmware.h>
68 #endif
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
72 #endif
73 #include <asm/smp.h>
75 /* keep track of when we need to update the rtc */
76 time_t last_rtc_update;
77 extern int piranha_simulator;
78 #ifdef CONFIG_PPC_ISERIES
79 unsigned long iSeries_recal_titan = 0;
80 unsigned long iSeries_recal_tb = 0;
81 static unsigned long first_settimeofday = 1;
82 #endif
84 /* The decrementer counts down by 128 every 128ns on a 601. */
85 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
87 #define XSEC_PER_SEC (1024*1024)
89 #ifdef CONFIG_PPC64
90 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
91 #else
92 /* compute ((xsec << 12) * max) >> 32 */
93 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
94 #endif
96 unsigned long tb_ticks_per_jiffy;
97 unsigned long tb_ticks_per_usec = 100; /* sane default */
98 EXPORT_SYMBOL(tb_ticks_per_usec);
99 unsigned long tb_ticks_per_sec;
100 u64 tb_to_xs;
101 unsigned tb_to_us;
102 unsigned long processor_freq;
103 DEFINE_SPINLOCK(rtc_lock);
104 EXPORT_SYMBOL_GPL(rtc_lock);
106 u64 tb_to_ns_scale;
107 unsigned tb_to_ns_shift;
109 struct gettimeofday_struct do_gtod;
111 extern unsigned long wall_jiffies;
113 extern struct timezone sys_tz;
114 static long timezone_offset;
116 void ppc_adjtimex(void);
118 static unsigned adjusting_time = 0;
120 unsigned long ppc_proc_freq;
121 unsigned long ppc_tb_freq;
123 u64 tb_last_jiffy __cacheline_aligned_in_smp;
124 unsigned long tb_last_stamp;
127 * Note that on ppc32 this only stores the bottom 32 bits of
128 * the timebase value, but that's enough to tell when a jiffy
129 * has passed.
131 DEFINE_PER_CPU(unsigned long, last_jiffy);
133 static __inline__ void timer_check_rtc(void)
136 * update the rtc when needed, this should be performed on the
137 * right fraction of a second. Half or full second ?
138 * Full second works on mk48t59 clocks, others need testing.
139 * Note that this update is basically only used through
140 * the adjtimex system calls. Setting the HW clock in
141 * any other way is a /dev/rtc and userland business.
142 * This is still wrong by -0.5/+1.5 jiffies because of the
143 * timer interrupt resolution and possible delay, but here we
144 * hit a quantization limit which can only be solved by higher
145 * resolution timers and decoupling time management from timer
146 * interrupts. This is also wrong on the clocks
147 * which require being written at the half second boundary.
148 * We should have an rtc call that only sets the minutes and
149 * seconds like on Intel to avoid problems with non UTC clocks.
151 if (ppc_md.set_rtc_time && ntp_synced() &&
152 xtime.tv_sec - last_rtc_update >= 659 &&
153 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
154 jiffies - wall_jiffies == 1) {
155 struct rtc_time tm;
156 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
157 tm.tm_year -= 1900;
158 tm.tm_mon -= 1;
159 if (ppc_md.set_rtc_time(&tm) == 0)
160 last_rtc_update = xtime.tv_sec + 1;
161 else
162 /* Try again one minute later */
163 last_rtc_update += 60;
168 * This version of gettimeofday has microsecond resolution.
170 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
172 unsigned long sec, usec;
173 u64 tb_ticks, xsec;
174 struct gettimeofday_vars *temp_varp;
175 u64 temp_tb_to_xs, temp_stamp_xsec;
178 * These calculations are faster (gets rid of divides)
179 * if done in units of 1/2^20 rather than microseconds.
180 * The conversion to microseconds at the end is done
181 * without a divide (and in fact, without a multiply)
183 temp_varp = do_gtod.varp;
184 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
185 temp_tb_to_xs = temp_varp->tb_to_xs;
186 temp_stamp_xsec = temp_varp->stamp_xsec;
187 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
188 sec = xsec / XSEC_PER_SEC;
189 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
190 usec = SCALE_XSEC(usec, 1000000);
192 tv->tv_sec = sec;
193 tv->tv_usec = usec;
196 void do_gettimeofday(struct timeval *tv)
198 if (__USE_RTC()) {
199 /* do this the old way */
200 unsigned long flags, seq;
201 unsigned int sec, nsec, usec, lost;
203 do {
204 seq = read_seqbegin_irqsave(&xtime_lock, flags);
205 sec = xtime.tv_sec;
206 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
207 lost = jiffies - wall_jiffies;
208 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
209 usec = nsec / 1000 + lost * (1000000 / HZ);
210 while (usec >= 1000000) {
211 usec -= 1000000;
212 ++sec;
214 tv->tv_sec = sec;
215 tv->tv_usec = usec;
216 return;
218 __do_gettimeofday(tv, get_tb());
221 EXPORT_SYMBOL(do_gettimeofday);
223 /* Synchronize xtime with do_gettimeofday */
225 static inline void timer_sync_xtime(unsigned long cur_tb)
227 #ifdef CONFIG_PPC64
228 /* why do we do this? */
229 struct timeval my_tv;
231 __do_gettimeofday(&my_tv, cur_tb);
233 if (xtime.tv_sec <= my_tv.tv_sec) {
234 xtime.tv_sec = my_tv.tv_sec;
235 xtime.tv_nsec = my_tv.tv_usec * 1000;
237 #endif
241 * There are two copies of tb_to_xs and stamp_xsec so that no
242 * lock is needed to access and use these values in
243 * do_gettimeofday. We alternate the copies and as long as a
244 * reasonable time elapses between changes, there will never
245 * be inconsistent values. ntpd has a minimum of one minute
246 * between updates.
248 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
249 u64 new_tb_to_xs)
251 unsigned temp_idx;
252 struct gettimeofday_vars *temp_varp;
254 temp_idx = (do_gtod.var_idx == 0);
255 temp_varp = &do_gtod.vars[temp_idx];
257 temp_varp->tb_to_xs = new_tb_to_xs;
258 temp_varp->tb_orig_stamp = new_tb_stamp;
259 temp_varp->stamp_xsec = new_stamp_xsec;
260 smp_mb();
261 do_gtod.varp = temp_varp;
262 do_gtod.var_idx = temp_idx;
265 * tb_update_count is used to allow the userspace gettimeofday code
266 * to assure itself that it sees a consistent view of the tb_to_xs and
267 * stamp_xsec variables. It reads the tb_update_count, then reads
268 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
269 * the two values of tb_update_count match and are even then the
270 * tb_to_xs and stamp_xsec values are consistent. If not, then it
271 * loops back and reads them again until this criteria is met.
273 ++(vdso_data->tb_update_count);
274 smp_wmb();
275 vdso_data->tb_orig_stamp = new_tb_stamp;
276 vdso_data->stamp_xsec = new_stamp_xsec;
277 vdso_data->tb_to_xs = new_tb_to_xs;
278 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
279 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
280 smp_wmb();
281 ++(vdso_data->tb_update_count);
285 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
286 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
287 * difference tb - tb_orig_stamp small enough to always fit inside a
288 * 32 bits number. This is a requirement of our fast 32 bits userland
289 * implementation in the vdso. If we "miss" a call to this function
290 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
291 * with a too big difference, then the vdso will fallback to calling
292 * the syscall
294 static __inline__ void timer_recalc_offset(u64 cur_tb)
296 unsigned long offset;
297 u64 new_stamp_xsec;
299 if (__USE_RTC())
300 return;
301 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
302 if ((offset & 0x80000000u) == 0)
303 return;
304 new_stamp_xsec = do_gtod.varp->stamp_xsec
305 + mulhdu(offset, do_gtod.varp->tb_to_xs);
306 update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
309 #ifdef CONFIG_SMP
310 unsigned long profile_pc(struct pt_regs *regs)
312 unsigned long pc = instruction_pointer(regs);
314 if (in_lock_functions(pc))
315 return regs->link;
317 return pc;
319 EXPORT_SYMBOL(profile_pc);
320 #endif
322 #ifdef CONFIG_PPC_ISERIES
325 * This function recalibrates the timebase based on the 49-bit time-of-day
326 * value in the Titan chip. The Titan is much more accurate than the value
327 * returned by the service processor for the timebase frequency.
330 static void iSeries_tb_recal(void)
332 struct div_result divres;
333 unsigned long titan, tb;
334 tb = get_tb();
335 titan = HvCallXm_loadTod();
336 if ( iSeries_recal_titan ) {
337 unsigned long tb_ticks = tb - iSeries_recal_tb;
338 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
339 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
340 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
341 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
342 char sign = '+';
343 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
344 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
346 if ( tick_diff < 0 ) {
347 tick_diff = -tick_diff;
348 sign = '-';
350 if ( tick_diff ) {
351 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
352 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
353 new_tb_ticks_per_jiffy, sign, tick_diff );
354 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
355 tb_ticks_per_sec = new_tb_ticks_per_sec;
356 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
357 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
358 tb_to_xs = divres.result_low;
359 do_gtod.varp->tb_to_xs = tb_to_xs;
360 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
361 vdso_data->tb_to_xs = tb_to_xs;
363 else {
364 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
365 " new tb_ticks_per_jiffy = %lu\n"
366 " old tb_ticks_per_jiffy = %lu\n",
367 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
371 iSeries_recal_titan = titan;
372 iSeries_recal_tb = tb;
374 #endif
377 * For iSeries shared processors, we have to let the hypervisor
378 * set the hardware decrementer. We set a virtual decrementer
379 * in the lppaca and call the hypervisor if the virtual
380 * decrementer is less than the current value in the hardware
381 * decrementer. (almost always the new decrementer value will
382 * be greater than the current hardware decementer so the hypervisor
383 * call will not be needed)
387 * timer_interrupt - gets called when the decrementer overflows,
388 * with interrupts disabled.
390 void timer_interrupt(struct pt_regs * regs)
392 int next_dec;
393 int cpu = smp_processor_id();
394 unsigned long ticks;
396 #ifdef CONFIG_PPC32
397 if (atomic_read(&ppc_n_lost_interrupts) != 0)
398 do_IRQ(regs);
399 #endif
401 irq_enter();
403 profile_tick(CPU_PROFILING, regs);
405 #ifdef CONFIG_PPC_ISERIES
406 get_paca()->lppaca.int_dword.fields.decr_int = 0;
407 #endif
409 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
410 >= tb_ticks_per_jiffy) {
411 /* Update last_jiffy */
412 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
413 /* Handle RTCL overflow on 601 */
414 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
415 per_cpu(last_jiffy, cpu) -= 1000000000;
418 * We cannot disable the decrementer, so in the period
419 * between this cpu's being marked offline in cpu_online_map
420 * and calling stop-self, it is taking timer interrupts.
421 * Avoid calling into the scheduler rebalancing code if this
422 * is the case.
424 if (!cpu_is_offline(cpu))
425 update_process_times(user_mode(regs));
428 * No need to check whether cpu is offline here; boot_cpuid
429 * should have been fixed up by now.
431 if (cpu != boot_cpuid)
432 continue;
434 write_seqlock(&xtime_lock);
435 tb_last_jiffy += tb_ticks_per_jiffy;
436 tb_last_stamp = per_cpu(last_jiffy, cpu);
437 timer_recalc_offset(tb_last_jiffy);
438 do_timer(regs);
439 timer_sync_xtime(tb_last_jiffy);
440 timer_check_rtc();
441 write_sequnlock(&xtime_lock);
442 if (adjusting_time && (time_adjust == 0))
443 ppc_adjtimex();
446 next_dec = tb_ticks_per_jiffy - ticks;
447 set_dec(next_dec);
449 #ifdef CONFIG_PPC_ISERIES
450 if (hvlpevent_is_pending())
451 process_hvlpevents(regs);
452 #endif
454 #ifdef CONFIG_PPC64
455 /* collect purr register values often, for accurate calculations */
456 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
457 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
458 cu->current_tb = mfspr(SPRN_PURR);
460 #endif
462 irq_exit();
465 void wakeup_decrementer(void)
467 int i;
469 set_dec(tb_ticks_per_jiffy);
471 * We don't expect this to be called on a machine with a 601,
472 * so using get_tbl is fine.
474 tb_last_stamp = tb_last_jiffy = get_tb();
475 for_each_cpu(i)
476 per_cpu(last_jiffy, i) = tb_last_stamp;
479 #ifdef CONFIG_SMP
480 void __init smp_space_timers(unsigned int max_cpus)
482 int i;
483 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
484 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
486 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
487 previous_tb -= tb_ticks_per_jiffy;
488 for_each_cpu(i) {
489 if (i != boot_cpuid) {
490 previous_tb += offset;
491 per_cpu(last_jiffy, i) = previous_tb;
495 #endif
498 * Scheduler clock - returns current time in nanosec units.
500 * Note: mulhdu(a, b) (multiply high double unsigned) returns
501 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
502 * are 64-bit unsigned numbers.
504 unsigned long long sched_clock(void)
506 if (__USE_RTC())
507 return get_rtc();
508 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
511 int do_settimeofday(struct timespec *tv)
513 time_t wtm_sec, new_sec = tv->tv_sec;
514 long wtm_nsec, new_nsec = tv->tv_nsec;
515 unsigned long flags;
516 long int tb_delta;
517 u64 new_xsec, tb_delta_xs;
519 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
520 return -EINVAL;
522 write_seqlock_irqsave(&xtime_lock, flags);
525 * Updating the RTC is not the job of this code. If the time is
526 * stepped under NTP, the RTC will be updated after STA_UNSYNC
527 * is cleared. Tools like clock/hwclock either copy the RTC
528 * to the system time, in which case there is no point in writing
529 * to the RTC again, or write to the RTC but then they don't call
530 * settimeofday to perform this operation.
532 #ifdef CONFIG_PPC_ISERIES
533 if (first_settimeofday) {
534 iSeries_tb_recal();
535 first_settimeofday = 0;
537 #endif
538 tb_delta = tb_ticks_since(tb_last_stamp);
539 tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
540 tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs);
542 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
543 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
545 set_normalized_timespec(&xtime, new_sec, new_nsec);
546 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
548 /* In case of a large backwards jump in time with NTP, we want the
549 * clock to be updated as soon as the PLL is again in lock.
551 last_rtc_update = new_sec - 658;
553 ntp_clear();
555 new_xsec = 0;
556 if (new_nsec != 0) {
557 new_xsec = (u64)new_nsec * XSEC_PER_SEC;
558 do_div(new_xsec, NSEC_PER_SEC);
560 new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs;
561 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
563 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
564 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
566 write_sequnlock_irqrestore(&xtime_lock, flags);
567 clock_was_set();
568 return 0;
571 EXPORT_SYMBOL(do_settimeofday);
573 void __init generic_calibrate_decr(void)
575 struct device_node *cpu;
576 unsigned int *fp;
577 int node_found;
580 * The cpu node should have a timebase-frequency property
581 * to tell us the rate at which the decrementer counts.
583 cpu = of_find_node_by_type(NULL, "cpu");
585 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
586 node_found = 0;
587 if (cpu != 0) {
588 fp = (unsigned int *)get_property(cpu, "timebase-frequency",
589 NULL);
590 if (fp != 0) {
591 node_found = 1;
592 ppc_tb_freq = *fp;
595 if (!node_found)
596 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
597 "(not found)\n");
599 ppc_proc_freq = DEFAULT_PROC_FREQ;
600 node_found = 0;
601 if (cpu != 0) {
602 fp = (unsigned int *)get_property(cpu, "clock-frequency",
603 NULL);
604 if (fp != 0) {
605 node_found = 1;
606 ppc_proc_freq = *fp;
609 #ifdef CONFIG_BOOKE
610 /* Set the time base to zero */
611 mtspr(SPRN_TBWL, 0);
612 mtspr(SPRN_TBWU, 0);
614 /* Clear any pending timer interrupts */
615 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
617 /* Enable decrementer interrupt */
618 mtspr(SPRN_TCR, TCR_DIE);
619 #endif
620 if (!node_found)
621 printk(KERN_ERR "WARNING: Estimating processor frequency "
622 "(not found)\n");
624 of_node_put(cpu);
627 unsigned long get_boot_time(void)
629 struct rtc_time tm;
631 if (ppc_md.get_boot_time)
632 return ppc_md.get_boot_time();
633 if (!ppc_md.get_rtc_time)
634 return 0;
635 ppc_md.get_rtc_time(&tm);
636 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
637 tm.tm_hour, tm.tm_min, tm.tm_sec);
640 /* This function is only called on the boot processor */
641 void __init time_init(void)
643 unsigned long flags;
644 unsigned long tm = 0;
645 struct div_result res;
646 u64 scale;
647 unsigned shift;
649 if (ppc_md.time_init != NULL)
650 timezone_offset = ppc_md.time_init();
652 if (__USE_RTC()) {
653 /* 601 processor: dec counts down by 128 every 128ns */
654 ppc_tb_freq = 1000000000;
655 tb_last_stamp = get_rtcl();
656 tb_last_jiffy = tb_last_stamp;
657 } else {
658 /* Normal PowerPC with timebase register */
659 ppc_md.calibrate_decr();
660 printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
661 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
662 printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
663 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
664 tb_last_stamp = tb_last_jiffy = get_tb();
667 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
668 tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
669 tb_ticks_per_usec = ppc_tb_freq / 1000000;
670 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
671 div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
672 tb_to_xs = res.result_low;
674 #ifdef CONFIG_PPC64
675 get_paca()->default_decr = tb_ticks_per_jiffy;
676 #endif
679 * Compute scale factor for sched_clock.
680 * The calibrate_decr() function has set tb_ticks_per_sec,
681 * which is the timebase frequency.
682 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
683 * the 128-bit result as a 64.64 fixed-point number.
684 * We then shift that number right until it is less than 1.0,
685 * giving us the scale factor and shift count to use in
686 * sched_clock().
688 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
689 scale = res.result_low;
690 for (shift = 0; res.result_high != 0; ++shift) {
691 scale = (scale >> 1) | (res.result_high << 63);
692 res.result_high >>= 1;
694 tb_to_ns_scale = scale;
695 tb_to_ns_shift = shift;
697 #ifdef CONFIG_PPC_ISERIES
698 if (!piranha_simulator)
699 #endif
700 tm = get_boot_time();
702 write_seqlock_irqsave(&xtime_lock, flags);
703 xtime.tv_sec = tm;
704 xtime.tv_nsec = 0;
705 do_gtod.varp = &do_gtod.vars[0];
706 do_gtod.var_idx = 0;
707 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
708 __get_cpu_var(last_jiffy) = tb_last_stamp;
709 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
710 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
711 do_gtod.varp->tb_to_xs = tb_to_xs;
712 do_gtod.tb_to_us = tb_to_us;
714 vdso_data->tb_orig_stamp = tb_last_jiffy;
715 vdso_data->tb_update_count = 0;
716 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
717 vdso_data->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
718 vdso_data->tb_to_xs = tb_to_xs;
720 time_freq = 0;
722 /* If platform provided a timezone (pmac), we correct the time */
723 if (timezone_offset) {
724 sys_tz.tz_minuteswest = -timezone_offset / 60;
725 sys_tz.tz_dsttime = 0;
726 xtime.tv_sec -= timezone_offset;
729 last_rtc_update = xtime.tv_sec;
730 set_normalized_timespec(&wall_to_monotonic,
731 -xtime.tv_sec, -xtime.tv_nsec);
732 write_sequnlock_irqrestore(&xtime_lock, flags);
734 /* Not exact, but the timer interrupt takes care of this */
735 set_dec(tb_ticks_per_jiffy);
739 * After adjtimex is called, adjust the conversion of tb ticks
740 * to microseconds to keep do_gettimeofday synchronized
741 * with ntpd.
743 * Use the time_adjust, time_freq and time_offset computed by adjtimex to
744 * adjust the frequency.
747 /* #define DEBUG_PPC_ADJTIMEX 1 */
749 void ppc_adjtimex(void)
751 #ifdef CONFIG_PPC64
752 unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
753 new_tb_to_xs, new_xsec, new_stamp_xsec;
754 unsigned long tb_ticks_per_sec_delta;
755 long delta_freq, ltemp;
756 struct div_result divres;
757 unsigned long flags;
758 long singleshot_ppm = 0;
761 * Compute parts per million frequency adjustment to
762 * accomplish the time adjustment implied by time_offset to be
763 * applied over the elapsed time indicated by time_constant.
764 * Use SHIFT_USEC to get it into the same units as
765 * time_freq.
767 if ( time_offset < 0 ) {
768 ltemp = -time_offset;
769 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
770 ltemp >>= SHIFT_KG + time_constant;
771 ltemp = -ltemp;
772 } else {
773 ltemp = time_offset;
774 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
775 ltemp >>= SHIFT_KG + time_constant;
778 /* If there is a single shot time adjustment in progress */
779 if ( time_adjust ) {
780 #ifdef DEBUG_PPC_ADJTIMEX
781 printk("ppc_adjtimex: ");
782 if ( adjusting_time == 0 )
783 printk("starting ");
784 printk("single shot time_adjust = %ld\n", time_adjust);
785 #endif
787 adjusting_time = 1;
790 * Compute parts per million frequency adjustment
791 * to match time_adjust
793 singleshot_ppm = tickadj * HZ;
795 * The adjustment should be tickadj*HZ to match the code in
796 * linux/kernel/timer.c, but experiments show that this is too
797 * large. 3/4 of tickadj*HZ seems about right
799 singleshot_ppm -= singleshot_ppm / 4;
800 /* Use SHIFT_USEC to get it into the same units as time_freq */
801 singleshot_ppm <<= SHIFT_USEC;
802 if ( time_adjust < 0 )
803 singleshot_ppm = -singleshot_ppm;
805 else {
806 #ifdef DEBUG_PPC_ADJTIMEX
807 if ( adjusting_time )
808 printk("ppc_adjtimex: ending single shot time_adjust\n");
809 #endif
810 adjusting_time = 0;
813 /* Add up all of the frequency adjustments */
814 delta_freq = time_freq + ltemp + singleshot_ppm;
817 * Compute a new value for tb_ticks_per_sec based on
818 * the frequency adjustment
820 den = 1000000 * (1 << (SHIFT_USEC - 8));
821 if ( delta_freq < 0 ) {
822 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
823 new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
825 else {
826 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
827 new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
830 #ifdef DEBUG_PPC_ADJTIMEX
831 printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
832 printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
833 #endif
836 * Compute a new value of tb_to_xs (used to convert tb to
837 * microseconds) and a new value of stamp_xsec which is the
838 * time (in 1/2^20 second units) corresponding to
839 * tb_orig_stamp. This new value of stamp_xsec compensates
840 * for the change in frequency (implied by the new tb_to_xs)
841 * which guarantees that the current time remains the same.
843 write_seqlock_irqsave( &xtime_lock, flags );
844 tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
845 div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
846 new_tb_to_xs = divres.result_low;
847 new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
849 old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
850 new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
852 update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
854 write_sequnlock_irqrestore( &xtime_lock, flags );
855 #endif /* CONFIG_PPC64 */
859 #define FEBRUARY 2
860 #define STARTOFTIME 1970
861 #define SECDAY 86400L
862 #define SECYR (SECDAY * 365)
863 #define leapyear(year) ((year) % 4 == 0 && \
864 ((year) % 100 != 0 || (year) % 400 == 0))
865 #define days_in_year(a) (leapyear(a) ? 366 : 365)
866 #define days_in_month(a) (month_days[(a) - 1])
868 static int month_days[12] = {
869 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
873 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
875 void GregorianDay(struct rtc_time * tm)
877 int leapsToDate;
878 int lastYear;
879 int day;
880 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
882 lastYear = tm->tm_year - 1;
885 * Number of leap corrections to apply up to end of last year
887 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
890 * This year is a leap year if it is divisible by 4 except when it is
891 * divisible by 100 unless it is divisible by 400
893 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
895 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
897 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
898 tm->tm_mday;
900 tm->tm_wday = day % 7;
903 void to_tm(int tim, struct rtc_time * tm)
905 register int i;
906 register long hms, day;
908 day = tim / SECDAY;
909 hms = tim % SECDAY;
911 /* Hours, minutes, seconds are easy */
912 tm->tm_hour = hms / 3600;
913 tm->tm_min = (hms % 3600) / 60;
914 tm->tm_sec = (hms % 3600) % 60;
916 /* Number of years in days */
917 for (i = STARTOFTIME; day >= days_in_year(i); i++)
918 day -= days_in_year(i);
919 tm->tm_year = i;
921 /* Number of months in days left */
922 if (leapyear(tm->tm_year))
923 days_in_month(FEBRUARY) = 29;
924 for (i = 1; day >= days_in_month(i); i++)
925 day -= days_in_month(i);
926 days_in_month(FEBRUARY) = 28;
927 tm->tm_mon = i;
929 /* Days are what is left over (+1) from all that. */
930 tm->tm_mday = day + 1;
933 * Determine the day of week
935 GregorianDay(tm);
938 /* Auxiliary function to compute scaling factors */
939 /* Actually the choice of a timebase running at 1/4 the of the bus
940 * frequency giving resolution of a few tens of nanoseconds is quite nice.
941 * It makes this computation very precise (27-28 bits typically) which
942 * is optimistic considering the stability of most processor clock
943 * oscillators and the precision with which the timebase frequency
944 * is measured but does not harm.
946 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
948 unsigned mlt=0, tmp, err;
949 /* No concern for performance, it's done once: use a stupid
950 * but safe and compact method to find the multiplier.
953 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
954 if (mulhwu(inscale, mlt|tmp) < outscale)
955 mlt |= tmp;
958 /* We might still be off by 1 for the best approximation.
959 * A side effect of this is that if outscale is too large
960 * the returned value will be zero.
961 * Many corner cases have been checked and seem to work,
962 * some might have been forgotten in the test however.
965 err = inscale * (mlt+1);
966 if (err <= inscale/2)
967 mlt++;
968 return mlt;
972 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
973 * result.
975 void div128_by_32(u64 dividend_high, u64 dividend_low,
976 unsigned divisor, struct div_result *dr)
978 unsigned long a, b, c, d;
979 unsigned long w, x, y, z;
980 u64 ra, rb, rc;
982 a = dividend_high >> 32;
983 b = dividend_high & 0xffffffff;
984 c = dividend_low >> 32;
985 d = dividend_low & 0xffffffff;
987 w = a / divisor;
988 ra = ((u64)(a - (w * divisor)) << 32) + b;
990 rb = ((u64) do_div(ra, divisor) << 32) + c;
991 x = ra;
993 rc = ((u64) do_div(rb, divisor) << 32) + d;
994 y = rb;
996 do_div(rc, divisor);
997 z = rc;
999 dr->result_high = ((u64)w << 32) + x;
1000 dr->result_low = ((u64)y << 32) + z;