2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.2
4 * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5 * This is from the implementation of CUBIC TCP in
6 * Injong Rhee, Lisong Xu.
7 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant
10 * http://netsrv.csc.ncsu.edu/export/cubic-paper.pdf
12 * Unless CUBIC is enabled and congestion window is large
13 * this behaves the same as the original Reno.
17 #include <linux/module.h>
18 #include <linux/math64.h>
21 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
22 * max_cwnd = snd_cwnd * beta
24 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
26 static int fast_convergence __read_mostly
= 1;
27 static int beta __read_mostly
= 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
28 static int initial_ssthresh __read_mostly
;
29 static int bic_scale __read_mostly
= 41;
30 static int tcp_friendliness __read_mostly
= 1;
32 static u32 cube_rtt_scale __read_mostly
;
33 static u32 beta_scale __read_mostly
;
34 static u64 cube_factor __read_mostly
;
36 /* Note parameters that are used for precomputing scale factors are read-only */
37 module_param(fast_convergence
, int, 0644);
38 MODULE_PARM_DESC(fast_convergence
, "turn on/off fast convergence");
39 module_param(beta
, int, 0644);
40 MODULE_PARM_DESC(beta
, "beta for multiplicative increase");
41 module_param(initial_ssthresh
, int, 0644);
42 MODULE_PARM_DESC(initial_ssthresh
, "initial value of slow start threshold");
43 module_param(bic_scale
, int, 0444);
44 MODULE_PARM_DESC(bic_scale
, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
45 module_param(tcp_friendliness
, int, 0644);
46 MODULE_PARM_DESC(tcp_friendliness
, "turn on/off tcp friendliness");
48 /* BIC TCP Parameters */
50 u32 cnt
; /* increase cwnd by 1 after ACKs */
51 u32 last_max_cwnd
; /* last maximum snd_cwnd */
52 u32 loss_cwnd
; /* congestion window at last loss */
53 u32 last_cwnd
; /* the last snd_cwnd */
54 u32 last_time
; /* time when updated last_cwnd */
55 u32 bic_origin_point
;/* origin point of bic function */
56 u32 bic_K
; /* time to origin point from the beginning of the current epoch */
57 u32 delay_min
; /* min delay */
58 u32 epoch_start
; /* beginning of an epoch */
59 u32 ack_cnt
; /* number of acks */
60 u32 tcp_cwnd
; /* estimated tcp cwnd */
61 #define ACK_RATIO_SHIFT 4
62 u32 delayed_ack
; /* estimate the ratio of Packets/ACKs << 4 */
65 static inline void bictcp_reset(struct bictcp
*ca
)
68 ca
->last_max_cwnd
= 0;
72 ca
->bic_origin_point
= 0;
76 ca
->delayed_ack
= 2 << ACK_RATIO_SHIFT
;
81 static void bictcp_init(struct sock
*sk
)
83 bictcp_reset(inet_csk_ca(sk
));
85 tcp_sk(sk
)->snd_ssthresh
= initial_ssthresh
;
88 /* calculate the cubic root of x using a table lookup followed by one
89 * Newton-Raphson iteration.
92 static u32
cubic_root(u64 a
)
96 * cbrt(x) MSB values for x MSB values in [0..63].
97 * Precomputed then refined by hand - Willy Tarreau
100 * v = cbrt(x << 18) - 1
101 * cbrt(x) = (v[x] + 10) >> 6
103 static const u8 v
[] = {
104 /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
105 /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
106 /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
107 /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
108 /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
109 /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
110 /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
111 /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
117 return ((u32
)v
[(u32
)a
] + 35) >> 6;
120 b
= ((b
* 84) >> 8) - 1;
121 shift
= (a
>> (b
* 3));
123 x
= ((u32
)(((u32
)v
[shift
] + 10) << b
)) >> 6;
126 * Newton-Raphson iteration
128 * x = ( 2 * x + a / x ) / 3
131 x
= (2 * x
+ (u32
)div64_u64(a
, (u64
)x
* (u64
)(x
- 1)));
132 x
= ((x
* 341) >> 10);
137 * Compute congestion window to use.
139 static inline void bictcp_update(struct bictcp
*ca
, u32 cwnd
)
142 u32 delta
, t
, bic_target
, max_cnt
;
144 ca
->ack_cnt
++; /* count the number of ACKs */
146 if (ca
->last_cwnd
== cwnd
&&
147 (s32
)(tcp_time_stamp
- ca
->last_time
) <= HZ
/ 32)
150 ca
->last_cwnd
= cwnd
;
151 ca
->last_time
= tcp_time_stamp
;
153 if (ca
->epoch_start
== 0) {
154 ca
->epoch_start
= tcp_time_stamp
; /* record the beginning of an epoch */
155 ca
->ack_cnt
= 1; /* start counting */
156 ca
->tcp_cwnd
= cwnd
; /* syn with cubic */
158 if (ca
->last_max_cwnd
<= cwnd
) {
160 ca
->bic_origin_point
= cwnd
;
162 /* Compute new K based on
163 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
165 ca
->bic_K
= cubic_root(cube_factor
166 * (ca
->last_max_cwnd
- cwnd
));
167 ca
->bic_origin_point
= ca
->last_max_cwnd
;
171 /* cubic function - calc*/
172 /* calculate c * time^3 / rtt,
173 * while considering overflow in calculation of time^3
174 * (so time^3 is done by using 64 bit)
175 * and without the support of division of 64bit numbers
176 * (so all divisions are done by using 32 bit)
177 * also NOTE the unit of those veriables
178 * time = (t - K) / 2^bictcp_HZ
179 * c = bic_scale >> 10
180 * rtt = (srtt >> 3) / HZ
181 * !!! The following code does not have overflow problems,
182 * if the cwnd < 1 million packets !!!
185 /* change the unit from HZ to bictcp_HZ */
186 t
= ((tcp_time_stamp
+ (ca
->delay_min
>>3) - ca
->epoch_start
)
189 if (t
< ca
->bic_K
) /* t - K */
190 offs
= ca
->bic_K
- t
;
192 offs
= t
- ca
->bic_K
;
194 /* c/rtt * (t-K)^3 */
195 delta
= (cube_rtt_scale
* offs
* offs
* offs
) >> (10+3*BICTCP_HZ
);
196 if (t
< ca
->bic_K
) /* below origin*/
197 bic_target
= ca
->bic_origin_point
- delta
;
198 else /* above origin*/
199 bic_target
= ca
->bic_origin_point
+ delta
;
201 /* cubic function - calc bictcp_cnt*/
202 if (bic_target
> cwnd
) {
203 ca
->cnt
= cwnd
/ (bic_target
- cwnd
);
205 ca
->cnt
= 100 * cwnd
; /* very small increment*/
209 if (tcp_friendliness
) {
210 u32 scale
= beta_scale
;
211 delta
= (cwnd
* scale
) >> 3;
212 while (ca
->ack_cnt
> delta
) { /* update tcp cwnd */
213 ca
->ack_cnt
-= delta
;
217 if (ca
->tcp_cwnd
> cwnd
){ /* if bic is slower than tcp */
218 delta
= ca
->tcp_cwnd
- cwnd
;
219 max_cnt
= cwnd
/ delta
;
220 if (ca
->cnt
> max_cnt
)
225 ca
->cnt
= (ca
->cnt
<< ACK_RATIO_SHIFT
) / ca
->delayed_ack
;
226 if (ca
->cnt
== 0) /* cannot be zero */
230 static void bictcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
232 struct tcp_sock
*tp
= tcp_sk(sk
);
233 struct bictcp
*ca
= inet_csk_ca(sk
);
235 if (!tcp_is_cwnd_limited(sk
, in_flight
))
238 if (tp
->snd_cwnd
<= tp
->snd_ssthresh
)
241 bictcp_update(ca
, tp
->snd_cwnd
);
243 /* In dangerous area, increase slowly.
244 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
246 if (tp
->snd_cwnd_cnt
>= ca
->cnt
) {
247 if (tp
->snd_cwnd
< tp
->snd_cwnd_clamp
)
249 tp
->snd_cwnd_cnt
= 0;
256 static u32
bictcp_recalc_ssthresh(struct sock
*sk
)
258 const struct tcp_sock
*tp
= tcp_sk(sk
);
259 struct bictcp
*ca
= inet_csk_ca(sk
);
261 ca
->epoch_start
= 0; /* end of epoch */
263 /* Wmax and fast convergence */
264 if (tp
->snd_cwnd
< ca
->last_max_cwnd
&& fast_convergence
)
265 ca
->last_max_cwnd
= (tp
->snd_cwnd
* (BICTCP_BETA_SCALE
+ beta
))
266 / (2 * BICTCP_BETA_SCALE
);
268 ca
->last_max_cwnd
= tp
->snd_cwnd
;
270 ca
->loss_cwnd
= tp
->snd_cwnd
;
272 return max((tp
->snd_cwnd
* beta
) / BICTCP_BETA_SCALE
, 2U);
275 static u32
bictcp_undo_cwnd(struct sock
*sk
)
277 struct bictcp
*ca
= inet_csk_ca(sk
);
279 return max(tcp_sk(sk
)->snd_cwnd
, ca
->last_max_cwnd
);
282 static void bictcp_state(struct sock
*sk
, u8 new_state
)
284 if (new_state
== TCP_CA_Loss
)
285 bictcp_reset(inet_csk_ca(sk
));
288 /* Track delayed acknowledgment ratio using sliding window
289 * ratio = (15*ratio + sample) / 16
291 static void bictcp_acked(struct sock
*sk
, u32 cnt
, s32 rtt_us
)
293 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
294 struct bictcp
*ca
= inet_csk_ca(sk
);
297 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
298 cnt
-= ca
->delayed_ack
>> ACK_RATIO_SHIFT
;
299 ca
->delayed_ack
+= cnt
;
302 /* Some calls are for duplicates without timetamps */
306 /* Discard delay samples right after fast recovery */
307 if ((s32
)(tcp_time_stamp
- ca
->epoch_start
) < HZ
)
310 delay
= usecs_to_jiffies(rtt_us
) << 3;
314 /* first time call or link delay decreases */
315 if (ca
->delay_min
== 0 || ca
->delay_min
> delay
)
316 ca
->delay_min
= delay
;
319 static struct tcp_congestion_ops cubictcp
= {
321 .ssthresh
= bictcp_recalc_ssthresh
,
322 .cong_avoid
= bictcp_cong_avoid
,
323 .set_state
= bictcp_state
,
324 .undo_cwnd
= bictcp_undo_cwnd
,
325 .pkts_acked
= bictcp_acked
,
326 .owner
= THIS_MODULE
,
330 static int __init
cubictcp_register(void)
332 BUILD_BUG_ON(sizeof(struct bictcp
) > ICSK_CA_PRIV_SIZE
);
334 /* Precompute a bunch of the scaling factors that are used per-packet
335 * based on SRTT of 100ms
338 beta_scale
= 8*(BICTCP_BETA_SCALE
+beta
)/ 3 / (BICTCP_BETA_SCALE
- beta
);
340 cube_rtt_scale
= (bic_scale
* 10); /* 1024*c/rtt */
342 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
343 * so K = cubic_root( (wmax-cwnd)*rtt/c )
344 * the unit of K is bictcp_HZ=2^10, not HZ
346 * c = bic_scale >> 10
349 * the following code has been designed and tested for
350 * cwnd < 1 million packets
352 * HZ < 1,000,00 (corresponding to 10 nano-second)
355 /* 1/c * 2^2*bictcp_HZ * srtt */
356 cube_factor
= 1ull << (10+3*BICTCP_HZ
); /* 2^40 */
358 /* divide by bic_scale and by constant Srtt (100ms) */
359 do_div(cube_factor
, bic_scale
* 10);
361 return tcp_register_congestion_control(&cubictcp
);
364 static void __exit
cubictcp_unregister(void)
366 tcp_unregister_congestion_control(&cubictcp
);
369 module_init(cubictcp_register
);
370 module_exit(cubictcp_unregister
);
372 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
373 MODULE_LICENSE("GPL");
374 MODULE_DESCRIPTION("CUBIC TCP");
375 MODULE_VERSION("2.2");