2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly
= IPDEFTTL
;
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__
void ip_send_check(struct iphdr
*iph
)
89 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
92 int __ip_local_out(struct sk_buff
*skb
)
94 struct iphdr
*iph
= ip_hdr(skb
);
96 iph
->tot_len
= htons(skb
->len
);
98 return nf_hook(PF_INET
, NF_INET_LOCAL_OUT
, skb
, NULL
, skb
->dst
->dev
,
102 int ip_local_out(struct sk_buff
*skb
)
106 err
= __ip_local_out(skb
);
107 if (likely(err
== 1))
108 err
= dst_output(skb
);
112 EXPORT_SYMBOL_GPL(ip_local_out
);
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff
*newskb
)
117 skb_reset_mac_header(newskb
);
118 __skb_pull(newskb
, skb_network_offset(newskb
));
119 newskb
->pkt_type
= PACKET_LOOPBACK
;
120 newskb
->ip_summed
= CHECKSUM_UNNECESSARY
;
121 WARN_ON(!newskb
->dst
);
126 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
128 int ttl
= inet
->uc_ttl
;
131 ttl
= dst_metric(dst
, RTAX_HOPLIMIT
);
136 * Add an ip header to a skbuff and send it out.
139 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
140 __be32 saddr
, __be32 daddr
, struct ip_options
*opt
)
142 struct inet_sock
*inet
= inet_sk(sk
);
143 struct rtable
*rt
= skb
->rtable
;
146 /* Build the IP header. */
147 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
148 skb_reset_network_header(skb
);
152 iph
->tos
= inet
->tos
;
153 if (ip_dont_fragment(sk
, &rt
->u
.dst
))
154 iph
->frag_off
= htons(IP_DF
);
157 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
158 iph
->daddr
= rt
->rt_dst
;
159 iph
->saddr
= rt
->rt_src
;
160 iph
->protocol
= sk
->sk_protocol
;
161 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
163 if (opt
&& opt
->optlen
) {
164 iph
->ihl
+= opt
->optlen
>>2;
165 ip_options_build(skb
, opt
, daddr
, rt
, 0);
168 skb
->priority
= sk
->sk_priority
;
169 skb
->mark
= sk
->sk_mark
;
172 return ip_local_out(skb
);
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
177 static inline int ip_finish_output2(struct sk_buff
*skb
)
179 struct dst_entry
*dst
= skb
->dst
;
180 struct rtable
*rt
= (struct rtable
*)dst
;
181 struct net_device
*dev
= dst
->dev
;
182 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
184 if (rt
->rt_type
== RTN_MULTICAST
)
185 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_OUTMCASTPKTS
);
186 else if (rt
->rt_type
== RTN_BROADCAST
)
187 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_OUTBCASTPKTS
);
189 /* Be paranoid, rather than too clever. */
190 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
191 struct sk_buff
*skb2
;
193 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
199 skb_set_owner_w(skb2
, skb
->sk
);
205 return neigh_hh_output(dst
->hh
, skb
);
206 else if (dst
->neighbour
)
207 return dst
->neighbour
->output(skb
);
210 printk(KERN_DEBUG
"ip_finish_output2: No header cache and no neighbour!\n");
215 static inline int ip_skb_dst_mtu(struct sk_buff
*skb
)
217 struct inet_sock
*inet
= skb
->sk
? inet_sk(skb
->sk
) : NULL
;
219 return (inet
&& inet
->pmtudisc
== IP_PMTUDISC_PROBE
) ?
220 skb
->dst
->dev
->mtu
: dst_mtu(skb
->dst
);
223 static int ip_finish_output(struct sk_buff
*skb
)
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 /* Policy lookup after SNAT yielded a new policy */
227 if (skb
->dst
->xfrm
!= NULL
) {
228 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
229 return dst_output(skb
);
232 if (skb
->len
> ip_skb_dst_mtu(skb
) && !skb_is_gso(skb
))
233 return ip_fragment(skb
, ip_finish_output2
);
235 return ip_finish_output2(skb
);
238 int ip_mc_output(struct sk_buff
*skb
)
240 struct sock
*sk
= skb
->sk
;
241 struct rtable
*rt
= skb
->rtable
;
242 struct net_device
*dev
= rt
->u
.dst
.dev
;
245 * If the indicated interface is up and running, send the packet.
247 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_OUTREQUESTS
);
250 skb
->protocol
= htons(ETH_P_IP
);
253 * Multicasts are looped back for other local users
256 if (rt
->rt_flags
&RTCF_MULTICAST
) {
257 if ((!sk
|| inet_sk(sk
)->mc_loop
)
258 #ifdef CONFIG_IP_MROUTE
259 /* Small optimization: do not loopback not local frames,
260 which returned after forwarding; they will be dropped
261 by ip_mr_input in any case.
262 Note, that local frames are looped back to be delivered
265 This check is duplicated in ip_mr_input at the moment.
267 && ((rt
->rt_flags
&RTCF_LOCAL
) || !(IPCB(skb
)->flags
&IPSKB_FORWARDED
))
270 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
272 NF_HOOK(PF_INET
, NF_INET_POST_ROUTING
, newskb
,
274 ip_dev_loopback_xmit
);
277 /* Multicasts with ttl 0 must not go beyond the host */
279 if (ip_hdr(skb
)->ttl
== 0) {
285 if (rt
->rt_flags
&RTCF_BROADCAST
) {
286 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
288 NF_HOOK(PF_INET
, NF_INET_POST_ROUTING
, newskb
, NULL
,
289 newskb
->dev
, ip_dev_loopback_xmit
);
292 return NF_HOOK_COND(PF_INET
, NF_INET_POST_ROUTING
, skb
, NULL
, skb
->dev
,
294 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
297 int ip_output(struct sk_buff
*skb
)
299 struct net_device
*dev
= skb
->dst
->dev
;
301 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_OUTREQUESTS
);
304 skb
->protocol
= htons(ETH_P_IP
);
306 return NF_HOOK_COND(PF_INET
, NF_INET_POST_ROUTING
, skb
, NULL
, dev
,
308 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
311 int ip_queue_xmit(struct sk_buff
*skb
, int ipfragok
)
313 struct sock
*sk
= skb
->sk
;
314 struct inet_sock
*inet
= inet_sk(sk
);
315 struct ip_options
*opt
= inet
->opt
;
319 /* Skip all of this if the packet is already routed,
320 * f.e. by something like SCTP.
326 /* Make sure we can route this packet. */
327 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
331 /* Use correct destination address if we have options. */
337 struct flowi fl
= { .oif
= sk
->sk_bound_dev_if
,
340 .saddr
= inet
->saddr
,
341 .tos
= RT_CONN_FLAGS(sk
) } },
342 .proto
= sk
->sk_protocol
,
343 .flags
= inet_sk_flowi_flags(sk
),
345 { .sport
= inet
->sport
,
346 .dport
= inet
->dport
} } };
348 /* If this fails, retransmit mechanism of transport layer will
349 * keep trying until route appears or the connection times
352 security_sk_classify_flow(sk
, &fl
);
353 if (ip_route_output_flow(sock_net(sk
), &rt
, &fl
, sk
, 0))
356 sk_setup_caps(sk
, &rt
->u
.dst
);
358 skb
->dst
= dst_clone(&rt
->u
.dst
);
361 if (opt
&& opt
->is_strictroute
&& rt
->rt_dst
!= rt
->rt_gateway
)
364 /* OK, we know where to send it, allocate and build IP header. */
365 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
366 skb_reset_network_header(skb
);
368 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
369 if (ip_dont_fragment(sk
, &rt
->u
.dst
) && !ipfragok
)
370 iph
->frag_off
= htons(IP_DF
);
373 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
374 iph
->protocol
= sk
->sk_protocol
;
375 iph
->saddr
= rt
->rt_src
;
376 iph
->daddr
= rt
->rt_dst
;
377 /* Transport layer set skb->h.foo itself. */
379 if (opt
&& opt
->optlen
) {
380 iph
->ihl
+= opt
->optlen
>> 2;
381 ip_options_build(skb
, opt
, inet
->daddr
, rt
, 0);
384 ip_select_ident_more(iph
, &rt
->u
.dst
, sk
,
385 (skb_shinfo(skb
)->gso_segs
?: 1) - 1);
387 skb
->priority
= sk
->sk_priority
;
388 skb
->mark
= sk
->sk_mark
;
390 return ip_local_out(skb
);
393 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
395 return -EHOSTUNREACH
;
399 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
401 to
->pkt_type
= from
->pkt_type
;
402 to
->priority
= from
->priority
;
403 to
->protocol
= from
->protocol
;
404 dst_release(to
->dst
);
405 to
->dst
= dst_clone(from
->dst
);
407 to
->mark
= from
->mark
;
409 /* Copy the flags to each fragment. */
410 IPCB(to
)->flags
= IPCB(from
)->flags
;
412 #ifdef CONFIG_NET_SCHED
413 to
->tc_index
= from
->tc_index
;
416 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
417 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
418 to
->nf_trace
= from
->nf_trace
;
420 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
421 to
->ipvs_property
= from
->ipvs_property
;
423 skb_copy_secmark(to
, from
);
427 * This IP datagram is too large to be sent in one piece. Break it up into
428 * smaller pieces (each of size equal to IP header plus
429 * a block of the data of the original IP data part) that will yet fit in a
430 * single device frame, and queue such a frame for sending.
433 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
438 struct net_device
*dev
;
439 struct sk_buff
*skb2
;
440 unsigned int mtu
, hlen
, left
, len
, ll_rs
, pad
;
442 __be16 not_last_frag
;
443 struct rtable
*rt
= skb
->rtable
;
449 * Point into the IP datagram header.
454 if (unlikely((iph
->frag_off
& htons(IP_DF
)) && !skb
->local_df
)) {
455 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
456 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
457 htonl(ip_skb_dst_mtu(skb
)));
463 * Setup starting values.
467 mtu
= dst_mtu(&rt
->u
.dst
) - hlen
; /* Size of data space */
468 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
470 /* When frag_list is given, use it. First, check its validity:
471 * some transformers could create wrong frag_list or break existing
472 * one, it is not prohibited. In this case fall back to copying.
474 * LATER: this step can be merged to real generation of fragments,
475 * we can switch to copy when see the first bad fragment.
477 if (skb_shinfo(skb
)->frag_list
) {
478 struct sk_buff
*frag
;
479 int first_len
= skb_pagelen(skb
);
482 if (first_len
- hlen
> mtu
||
483 ((first_len
- hlen
) & 7) ||
484 (iph
->frag_off
& htons(IP_MF
|IP_OFFSET
)) ||
488 for (frag
= skb_shinfo(skb
)->frag_list
; frag
; frag
= frag
->next
) {
489 /* Correct geometry. */
490 if (frag
->len
> mtu
||
491 ((frag
->len
& 7) && frag
->next
) ||
492 skb_headroom(frag
) < hlen
)
495 /* Partially cloned skb? */
496 if (skb_shared(frag
))
503 frag
->destructor
= sock_wfree
;
504 truesizes
+= frag
->truesize
;
508 /* Everything is OK. Generate! */
512 frag
= skb_shinfo(skb
)->frag_list
;
513 skb_shinfo(skb
)->frag_list
= NULL
;
514 skb
->data_len
= first_len
- skb_headlen(skb
);
515 skb
->truesize
-= truesizes
;
516 skb
->len
= first_len
;
517 iph
->tot_len
= htons(first_len
);
518 iph
->frag_off
= htons(IP_MF
);
522 /* Prepare header of the next frame,
523 * before previous one went down. */
525 frag
->ip_summed
= CHECKSUM_NONE
;
526 skb_reset_transport_header(frag
);
527 __skb_push(frag
, hlen
);
528 skb_reset_network_header(frag
);
529 memcpy(skb_network_header(frag
), iph
, hlen
);
531 iph
->tot_len
= htons(frag
->len
);
532 ip_copy_metadata(frag
, skb
);
534 ip_options_fragment(frag
);
535 offset
+= skb
->len
- hlen
;
536 iph
->frag_off
= htons(offset
>>3);
537 if (frag
->next
!= NULL
)
538 iph
->frag_off
|= htons(IP_MF
);
539 /* Ready, complete checksum */
546 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
556 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
565 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
570 left
= skb
->len
- hlen
; /* Space per frame */
571 ptr
= raw
+ hlen
; /* Where to start from */
573 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
574 * we need to make room for the encapsulating header
576 pad
= nf_bridge_pad(skb
);
577 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->u
.dst
.dev
, pad
);
581 * Fragment the datagram.
584 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
585 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
588 * Keep copying data until we run out.
593 /* IF: it doesn't fit, use 'mtu' - the data space left */
596 /* IF: we are not sending upto and including the packet end
597 then align the next start on an eight byte boundary */
605 if ((skb2
= alloc_skb(len
+hlen
+ll_rs
, GFP_ATOMIC
)) == NULL
) {
606 NETDEBUG(KERN_INFO
"IP: frag: no memory for new fragment!\n");
612 * Set up data on packet
615 ip_copy_metadata(skb2
, skb
);
616 skb_reserve(skb2
, ll_rs
);
617 skb_put(skb2
, len
+ hlen
);
618 skb_reset_network_header(skb2
);
619 skb2
->transport_header
= skb2
->network_header
+ hlen
;
622 * Charge the memory for the fragment to any owner
627 skb_set_owner_w(skb2
, skb
->sk
);
630 * Copy the packet header into the new buffer.
633 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
636 * Copy a block of the IP datagram.
638 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
643 * Fill in the new header fields.
646 iph
->frag_off
= htons((offset
>> 3));
648 /* ANK: dirty, but effective trick. Upgrade options only if
649 * the segment to be fragmented was THE FIRST (otherwise,
650 * options are already fixed) and make it ONCE
651 * on the initial skb, so that all the following fragments
652 * will inherit fixed options.
655 ip_options_fragment(skb
);
658 * Added AC : If we are fragmenting a fragment that's not the
659 * last fragment then keep MF on each bit
661 if (left
> 0 || not_last_frag
)
662 iph
->frag_off
|= htons(IP_MF
);
667 * Put this fragment into the sending queue.
669 iph
->tot_len
= htons(len
+ hlen
);
677 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
680 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
685 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
689 EXPORT_SYMBOL(ip_fragment
);
692 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
694 struct iovec
*iov
= from
;
696 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
697 if (memcpy_fromiovecend(to
, iov
, offset
, len
) < 0)
701 if (csum_partial_copy_fromiovecend(to
, iov
, offset
, len
, &csum
) < 0)
703 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
709 csum_page(struct page
*page
, int offset
, int copy
)
714 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
719 static inline int ip_ufo_append_data(struct sock
*sk
,
720 int getfrag(void *from
, char *to
, int offset
, int len
,
721 int odd
, struct sk_buff
*skb
),
722 void *from
, int length
, int hh_len
, int fragheaderlen
,
723 int transhdrlen
, int mtu
,unsigned int flags
)
728 /* There is support for UDP fragmentation offload by network
729 * device, so create one single skb packet containing complete
732 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
) {
733 skb
= sock_alloc_send_skb(sk
,
734 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
735 (flags
& MSG_DONTWAIT
), &err
);
740 /* reserve space for Hardware header */
741 skb_reserve(skb
, hh_len
);
743 /* create space for UDP/IP header */
744 skb_put(skb
,fragheaderlen
+ transhdrlen
);
746 /* initialize network header pointer */
747 skb_reset_network_header(skb
);
749 /* initialize protocol header pointer */
750 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
752 skb
->ip_summed
= CHECKSUM_PARTIAL
;
754 sk
->sk_sndmsg_off
= 0;
756 /* specify the length of each IP datagram fragment */
757 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
758 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
759 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
762 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
763 (length
- transhdrlen
));
767 * ip_append_data() and ip_append_page() can make one large IP datagram
768 * from many pieces of data. Each pieces will be holded on the socket
769 * until ip_push_pending_frames() is called. Each piece can be a page
772 * Not only UDP, other transport protocols - e.g. raw sockets - can use
773 * this interface potentially.
775 * LATER: length must be adjusted by pad at tail, when it is required.
777 int ip_append_data(struct sock
*sk
,
778 int getfrag(void *from
, char *to
, int offset
, int len
,
779 int odd
, struct sk_buff
*skb
),
780 void *from
, int length
, int transhdrlen
,
781 struct ipcm_cookie
*ipc
, struct rtable
*rt
,
784 struct inet_sock
*inet
= inet_sk(sk
);
787 struct ip_options
*opt
= NULL
;
794 unsigned int maxfraglen
, fragheaderlen
;
795 int csummode
= CHECKSUM_NONE
;
800 if (skb_queue_empty(&sk
->sk_write_queue
)) {
806 if (inet
->cork
.opt
== NULL
) {
807 inet
->cork
.opt
= kmalloc(sizeof(struct ip_options
) + 40, sk
->sk_allocation
);
808 if (unlikely(inet
->cork
.opt
== NULL
))
811 memcpy(inet
->cork
.opt
, opt
, sizeof(struct ip_options
)+opt
->optlen
);
812 inet
->cork
.flags
|= IPCORK_OPT
;
813 inet
->cork
.addr
= ipc
->addr
;
815 dst_hold(&rt
->u
.dst
);
816 inet
->cork
.fragsize
= mtu
= inet
->pmtudisc
== IP_PMTUDISC_PROBE
?
818 dst_mtu(rt
->u
.dst
.path
);
819 inet
->cork
.dst
= &rt
->u
.dst
;
820 inet
->cork
.length
= 0;
821 sk
->sk_sndmsg_page
= NULL
;
822 sk
->sk_sndmsg_off
= 0;
823 if ((exthdrlen
= rt
->u
.dst
.header_len
) != 0) {
825 transhdrlen
+= exthdrlen
;
828 rt
= (struct rtable
*)inet
->cork
.dst
;
829 if (inet
->cork
.flags
& IPCORK_OPT
)
830 opt
= inet
->cork
.opt
;
834 mtu
= inet
->cork
.fragsize
;
836 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
838 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
839 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
841 if (inet
->cork
.length
+ length
> 0xFFFF - fragheaderlen
) {
842 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
-exthdrlen
);
847 * transhdrlen > 0 means that this is the first fragment and we wish
848 * it won't be fragmented in the future.
851 length
+ fragheaderlen
<= mtu
&&
852 rt
->u
.dst
.dev
->features
& NETIF_F_V4_CSUM
&&
854 csummode
= CHECKSUM_PARTIAL
;
856 inet
->cork
.length
+= length
;
857 if (((length
> mtu
) || !skb_queue_empty(&sk
->sk_write_queue
)) &&
858 (sk
->sk_protocol
== IPPROTO_UDP
) &&
859 (rt
->u
.dst
.dev
->features
& NETIF_F_UFO
)) {
860 err
= ip_ufo_append_data(sk
, getfrag
, from
, length
, hh_len
,
861 fragheaderlen
, transhdrlen
, mtu
,
868 /* So, what's going on in the loop below?
870 * We use calculated fragment length to generate chained skb,
871 * each of segments is IP fragment ready for sending to network after
872 * adding appropriate IP header.
875 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
879 /* Check if the remaining data fits into current packet. */
880 copy
= mtu
- skb
->len
;
882 copy
= maxfraglen
- skb
->len
;
885 unsigned int datalen
;
886 unsigned int fraglen
;
887 unsigned int fraggap
;
888 unsigned int alloclen
;
889 struct sk_buff
*skb_prev
;
893 fraggap
= skb_prev
->len
- maxfraglen
;
898 * If remaining data exceeds the mtu,
899 * we know we need more fragment(s).
901 datalen
= length
+ fraggap
;
902 if (datalen
> mtu
- fragheaderlen
)
903 datalen
= maxfraglen
- fragheaderlen
;
904 fraglen
= datalen
+ fragheaderlen
;
906 if ((flags
& MSG_MORE
) &&
907 !(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
910 alloclen
= datalen
+ fragheaderlen
;
912 /* The last fragment gets additional space at tail.
913 * Note, with MSG_MORE we overallocate on fragments,
914 * because we have no idea what fragment will be
917 if (datalen
== length
+ fraggap
)
918 alloclen
+= rt
->u
.dst
.trailer_len
;
921 skb
= sock_alloc_send_skb(sk
,
922 alloclen
+ hh_len
+ 15,
923 (flags
& MSG_DONTWAIT
), &err
);
926 if (atomic_read(&sk
->sk_wmem_alloc
) <=
928 skb
= sock_wmalloc(sk
,
929 alloclen
+ hh_len
+ 15, 1,
931 if (unlikely(skb
== NULL
))
938 * Fill in the control structures
940 skb
->ip_summed
= csummode
;
942 skb_reserve(skb
, hh_len
);
945 * Find where to start putting bytes.
947 data
= skb_put(skb
, fraglen
);
948 skb_set_network_header(skb
, exthdrlen
);
949 skb
->transport_header
= (skb
->network_header
+
951 data
+= fragheaderlen
;
954 skb
->csum
= skb_copy_and_csum_bits(
955 skb_prev
, maxfraglen
,
956 data
+ transhdrlen
, fraggap
, 0);
957 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
960 pskb_trim_unique(skb_prev
, maxfraglen
);
963 copy
= datalen
- transhdrlen
- fraggap
;
964 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
971 length
-= datalen
- fraggap
;
974 csummode
= CHECKSUM_NONE
;
977 * Put the packet on the pending queue.
979 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
986 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
)) {
990 if (getfrag(from
, skb_put(skb
, copy
),
991 offset
, copy
, off
, skb
) < 0) {
992 __skb_trim(skb
, off
);
997 int i
= skb_shinfo(skb
)->nr_frags
;
998 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
-1];
999 struct page
*page
= sk
->sk_sndmsg_page
;
1000 int off
= sk
->sk_sndmsg_off
;
1003 if (page
&& (left
= PAGE_SIZE
- off
) > 0) {
1006 if (page
!= frag
->page
) {
1007 if (i
== MAX_SKB_FRAGS
) {
1012 skb_fill_page_desc(skb
, i
, page
, sk
->sk_sndmsg_off
, 0);
1013 frag
= &skb_shinfo(skb
)->frags
[i
];
1015 } else if (i
< MAX_SKB_FRAGS
) {
1016 if (copy
> PAGE_SIZE
)
1018 page
= alloc_pages(sk
->sk_allocation
, 0);
1023 sk
->sk_sndmsg_page
= page
;
1024 sk
->sk_sndmsg_off
= 0;
1026 skb_fill_page_desc(skb
, i
, page
, 0, 0);
1027 frag
= &skb_shinfo(skb
)->frags
[i
];
1032 if (getfrag(from
, page_address(frag
->page
)+frag
->page_offset
+frag
->size
, offset
, copy
, skb
->len
, skb
) < 0) {
1036 sk
->sk_sndmsg_off
+= copy
;
1039 skb
->data_len
+= copy
;
1040 skb
->truesize
+= copy
;
1041 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1050 inet
->cork
.length
-= length
;
1051 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1055 ssize_t
ip_append_page(struct sock
*sk
, struct page
*page
,
1056 int offset
, size_t size
, int flags
)
1058 struct inet_sock
*inet
= inet_sk(sk
);
1059 struct sk_buff
*skb
;
1061 struct ip_options
*opt
= NULL
;
1066 unsigned int maxfraglen
, fragheaderlen
, fraggap
;
1071 if (flags
&MSG_PROBE
)
1074 if (skb_queue_empty(&sk
->sk_write_queue
))
1077 rt
= (struct rtable
*)inet
->cork
.dst
;
1078 if (inet
->cork
.flags
& IPCORK_OPT
)
1079 opt
= inet
->cork
.opt
;
1081 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
1084 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
1085 mtu
= inet
->cork
.fragsize
;
1087 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1088 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1090 if (inet
->cork
.length
+ size
> 0xFFFF - fragheaderlen
) {
1091 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
);
1095 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1098 inet
->cork
.length
+= size
;
1099 if ((sk
->sk_protocol
== IPPROTO_UDP
) &&
1100 (rt
->u
.dst
.dev
->features
& NETIF_F_UFO
)) {
1101 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1102 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1109 if (skb_is_gso(skb
))
1113 /* Check if the remaining data fits into current packet. */
1114 len
= mtu
- skb
->len
;
1116 len
= maxfraglen
- skb
->len
;
1119 struct sk_buff
*skb_prev
;
1123 fraggap
= skb_prev
->len
- maxfraglen
;
1125 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1126 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1127 if (unlikely(!skb
)) {
1133 * Fill in the control structures
1135 skb
->ip_summed
= CHECKSUM_NONE
;
1137 skb_reserve(skb
, hh_len
);
1140 * Find where to start putting bytes.
1142 skb_put(skb
, fragheaderlen
+ fraggap
);
1143 skb_reset_network_header(skb
);
1144 skb
->transport_header
= (skb
->network_header
+
1147 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1149 skb_transport_header(skb
),
1151 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1153 pskb_trim_unique(skb_prev
, maxfraglen
);
1157 * Put the packet on the pending queue.
1159 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1163 i
= skb_shinfo(skb
)->nr_frags
;
1166 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1167 skb_shinfo(skb
)->frags
[i
-1].size
+= len
;
1168 } else if (i
< MAX_SKB_FRAGS
) {
1170 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1176 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1178 csum
= csum_page(page
, offset
, len
);
1179 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1183 skb
->data_len
+= len
;
1184 skb
->truesize
+= len
;
1185 atomic_add(len
, &sk
->sk_wmem_alloc
);
1192 inet
->cork
.length
-= size
;
1193 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1197 static void ip_cork_release(struct inet_sock
*inet
)
1199 inet
->cork
.flags
&= ~IPCORK_OPT
;
1200 kfree(inet
->cork
.opt
);
1201 inet
->cork
.opt
= NULL
;
1202 dst_release(inet
->cork
.dst
);
1203 inet
->cork
.dst
= NULL
;
1207 * Combined all pending IP fragments on the socket as one IP datagram
1208 * and push them out.
1210 int ip_push_pending_frames(struct sock
*sk
)
1212 struct sk_buff
*skb
, *tmp_skb
;
1213 struct sk_buff
**tail_skb
;
1214 struct inet_sock
*inet
= inet_sk(sk
);
1215 struct net
*net
= sock_net(sk
);
1216 struct ip_options
*opt
= NULL
;
1217 struct rtable
*rt
= (struct rtable
*)inet
->cork
.dst
;
1223 if ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) == NULL
)
1225 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1227 /* move skb->data to ip header from ext header */
1228 if (skb
->data
< skb_network_header(skb
))
1229 __skb_pull(skb
, skb_network_offset(skb
));
1230 while ((tmp_skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
1231 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1232 *tail_skb
= tmp_skb
;
1233 tail_skb
= &(tmp_skb
->next
);
1234 skb
->len
+= tmp_skb
->len
;
1235 skb
->data_len
+= tmp_skb
->len
;
1236 skb
->truesize
+= tmp_skb
->truesize
;
1237 __sock_put(tmp_skb
->sk
);
1238 tmp_skb
->destructor
= NULL
;
1242 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1243 * to fragment the frame generated here. No matter, what transforms
1244 * how transforms change size of the packet, it will come out.
1246 if (inet
->pmtudisc
< IP_PMTUDISC_DO
)
1249 /* DF bit is set when we want to see DF on outgoing frames.
1250 * If local_df is set too, we still allow to fragment this frame
1252 if (inet
->pmtudisc
>= IP_PMTUDISC_DO
||
1253 (skb
->len
<= dst_mtu(&rt
->u
.dst
) &&
1254 ip_dont_fragment(sk
, &rt
->u
.dst
)))
1257 if (inet
->cork
.flags
& IPCORK_OPT
)
1258 opt
= inet
->cork
.opt
;
1260 if (rt
->rt_type
== RTN_MULTICAST
)
1263 ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
1265 iph
= (struct iphdr
*)skb
->data
;
1269 iph
->ihl
+= opt
->optlen
>>2;
1270 ip_options_build(skb
, opt
, inet
->cork
.addr
, rt
, 0);
1272 iph
->tos
= inet
->tos
;
1274 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
1276 iph
->protocol
= sk
->sk_protocol
;
1277 iph
->saddr
= rt
->rt_src
;
1278 iph
->daddr
= rt
->rt_dst
;
1280 skb
->priority
= sk
->sk_priority
;
1281 skb
->mark
= sk
->sk_mark
;
1282 skb
->dst
= dst_clone(&rt
->u
.dst
);
1284 if (iph
->protocol
== IPPROTO_ICMP
)
1285 icmp_out_count(net
, ((struct icmphdr
*)
1286 skb_transport_header(skb
))->type
);
1288 /* Netfilter gets whole the not fragmented skb. */
1289 err
= ip_local_out(skb
);
1292 err
= inet
->recverr
? net_xmit_errno(err
) : 0;
1298 ip_cork_release(inet
);
1302 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1307 * Throw away all pending data on the socket.
1309 void ip_flush_pending_frames(struct sock
*sk
)
1311 struct sk_buff
*skb
;
1313 while ((skb
= __skb_dequeue_tail(&sk
->sk_write_queue
)) != NULL
)
1316 ip_cork_release(inet_sk(sk
));
1321 * Fetch data from kernel space and fill in checksum if needed.
1323 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1324 int len
, int odd
, struct sk_buff
*skb
)
1328 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1329 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1334 * Generic function to send a packet as reply to another packet.
1335 * Used to send TCP resets so far. ICMP should use this function too.
1337 * Should run single threaded per socket because it uses the sock
1338 * structure to pass arguments.
1340 void ip_send_reply(struct sock
*sk
, struct sk_buff
*skb
, struct ip_reply_arg
*arg
,
1343 struct inet_sock
*inet
= inet_sk(sk
);
1345 struct ip_options opt
;
1348 struct ipcm_cookie ipc
;
1350 struct rtable
*rt
= skb
->rtable
;
1352 if (ip_options_echo(&replyopts
.opt
, skb
))
1355 daddr
= ipc
.addr
= rt
->rt_src
;
1358 if (replyopts
.opt
.optlen
) {
1359 ipc
.opt
= &replyopts
.opt
;
1362 daddr
= replyopts
.opt
.faddr
;
1366 struct flowi fl
= { .oif
= arg
->bound_dev_if
,
1369 .saddr
= rt
->rt_spec_dst
,
1370 .tos
= RT_TOS(ip_hdr(skb
)->tos
) } },
1371 /* Not quite clean, but right. */
1373 { .sport
= tcp_hdr(skb
)->dest
,
1374 .dport
= tcp_hdr(skb
)->source
} },
1375 .proto
= sk
->sk_protocol
,
1376 .flags
= ip_reply_arg_flowi_flags(arg
) };
1377 security_skb_classify_flow(skb
, &fl
);
1378 if (ip_route_output_key(sock_net(sk
), &rt
, &fl
))
1382 /* And let IP do all the hard work.
1384 This chunk is not reenterable, hence spinlock.
1385 Note that it uses the fact, that this function is called
1386 with locally disabled BH and that sk cannot be already spinlocked.
1389 inet
->tos
= ip_hdr(skb
)->tos
;
1390 sk
->sk_priority
= skb
->priority
;
1391 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1392 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1393 ip_append_data(sk
, ip_reply_glue_bits
, arg
->iov
->iov_base
, len
, 0,
1394 &ipc
, rt
, MSG_DONTWAIT
);
1395 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
) {
1396 if (arg
->csumoffset
>= 0)
1397 *((__sum16
*)skb_transport_header(skb
) +
1398 arg
->csumoffset
) = csum_fold(csum_add(skb
->csum
,
1400 skb
->ip_summed
= CHECKSUM_NONE
;
1401 ip_push_pending_frames(sk
);
1409 void __init
ip_init(void)
1414 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1415 igmp_mc_proc_init();
1419 EXPORT_SYMBOL(ip_generic_getfrag
);
1420 EXPORT_SYMBOL(ip_queue_xmit
);
1421 EXPORT_SYMBOL(ip_send_check
);