2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
45 #include <asm/uaccess.h>
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS \
53 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS \
57 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
59 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
60 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
68 * - enable syscall per default because its emulated by KVM
69 * - enable LME and LMA per default on 64 bit KVM
72 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
74 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
80 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
81 struct kvm_cpuid_entry2 __user
*entries
);
83 struct kvm_x86_ops
*kvm_x86_ops
;
84 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
87 module_param_named(ignore_msrs
, ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
89 struct kvm_stats_debugfs_item debugfs_entries
[] = {
90 { "pf_fixed", VCPU_STAT(pf_fixed
) },
91 { "pf_guest", VCPU_STAT(pf_guest
) },
92 { "tlb_flush", VCPU_STAT(tlb_flush
) },
93 { "invlpg", VCPU_STAT(invlpg
) },
94 { "exits", VCPU_STAT(exits
) },
95 { "io_exits", VCPU_STAT(io_exits
) },
96 { "mmio_exits", VCPU_STAT(mmio_exits
) },
97 { "signal_exits", VCPU_STAT(signal_exits
) },
98 { "irq_window", VCPU_STAT(irq_window_exits
) },
99 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
100 { "halt_exits", VCPU_STAT(halt_exits
) },
101 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
102 { "hypercalls", VCPU_STAT(hypercalls
) },
103 { "request_irq", VCPU_STAT(request_irq_exits
) },
104 { "irq_exits", VCPU_STAT(irq_exits
) },
105 { "host_state_reload", VCPU_STAT(host_state_reload
) },
106 { "efer_reload", VCPU_STAT(efer_reload
) },
107 { "fpu_reload", VCPU_STAT(fpu_reload
) },
108 { "insn_emulation", VCPU_STAT(insn_emulation
) },
109 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
110 { "irq_injections", VCPU_STAT(irq_injections
) },
111 { "nmi_injections", VCPU_STAT(nmi_injections
) },
112 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
113 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
114 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
115 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
116 { "mmu_flooded", VM_STAT(mmu_flooded
) },
117 { "mmu_recycled", VM_STAT(mmu_recycled
) },
118 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
119 { "mmu_unsync", VM_STAT(mmu_unsync
) },
120 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
121 { "largepages", VM_STAT(lpages
) },
125 unsigned long segment_base(u16 selector
)
127 struct descriptor_table gdt
;
128 struct desc_struct
*d
;
129 unsigned long table_base
;
135 asm("sgdt %0" : "=m"(gdt
));
136 table_base
= gdt
.base
;
138 if (selector
& 4) { /* from ldt */
141 asm("sldt %0" : "=g"(ldt_selector
));
142 table_base
= segment_base(ldt_selector
);
144 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
145 v
= d
->base0
| ((unsigned long)d
->base1
<< 16) |
146 ((unsigned long)d
->base2
<< 24);
148 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
149 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
153 EXPORT_SYMBOL_GPL(segment_base
);
155 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
157 if (irqchip_in_kernel(vcpu
->kvm
))
158 return vcpu
->arch
.apic_base
;
160 return vcpu
->arch
.apic_base
;
162 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
164 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
166 /* TODO: reserve bits check */
167 if (irqchip_in_kernel(vcpu
->kvm
))
168 kvm_lapic_set_base(vcpu
, data
);
170 vcpu
->arch
.apic_base
= data
;
172 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
174 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
176 WARN_ON(vcpu
->arch
.exception
.pending
);
177 vcpu
->arch
.exception
.pending
= true;
178 vcpu
->arch
.exception
.has_error_code
= false;
179 vcpu
->arch
.exception
.nr
= nr
;
181 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
183 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
186 ++vcpu
->stat
.pf_guest
;
188 if (vcpu
->arch
.exception
.pending
) {
189 switch(vcpu
->arch
.exception
.nr
) {
191 /* triple fault -> shutdown */
192 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
195 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
196 vcpu
->arch
.exception
.error_code
= 0;
199 /* replace previous exception with a new one in a hope
200 that instruction re-execution will regenerate lost
202 vcpu
->arch
.exception
.pending
= false;
206 vcpu
->arch
.cr2
= addr
;
207 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
210 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
212 vcpu
->arch
.nmi_pending
= 1;
214 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
216 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
218 WARN_ON(vcpu
->arch
.exception
.pending
);
219 vcpu
->arch
.exception
.pending
= true;
220 vcpu
->arch
.exception
.has_error_code
= true;
221 vcpu
->arch
.exception
.nr
= nr
;
222 vcpu
->arch
.exception
.error_code
= error_code
;
224 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
227 * Load the pae pdptrs. Return true is they are all valid.
229 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
231 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
232 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
235 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
237 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
238 offset
* sizeof(u64
), sizeof(pdpte
));
243 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
244 if (is_present_gpte(pdpte
[i
]) &&
245 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
252 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
253 __set_bit(VCPU_EXREG_PDPTR
,
254 (unsigned long *)&vcpu
->arch
.regs_avail
);
255 __set_bit(VCPU_EXREG_PDPTR
,
256 (unsigned long *)&vcpu
->arch
.regs_dirty
);
261 EXPORT_SYMBOL_GPL(load_pdptrs
);
263 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
265 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
269 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
272 if (!test_bit(VCPU_EXREG_PDPTR
,
273 (unsigned long *)&vcpu
->arch
.regs_avail
))
276 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
279 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
285 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
287 if (cr0
& CR0_RESERVED_BITS
) {
288 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
289 cr0
, vcpu
->arch
.cr0
);
290 kvm_inject_gp(vcpu
, 0);
294 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
295 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
296 kvm_inject_gp(vcpu
, 0);
300 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
301 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
302 "and a clear PE flag\n");
303 kvm_inject_gp(vcpu
, 0);
307 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
309 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
313 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
314 "in long mode while PAE is disabled\n");
315 kvm_inject_gp(vcpu
, 0);
318 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
320 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
321 "in long mode while CS.L == 1\n");
322 kvm_inject_gp(vcpu
, 0);
328 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
329 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
331 kvm_inject_gp(vcpu
, 0);
337 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
338 vcpu
->arch
.cr0
= cr0
;
340 kvm_mmu_reset_context(vcpu
);
343 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
345 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
347 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
349 EXPORT_SYMBOL_GPL(kvm_lmsw
);
351 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
353 unsigned long old_cr4
= vcpu
->arch
.cr4
;
354 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
356 if (cr4
& CR4_RESERVED_BITS
) {
357 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
358 kvm_inject_gp(vcpu
, 0);
362 if (is_long_mode(vcpu
)) {
363 if (!(cr4
& X86_CR4_PAE
)) {
364 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
366 kvm_inject_gp(vcpu
, 0);
369 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
370 && ((cr4
^ old_cr4
) & pdptr_bits
)
371 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
372 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
373 kvm_inject_gp(vcpu
, 0);
377 if (cr4
& X86_CR4_VMXE
) {
378 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
379 kvm_inject_gp(vcpu
, 0);
382 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
383 vcpu
->arch
.cr4
= cr4
;
384 vcpu
->arch
.mmu
.base_role
.cr4_pge
= (cr4
& X86_CR4_PGE
) && !tdp_enabled
;
385 kvm_mmu_reset_context(vcpu
);
387 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
389 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
391 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
392 kvm_mmu_sync_roots(vcpu
);
393 kvm_mmu_flush_tlb(vcpu
);
397 if (is_long_mode(vcpu
)) {
398 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
399 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
400 kvm_inject_gp(vcpu
, 0);
405 if (cr3
& CR3_PAE_RESERVED_BITS
) {
407 "set_cr3: #GP, reserved bits\n");
408 kvm_inject_gp(vcpu
, 0);
411 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
412 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
414 kvm_inject_gp(vcpu
, 0);
419 * We don't check reserved bits in nonpae mode, because
420 * this isn't enforced, and VMware depends on this.
425 * Does the new cr3 value map to physical memory? (Note, we
426 * catch an invalid cr3 even in real-mode, because it would
427 * cause trouble later on when we turn on paging anyway.)
429 * A real CPU would silently accept an invalid cr3 and would
430 * attempt to use it - with largely undefined (and often hard
431 * to debug) behavior on the guest side.
433 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
434 kvm_inject_gp(vcpu
, 0);
436 vcpu
->arch
.cr3
= cr3
;
437 vcpu
->arch
.mmu
.new_cr3(vcpu
);
440 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
442 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
444 if (cr8
& CR8_RESERVED_BITS
) {
445 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
446 kvm_inject_gp(vcpu
, 0);
449 if (irqchip_in_kernel(vcpu
->kvm
))
450 kvm_lapic_set_tpr(vcpu
, cr8
);
452 vcpu
->arch
.cr8
= cr8
;
454 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
456 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
458 if (irqchip_in_kernel(vcpu
->kvm
))
459 return kvm_lapic_get_cr8(vcpu
);
461 return vcpu
->arch
.cr8
;
463 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
465 static inline u32
bit(int bitno
)
467 return 1 << (bitno
& 31);
471 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
472 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
474 * This list is modified at module load time to reflect the
475 * capabilities of the host cpu.
477 static u32 msrs_to_save
[] = {
478 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
481 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
483 MSR_IA32_TSC
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
484 MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
487 static unsigned num_msrs_to_save
;
489 static u32 emulated_msrs
[] = {
490 MSR_IA32_MISC_ENABLE
,
493 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
495 if (efer
& efer_reserved_bits
) {
496 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
498 kvm_inject_gp(vcpu
, 0);
503 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
504 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
505 kvm_inject_gp(vcpu
, 0);
509 if (efer
& EFER_FFXSR
) {
510 struct kvm_cpuid_entry2
*feat
;
512 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
513 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
))) {
514 printk(KERN_DEBUG
"set_efer: #GP, enable FFXSR w/o CPUID capability\n");
515 kvm_inject_gp(vcpu
, 0);
520 if (efer
& EFER_SVME
) {
521 struct kvm_cpuid_entry2
*feat
;
523 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
524 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
))) {
525 printk(KERN_DEBUG
"set_efer: #GP, enable SVM w/o SVM\n");
526 kvm_inject_gp(vcpu
, 0);
531 kvm_x86_ops
->set_efer(vcpu
, efer
);
534 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
536 vcpu
->arch
.shadow_efer
= efer
;
538 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
539 kvm_mmu_reset_context(vcpu
);
542 void kvm_enable_efer_bits(u64 mask
)
544 efer_reserved_bits
&= ~mask
;
546 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
550 * Writes msr value into into the appropriate "register".
551 * Returns 0 on success, non-0 otherwise.
552 * Assumes vcpu_load() was already called.
554 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
556 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
560 * Adapt set_msr() to msr_io()'s calling convention
562 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
564 return kvm_set_msr(vcpu
, index
, *data
);
567 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
570 struct pvclock_wall_clock wc
;
571 struct timespec now
, sys
, boot
;
578 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
581 * The guest calculates current wall clock time by adding
582 * system time (updated by kvm_write_guest_time below) to the
583 * wall clock specified here. guest system time equals host
584 * system time for us, thus we must fill in host boot time here.
586 now
= current_kernel_time();
588 boot
= ns_to_timespec(timespec_to_ns(&now
) - timespec_to_ns(&sys
));
590 wc
.sec
= boot
.tv_sec
;
591 wc
.nsec
= boot
.tv_nsec
;
592 wc
.version
= version
;
594 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
597 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
600 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
602 uint32_t quotient
, remainder
;
604 /* Don't try to replace with do_div(), this one calculates
605 * "(dividend << 32) / divisor" */
607 : "=a" (quotient
), "=d" (remainder
)
608 : "0" (0), "1" (dividend
), "r" (divisor
) );
612 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
614 uint64_t nsecs
= 1000000000LL;
619 tps64
= tsc_khz
* 1000LL;
620 while (tps64
> nsecs
*2) {
625 tps32
= (uint32_t)tps64
;
626 while (tps32
<= (uint32_t)nsecs
) {
631 hv_clock
->tsc_shift
= shift
;
632 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
634 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
635 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
636 hv_clock
->tsc_to_system_mul
);
639 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
641 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
645 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
647 unsigned long this_tsc_khz
;
649 if ((!vcpu
->time_page
))
652 this_tsc_khz
= get_cpu_var(cpu_tsc_khz
);
653 if (unlikely(vcpu
->hv_clock_tsc_khz
!= this_tsc_khz
)) {
654 kvm_set_time_scale(this_tsc_khz
, &vcpu
->hv_clock
);
655 vcpu
->hv_clock_tsc_khz
= this_tsc_khz
;
657 put_cpu_var(cpu_tsc_khz
);
659 /* Keep irq disabled to prevent changes to the clock */
660 local_irq_save(flags
);
661 kvm_get_msr(v
, MSR_IA32_TSC
, &vcpu
->hv_clock
.tsc_timestamp
);
663 local_irq_restore(flags
);
665 /* With all the info we got, fill in the values */
667 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
668 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
670 * The interface expects us to write an even number signaling that the
671 * update is finished. Since the guest won't see the intermediate
672 * state, we just increase by 2 at the end.
674 vcpu
->hv_clock
.version
+= 2;
676 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
678 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
679 sizeof(vcpu
->hv_clock
));
681 kunmap_atomic(shared_kaddr
, KM_USER0
);
683 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
686 static int kvm_request_guest_time_update(struct kvm_vcpu
*v
)
688 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
690 if (!vcpu
->time_page
)
692 set_bit(KVM_REQ_KVMCLOCK_UPDATE
, &v
->requests
);
696 static bool msr_mtrr_valid(unsigned msr
)
699 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
700 case MSR_MTRRfix64K_00000
:
701 case MSR_MTRRfix16K_80000
:
702 case MSR_MTRRfix16K_A0000
:
703 case MSR_MTRRfix4K_C0000
:
704 case MSR_MTRRfix4K_C8000
:
705 case MSR_MTRRfix4K_D0000
:
706 case MSR_MTRRfix4K_D8000
:
707 case MSR_MTRRfix4K_E0000
:
708 case MSR_MTRRfix4K_E8000
:
709 case MSR_MTRRfix4K_F0000
:
710 case MSR_MTRRfix4K_F8000
:
711 case MSR_MTRRdefType
:
712 case MSR_IA32_CR_PAT
:
720 static bool valid_pat_type(unsigned t
)
722 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
725 static bool valid_mtrr_type(unsigned t
)
727 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
730 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
734 if (!msr_mtrr_valid(msr
))
737 if (msr
== MSR_IA32_CR_PAT
) {
738 for (i
= 0; i
< 8; i
++)
739 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
742 } else if (msr
== MSR_MTRRdefType
) {
745 return valid_mtrr_type(data
& 0xff);
746 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
747 for (i
= 0; i
< 8 ; i
++)
748 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
754 return valid_mtrr_type(data
& 0xff);
757 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
759 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
761 if (!mtrr_valid(vcpu
, msr
, data
))
764 if (msr
== MSR_MTRRdefType
) {
765 vcpu
->arch
.mtrr_state
.def_type
= data
;
766 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
767 } else if (msr
== MSR_MTRRfix64K_00000
)
769 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
770 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
771 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
772 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
773 else if (msr
== MSR_IA32_CR_PAT
)
774 vcpu
->arch
.pat
= data
;
775 else { /* Variable MTRRs */
776 int idx
, is_mtrr_mask
;
779 idx
= (msr
- 0x200) / 2;
780 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
783 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
786 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
790 kvm_mmu_reset_context(vcpu
);
794 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
796 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
797 unsigned bank_num
= mcg_cap
& 0xff;
800 case MSR_IA32_MCG_STATUS
:
801 vcpu
->arch
.mcg_status
= data
;
803 case MSR_IA32_MCG_CTL
:
804 if (!(mcg_cap
& MCG_CTL_P
))
806 if (data
!= 0 && data
!= ~(u64
)0)
808 vcpu
->arch
.mcg_ctl
= data
;
811 if (msr
>= MSR_IA32_MC0_CTL
&&
812 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
813 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
814 /* only 0 or all 1s can be written to IA32_MCi_CTL */
815 if ((offset
& 0x3) == 0 &&
816 data
!= 0 && data
!= ~(u64
)0)
818 vcpu
->arch
.mce_banks
[offset
] = data
;
826 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
830 set_efer(vcpu
, data
);
833 data
&= ~(u64
)0x40; /* ignore flush filter disable */
835 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
840 case MSR_FAM10H_MMIO_CONF_BASE
:
842 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
847 case MSR_AMD64_NB_CFG
:
849 case MSR_IA32_DEBUGCTLMSR
:
851 /* We support the non-activated case already */
853 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
854 /* Values other than LBR and BTF are vendor-specific,
855 thus reserved and should throw a #GP */
858 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
861 case MSR_IA32_UCODE_REV
:
862 case MSR_IA32_UCODE_WRITE
:
863 case MSR_VM_HSAVE_PA
:
864 case MSR_AMD64_PATCH_LOADER
:
866 case 0x200 ... 0x2ff:
867 return set_msr_mtrr(vcpu
, msr
, data
);
868 case MSR_IA32_APICBASE
:
869 kvm_set_apic_base(vcpu
, data
);
871 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
872 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
873 case MSR_IA32_MISC_ENABLE
:
874 vcpu
->arch
.ia32_misc_enable_msr
= data
;
876 case MSR_KVM_WALL_CLOCK
:
877 vcpu
->kvm
->arch
.wall_clock
= data
;
878 kvm_write_wall_clock(vcpu
->kvm
, data
);
880 case MSR_KVM_SYSTEM_TIME
: {
881 if (vcpu
->arch
.time_page
) {
882 kvm_release_page_dirty(vcpu
->arch
.time_page
);
883 vcpu
->arch
.time_page
= NULL
;
886 vcpu
->arch
.time
= data
;
888 /* we verify if the enable bit is set... */
892 /* ...but clean it before doing the actual write */
893 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
895 vcpu
->arch
.time_page
=
896 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
898 if (is_error_page(vcpu
->arch
.time_page
)) {
899 kvm_release_page_clean(vcpu
->arch
.time_page
);
900 vcpu
->arch
.time_page
= NULL
;
903 kvm_request_guest_time_update(vcpu
);
906 case MSR_IA32_MCG_CTL
:
907 case MSR_IA32_MCG_STATUS
:
908 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
909 return set_msr_mce(vcpu
, msr
, data
);
911 /* Performance counters are not protected by a CPUID bit,
912 * so we should check all of them in the generic path for the sake of
913 * cross vendor migration.
914 * Writing a zero into the event select MSRs disables them,
915 * which we perfectly emulate ;-). Any other value should be at least
916 * reported, some guests depend on them.
918 case MSR_P6_EVNTSEL0
:
919 case MSR_P6_EVNTSEL1
:
920 case MSR_K7_EVNTSEL0
:
921 case MSR_K7_EVNTSEL1
:
922 case MSR_K7_EVNTSEL2
:
923 case MSR_K7_EVNTSEL3
:
925 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
926 "0x%x data 0x%llx\n", msr
, data
);
928 /* at least RHEL 4 unconditionally writes to the perfctr registers,
929 * so we ignore writes to make it happy.
931 case MSR_P6_PERFCTR0
:
932 case MSR_P6_PERFCTR1
:
933 case MSR_K7_PERFCTR0
:
934 case MSR_K7_PERFCTR1
:
935 case MSR_K7_PERFCTR2
:
936 case MSR_K7_PERFCTR3
:
937 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
938 "0x%x data 0x%llx\n", msr
, data
);
942 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
946 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
953 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
957 * Reads an msr value (of 'msr_index') into 'pdata'.
958 * Returns 0 on success, non-0 otherwise.
959 * Assumes vcpu_load() was already called.
961 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
963 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
966 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
968 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
970 if (!msr_mtrr_valid(msr
))
973 if (msr
== MSR_MTRRdefType
)
974 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
975 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
976 else if (msr
== MSR_MTRRfix64K_00000
)
978 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
979 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
980 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
981 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
982 else if (msr
== MSR_IA32_CR_PAT
)
983 *pdata
= vcpu
->arch
.pat
;
984 else { /* Variable MTRRs */
985 int idx
, is_mtrr_mask
;
988 idx
= (msr
- 0x200) / 2;
989 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
992 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
995 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1002 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1005 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1006 unsigned bank_num
= mcg_cap
& 0xff;
1009 case MSR_IA32_P5_MC_ADDR
:
1010 case MSR_IA32_P5_MC_TYPE
:
1013 case MSR_IA32_MCG_CAP
:
1014 data
= vcpu
->arch
.mcg_cap
;
1016 case MSR_IA32_MCG_CTL
:
1017 if (!(mcg_cap
& MCG_CTL_P
))
1019 data
= vcpu
->arch
.mcg_ctl
;
1021 case MSR_IA32_MCG_STATUS
:
1022 data
= vcpu
->arch
.mcg_status
;
1025 if (msr
>= MSR_IA32_MC0_CTL
&&
1026 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1027 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1028 data
= vcpu
->arch
.mce_banks
[offset
];
1037 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1042 case MSR_IA32_PLATFORM_ID
:
1043 case MSR_IA32_UCODE_REV
:
1044 case MSR_IA32_EBL_CR_POWERON
:
1045 case MSR_IA32_DEBUGCTLMSR
:
1046 case MSR_IA32_LASTBRANCHFROMIP
:
1047 case MSR_IA32_LASTBRANCHTOIP
:
1048 case MSR_IA32_LASTINTFROMIP
:
1049 case MSR_IA32_LASTINTTOIP
:
1052 case MSR_VM_HSAVE_PA
:
1053 case MSR_P6_EVNTSEL0
:
1054 case MSR_P6_EVNTSEL1
:
1055 case MSR_K7_EVNTSEL0
:
1056 case MSR_K8_INT_PENDING_MSG
:
1057 case MSR_AMD64_NB_CFG
:
1058 case MSR_FAM10H_MMIO_CONF_BASE
:
1062 data
= 0x500 | KVM_NR_VAR_MTRR
;
1064 case 0x200 ... 0x2ff:
1065 return get_msr_mtrr(vcpu
, msr
, pdata
);
1066 case 0xcd: /* fsb frequency */
1069 case MSR_IA32_APICBASE
:
1070 data
= kvm_get_apic_base(vcpu
);
1072 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1073 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1075 case MSR_IA32_MISC_ENABLE
:
1076 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1078 case MSR_IA32_PERF_STATUS
:
1079 /* TSC increment by tick */
1081 /* CPU multiplier */
1082 data
|= (((uint64_t)4ULL) << 40);
1085 data
= vcpu
->arch
.shadow_efer
;
1087 case MSR_KVM_WALL_CLOCK
:
1088 data
= vcpu
->kvm
->arch
.wall_clock
;
1090 case MSR_KVM_SYSTEM_TIME
:
1091 data
= vcpu
->arch
.time
;
1093 case MSR_IA32_P5_MC_ADDR
:
1094 case MSR_IA32_P5_MC_TYPE
:
1095 case MSR_IA32_MCG_CAP
:
1096 case MSR_IA32_MCG_CTL
:
1097 case MSR_IA32_MCG_STATUS
:
1098 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1099 return get_msr_mce(vcpu
, msr
, pdata
);
1102 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1105 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1113 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1116 * Read or write a bunch of msrs. All parameters are kernel addresses.
1118 * @return number of msrs set successfully.
1120 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1121 struct kvm_msr_entry
*entries
,
1122 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1123 unsigned index
, u64
*data
))
1129 down_read(&vcpu
->kvm
->slots_lock
);
1130 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1131 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1133 up_read(&vcpu
->kvm
->slots_lock
);
1141 * Read or write a bunch of msrs. Parameters are user addresses.
1143 * @return number of msrs set successfully.
1145 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
1146 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1147 unsigned index
, u64
*data
),
1150 struct kvm_msrs msrs
;
1151 struct kvm_msr_entry
*entries
;
1156 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
1160 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
1164 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
1165 entries
= vmalloc(size
);
1170 if (copy_from_user(entries
, user_msrs
->entries
, size
))
1173 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
1178 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1189 int kvm_dev_ioctl_check_extension(long ext
)
1194 case KVM_CAP_IRQCHIP
:
1196 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1197 case KVM_CAP_SET_TSS_ADDR
:
1198 case KVM_CAP_EXT_CPUID
:
1199 case KVM_CAP_CLOCKSOURCE
:
1201 case KVM_CAP_NOP_IO_DELAY
:
1202 case KVM_CAP_MP_STATE
:
1203 case KVM_CAP_SYNC_MMU
:
1204 case KVM_CAP_REINJECT_CONTROL
:
1205 case KVM_CAP_IRQ_INJECT_STATUS
:
1206 case KVM_CAP_ASSIGN_DEV_IRQ
:
1208 case KVM_CAP_IOEVENTFD
:
1210 case KVM_CAP_PIT_STATE2
:
1213 case KVM_CAP_COALESCED_MMIO
:
1214 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1217 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1219 case KVM_CAP_NR_VCPUS
:
1222 case KVM_CAP_NR_MEMSLOTS
:
1223 r
= KVM_MEMORY_SLOTS
;
1225 case KVM_CAP_PV_MMU
:
1232 r
= KVM_MAX_MCE_BANKS
;
1242 long kvm_arch_dev_ioctl(struct file
*filp
,
1243 unsigned int ioctl
, unsigned long arg
)
1245 void __user
*argp
= (void __user
*)arg
;
1249 case KVM_GET_MSR_INDEX_LIST
: {
1250 struct kvm_msr_list __user
*user_msr_list
= argp
;
1251 struct kvm_msr_list msr_list
;
1255 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1258 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1259 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1262 if (n
< msr_list
.nmsrs
)
1265 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1266 num_msrs_to_save
* sizeof(u32
)))
1268 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
1270 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1275 case KVM_GET_SUPPORTED_CPUID
: {
1276 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1277 struct kvm_cpuid2 cpuid
;
1280 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1282 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1283 cpuid_arg
->entries
);
1288 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1293 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
1296 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
1298 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
1310 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1312 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1313 kvm_request_guest_time_update(vcpu
);
1316 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1318 kvm_x86_ops
->vcpu_put(vcpu
);
1319 kvm_put_guest_fpu(vcpu
);
1322 static int is_efer_nx(void)
1324 unsigned long long efer
= 0;
1326 rdmsrl_safe(MSR_EFER
, &efer
);
1327 return efer
& EFER_NX
;
1330 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1333 struct kvm_cpuid_entry2
*e
, *entry
;
1336 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1337 e
= &vcpu
->arch
.cpuid_entries
[i
];
1338 if (e
->function
== 0x80000001) {
1343 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1344 entry
->edx
&= ~(1 << 20);
1345 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1349 /* when an old userspace process fills a new kernel module */
1350 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1351 struct kvm_cpuid
*cpuid
,
1352 struct kvm_cpuid_entry __user
*entries
)
1355 struct kvm_cpuid_entry
*cpuid_entries
;
1358 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1361 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1365 if (copy_from_user(cpuid_entries
, entries
,
1366 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1368 for (i
= 0; i
< cpuid
->nent
; i
++) {
1369 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1370 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1371 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1372 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1373 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1374 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1375 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1376 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1377 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1378 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1380 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1381 cpuid_fix_nx_cap(vcpu
);
1383 kvm_apic_set_version(vcpu
);
1386 vfree(cpuid_entries
);
1391 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1392 struct kvm_cpuid2
*cpuid
,
1393 struct kvm_cpuid_entry2 __user
*entries
)
1398 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1401 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1402 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1404 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1405 kvm_apic_set_version(vcpu
);
1412 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1413 struct kvm_cpuid2
*cpuid
,
1414 struct kvm_cpuid_entry2 __user
*entries
)
1419 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1422 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1423 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1428 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1432 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1435 entry
->function
= function
;
1436 entry
->index
= index
;
1437 cpuid_count(entry
->function
, entry
->index
,
1438 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1442 #define F(x) bit(X86_FEATURE_##x)
1444 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1445 u32 index
, int *nent
, int maxnent
)
1447 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
1448 #ifdef CONFIG_X86_64
1449 unsigned f_lm
= F(LM
);
1455 const u32 kvm_supported_word0_x86_features
=
1456 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1457 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1458 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
1459 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1460 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
1461 0 /* Reserved, DS, ACPI */ | F(MMX
) |
1462 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
1463 0 /* HTT, TM, Reserved, PBE */;
1464 /* cpuid 0x80000001.edx */
1465 const u32 kvm_supported_word1_x86_features
=
1466 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1467 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1468 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
1469 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1470 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
1471 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
1472 F(FXSR
) | F(FXSR_OPT
) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1473 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
1475 const u32 kvm_supported_word4_x86_features
=
1476 F(XMM3
) | 0 /* Reserved, DTES64, MONITOR */ |
1477 0 /* DS-CPL, VMX, SMX, EST */ |
1478 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1479 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
1480 0 /* Reserved, DCA */ | F(XMM4_1
) |
1481 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
1482 0 /* Reserved, XSAVE, OSXSAVE */;
1483 /* cpuid 0x80000001.ecx */
1484 const u32 kvm_supported_word6_x86_features
=
1485 F(LAHF_LM
) | F(CMP_LEGACY
) | F(SVM
) | 0 /* ExtApicSpace */ |
1486 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
1487 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5
) |
1488 0 /* SKINIT */ | 0 /* WDT */;
1490 /* all calls to cpuid_count() should be made on the same cpu */
1492 do_cpuid_1_ent(entry
, function
, index
);
1497 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1500 entry
->edx
&= kvm_supported_word0_x86_features
;
1501 entry
->ecx
&= kvm_supported_word4_x86_features
;
1502 /* we support x2apic emulation even if host does not support
1503 * it since we emulate x2apic in software */
1504 entry
->ecx
|= F(X2APIC
);
1506 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1507 * may return different values. This forces us to get_cpu() before
1508 * issuing the first command, and also to emulate this annoying behavior
1509 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1511 int t
, times
= entry
->eax
& 0xff;
1513 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1514 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
1515 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1516 do_cpuid_1_ent(&entry
[t
], function
, 0);
1517 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1522 /* function 4 and 0xb have additional index. */
1526 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1527 /* read more entries until cache_type is zero */
1528 for (i
= 1; *nent
< maxnent
; ++i
) {
1529 cache_type
= entry
[i
- 1].eax
& 0x1f;
1532 do_cpuid_1_ent(&entry
[i
], function
, i
);
1534 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1542 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1543 /* read more entries until level_type is zero */
1544 for (i
= 1; *nent
< maxnent
; ++i
) {
1545 level_type
= entry
[i
- 1].ecx
& 0xff00;
1548 do_cpuid_1_ent(&entry
[i
], function
, i
);
1550 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1556 entry
->eax
= min(entry
->eax
, 0x8000001a);
1559 entry
->edx
&= kvm_supported_word1_x86_features
;
1560 entry
->ecx
&= kvm_supported_word6_x86_features
;
1568 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1569 struct kvm_cpuid_entry2 __user
*entries
)
1571 struct kvm_cpuid_entry2
*cpuid_entries
;
1572 int limit
, nent
= 0, r
= -E2BIG
;
1575 if (cpuid
->nent
< 1)
1578 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1582 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1583 limit
= cpuid_entries
[0].eax
;
1584 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1585 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1586 &nent
, cpuid
->nent
);
1588 if (nent
>= cpuid
->nent
)
1591 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1592 limit
= cpuid_entries
[nent
- 1].eax
;
1593 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1594 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1595 &nent
, cpuid
->nent
);
1597 if (nent
>= cpuid
->nent
)
1601 if (copy_to_user(entries
, cpuid_entries
,
1602 nent
* sizeof(struct kvm_cpuid_entry2
)))
1608 vfree(cpuid_entries
);
1613 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1614 struct kvm_lapic_state
*s
)
1617 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1623 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1624 struct kvm_lapic_state
*s
)
1627 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1628 kvm_apic_post_state_restore(vcpu
);
1634 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1635 struct kvm_interrupt
*irq
)
1637 if (irq
->irq
< 0 || irq
->irq
>= 256)
1639 if (irqchip_in_kernel(vcpu
->kvm
))
1643 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
1650 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
1653 kvm_inject_nmi(vcpu
);
1659 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1660 struct kvm_tpr_access_ctl
*tac
)
1664 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1668 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
1672 unsigned bank_num
= mcg_cap
& 0xff, bank
;
1677 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
1680 vcpu
->arch
.mcg_cap
= mcg_cap
;
1681 /* Init IA32_MCG_CTL to all 1s */
1682 if (mcg_cap
& MCG_CTL_P
)
1683 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
1684 /* Init IA32_MCi_CTL to all 1s */
1685 for (bank
= 0; bank
< bank_num
; bank
++)
1686 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
1691 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
1692 struct kvm_x86_mce
*mce
)
1694 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1695 unsigned bank_num
= mcg_cap
& 0xff;
1696 u64
*banks
= vcpu
->arch
.mce_banks
;
1698 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
1701 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1702 * reporting is disabled
1704 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
1705 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
1707 banks
+= 4 * mce
->bank
;
1709 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1710 * reporting is disabled for the bank
1712 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
1714 if (mce
->status
& MCI_STATUS_UC
) {
1715 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
1716 !(vcpu
->arch
.cr4
& X86_CR4_MCE
)) {
1717 printk(KERN_DEBUG
"kvm: set_mce: "
1718 "injects mce exception while "
1719 "previous one is in progress!\n");
1720 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
1723 if (banks
[1] & MCI_STATUS_VAL
)
1724 mce
->status
|= MCI_STATUS_OVER
;
1725 banks
[2] = mce
->addr
;
1726 banks
[3] = mce
->misc
;
1727 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
1728 banks
[1] = mce
->status
;
1729 kvm_queue_exception(vcpu
, MC_VECTOR
);
1730 } else if (!(banks
[1] & MCI_STATUS_VAL
)
1731 || !(banks
[1] & MCI_STATUS_UC
)) {
1732 if (banks
[1] & MCI_STATUS_VAL
)
1733 mce
->status
|= MCI_STATUS_OVER
;
1734 banks
[2] = mce
->addr
;
1735 banks
[3] = mce
->misc
;
1736 banks
[1] = mce
->status
;
1738 banks
[1] |= MCI_STATUS_OVER
;
1742 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1743 unsigned int ioctl
, unsigned long arg
)
1745 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1746 void __user
*argp
= (void __user
*)arg
;
1748 struct kvm_lapic_state
*lapic
= NULL
;
1751 case KVM_GET_LAPIC
: {
1752 lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1757 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, lapic
);
1761 if (copy_to_user(argp
, lapic
, sizeof(struct kvm_lapic_state
)))
1766 case KVM_SET_LAPIC
: {
1767 lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1772 if (copy_from_user(lapic
, argp
, sizeof(struct kvm_lapic_state
)))
1774 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, lapic
);
1780 case KVM_INTERRUPT
: {
1781 struct kvm_interrupt irq
;
1784 if (copy_from_user(&irq
, argp
, sizeof irq
))
1786 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1793 r
= kvm_vcpu_ioctl_nmi(vcpu
);
1799 case KVM_SET_CPUID
: {
1800 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1801 struct kvm_cpuid cpuid
;
1804 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1806 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1811 case KVM_SET_CPUID2
: {
1812 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1813 struct kvm_cpuid2 cpuid
;
1816 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1818 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1819 cpuid_arg
->entries
);
1824 case KVM_GET_CPUID2
: {
1825 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1826 struct kvm_cpuid2 cpuid
;
1829 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1831 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1832 cpuid_arg
->entries
);
1836 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1842 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1845 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1847 case KVM_TPR_ACCESS_REPORTING
: {
1848 struct kvm_tpr_access_ctl tac
;
1851 if (copy_from_user(&tac
, argp
, sizeof tac
))
1853 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1857 if (copy_to_user(argp
, &tac
, sizeof tac
))
1862 case KVM_SET_VAPIC_ADDR
: {
1863 struct kvm_vapic_addr va
;
1866 if (!irqchip_in_kernel(vcpu
->kvm
))
1869 if (copy_from_user(&va
, argp
, sizeof va
))
1872 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1875 case KVM_X86_SETUP_MCE
: {
1879 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
1881 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
1884 case KVM_X86_SET_MCE
: {
1885 struct kvm_x86_mce mce
;
1888 if (copy_from_user(&mce
, argp
, sizeof mce
))
1890 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
1901 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1905 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1907 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1911 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1912 u32 kvm_nr_mmu_pages
)
1914 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1917 down_write(&kvm
->slots_lock
);
1918 spin_lock(&kvm
->mmu_lock
);
1920 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1921 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1923 spin_unlock(&kvm
->mmu_lock
);
1924 up_write(&kvm
->slots_lock
);
1928 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1930 return kvm
->arch
.n_alloc_mmu_pages
;
1933 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1936 struct kvm_mem_alias
*alias
;
1938 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1939 alias
= &kvm
->arch
.aliases
[i
];
1940 if (gfn
>= alias
->base_gfn
1941 && gfn
< alias
->base_gfn
+ alias
->npages
)
1942 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1948 * Set a new alias region. Aliases map a portion of physical memory into
1949 * another portion. This is useful for memory windows, for example the PC
1952 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1953 struct kvm_memory_alias
*alias
)
1956 struct kvm_mem_alias
*p
;
1959 /* General sanity checks */
1960 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1962 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1964 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1966 if (alias
->guest_phys_addr
+ alias
->memory_size
1967 < alias
->guest_phys_addr
)
1969 if (alias
->target_phys_addr
+ alias
->memory_size
1970 < alias
->target_phys_addr
)
1973 down_write(&kvm
->slots_lock
);
1974 spin_lock(&kvm
->mmu_lock
);
1976 p
= &kvm
->arch
.aliases
[alias
->slot
];
1977 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1978 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1979 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1981 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1982 if (kvm
->arch
.aliases
[n
- 1].npages
)
1984 kvm
->arch
.naliases
= n
;
1986 spin_unlock(&kvm
->mmu_lock
);
1987 kvm_mmu_zap_all(kvm
);
1989 up_write(&kvm
->slots_lock
);
1997 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2002 switch (chip
->chip_id
) {
2003 case KVM_IRQCHIP_PIC_MASTER
:
2004 memcpy(&chip
->chip
.pic
,
2005 &pic_irqchip(kvm
)->pics
[0],
2006 sizeof(struct kvm_pic_state
));
2008 case KVM_IRQCHIP_PIC_SLAVE
:
2009 memcpy(&chip
->chip
.pic
,
2010 &pic_irqchip(kvm
)->pics
[1],
2011 sizeof(struct kvm_pic_state
));
2013 case KVM_IRQCHIP_IOAPIC
:
2014 memcpy(&chip
->chip
.ioapic
,
2015 ioapic_irqchip(kvm
),
2016 sizeof(struct kvm_ioapic_state
));
2025 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2030 switch (chip
->chip_id
) {
2031 case KVM_IRQCHIP_PIC_MASTER
:
2032 spin_lock(&pic_irqchip(kvm
)->lock
);
2033 memcpy(&pic_irqchip(kvm
)->pics
[0],
2035 sizeof(struct kvm_pic_state
));
2036 spin_unlock(&pic_irqchip(kvm
)->lock
);
2038 case KVM_IRQCHIP_PIC_SLAVE
:
2039 spin_lock(&pic_irqchip(kvm
)->lock
);
2040 memcpy(&pic_irqchip(kvm
)->pics
[1],
2042 sizeof(struct kvm_pic_state
));
2043 spin_unlock(&pic_irqchip(kvm
)->lock
);
2045 case KVM_IRQCHIP_IOAPIC
:
2046 mutex_lock(&kvm
->irq_lock
);
2047 memcpy(ioapic_irqchip(kvm
),
2049 sizeof(struct kvm_ioapic_state
));
2050 mutex_unlock(&kvm
->irq_lock
);
2056 kvm_pic_update_irq(pic_irqchip(kvm
));
2060 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2064 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2065 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
2066 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2070 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2074 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2075 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
2076 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
2077 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2081 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2085 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2086 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
2087 sizeof(ps
->channels
));
2088 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
2089 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2093 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2095 int r
= 0, start
= 0;
2096 u32 prev_legacy
, cur_legacy
;
2097 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2098 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2099 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2100 if (!prev_legacy
&& cur_legacy
)
2102 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
2103 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
2104 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
2105 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
2106 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2110 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
2111 struct kvm_reinject_control
*control
)
2113 if (!kvm
->arch
.vpit
)
2115 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2116 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
2117 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2122 * Get (and clear) the dirty memory log for a memory slot.
2124 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
2125 struct kvm_dirty_log
*log
)
2129 struct kvm_memory_slot
*memslot
;
2132 down_write(&kvm
->slots_lock
);
2134 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
2138 /* If nothing is dirty, don't bother messing with page tables. */
2140 spin_lock(&kvm
->mmu_lock
);
2141 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
2142 spin_unlock(&kvm
->mmu_lock
);
2143 kvm_flush_remote_tlbs(kvm
);
2144 memslot
= &kvm
->memslots
[log
->slot
];
2145 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
2146 memset(memslot
->dirty_bitmap
, 0, n
);
2150 up_write(&kvm
->slots_lock
);
2154 long kvm_arch_vm_ioctl(struct file
*filp
,
2155 unsigned int ioctl
, unsigned long arg
)
2157 struct kvm
*kvm
= filp
->private_data
;
2158 void __user
*argp
= (void __user
*)arg
;
2161 * This union makes it completely explicit to gcc-3.x
2162 * that these two variables' stack usage should be
2163 * combined, not added together.
2166 struct kvm_pit_state ps
;
2167 struct kvm_pit_state2 ps2
;
2168 struct kvm_memory_alias alias
;
2169 struct kvm_pit_config pit_config
;
2173 case KVM_SET_TSS_ADDR
:
2174 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
2178 case KVM_SET_MEMORY_REGION
: {
2179 struct kvm_memory_region kvm_mem
;
2180 struct kvm_userspace_memory_region kvm_userspace_mem
;
2183 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
2185 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
2186 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
2187 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
2188 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
2189 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2194 case KVM_SET_NR_MMU_PAGES
:
2195 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
2199 case KVM_GET_NR_MMU_PAGES
:
2200 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
2202 case KVM_SET_MEMORY_ALIAS
:
2204 if (copy_from_user(&u
.alias
, argp
, sizeof(struct kvm_memory_alias
)))
2206 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &u
.alias
);
2210 case KVM_CREATE_IRQCHIP
:
2212 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
2213 if (kvm
->arch
.vpic
) {
2214 r
= kvm_ioapic_init(kvm
);
2216 kfree(kvm
->arch
.vpic
);
2217 kvm
->arch
.vpic
= NULL
;
2222 r
= kvm_setup_default_irq_routing(kvm
);
2224 kfree(kvm
->arch
.vpic
);
2225 kfree(kvm
->arch
.vioapic
);
2229 case KVM_CREATE_PIT
:
2230 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
2232 case KVM_CREATE_PIT2
:
2234 if (copy_from_user(&u
.pit_config
, argp
,
2235 sizeof(struct kvm_pit_config
)))
2238 down_write(&kvm
->slots_lock
);
2241 goto create_pit_unlock
;
2243 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
2247 up_write(&kvm
->slots_lock
);
2249 case KVM_IRQ_LINE_STATUS
:
2250 case KVM_IRQ_LINE
: {
2251 struct kvm_irq_level irq_event
;
2254 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
2256 if (irqchip_in_kernel(kvm
)) {
2258 mutex_lock(&kvm
->irq_lock
);
2259 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
2260 irq_event
.irq
, irq_event
.level
);
2261 mutex_unlock(&kvm
->irq_lock
);
2262 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2263 irq_event
.status
= status
;
2264 if (copy_to_user(argp
, &irq_event
,
2272 case KVM_GET_IRQCHIP
: {
2273 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2274 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
2280 if (copy_from_user(chip
, argp
, sizeof *chip
))
2281 goto get_irqchip_out
;
2283 if (!irqchip_in_kernel(kvm
))
2284 goto get_irqchip_out
;
2285 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
2287 goto get_irqchip_out
;
2289 if (copy_to_user(argp
, chip
, sizeof *chip
))
2290 goto get_irqchip_out
;
2298 case KVM_SET_IRQCHIP
: {
2299 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2300 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
2306 if (copy_from_user(chip
, argp
, sizeof *chip
))
2307 goto set_irqchip_out
;
2309 if (!irqchip_in_kernel(kvm
))
2310 goto set_irqchip_out
;
2311 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
2313 goto set_irqchip_out
;
2323 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
2326 if (!kvm
->arch
.vpit
)
2328 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
2332 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
2339 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
2342 if (!kvm
->arch
.vpit
)
2344 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
2350 case KVM_GET_PIT2
: {
2352 if (!kvm
->arch
.vpit
)
2354 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
2358 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
2363 case KVM_SET_PIT2
: {
2365 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
2368 if (!kvm
->arch
.vpit
)
2370 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
2376 case KVM_REINJECT_CONTROL
: {
2377 struct kvm_reinject_control control
;
2379 if (copy_from_user(&control
, argp
, sizeof(control
)))
2381 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
2394 static void kvm_init_msr_list(void)
2399 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2400 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2403 msrs_to_save
[j
] = msrs_to_save
[i
];
2406 num_msrs_to_save
= j
;
2409 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
2412 if (vcpu
->arch
.apic
&&
2413 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
2416 return kvm_io_bus_write(&vcpu
->kvm
->mmio_bus
, addr
, len
, v
);
2419 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
2421 if (vcpu
->arch
.apic
&&
2422 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
2425 return kvm_io_bus_read(&vcpu
->kvm
->mmio_bus
, addr
, len
, v
);
2428 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2429 struct kvm_vcpu
*vcpu
)
2432 int r
= X86EMUL_CONTINUE
;
2435 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2436 unsigned offset
= addr
& (PAGE_SIZE
-1);
2437 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2440 if (gpa
== UNMAPPED_GVA
) {
2441 r
= X86EMUL_PROPAGATE_FAULT
;
2444 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
2446 r
= X86EMUL_UNHANDLEABLE
;
2458 static int kvm_write_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2459 struct kvm_vcpu
*vcpu
)
2462 int r
= X86EMUL_CONTINUE
;
2465 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2466 unsigned offset
= addr
& (PAGE_SIZE
-1);
2467 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2470 if (gpa
== UNMAPPED_GVA
) {
2471 r
= X86EMUL_PROPAGATE_FAULT
;
2474 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
2476 r
= X86EMUL_UNHANDLEABLE
;
2489 static int emulator_read_emulated(unsigned long addr
,
2492 struct kvm_vcpu
*vcpu
)
2496 if (vcpu
->mmio_read_completed
) {
2497 memcpy(val
, vcpu
->mmio_data
, bytes
);
2498 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
2499 vcpu
->mmio_phys_addr
, *(u64
*)val
);
2500 vcpu
->mmio_read_completed
= 0;
2501 return X86EMUL_CONTINUE
;
2504 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2506 /* For APIC access vmexit */
2507 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2510 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
)
2511 == X86EMUL_CONTINUE
)
2512 return X86EMUL_CONTINUE
;
2513 if (gpa
== UNMAPPED_GVA
)
2514 return X86EMUL_PROPAGATE_FAULT
;
2518 * Is this MMIO handled locally?
2520 if (!vcpu_mmio_read(vcpu
, gpa
, bytes
, val
)) {
2521 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
, gpa
, *(u64
*)val
);
2522 return X86EMUL_CONTINUE
;
2525 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
2527 vcpu
->mmio_needed
= 1;
2528 vcpu
->mmio_phys_addr
= gpa
;
2529 vcpu
->mmio_size
= bytes
;
2530 vcpu
->mmio_is_write
= 0;
2532 return X86EMUL_UNHANDLEABLE
;
2535 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2536 const void *val
, int bytes
)
2540 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
2543 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
2547 static int emulator_write_emulated_onepage(unsigned long addr
,
2550 struct kvm_vcpu
*vcpu
)
2554 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2556 if (gpa
== UNMAPPED_GVA
) {
2557 kvm_inject_page_fault(vcpu
, addr
, 2);
2558 return X86EMUL_PROPAGATE_FAULT
;
2561 /* For APIC access vmexit */
2562 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2565 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
2566 return X86EMUL_CONTINUE
;
2569 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
2571 * Is this MMIO handled locally?
2573 if (!vcpu_mmio_write(vcpu
, gpa
, bytes
, val
))
2574 return X86EMUL_CONTINUE
;
2576 vcpu
->mmio_needed
= 1;
2577 vcpu
->mmio_phys_addr
= gpa
;
2578 vcpu
->mmio_size
= bytes
;
2579 vcpu
->mmio_is_write
= 1;
2580 memcpy(vcpu
->mmio_data
, val
, bytes
);
2582 return X86EMUL_CONTINUE
;
2585 int emulator_write_emulated(unsigned long addr
,
2588 struct kvm_vcpu
*vcpu
)
2590 /* Crossing a page boundary? */
2591 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
2594 now
= -addr
& ~PAGE_MASK
;
2595 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
2596 if (rc
!= X86EMUL_CONTINUE
)
2602 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
2604 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
2606 static int emulator_cmpxchg_emulated(unsigned long addr
,
2610 struct kvm_vcpu
*vcpu
)
2612 static int reported
;
2616 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
2618 #ifndef CONFIG_X86_64
2619 /* guests cmpxchg8b have to be emulated atomically */
2626 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2628 if (gpa
== UNMAPPED_GVA
||
2629 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2632 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2637 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2639 kaddr
= kmap_atomic(page
, KM_USER0
);
2640 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2641 kunmap_atomic(kaddr
, KM_USER0
);
2642 kvm_release_page_dirty(page
);
2647 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2650 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2652 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2655 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2657 kvm_mmu_invlpg(vcpu
, address
);
2658 return X86EMUL_CONTINUE
;
2661 int emulate_clts(struct kvm_vcpu
*vcpu
)
2663 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2664 return X86EMUL_CONTINUE
;
2667 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2669 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2673 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2674 return X86EMUL_CONTINUE
;
2676 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2677 return X86EMUL_UNHANDLEABLE
;
2681 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2683 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2686 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2688 /* FIXME: better handling */
2689 return X86EMUL_UNHANDLEABLE
;
2691 return X86EMUL_CONTINUE
;
2694 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2697 unsigned long rip
= kvm_rip_read(vcpu
);
2698 unsigned long rip_linear
;
2700 if (!printk_ratelimit())
2703 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2705 kvm_read_guest_virt(rip_linear
, (void *)opcodes
, 4, vcpu
);
2707 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2708 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2710 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2712 static struct x86_emulate_ops emulate_ops
= {
2713 .read_std
= kvm_read_guest_virt
,
2714 .read_emulated
= emulator_read_emulated
,
2715 .write_emulated
= emulator_write_emulated
,
2716 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2719 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
2721 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2722 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
2723 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
2724 vcpu
->arch
.regs_dirty
= ~0;
2727 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2728 struct kvm_run
*run
,
2734 struct decode_cache
*c
;
2736 kvm_clear_exception_queue(vcpu
);
2737 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2739 * TODO: fix x86_emulate.c to use guest_read/write_register
2740 * instead of direct ->regs accesses, can save hundred cycles
2741 * on Intel for instructions that don't read/change RSP, for
2744 cache_all_regs(vcpu
);
2746 vcpu
->mmio_is_write
= 0;
2747 vcpu
->arch
.pio
.string
= 0;
2749 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2751 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2753 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2754 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2755 vcpu
->arch
.emulate_ctxt
.mode
=
2756 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2757 ? X86EMUL_MODE_REAL
: cs_l
2758 ? X86EMUL_MODE_PROT64
: cs_db
2759 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2761 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2763 /* Only allow emulation of specific instructions on #UD
2764 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2765 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2766 if (emulation_type
& EMULTYPE_TRAP_UD
) {
2768 return EMULATE_FAIL
;
2770 case 0x01: /* VMMCALL */
2771 if (c
->modrm_mod
!= 3 || c
->modrm_rm
!= 1)
2772 return EMULATE_FAIL
;
2774 case 0x34: /* sysenter */
2775 case 0x35: /* sysexit */
2776 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
2777 return EMULATE_FAIL
;
2779 case 0x05: /* syscall */
2780 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
2781 return EMULATE_FAIL
;
2784 return EMULATE_FAIL
;
2787 if (!(c
->modrm_reg
== 0 || c
->modrm_reg
== 3))
2788 return EMULATE_FAIL
;
2791 ++vcpu
->stat
.insn_emulation
;
2793 ++vcpu
->stat
.insn_emulation_fail
;
2794 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2795 return EMULATE_DONE
;
2796 return EMULATE_FAIL
;
2800 if (emulation_type
& EMULTYPE_SKIP
) {
2801 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.decode
.eip
);
2802 return EMULATE_DONE
;
2805 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2806 shadow_mask
= vcpu
->arch
.emulate_ctxt
.interruptibility
;
2809 kvm_x86_ops
->set_interrupt_shadow(vcpu
, shadow_mask
);
2811 if (vcpu
->arch
.pio
.string
)
2812 return EMULATE_DO_MMIO
;
2814 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2815 run
->exit_reason
= KVM_EXIT_MMIO
;
2816 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2817 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2818 run
->mmio
.len
= vcpu
->mmio_size
;
2819 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2823 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2824 return EMULATE_DONE
;
2825 if (!vcpu
->mmio_needed
) {
2826 kvm_report_emulation_failure(vcpu
, "mmio");
2827 return EMULATE_FAIL
;
2829 return EMULATE_DO_MMIO
;
2832 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2834 if (vcpu
->mmio_is_write
) {
2835 vcpu
->mmio_needed
= 0;
2836 return EMULATE_DO_MMIO
;
2839 return EMULATE_DONE
;
2841 EXPORT_SYMBOL_GPL(emulate_instruction
);
2843 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2845 void *p
= vcpu
->arch
.pio_data
;
2846 gva_t q
= vcpu
->arch
.pio
.guest_gva
;
2850 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2851 if (vcpu
->arch
.pio
.in
)
2852 ret
= kvm_write_guest_virt(q
, p
, bytes
, vcpu
);
2854 ret
= kvm_read_guest_virt(q
, p
, bytes
, vcpu
);
2858 int complete_pio(struct kvm_vcpu
*vcpu
)
2860 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2867 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2868 memcpy(&val
, vcpu
->arch
.pio_data
, io
->size
);
2869 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
2873 r
= pio_copy_data(vcpu
);
2880 delta
*= io
->cur_count
;
2882 * The size of the register should really depend on
2883 * current address size.
2885 val
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2887 kvm_register_write(vcpu
, VCPU_REGS_RCX
, val
);
2893 val
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
2895 kvm_register_write(vcpu
, VCPU_REGS_RDI
, val
);
2897 val
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2899 kvm_register_write(vcpu
, VCPU_REGS_RSI
, val
);
2903 io
->count
-= io
->cur_count
;
2909 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
2911 /* TODO: String I/O for in kernel device */
2914 if (vcpu
->arch
.pio
.in
)
2915 r
= kvm_io_bus_read(&vcpu
->kvm
->pio_bus
, vcpu
->arch
.pio
.port
,
2916 vcpu
->arch
.pio
.size
, pd
);
2918 r
= kvm_io_bus_write(&vcpu
->kvm
->pio_bus
, vcpu
->arch
.pio
.port
,
2919 vcpu
->arch
.pio
.size
, pd
);
2923 static int pio_string_write(struct kvm_vcpu
*vcpu
)
2925 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2926 void *pd
= vcpu
->arch
.pio_data
;
2929 for (i
= 0; i
< io
->cur_count
; i
++) {
2930 if (kvm_io_bus_write(&vcpu
->kvm
->pio_bus
,
2931 io
->port
, io
->size
, pd
)) {
2940 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2941 int size
, unsigned port
)
2945 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2946 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2947 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2948 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2949 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2950 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2951 vcpu
->arch
.pio
.in
= in
;
2952 vcpu
->arch
.pio
.string
= 0;
2953 vcpu
->arch
.pio
.down
= 0;
2954 vcpu
->arch
.pio
.rep
= 0;
2956 trace_kvm_pio(vcpu
->run
->io
.direction
== KVM_EXIT_IO_OUT
, port
,
2959 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2960 memcpy(vcpu
->arch
.pio_data
, &val
, 4);
2962 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
2968 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2970 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2971 int size
, unsigned long count
, int down
,
2972 gva_t address
, int rep
, unsigned port
)
2974 unsigned now
, in_page
;
2977 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2978 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2979 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2980 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2981 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2982 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2983 vcpu
->arch
.pio
.in
= in
;
2984 vcpu
->arch
.pio
.string
= 1;
2985 vcpu
->arch
.pio
.down
= down
;
2986 vcpu
->arch
.pio
.rep
= rep
;
2988 trace_kvm_pio(vcpu
->run
->io
.direction
== KVM_EXIT_IO_OUT
, port
,
2992 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2997 in_page
= PAGE_SIZE
- offset_in_page(address
);
2999 in_page
= offset_in_page(address
) + size
;
3000 now
= min(count
, (unsigned long)in_page
/ size
);
3005 * String I/O in reverse. Yuck. Kill the guest, fix later.
3007 pr_unimpl(vcpu
, "guest string pio down\n");
3008 kvm_inject_gp(vcpu
, 0);
3011 vcpu
->run
->io
.count
= now
;
3012 vcpu
->arch
.pio
.cur_count
= now
;
3014 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
3015 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3017 vcpu
->arch
.pio
.guest_gva
= address
;
3019 if (!vcpu
->arch
.pio
.in
) {
3020 /* string PIO write */
3021 ret
= pio_copy_data(vcpu
);
3022 if (ret
== X86EMUL_PROPAGATE_FAULT
) {
3023 kvm_inject_gp(vcpu
, 0);
3026 if (ret
== 0 && !pio_string_write(vcpu
)) {
3028 if (vcpu
->arch
.pio
.count
== 0)
3032 /* no string PIO read support yet */
3036 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
3038 static void bounce_off(void *info
)
3043 static unsigned int ref_freq
;
3044 static unsigned long tsc_khz_ref
;
3046 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
3049 struct cpufreq_freqs
*freq
= data
;
3051 struct kvm_vcpu
*vcpu
;
3052 int i
, send_ipi
= 0;
3055 ref_freq
= freq
->old
;
3057 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
3059 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
3061 per_cpu(cpu_tsc_khz
, freq
->cpu
) = cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
3063 spin_lock(&kvm_lock
);
3064 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3065 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
3066 if (vcpu
->cpu
!= freq
->cpu
)
3068 if (!kvm_request_guest_time_update(vcpu
))
3070 if (vcpu
->cpu
!= smp_processor_id())
3074 spin_unlock(&kvm_lock
);
3076 if (freq
->old
< freq
->new && send_ipi
) {
3078 * We upscale the frequency. Must make the guest
3079 * doesn't see old kvmclock values while running with
3080 * the new frequency, otherwise we risk the guest sees
3081 * time go backwards.
3083 * In case we update the frequency for another cpu
3084 * (which might be in guest context) send an interrupt
3085 * to kick the cpu out of guest context. Next time
3086 * guest context is entered kvmclock will be updated,
3087 * so the guest will not see stale values.
3089 smp_call_function_single(freq
->cpu
, bounce_off
, NULL
, 1);
3094 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
3095 .notifier_call
= kvmclock_cpufreq_notifier
3098 int kvm_arch_init(void *opaque
)
3101 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
3104 printk(KERN_ERR
"kvm: already loaded the other module\n");
3109 if (!ops
->cpu_has_kvm_support()) {
3110 printk(KERN_ERR
"kvm: no hardware support\n");
3114 if (ops
->disabled_by_bios()) {
3115 printk(KERN_ERR
"kvm: disabled by bios\n");
3120 r
= kvm_mmu_module_init();
3124 kvm_init_msr_list();
3127 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3128 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
3129 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
3130 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
3132 for_each_possible_cpu(cpu
)
3133 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
3134 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
3135 tsc_khz_ref
= tsc_khz
;
3136 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
3137 CPUFREQ_TRANSITION_NOTIFIER
);
3146 void kvm_arch_exit(void)
3148 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
3149 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
3150 CPUFREQ_TRANSITION_NOTIFIER
);
3152 kvm_mmu_module_exit();
3155 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
3157 ++vcpu
->stat
.halt_exits
;
3158 if (irqchip_in_kernel(vcpu
->kvm
)) {
3159 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
3162 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
3166 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
3168 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
3171 if (is_long_mode(vcpu
))
3174 return a0
| ((gpa_t
)a1
<< 32);
3177 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
3179 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
3182 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3183 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3184 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3185 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3186 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3188 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
3190 if (!is_long_mode(vcpu
)) {
3199 case KVM_HC_VAPIC_POLL_IRQ
:
3203 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
3209 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
3210 ++vcpu
->stat
.hypercalls
;
3213 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
3215 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
3217 char instruction
[3];
3219 unsigned long rip
= kvm_rip_read(vcpu
);
3223 * Blow out the MMU to ensure that no other VCPU has an active mapping
3224 * to ensure that the updated hypercall appears atomically across all
3227 kvm_mmu_zap_all(vcpu
->kvm
);
3229 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
3230 if (emulator_write_emulated(rip
, instruction
, 3, vcpu
)
3231 != X86EMUL_CONTINUE
)
3237 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
3239 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
3242 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
3244 struct descriptor_table dt
= { limit
, base
};
3246 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
3249 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
3251 struct descriptor_table dt
= { limit
, base
};
3253 kvm_x86_ops
->set_idt(vcpu
, &dt
);
3256 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
3257 unsigned long *rflags
)
3259 kvm_lmsw(vcpu
, msw
);
3260 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3263 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
3265 unsigned long value
;
3267 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3270 value
= vcpu
->arch
.cr0
;
3273 value
= vcpu
->arch
.cr2
;
3276 value
= vcpu
->arch
.cr3
;
3279 value
= vcpu
->arch
.cr4
;
3282 value
= kvm_get_cr8(vcpu
);
3285 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3292 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
3293 unsigned long *rflags
)
3297 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
3298 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3301 vcpu
->arch
.cr2
= val
;
3304 kvm_set_cr3(vcpu
, val
);
3307 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
3310 kvm_set_cr8(vcpu
, val
& 0xfUL
);
3313 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3317 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
3319 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
3320 int j
, nent
= vcpu
->arch
.cpuid_nent
;
3322 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
3323 /* when no next entry is found, the current entry[i] is reselected */
3324 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
3325 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
3326 if (ej
->function
== e
->function
) {
3327 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
3331 return 0; /* silence gcc, even though control never reaches here */
3334 /* find an entry with matching function, matching index (if needed), and that
3335 * should be read next (if it's stateful) */
3336 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
3337 u32 function
, u32 index
)
3339 if (e
->function
!= function
)
3341 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
3343 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
3344 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
3349 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
3350 u32 function
, u32 index
)
3353 struct kvm_cpuid_entry2
*best
= NULL
;
3355 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
3356 struct kvm_cpuid_entry2
*e
;
3358 e
= &vcpu
->arch
.cpuid_entries
[i
];
3359 if (is_matching_cpuid_entry(e
, function
, index
)) {
3360 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
3361 move_to_next_stateful_cpuid_entry(vcpu
, i
);
3366 * Both basic or both extended?
3368 if (((e
->function
^ function
) & 0x80000000) == 0)
3369 if (!best
|| e
->function
> best
->function
)
3375 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
3377 struct kvm_cpuid_entry2
*best
;
3379 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
3381 return best
->eax
& 0xff;
3385 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
3387 u32 function
, index
;
3388 struct kvm_cpuid_entry2
*best
;
3390 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3391 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3392 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
3393 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
3394 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
3395 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
3396 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
3398 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
3399 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
3400 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
3401 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
3403 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3404 trace_kvm_cpuid(function
,
3405 kvm_register_read(vcpu
, VCPU_REGS_RAX
),
3406 kvm_register_read(vcpu
, VCPU_REGS_RBX
),
3407 kvm_register_read(vcpu
, VCPU_REGS_RCX
),
3408 kvm_register_read(vcpu
, VCPU_REGS_RDX
));
3410 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
3413 * Check if userspace requested an interrupt window, and that the
3414 * interrupt window is open.
3416 * No need to exit to userspace if we already have an interrupt queued.
3418 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
3419 struct kvm_run
*kvm_run
)
3421 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
3422 kvm_run
->request_interrupt_window
&&
3423 kvm_arch_interrupt_allowed(vcpu
));
3426 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
3427 struct kvm_run
*kvm_run
)
3429 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
3430 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
3431 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
3432 if (irqchip_in_kernel(vcpu
->kvm
))
3433 kvm_run
->ready_for_interrupt_injection
= 1;
3435 kvm_run
->ready_for_interrupt_injection
=
3436 kvm_arch_interrupt_allowed(vcpu
) &&
3437 !kvm_cpu_has_interrupt(vcpu
) &&
3438 !kvm_event_needs_reinjection(vcpu
);
3441 static void vapic_enter(struct kvm_vcpu
*vcpu
)
3443 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3446 if (!apic
|| !apic
->vapic_addr
)
3449 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3451 vcpu
->arch
.apic
->vapic_page
= page
;
3454 static void vapic_exit(struct kvm_vcpu
*vcpu
)
3456 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3458 if (!apic
|| !apic
->vapic_addr
)
3461 down_read(&vcpu
->kvm
->slots_lock
);
3462 kvm_release_page_dirty(apic
->vapic_page
);
3463 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3464 up_read(&vcpu
->kvm
->slots_lock
);
3467 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
3471 if (!kvm_x86_ops
->update_cr8_intercept
)
3474 if (!vcpu
->arch
.apic
->vapic_addr
)
3475 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
3482 tpr
= kvm_lapic_get_cr8(vcpu
);
3484 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
3487 static void inject_pending_event(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3489 /* try to reinject previous events if any */
3490 if (vcpu
->arch
.exception
.pending
) {
3491 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
3492 vcpu
->arch
.exception
.has_error_code
,
3493 vcpu
->arch
.exception
.error_code
);
3497 if (vcpu
->arch
.nmi_injected
) {
3498 kvm_x86_ops
->set_nmi(vcpu
);
3502 if (vcpu
->arch
.interrupt
.pending
) {
3503 kvm_x86_ops
->set_irq(vcpu
);
3507 /* try to inject new event if pending */
3508 if (vcpu
->arch
.nmi_pending
) {
3509 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
3510 vcpu
->arch
.nmi_pending
= false;
3511 vcpu
->arch
.nmi_injected
= true;
3512 kvm_x86_ops
->set_nmi(vcpu
);
3514 } else if (kvm_cpu_has_interrupt(vcpu
)) {
3515 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
3516 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
3518 kvm_x86_ops
->set_irq(vcpu
);
3523 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3526 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
3527 kvm_run
->request_interrupt_window
;
3530 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
3531 kvm_mmu_unload(vcpu
);
3533 r
= kvm_mmu_reload(vcpu
);
3537 if (vcpu
->requests
) {
3538 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
3539 __kvm_migrate_timers(vcpu
);
3540 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE
, &vcpu
->requests
))
3541 kvm_write_guest_time(vcpu
);
3542 if (test_and_clear_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
))
3543 kvm_mmu_sync_roots(vcpu
);
3544 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
3545 kvm_x86_ops
->tlb_flush(vcpu
);
3546 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
3548 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
3552 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
3553 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3561 kvm_x86_ops
->prepare_guest_switch(vcpu
);
3562 kvm_load_guest_fpu(vcpu
);
3564 local_irq_disable();
3566 clear_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3567 smp_mb__after_clear_bit();
3569 if (vcpu
->requests
|| need_resched() || signal_pending(current
)) {
3570 set_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3577 inject_pending_event(vcpu
, kvm_run
);
3579 /* enable NMI/IRQ window open exits if needed */
3580 if (vcpu
->arch
.nmi_pending
)
3581 kvm_x86_ops
->enable_nmi_window(vcpu
);
3582 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
3583 kvm_x86_ops
->enable_irq_window(vcpu
);
3585 if (kvm_lapic_enabled(vcpu
)) {
3586 update_cr8_intercept(vcpu
);
3587 kvm_lapic_sync_to_vapic(vcpu
);
3590 up_read(&vcpu
->kvm
->slots_lock
);
3594 get_debugreg(vcpu
->arch
.host_dr6
, 6);
3595 get_debugreg(vcpu
->arch
.host_dr7
, 7);
3596 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3597 get_debugreg(vcpu
->arch
.host_db
[0], 0);
3598 get_debugreg(vcpu
->arch
.host_db
[1], 1);
3599 get_debugreg(vcpu
->arch
.host_db
[2], 2);
3600 get_debugreg(vcpu
->arch
.host_db
[3], 3);
3603 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
3604 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
3605 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
3606 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
3609 trace_kvm_entry(vcpu
->vcpu_id
);
3610 kvm_x86_ops
->run(vcpu
, kvm_run
);
3612 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3614 set_debugreg(vcpu
->arch
.host_db
[0], 0);
3615 set_debugreg(vcpu
->arch
.host_db
[1], 1);
3616 set_debugreg(vcpu
->arch
.host_db
[2], 2);
3617 set_debugreg(vcpu
->arch
.host_db
[3], 3);
3619 set_debugreg(vcpu
->arch
.host_dr6
, 6);
3620 set_debugreg(vcpu
->arch
.host_dr7
, 7);
3622 set_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3628 * We must have an instruction between local_irq_enable() and
3629 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3630 * the interrupt shadow. The stat.exits increment will do nicely.
3631 * But we need to prevent reordering, hence this barrier():
3639 down_read(&vcpu
->kvm
->slots_lock
);
3642 * Profile KVM exit RIPs:
3644 if (unlikely(prof_on
== KVM_PROFILING
)) {
3645 unsigned long rip
= kvm_rip_read(vcpu
);
3646 profile_hit(KVM_PROFILING
, (void *)rip
);
3650 kvm_lapic_sync_from_vapic(vcpu
);
3652 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
3658 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3662 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
3663 pr_debug("vcpu %d received sipi with vector # %x\n",
3664 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
3665 kvm_lapic_reset(vcpu
);
3666 r
= kvm_arch_vcpu_reset(vcpu
);
3669 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3672 down_read(&vcpu
->kvm
->slots_lock
);
3677 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
3678 r
= vcpu_enter_guest(vcpu
, kvm_run
);
3680 up_read(&vcpu
->kvm
->slots_lock
);
3681 kvm_vcpu_block(vcpu
);
3682 down_read(&vcpu
->kvm
->slots_lock
);
3683 if (test_and_clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
))
3685 switch(vcpu
->arch
.mp_state
) {
3686 case KVM_MP_STATE_HALTED
:
3687 vcpu
->arch
.mp_state
=
3688 KVM_MP_STATE_RUNNABLE
;
3689 case KVM_MP_STATE_RUNNABLE
:
3691 case KVM_MP_STATE_SIPI_RECEIVED
:
3702 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
3703 if (kvm_cpu_has_pending_timer(vcpu
))
3704 kvm_inject_pending_timer_irqs(vcpu
);
3706 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
3708 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3709 ++vcpu
->stat
.request_irq_exits
;
3711 if (signal_pending(current
)) {
3713 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3714 ++vcpu
->stat
.signal_exits
;
3716 if (need_resched()) {
3717 up_read(&vcpu
->kvm
->slots_lock
);
3719 down_read(&vcpu
->kvm
->slots_lock
);
3723 up_read(&vcpu
->kvm
->slots_lock
);
3724 post_kvm_run_save(vcpu
, kvm_run
);
3731 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3738 if (vcpu
->sigset_active
)
3739 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
3741 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
3742 kvm_vcpu_block(vcpu
);
3743 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
3748 /* re-sync apic's tpr */
3749 if (!irqchip_in_kernel(vcpu
->kvm
))
3750 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
3752 if (vcpu
->arch
.pio
.cur_count
) {
3753 r
= complete_pio(vcpu
);
3757 #if CONFIG_HAS_IOMEM
3758 if (vcpu
->mmio_needed
) {
3759 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
3760 vcpu
->mmio_read_completed
= 1;
3761 vcpu
->mmio_needed
= 0;
3763 down_read(&vcpu
->kvm
->slots_lock
);
3764 r
= emulate_instruction(vcpu
, kvm_run
,
3765 vcpu
->arch
.mmio_fault_cr2
, 0,
3766 EMULTYPE_NO_DECODE
);
3767 up_read(&vcpu
->kvm
->slots_lock
);
3768 if (r
== EMULATE_DO_MMIO
) {
3770 * Read-modify-write. Back to userspace.
3777 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
3778 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
3779 kvm_run
->hypercall
.ret
);
3781 r
= __vcpu_run(vcpu
, kvm_run
);
3784 if (vcpu
->sigset_active
)
3785 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3791 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3795 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3796 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3797 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3798 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3799 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3800 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3801 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3802 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3803 #ifdef CONFIG_X86_64
3804 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
3805 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
3806 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
3807 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
3808 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
3809 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
3810 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
3811 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
3814 regs
->rip
= kvm_rip_read(vcpu
);
3815 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3818 * Don't leak debug flags in case they were set for guest debugging
3820 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3821 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3828 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3832 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
3833 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
3834 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
3835 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
3836 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
3837 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
3838 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
3839 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
3840 #ifdef CONFIG_X86_64
3841 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
3842 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
3843 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
3844 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
3845 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
3846 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
3847 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
3848 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
3852 kvm_rip_write(vcpu
, regs
->rip
);
3853 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3856 vcpu
->arch
.exception
.pending
= false;
3863 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3864 struct kvm_segment
*var
, int seg
)
3866 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3869 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3871 struct kvm_segment cs
;
3873 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3877 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3879 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3880 struct kvm_sregs
*sregs
)
3882 struct descriptor_table dt
;
3886 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3887 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3888 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3889 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3890 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3891 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3893 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3894 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3896 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3897 sregs
->idt
.limit
= dt
.limit
;
3898 sregs
->idt
.base
= dt
.base
;
3899 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3900 sregs
->gdt
.limit
= dt
.limit
;
3901 sregs
->gdt
.base
= dt
.base
;
3903 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3904 sregs
->cr0
= vcpu
->arch
.cr0
;
3905 sregs
->cr2
= vcpu
->arch
.cr2
;
3906 sregs
->cr3
= vcpu
->arch
.cr3
;
3907 sregs
->cr4
= vcpu
->arch
.cr4
;
3908 sregs
->cr8
= kvm_get_cr8(vcpu
);
3909 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3910 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3912 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
3914 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
3915 set_bit(vcpu
->arch
.interrupt
.nr
,
3916 (unsigned long *)sregs
->interrupt_bitmap
);
3923 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3924 struct kvm_mp_state
*mp_state
)
3927 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3932 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3933 struct kvm_mp_state
*mp_state
)
3936 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3941 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3942 struct kvm_segment
*var
, int seg
)
3944 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3947 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3948 struct kvm_segment
*kvm_desct
)
3950 kvm_desct
->base
= seg_desc
->base0
;
3951 kvm_desct
->base
|= seg_desc
->base1
<< 16;
3952 kvm_desct
->base
|= seg_desc
->base2
<< 24;
3953 kvm_desct
->limit
= seg_desc
->limit0
;
3954 kvm_desct
->limit
|= seg_desc
->limit
<< 16;
3956 kvm_desct
->limit
<<= 12;
3957 kvm_desct
->limit
|= 0xfff;
3959 kvm_desct
->selector
= selector
;
3960 kvm_desct
->type
= seg_desc
->type
;
3961 kvm_desct
->present
= seg_desc
->p
;
3962 kvm_desct
->dpl
= seg_desc
->dpl
;
3963 kvm_desct
->db
= seg_desc
->d
;
3964 kvm_desct
->s
= seg_desc
->s
;
3965 kvm_desct
->l
= seg_desc
->l
;
3966 kvm_desct
->g
= seg_desc
->g
;
3967 kvm_desct
->avl
= seg_desc
->avl
;
3969 kvm_desct
->unusable
= 1;
3971 kvm_desct
->unusable
= 0;
3972 kvm_desct
->padding
= 0;
3975 static void get_segment_descriptor_dtable(struct kvm_vcpu
*vcpu
,
3977 struct descriptor_table
*dtable
)
3979 if (selector
& 1 << 2) {
3980 struct kvm_segment kvm_seg
;
3982 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
3984 if (kvm_seg
.unusable
)
3987 dtable
->limit
= kvm_seg
.limit
;
3988 dtable
->base
= kvm_seg
.base
;
3991 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
3994 /* allowed just for 8 bytes segments */
3995 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3996 struct desc_struct
*seg_desc
)
3999 struct descriptor_table dtable
;
4000 u16 index
= selector
>> 3;
4002 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
4004 if (dtable
.limit
< index
* 8 + 7) {
4005 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
4008 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
4010 return kvm_read_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
4013 /* allowed just for 8 bytes segments */
4014 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
4015 struct desc_struct
*seg_desc
)
4018 struct descriptor_table dtable
;
4019 u16 index
= selector
>> 3;
4021 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
4023 if (dtable
.limit
< index
* 8 + 7)
4025 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
4027 return kvm_write_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
4030 static u32
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
4031 struct desc_struct
*seg_desc
)
4035 base_addr
= seg_desc
->base0
;
4036 base_addr
|= (seg_desc
->base1
<< 16);
4037 base_addr
|= (seg_desc
->base2
<< 24);
4039 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, base_addr
);
4042 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
4044 struct kvm_segment kvm_seg
;
4046 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
4047 return kvm_seg
.selector
;
4050 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
4052 struct kvm_segment
*kvm_seg
)
4054 struct desc_struct seg_desc
;
4056 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
4058 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
4062 static int kvm_load_realmode_segment(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
4064 struct kvm_segment segvar
= {
4065 .base
= selector
<< 4,
4067 .selector
= selector
,
4078 kvm_x86_ops
->set_segment(vcpu
, &segvar
, seg
);
4082 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
4083 int type_bits
, int seg
)
4085 struct kvm_segment kvm_seg
;
4087 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
))
4088 return kvm_load_realmode_segment(vcpu
, selector
, seg
);
4089 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
4091 kvm_seg
.type
|= type_bits
;
4093 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
4094 seg
!= VCPU_SREG_LDTR
)
4096 kvm_seg
.unusable
= 1;
4098 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
4102 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
4103 struct tss_segment_32
*tss
)
4105 tss
->cr3
= vcpu
->arch
.cr3
;
4106 tss
->eip
= kvm_rip_read(vcpu
);
4107 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4108 tss
->eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4109 tss
->ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4110 tss
->edx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4111 tss
->ebx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4112 tss
->esp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4113 tss
->ebp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4114 tss
->esi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4115 tss
->edi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4116 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
4117 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
4118 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
4119 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
4120 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
4121 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
4122 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
4125 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
4126 struct tss_segment_32
*tss
)
4128 kvm_set_cr3(vcpu
, tss
->cr3
);
4130 kvm_rip_write(vcpu
, tss
->eip
);
4131 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
4133 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->eax
);
4134 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->ecx
);
4135 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->edx
);
4136 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->ebx
);
4137 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->esp
);
4138 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->ebp
);
4139 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->esi
);
4140 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->edi
);
4142 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
4145 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
4148 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
4151 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
4154 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
4157 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
4160 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
4165 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
4166 struct tss_segment_16
*tss
)
4168 tss
->ip
= kvm_rip_read(vcpu
);
4169 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
4170 tss
->ax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4171 tss
->cx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4172 tss
->dx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4173 tss
->bx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4174 tss
->sp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4175 tss
->bp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4176 tss
->si
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4177 tss
->di
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4179 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
4180 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
4181 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
4182 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
4183 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
4184 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
4187 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
4188 struct tss_segment_16
*tss
)
4190 kvm_rip_write(vcpu
, tss
->ip
);
4191 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
4192 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->ax
);
4193 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->cx
);
4194 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->dx
);
4195 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->bx
);
4196 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->sp
);
4197 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->bp
);
4198 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->si
);
4199 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->di
);
4201 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
4204 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
4207 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
4210 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
4213 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
4218 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
4219 u16 old_tss_sel
, u32 old_tss_base
,
4220 struct desc_struct
*nseg_desc
)
4222 struct tss_segment_16 tss_segment_16
;
4225 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
4226 sizeof tss_segment_16
))
4229 save_state_to_tss16(vcpu
, &tss_segment_16
);
4231 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
4232 sizeof tss_segment_16
))
4235 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
4236 &tss_segment_16
, sizeof tss_segment_16
))
4239 if (old_tss_sel
!= 0xffff) {
4240 tss_segment_16
.prev_task_link
= old_tss_sel
;
4242 if (kvm_write_guest(vcpu
->kvm
,
4243 get_tss_base_addr(vcpu
, nseg_desc
),
4244 &tss_segment_16
.prev_task_link
,
4245 sizeof tss_segment_16
.prev_task_link
))
4249 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
4257 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
4258 u16 old_tss_sel
, u32 old_tss_base
,
4259 struct desc_struct
*nseg_desc
)
4261 struct tss_segment_32 tss_segment_32
;
4264 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
4265 sizeof tss_segment_32
))
4268 save_state_to_tss32(vcpu
, &tss_segment_32
);
4270 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
4271 sizeof tss_segment_32
))
4274 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
4275 &tss_segment_32
, sizeof tss_segment_32
))
4278 if (old_tss_sel
!= 0xffff) {
4279 tss_segment_32
.prev_task_link
= old_tss_sel
;
4281 if (kvm_write_guest(vcpu
->kvm
,
4282 get_tss_base_addr(vcpu
, nseg_desc
),
4283 &tss_segment_32
.prev_task_link
,
4284 sizeof tss_segment_32
.prev_task_link
))
4288 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
4296 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
4298 struct kvm_segment tr_seg
;
4299 struct desc_struct cseg_desc
;
4300 struct desc_struct nseg_desc
;
4302 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
4303 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
4305 old_tss_base
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, old_tss_base
);
4307 /* FIXME: Handle errors. Failure to read either TSS or their
4308 * descriptors should generate a pagefault.
4310 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
4313 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
4316 if (reason
!= TASK_SWITCH_IRET
) {
4319 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
4320 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
4321 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
4326 if (!nseg_desc
.p
|| (nseg_desc
.limit0
| nseg_desc
.limit
<< 16) < 0x67) {
4327 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
4331 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
4332 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
4333 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
4336 if (reason
== TASK_SWITCH_IRET
) {
4337 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4338 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
4341 /* set back link to prev task only if NT bit is set in eflags
4342 note that old_tss_sel is not used afetr this point */
4343 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4344 old_tss_sel
= 0xffff;
4346 /* set back link to prev task only if NT bit is set in eflags
4347 note that old_tss_sel is not used afetr this point */
4348 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4349 old_tss_sel
= 0xffff;
4351 if (nseg_desc
.type
& 8)
4352 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_sel
,
4353 old_tss_base
, &nseg_desc
);
4355 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_sel
,
4356 old_tss_base
, &nseg_desc
);
4358 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
4359 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4360 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
4363 if (reason
!= TASK_SWITCH_IRET
) {
4364 nseg_desc
.type
|= (1 << 1);
4365 save_guest_segment_descriptor(vcpu
, tss_selector
,
4369 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
4370 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
4372 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
4376 EXPORT_SYMBOL_GPL(kvm_task_switch
);
4378 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
4379 struct kvm_sregs
*sregs
)
4381 int mmu_reset_needed
= 0;
4382 int pending_vec
, max_bits
;
4383 struct descriptor_table dt
;
4387 dt
.limit
= sregs
->idt
.limit
;
4388 dt
.base
= sregs
->idt
.base
;
4389 kvm_x86_ops
->set_idt(vcpu
, &dt
);
4390 dt
.limit
= sregs
->gdt
.limit
;
4391 dt
.base
= sregs
->gdt
.base
;
4392 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
4394 vcpu
->arch
.cr2
= sregs
->cr2
;
4395 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
4396 vcpu
->arch
.cr3
= sregs
->cr3
;
4398 kvm_set_cr8(vcpu
, sregs
->cr8
);
4400 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
4401 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
4402 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
4404 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
4406 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
4407 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
4408 vcpu
->arch
.cr0
= sregs
->cr0
;
4410 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
4411 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
4412 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
4413 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
4415 if (mmu_reset_needed
)
4416 kvm_mmu_reset_context(vcpu
);
4418 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
4419 pending_vec
= find_first_bit(
4420 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
4421 if (pending_vec
< max_bits
) {
4422 kvm_queue_interrupt(vcpu
, pending_vec
, false);
4423 pr_debug("Set back pending irq %d\n", pending_vec
);
4424 if (irqchip_in_kernel(vcpu
->kvm
))
4425 kvm_pic_clear_isr_ack(vcpu
->kvm
);
4428 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
4429 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
4430 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
4431 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
4432 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
4433 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
4435 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
4436 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
4438 /* Older userspace won't unhalt the vcpu on reset. */
4439 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
4440 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
4441 !(vcpu
->arch
.cr0
& X86_CR0_PE
))
4442 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4449 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
4450 struct kvm_guest_debug
*dbg
)
4456 if ((dbg
->control
& (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) ==
4457 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) {
4458 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
4459 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
4460 vcpu
->arch
.switch_db_regs
=
4461 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
4463 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
4464 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
4465 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
4468 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
4470 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
4471 kvm_queue_exception(vcpu
, DB_VECTOR
);
4472 else if (dbg
->control
& KVM_GUESTDBG_INJECT_BP
)
4473 kvm_queue_exception(vcpu
, BP_VECTOR
);
4481 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4482 * we have asm/x86/processor.h
4493 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4494 #ifdef CONFIG_X86_64
4495 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4497 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4502 * Translate a guest virtual address to a guest physical address.
4504 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
4505 struct kvm_translation
*tr
)
4507 unsigned long vaddr
= tr
->linear_address
;
4511 down_read(&vcpu
->kvm
->slots_lock
);
4512 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
4513 up_read(&vcpu
->kvm
->slots_lock
);
4514 tr
->physical_address
= gpa
;
4515 tr
->valid
= gpa
!= UNMAPPED_GVA
;
4523 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4525 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4529 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
4530 fpu
->fcw
= fxsave
->cwd
;
4531 fpu
->fsw
= fxsave
->swd
;
4532 fpu
->ftwx
= fxsave
->twd
;
4533 fpu
->last_opcode
= fxsave
->fop
;
4534 fpu
->last_ip
= fxsave
->rip
;
4535 fpu
->last_dp
= fxsave
->rdp
;
4536 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
4543 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4545 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4549 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
4550 fxsave
->cwd
= fpu
->fcw
;
4551 fxsave
->swd
= fpu
->fsw
;
4552 fxsave
->twd
= fpu
->ftwx
;
4553 fxsave
->fop
= fpu
->last_opcode
;
4554 fxsave
->rip
= fpu
->last_ip
;
4555 fxsave
->rdp
= fpu
->last_dp
;
4556 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
4563 void fx_init(struct kvm_vcpu
*vcpu
)
4565 unsigned after_mxcsr_mask
;
4568 * Touch the fpu the first time in non atomic context as if
4569 * this is the first fpu instruction the exception handler
4570 * will fire before the instruction returns and it'll have to
4571 * allocate ram with GFP_KERNEL.
4574 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4576 /* Initialize guest FPU by resetting ours and saving into guest's */
4578 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4580 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4581 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4584 vcpu
->arch
.cr0
|= X86_CR0_ET
;
4585 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
4586 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
4587 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
4588 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
4590 EXPORT_SYMBOL_GPL(fx_init
);
4592 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
4594 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
4597 vcpu
->guest_fpu_loaded
= 1;
4598 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4599 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
4601 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
4603 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
4605 if (!vcpu
->guest_fpu_loaded
)
4608 vcpu
->guest_fpu_loaded
= 0;
4609 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4610 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4611 ++vcpu
->stat
.fpu_reload
;
4613 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
4615 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
4617 if (vcpu
->arch
.time_page
) {
4618 kvm_release_page_dirty(vcpu
->arch
.time_page
);
4619 vcpu
->arch
.time_page
= NULL
;
4622 kvm_x86_ops
->vcpu_free(vcpu
);
4625 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
4628 return kvm_x86_ops
->vcpu_create(kvm
, id
);
4631 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
4635 /* We do fxsave: this must be aligned. */
4636 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
4638 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
4640 r
= kvm_arch_vcpu_reset(vcpu
);
4642 r
= kvm_mmu_setup(vcpu
);
4649 kvm_x86_ops
->vcpu_free(vcpu
);
4653 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
4656 kvm_mmu_unload(vcpu
);
4659 kvm_x86_ops
->vcpu_free(vcpu
);
4662 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
4664 vcpu
->arch
.nmi_pending
= false;
4665 vcpu
->arch
.nmi_injected
= false;
4667 vcpu
->arch
.switch_db_regs
= 0;
4668 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
4669 vcpu
->arch
.dr6
= DR6_FIXED_1
;
4670 vcpu
->arch
.dr7
= DR7_FIXED_1
;
4672 return kvm_x86_ops
->vcpu_reset(vcpu
);
4675 void kvm_arch_hardware_enable(void *garbage
)
4677 kvm_x86_ops
->hardware_enable(garbage
);
4680 void kvm_arch_hardware_disable(void *garbage
)
4682 kvm_x86_ops
->hardware_disable(garbage
);
4685 int kvm_arch_hardware_setup(void)
4687 return kvm_x86_ops
->hardware_setup();
4690 void kvm_arch_hardware_unsetup(void)
4692 kvm_x86_ops
->hardware_unsetup();
4695 void kvm_arch_check_processor_compat(void *rtn
)
4697 kvm_x86_ops
->check_processor_compatibility(rtn
);
4700 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
4706 BUG_ON(vcpu
->kvm
== NULL
);
4709 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4710 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
4711 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4713 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
4715 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
4720 vcpu
->arch
.pio_data
= page_address(page
);
4722 r
= kvm_mmu_create(vcpu
);
4724 goto fail_free_pio_data
;
4726 if (irqchip_in_kernel(kvm
)) {
4727 r
= kvm_create_lapic(vcpu
);
4729 goto fail_mmu_destroy
;
4732 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
4734 if (!vcpu
->arch
.mce_banks
) {
4736 goto fail_mmu_destroy
;
4738 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
4743 kvm_mmu_destroy(vcpu
);
4745 free_page((unsigned long)vcpu
->arch
.pio_data
);
4750 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
4752 kvm_free_lapic(vcpu
);
4753 down_read(&vcpu
->kvm
->slots_lock
);
4754 kvm_mmu_destroy(vcpu
);
4755 up_read(&vcpu
->kvm
->slots_lock
);
4756 free_page((unsigned long)vcpu
->arch
.pio_data
);
4759 struct kvm
*kvm_arch_create_vm(void)
4761 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
4764 return ERR_PTR(-ENOMEM
);
4766 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
4767 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
4769 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4770 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
4772 rdtscll(kvm
->arch
.vm_init_tsc
);
4777 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
4780 kvm_mmu_unload(vcpu
);
4784 static void kvm_free_vcpus(struct kvm
*kvm
)
4787 struct kvm_vcpu
*vcpu
;
4790 * Unpin any mmu pages first.
4792 kvm_for_each_vcpu(i
, vcpu
, kvm
)
4793 kvm_unload_vcpu_mmu(vcpu
);
4794 kvm_for_each_vcpu(i
, vcpu
, kvm
)
4795 kvm_arch_vcpu_free(vcpu
);
4797 mutex_lock(&kvm
->lock
);
4798 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
4799 kvm
->vcpus
[i
] = NULL
;
4801 atomic_set(&kvm
->online_vcpus
, 0);
4802 mutex_unlock(&kvm
->lock
);
4805 void kvm_arch_sync_events(struct kvm
*kvm
)
4807 kvm_free_all_assigned_devices(kvm
);
4810 void kvm_arch_destroy_vm(struct kvm
*kvm
)
4812 kvm_iommu_unmap_guest(kvm
);
4814 kfree(kvm
->arch
.vpic
);
4815 kfree(kvm
->arch
.vioapic
);
4816 kvm_free_vcpus(kvm
);
4817 kvm_free_physmem(kvm
);
4818 if (kvm
->arch
.apic_access_page
)
4819 put_page(kvm
->arch
.apic_access_page
);
4820 if (kvm
->arch
.ept_identity_pagetable
)
4821 put_page(kvm
->arch
.ept_identity_pagetable
);
4825 int kvm_arch_set_memory_region(struct kvm
*kvm
,
4826 struct kvm_userspace_memory_region
*mem
,
4827 struct kvm_memory_slot old
,
4830 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
4831 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
4833 /*To keep backward compatibility with older userspace,
4834 *x86 needs to hanlde !user_alloc case.
4837 if (npages
&& !old
.rmap
) {
4838 unsigned long userspace_addr
;
4840 down_write(¤t
->mm
->mmap_sem
);
4841 userspace_addr
= do_mmap(NULL
, 0,
4843 PROT_READ
| PROT_WRITE
,
4844 MAP_PRIVATE
| MAP_ANONYMOUS
,
4846 up_write(¤t
->mm
->mmap_sem
);
4848 if (IS_ERR((void *)userspace_addr
))
4849 return PTR_ERR((void *)userspace_addr
);
4851 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4852 spin_lock(&kvm
->mmu_lock
);
4853 memslot
->userspace_addr
= userspace_addr
;
4854 spin_unlock(&kvm
->mmu_lock
);
4856 if (!old
.user_alloc
&& old
.rmap
) {
4859 down_write(¤t
->mm
->mmap_sem
);
4860 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
4861 old
.npages
* PAGE_SIZE
);
4862 up_write(¤t
->mm
->mmap_sem
);
4865 "kvm_vm_ioctl_set_memory_region: "
4866 "failed to munmap memory\n");
4871 spin_lock(&kvm
->mmu_lock
);
4872 if (!kvm
->arch
.n_requested_mmu_pages
) {
4873 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
4874 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
4877 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
4878 spin_unlock(&kvm
->mmu_lock
);
4879 kvm_flush_remote_tlbs(kvm
);
4884 void kvm_arch_flush_shadow(struct kvm
*kvm
)
4886 kvm_mmu_zap_all(kvm
);
4887 kvm_reload_remote_mmus(kvm
);
4890 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
4892 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
4893 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
4894 || vcpu
->arch
.nmi_pending
||
4895 (kvm_arch_interrupt_allowed(vcpu
) &&
4896 kvm_cpu_has_interrupt(vcpu
));
4899 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
4902 int cpu
= vcpu
->cpu
;
4904 if (waitqueue_active(&vcpu
->wq
)) {
4905 wake_up_interruptible(&vcpu
->wq
);
4906 ++vcpu
->stat
.halt_wakeup
;
4910 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
4911 if (!test_and_set_bit(KVM_REQ_KICK
, &vcpu
->requests
))
4912 smp_send_reschedule(cpu
);
4916 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4918 return kvm_x86_ops
->interrupt_allowed(vcpu
);
4921 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
4922 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
4923 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
4924 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
4925 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);