KVM: Reduce runnability interface with arch support code
[linux-2.6/linux-2.6-openrd.git] / arch / x86 / kvm / x86.c
blobb87d65d89a05ac8adce04b459b09c35cfdb9d854
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS \
53 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS \
57 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
59 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
60 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
67 /* EFER defaults:
68 * - enable syscall per default because its emulated by KVM
69 * - enable LME and LMA per default on 64 bit KVM
71 #ifdef CONFIG_X86_64
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
73 #else
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
75 #endif
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
80 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
81 struct kvm_cpuid_entry2 __user *entries);
83 struct kvm_x86_ops *kvm_x86_ops;
84 EXPORT_SYMBOL_GPL(kvm_x86_ops);
86 int ignore_msrs = 0;
87 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
89 struct kvm_stats_debugfs_item debugfs_entries[] = {
90 { "pf_fixed", VCPU_STAT(pf_fixed) },
91 { "pf_guest", VCPU_STAT(pf_guest) },
92 { "tlb_flush", VCPU_STAT(tlb_flush) },
93 { "invlpg", VCPU_STAT(invlpg) },
94 { "exits", VCPU_STAT(exits) },
95 { "io_exits", VCPU_STAT(io_exits) },
96 { "mmio_exits", VCPU_STAT(mmio_exits) },
97 { "signal_exits", VCPU_STAT(signal_exits) },
98 { "irq_window", VCPU_STAT(irq_window_exits) },
99 { "nmi_window", VCPU_STAT(nmi_window_exits) },
100 { "halt_exits", VCPU_STAT(halt_exits) },
101 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
102 { "hypercalls", VCPU_STAT(hypercalls) },
103 { "request_irq", VCPU_STAT(request_irq_exits) },
104 { "irq_exits", VCPU_STAT(irq_exits) },
105 { "host_state_reload", VCPU_STAT(host_state_reload) },
106 { "efer_reload", VCPU_STAT(efer_reload) },
107 { "fpu_reload", VCPU_STAT(fpu_reload) },
108 { "insn_emulation", VCPU_STAT(insn_emulation) },
109 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
110 { "irq_injections", VCPU_STAT(irq_injections) },
111 { "nmi_injections", VCPU_STAT(nmi_injections) },
112 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
113 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
114 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
115 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
116 { "mmu_flooded", VM_STAT(mmu_flooded) },
117 { "mmu_recycled", VM_STAT(mmu_recycled) },
118 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
119 { "mmu_unsync", VM_STAT(mmu_unsync) },
120 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
121 { "largepages", VM_STAT(lpages) },
122 { NULL }
125 unsigned long segment_base(u16 selector)
127 struct descriptor_table gdt;
128 struct desc_struct *d;
129 unsigned long table_base;
130 unsigned long v;
132 if (selector == 0)
133 return 0;
135 asm("sgdt %0" : "=m"(gdt));
136 table_base = gdt.base;
138 if (selector & 4) { /* from ldt */
139 u16 ldt_selector;
141 asm("sldt %0" : "=g"(ldt_selector));
142 table_base = segment_base(ldt_selector);
144 d = (struct desc_struct *)(table_base + (selector & ~7));
145 v = d->base0 | ((unsigned long)d->base1 << 16) |
146 ((unsigned long)d->base2 << 24);
147 #ifdef CONFIG_X86_64
148 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
149 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
150 #endif
151 return v;
153 EXPORT_SYMBOL_GPL(segment_base);
155 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
157 if (irqchip_in_kernel(vcpu->kvm))
158 return vcpu->arch.apic_base;
159 else
160 return vcpu->arch.apic_base;
162 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
164 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
166 /* TODO: reserve bits check */
167 if (irqchip_in_kernel(vcpu->kvm))
168 kvm_lapic_set_base(vcpu, data);
169 else
170 vcpu->arch.apic_base = data;
172 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
174 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
176 WARN_ON(vcpu->arch.exception.pending);
177 vcpu->arch.exception.pending = true;
178 vcpu->arch.exception.has_error_code = false;
179 vcpu->arch.exception.nr = nr;
181 EXPORT_SYMBOL_GPL(kvm_queue_exception);
183 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
184 u32 error_code)
186 ++vcpu->stat.pf_guest;
188 if (vcpu->arch.exception.pending) {
189 switch(vcpu->arch.exception.nr) {
190 case DF_VECTOR:
191 /* triple fault -> shutdown */
192 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
193 return;
194 case PF_VECTOR:
195 vcpu->arch.exception.nr = DF_VECTOR;
196 vcpu->arch.exception.error_code = 0;
197 return;
198 default:
199 /* replace previous exception with a new one in a hope
200 that instruction re-execution will regenerate lost
201 exception */
202 vcpu->arch.exception.pending = false;
203 break;
206 vcpu->arch.cr2 = addr;
207 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
210 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
212 vcpu->arch.nmi_pending = 1;
214 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
216 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
218 WARN_ON(vcpu->arch.exception.pending);
219 vcpu->arch.exception.pending = true;
220 vcpu->arch.exception.has_error_code = true;
221 vcpu->arch.exception.nr = nr;
222 vcpu->arch.exception.error_code = error_code;
224 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
227 * Load the pae pdptrs. Return true is they are all valid.
229 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
231 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
232 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
233 int i;
234 int ret;
235 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
237 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
238 offset * sizeof(u64), sizeof(pdpte));
239 if (ret < 0) {
240 ret = 0;
241 goto out;
243 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
244 if (is_present_gpte(pdpte[i]) &&
245 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
246 ret = 0;
247 goto out;
250 ret = 1;
252 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
253 __set_bit(VCPU_EXREG_PDPTR,
254 (unsigned long *)&vcpu->arch.regs_avail);
255 __set_bit(VCPU_EXREG_PDPTR,
256 (unsigned long *)&vcpu->arch.regs_dirty);
257 out:
259 return ret;
261 EXPORT_SYMBOL_GPL(load_pdptrs);
263 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
265 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
266 bool changed = true;
267 int r;
269 if (is_long_mode(vcpu) || !is_pae(vcpu))
270 return false;
272 if (!test_bit(VCPU_EXREG_PDPTR,
273 (unsigned long *)&vcpu->arch.regs_avail))
274 return true;
276 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
277 if (r < 0)
278 goto out;
279 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
280 out:
282 return changed;
285 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
287 if (cr0 & CR0_RESERVED_BITS) {
288 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
289 cr0, vcpu->arch.cr0);
290 kvm_inject_gp(vcpu, 0);
291 return;
294 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
295 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
296 kvm_inject_gp(vcpu, 0);
297 return;
300 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
301 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
302 "and a clear PE flag\n");
303 kvm_inject_gp(vcpu, 0);
304 return;
307 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
308 #ifdef CONFIG_X86_64
309 if ((vcpu->arch.shadow_efer & EFER_LME)) {
310 int cs_db, cs_l;
312 if (!is_pae(vcpu)) {
313 printk(KERN_DEBUG "set_cr0: #GP, start paging "
314 "in long mode while PAE is disabled\n");
315 kvm_inject_gp(vcpu, 0);
316 return;
318 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
319 if (cs_l) {
320 printk(KERN_DEBUG "set_cr0: #GP, start paging "
321 "in long mode while CS.L == 1\n");
322 kvm_inject_gp(vcpu, 0);
323 return;
326 } else
327 #endif
328 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
329 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
330 "reserved bits\n");
331 kvm_inject_gp(vcpu, 0);
332 return;
337 kvm_x86_ops->set_cr0(vcpu, cr0);
338 vcpu->arch.cr0 = cr0;
340 kvm_mmu_reset_context(vcpu);
341 return;
343 EXPORT_SYMBOL_GPL(kvm_set_cr0);
345 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
347 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
349 EXPORT_SYMBOL_GPL(kvm_lmsw);
351 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
353 unsigned long old_cr4 = vcpu->arch.cr4;
354 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
356 if (cr4 & CR4_RESERVED_BITS) {
357 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
358 kvm_inject_gp(vcpu, 0);
359 return;
362 if (is_long_mode(vcpu)) {
363 if (!(cr4 & X86_CR4_PAE)) {
364 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
365 "in long mode\n");
366 kvm_inject_gp(vcpu, 0);
367 return;
369 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
370 && ((cr4 ^ old_cr4) & pdptr_bits)
371 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
372 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
373 kvm_inject_gp(vcpu, 0);
374 return;
377 if (cr4 & X86_CR4_VMXE) {
378 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
379 kvm_inject_gp(vcpu, 0);
380 return;
382 kvm_x86_ops->set_cr4(vcpu, cr4);
383 vcpu->arch.cr4 = cr4;
384 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
385 kvm_mmu_reset_context(vcpu);
387 EXPORT_SYMBOL_GPL(kvm_set_cr4);
389 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
391 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
392 kvm_mmu_sync_roots(vcpu);
393 kvm_mmu_flush_tlb(vcpu);
394 return;
397 if (is_long_mode(vcpu)) {
398 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
399 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
400 kvm_inject_gp(vcpu, 0);
401 return;
403 } else {
404 if (is_pae(vcpu)) {
405 if (cr3 & CR3_PAE_RESERVED_BITS) {
406 printk(KERN_DEBUG
407 "set_cr3: #GP, reserved bits\n");
408 kvm_inject_gp(vcpu, 0);
409 return;
411 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
412 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
413 "reserved bits\n");
414 kvm_inject_gp(vcpu, 0);
415 return;
419 * We don't check reserved bits in nonpae mode, because
420 * this isn't enforced, and VMware depends on this.
425 * Does the new cr3 value map to physical memory? (Note, we
426 * catch an invalid cr3 even in real-mode, because it would
427 * cause trouble later on when we turn on paging anyway.)
429 * A real CPU would silently accept an invalid cr3 and would
430 * attempt to use it - with largely undefined (and often hard
431 * to debug) behavior on the guest side.
433 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
434 kvm_inject_gp(vcpu, 0);
435 else {
436 vcpu->arch.cr3 = cr3;
437 vcpu->arch.mmu.new_cr3(vcpu);
440 EXPORT_SYMBOL_GPL(kvm_set_cr3);
442 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
444 if (cr8 & CR8_RESERVED_BITS) {
445 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
446 kvm_inject_gp(vcpu, 0);
447 return;
449 if (irqchip_in_kernel(vcpu->kvm))
450 kvm_lapic_set_tpr(vcpu, cr8);
451 else
452 vcpu->arch.cr8 = cr8;
454 EXPORT_SYMBOL_GPL(kvm_set_cr8);
456 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
458 if (irqchip_in_kernel(vcpu->kvm))
459 return kvm_lapic_get_cr8(vcpu);
460 else
461 return vcpu->arch.cr8;
463 EXPORT_SYMBOL_GPL(kvm_get_cr8);
465 static inline u32 bit(int bitno)
467 return 1 << (bitno & 31);
471 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
472 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
474 * This list is modified at module load time to reflect the
475 * capabilities of the host cpu.
477 static u32 msrs_to_save[] = {
478 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
479 MSR_K6_STAR,
480 #ifdef CONFIG_X86_64
481 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
482 #endif
483 MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
484 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
487 static unsigned num_msrs_to_save;
489 static u32 emulated_msrs[] = {
490 MSR_IA32_MISC_ENABLE,
493 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
495 if (efer & efer_reserved_bits) {
496 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
497 efer);
498 kvm_inject_gp(vcpu, 0);
499 return;
502 if (is_paging(vcpu)
503 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
504 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
505 kvm_inject_gp(vcpu, 0);
506 return;
509 if (efer & EFER_FFXSR) {
510 struct kvm_cpuid_entry2 *feat;
512 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
513 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
514 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
515 kvm_inject_gp(vcpu, 0);
516 return;
520 if (efer & EFER_SVME) {
521 struct kvm_cpuid_entry2 *feat;
523 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
524 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
525 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
526 kvm_inject_gp(vcpu, 0);
527 return;
531 kvm_x86_ops->set_efer(vcpu, efer);
533 efer &= ~EFER_LMA;
534 efer |= vcpu->arch.shadow_efer & EFER_LMA;
536 vcpu->arch.shadow_efer = efer;
538 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
539 kvm_mmu_reset_context(vcpu);
542 void kvm_enable_efer_bits(u64 mask)
544 efer_reserved_bits &= ~mask;
546 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
550 * Writes msr value into into the appropriate "register".
551 * Returns 0 on success, non-0 otherwise.
552 * Assumes vcpu_load() was already called.
554 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
556 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
560 * Adapt set_msr() to msr_io()'s calling convention
562 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
564 return kvm_set_msr(vcpu, index, *data);
567 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
569 static int version;
570 struct pvclock_wall_clock wc;
571 struct timespec now, sys, boot;
573 if (!wall_clock)
574 return;
576 version++;
578 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
581 * The guest calculates current wall clock time by adding
582 * system time (updated by kvm_write_guest_time below) to the
583 * wall clock specified here. guest system time equals host
584 * system time for us, thus we must fill in host boot time here.
586 now = current_kernel_time();
587 ktime_get_ts(&sys);
588 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
590 wc.sec = boot.tv_sec;
591 wc.nsec = boot.tv_nsec;
592 wc.version = version;
594 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
596 version++;
597 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
600 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
602 uint32_t quotient, remainder;
604 /* Don't try to replace with do_div(), this one calculates
605 * "(dividend << 32) / divisor" */
606 __asm__ ( "divl %4"
607 : "=a" (quotient), "=d" (remainder)
608 : "0" (0), "1" (dividend), "r" (divisor) );
609 return quotient;
612 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
614 uint64_t nsecs = 1000000000LL;
615 int32_t shift = 0;
616 uint64_t tps64;
617 uint32_t tps32;
619 tps64 = tsc_khz * 1000LL;
620 while (tps64 > nsecs*2) {
621 tps64 >>= 1;
622 shift--;
625 tps32 = (uint32_t)tps64;
626 while (tps32 <= (uint32_t)nsecs) {
627 tps32 <<= 1;
628 shift++;
631 hv_clock->tsc_shift = shift;
632 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
634 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
635 __func__, tsc_khz, hv_clock->tsc_shift,
636 hv_clock->tsc_to_system_mul);
639 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
641 static void kvm_write_guest_time(struct kvm_vcpu *v)
643 struct timespec ts;
644 unsigned long flags;
645 struct kvm_vcpu_arch *vcpu = &v->arch;
646 void *shared_kaddr;
647 unsigned long this_tsc_khz;
649 if ((!vcpu->time_page))
650 return;
652 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
653 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
654 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
655 vcpu->hv_clock_tsc_khz = this_tsc_khz;
657 put_cpu_var(cpu_tsc_khz);
659 /* Keep irq disabled to prevent changes to the clock */
660 local_irq_save(flags);
661 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
662 ktime_get_ts(&ts);
663 local_irq_restore(flags);
665 /* With all the info we got, fill in the values */
667 vcpu->hv_clock.system_time = ts.tv_nsec +
668 (NSEC_PER_SEC * (u64)ts.tv_sec);
670 * The interface expects us to write an even number signaling that the
671 * update is finished. Since the guest won't see the intermediate
672 * state, we just increase by 2 at the end.
674 vcpu->hv_clock.version += 2;
676 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
678 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
679 sizeof(vcpu->hv_clock));
681 kunmap_atomic(shared_kaddr, KM_USER0);
683 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
686 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
688 struct kvm_vcpu_arch *vcpu = &v->arch;
690 if (!vcpu->time_page)
691 return 0;
692 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
693 return 1;
696 static bool msr_mtrr_valid(unsigned msr)
698 switch (msr) {
699 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
700 case MSR_MTRRfix64K_00000:
701 case MSR_MTRRfix16K_80000:
702 case MSR_MTRRfix16K_A0000:
703 case MSR_MTRRfix4K_C0000:
704 case MSR_MTRRfix4K_C8000:
705 case MSR_MTRRfix4K_D0000:
706 case MSR_MTRRfix4K_D8000:
707 case MSR_MTRRfix4K_E0000:
708 case MSR_MTRRfix4K_E8000:
709 case MSR_MTRRfix4K_F0000:
710 case MSR_MTRRfix4K_F8000:
711 case MSR_MTRRdefType:
712 case MSR_IA32_CR_PAT:
713 return true;
714 case 0x2f8:
715 return true;
717 return false;
720 static bool valid_pat_type(unsigned t)
722 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
725 static bool valid_mtrr_type(unsigned t)
727 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
730 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
732 int i;
734 if (!msr_mtrr_valid(msr))
735 return false;
737 if (msr == MSR_IA32_CR_PAT) {
738 for (i = 0; i < 8; i++)
739 if (!valid_pat_type((data >> (i * 8)) & 0xff))
740 return false;
741 return true;
742 } else if (msr == MSR_MTRRdefType) {
743 if (data & ~0xcff)
744 return false;
745 return valid_mtrr_type(data & 0xff);
746 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
747 for (i = 0; i < 8 ; i++)
748 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
749 return false;
750 return true;
753 /* variable MTRRs */
754 return valid_mtrr_type(data & 0xff);
757 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
759 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
761 if (!mtrr_valid(vcpu, msr, data))
762 return 1;
764 if (msr == MSR_MTRRdefType) {
765 vcpu->arch.mtrr_state.def_type = data;
766 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
767 } else if (msr == MSR_MTRRfix64K_00000)
768 p[0] = data;
769 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
770 p[1 + msr - MSR_MTRRfix16K_80000] = data;
771 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
772 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
773 else if (msr == MSR_IA32_CR_PAT)
774 vcpu->arch.pat = data;
775 else { /* Variable MTRRs */
776 int idx, is_mtrr_mask;
777 u64 *pt;
779 idx = (msr - 0x200) / 2;
780 is_mtrr_mask = msr - 0x200 - 2 * idx;
781 if (!is_mtrr_mask)
782 pt =
783 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
784 else
785 pt =
786 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
787 *pt = data;
790 kvm_mmu_reset_context(vcpu);
791 return 0;
794 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
796 u64 mcg_cap = vcpu->arch.mcg_cap;
797 unsigned bank_num = mcg_cap & 0xff;
799 switch (msr) {
800 case MSR_IA32_MCG_STATUS:
801 vcpu->arch.mcg_status = data;
802 break;
803 case MSR_IA32_MCG_CTL:
804 if (!(mcg_cap & MCG_CTL_P))
805 return 1;
806 if (data != 0 && data != ~(u64)0)
807 return -1;
808 vcpu->arch.mcg_ctl = data;
809 break;
810 default:
811 if (msr >= MSR_IA32_MC0_CTL &&
812 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
813 u32 offset = msr - MSR_IA32_MC0_CTL;
814 /* only 0 or all 1s can be written to IA32_MCi_CTL */
815 if ((offset & 0x3) == 0 &&
816 data != 0 && data != ~(u64)0)
817 return -1;
818 vcpu->arch.mce_banks[offset] = data;
819 break;
821 return 1;
823 return 0;
826 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
828 switch (msr) {
829 case MSR_EFER:
830 set_efer(vcpu, data);
831 break;
832 case MSR_K7_HWCR:
833 data &= ~(u64)0x40; /* ignore flush filter disable */
834 if (data != 0) {
835 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
836 data);
837 return 1;
839 break;
840 case MSR_FAM10H_MMIO_CONF_BASE:
841 if (data != 0) {
842 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
843 "0x%llx\n", data);
844 return 1;
846 break;
847 case MSR_AMD64_NB_CFG:
848 break;
849 case MSR_IA32_DEBUGCTLMSR:
850 if (!data) {
851 /* We support the non-activated case already */
852 break;
853 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
854 /* Values other than LBR and BTF are vendor-specific,
855 thus reserved and should throw a #GP */
856 return 1;
858 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
859 __func__, data);
860 break;
861 case MSR_IA32_UCODE_REV:
862 case MSR_IA32_UCODE_WRITE:
863 case MSR_VM_HSAVE_PA:
864 case MSR_AMD64_PATCH_LOADER:
865 break;
866 case 0x200 ... 0x2ff:
867 return set_msr_mtrr(vcpu, msr, data);
868 case MSR_IA32_APICBASE:
869 kvm_set_apic_base(vcpu, data);
870 break;
871 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
872 return kvm_x2apic_msr_write(vcpu, msr, data);
873 case MSR_IA32_MISC_ENABLE:
874 vcpu->arch.ia32_misc_enable_msr = data;
875 break;
876 case MSR_KVM_WALL_CLOCK:
877 vcpu->kvm->arch.wall_clock = data;
878 kvm_write_wall_clock(vcpu->kvm, data);
879 break;
880 case MSR_KVM_SYSTEM_TIME: {
881 if (vcpu->arch.time_page) {
882 kvm_release_page_dirty(vcpu->arch.time_page);
883 vcpu->arch.time_page = NULL;
886 vcpu->arch.time = data;
888 /* we verify if the enable bit is set... */
889 if (!(data & 1))
890 break;
892 /* ...but clean it before doing the actual write */
893 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
895 vcpu->arch.time_page =
896 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
898 if (is_error_page(vcpu->arch.time_page)) {
899 kvm_release_page_clean(vcpu->arch.time_page);
900 vcpu->arch.time_page = NULL;
903 kvm_request_guest_time_update(vcpu);
904 break;
906 case MSR_IA32_MCG_CTL:
907 case MSR_IA32_MCG_STATUS:
908 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
909 return set_msr_mce(vcpu, msr, data);
911 /* Performance counters are not protected by a CPUID bit,
912 * so we should check all of them in the generic path for the sake of
913 * cross vendor migration.
914 * Writing a zero into the event select MSRs disables them,
915 * which we perfectly emulate ;-). Any other value should be at least
916 * reported, some guests depend on them.
918 case MSR_P6_EVNTSEL0:
919 case MSR_P6_EVNTSEL1:
920 case MSR_K7_EVNTSEL0:
921 case MSR_K7_EVNTSEL1:
922 case MSR_K7_EVNTSEL2:
923 case MSR_K7_EVNTSEL3:
924 if (data != 0)
925 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
926 "0x%x data 0x%llx\n", msr, data);
927 break;
928 /* at least RHEL 4 unconditionally writes to the perfctr registers,
929 * so we ignore writes to make it happy.
931 case MSR_P6_PERFCTR0:
932 case MSR_P6_PERFCTR1:
933 case MSR_K7_PERFCTR0:
934 case MSR_K7_PERFCTR1:
935 case MSR_K7_PERFCTR2:
936 case MSR_K7_PERFCTR3:
937 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
938 "0x%x data 0x%llx\n", msr, data);
939 break;
940 default:
941 if (!ignore_msrs) {
942 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
943 msr, data);
944 return 1;
945 } else {
946 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
947 msr, data);
948 break;
951 return 0;
953 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
957 * Reads an msr value (of 'msr_index') into 'pdata'.
958 * Returns 0 on success, non-0 otherwise.
959 * Assumes vcpu_load() was already called.
961 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
963 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
966 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
968 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
970 if (!msr_mtrr_valid(msr))
971 return 1;
973 if (msr == MSR_MTRRdefType)
974 *pdata = vcpu->arch.mtrr_state.def_type +
975 (vcpu->arch.mtrr_state.enabled << 10);
976 else if (msr == MSR_MTRRfix64K_00000)
977 *pdata = p[0];
978 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
979 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
980 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
981 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
982 else if (msr == MSR_IA32_CR_PAT)
983 *pdata = vcpu->arch.pat;
984 else { /* Variable MTRRs */
985 int idx, is_mtrr_mask;
986 u64 *pt;
988 idx = (msr - 0x200) / 2;
989 is_mtrr_mask = msr - 0x200 - 2 * idx;
990 if (!is_mtrr_mask)
991 pt =
992 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
993 else
994 pt =
995 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
996 *pdata = *pt;
999 return 0;
1002 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1004 u64 data;
1005 u64 mcg_cap = vcpu->arch.mcg_cap;
1006 unsigned bank_num = mcg_cap & 0xff;
1008 switch (msr) {
1009 case MSR_IA32_P5_MC_ADDR:
1010 case MSR_IA32_P5_MC_TYPE:
1011 data = 0;
1012 break;
1013 case MSR_IA32_MCG_CAP:
1014 data = vcpu->arch.mcg_cap;
1015 break;
1016 case MSR_IA32_MCG_CTL:
1017 if (!(mcg_cap & MCG_CTL_P))
1018 return 1;
1019 data = vcpu->arch.mcg_ctl;
1020 break;
1021 case MSR_IA32_MCG_STATUS:
1022 data = vcpu->arch.mcg_status;
1023 break;
1024 default:
1025 if (msr >= MSR_IA32_MC0_CTL &&
1026 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1027 u32 offset = msr - MSR_IA32_MC0_CTL;
1028 data = vcpu->arch.mce_banks[offset];
1029 break;
1031 return 1;
1033 *pdata = data;
1034 return 0;
1037 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1039 u64 data;
1041 switch (msr) {
1042 case MSR_IA32_PLATFORM_ID:
1043 case MSR_IA32_UCODE_REV:
1044 case MSR_IA32_EBL_CR_POWERON:
1045 case MSR_IA32_DEBUGCTLMSR:
1046 case MSR_IA32_LASTBRANCHFROMIP:
1047 case MSR_IA32_LASTBRANCHTOIP:
1048 case MSR_IA32_LASTINTFROMIP:
1049 case MSR_IA32_LASTINTTOIP:
1050 case MSR_K8_SYSCFG:
1051 case MSR_K7_HWCR:
1052 case MSR_VM_HSAVE_PA:
1053 case MSR_P6_EVNTSEL0:
1054 case MSR_P6_EVNTSEL1:
1055 case MSR_K7_EVNTSEL0:
1056 case MSR_K8_INT_PENDING_MSG:
1057 case MSR_AMD64_NB_CFG:
1058 case MSR_FAM10H_MMIO_CONF_BASE:
1059 data = 0;
1060 break;
1061 case MSR_MTRRcap:
1062 data = 0x500 | KVM_NR_VAR_MTRR;
1063 break;
1064 case 0x200 ... 0x2ff:
1065 return get_msr_mtrr(vcpu, msr, pdata);
1066 case 0xcd: /* fsb frequency */
1067 data = 3;
1068 break;
1069 case MSR_IA32_APICBASE:
1070 data = kvm_get_apic_base(vcpu);
1071 break;
1072 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1073 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1074 break;
1075 case MSR_IA32_MISC_ENABLE:
1076 data = vcpu->arch.ia32_misc_enable_msr;
1077 break;
1078 case MSR_IA32_PERF_STATUS:
1079 /* TSC increment by tick */
1080 data = 1000ULL;
1081 /* CPU multiplier */
1082 data |= (((uint64_t)4ULL) << 40);
1083 break;
1084 case MSR_EFER:
1085 data = vcpu->arch.shadow_efer;
1086 break;
1087 case MSR_KVM_WALL_CLOCK:
1088 data = vcpu->kvm->arch.wall_clock;
1089 break;
1090 case MSR_KVM_SYSTEM_TIME:
1091 data = vcpu->arch.time;
1092 break;
1093 case MSR_IA32_P5_MC_ADDR:
1094 case MSR_IA32_P5_MC_TYPE:
1095 case MSR_IA32_MCG_CAP:
1096 case MSR_IA32_MCG_CTL:
1097 case MSR_IA32_MCG_STATUS:
1098 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1099 return get_msr_mce(vcpu, msr, pdata);
1100 default:
1101 if (!ignore_msrs) {
1102 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1103 return 1;
1104 } else {
1105 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1106 data = 0;
1108 break;
1110 *pdata = data;
1111 return 0;
1113 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1116 * Read or write a bunch of msrs. All parameters are kernel addresses.
1118 * @return number of msrs set successfully.
1120 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1121 struct kvm_msr_entry *entries,
1122 int (*do_msr)(struct kvm_vcpu *vcpu,
1123 unsigned index, u64 *data))
1125 int i;
1127 vcpu_load(vcpu);
1129 down_read(&vcpu->kvm->slots_lock);
1130 for (i = 0; i < msrs->nmsrs; ++i)
1131 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1132 break;
1133 up_read(&vcpu->kvm->slots_lock);
1135 vcpu_put(vcpu);
1137 return i;
1141 * Read or write a bunch of msrs. Parameters are user addresses.
1143 * @return number of msrs set successfully.
1145 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1146 int (*do_msr)(struct kvm_vcpu *vcpu,
1147 unsigned index, u64 *data),
1148 int writeback)
1150 struct kvm_msrs msrs;
1151 struct kvm_msr_entry *entries;
1152 int r, n;
1153 unsigned size;
1155 r = -EFAULT;
1156 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1157 goto out;
1159 r = -E2BIG;
1160 if (msrs.nmsrs >= MAX_IO_MSRS)
1161 goto out;
1163 r = -ENOMEM;
1164 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1165 entries = vmalloc(size);
1166 if (!entries)
1167 goto out;
1169 r = -EFAULT;
1170 if (copy_from_user(entries, user_msrs->entries, size))
1171 goto out_free;
1173 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1174 if (r < 0)
1175 goto out_free;
1177 r = -EFAULT;
1178 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1179 goto out_free;
1181 r = n;
1183 out_free:
1184 vfree(entries);
1185 out:
1186 return r;
1189 int kvm_dev_ioctl_check_extension(long ext)
1191 int r;
1193 switch (ext) {
1194 case KVM_CAP_IRQCHIP:
1195 case KVM_CAP_HLT:
1196 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1197 case KVM_CAP_SET_TSS_ADDR:
1198 case KVM_CAP_EXT_CPUID:
1199 case KVM_CAP_CLOCKSOURCE:
1200 case KVM_CAP_PIT:
1201 case KVM_CAP_NOP_IO_DELAY:
1202 case KVM_CAP_MP_STATE:
1203 case KVM_CAP_SYNC_MMU:
1204 case KVM_CAP_REINJECT_CONTROL:
1205 case KVM_CAP_IRQ_INJECT_STATUS:
1206 case KVM_CAP_ASSIGN_DEV_IRQ:
1207 case KVM_CAP_IRQFD:
1208 case KVM_CAP_IOEVENTFD:
1209 case KVM_CAP_PIT2:
1210 case KVM_CAP_PIT_STATE2:
1211 r = 1;
1212 break;
1213 case KVM_CAP_COALESCED_MMIO:
1214 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1215 break;
1216 case KVM_CAP_VAPIC:
1217 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1218 break;
1219 case KVM_CAP_NR_VCPUS:
1220 r = KVM_MAX_VCPUS;
1221 break;
1222 case KVM_CAP_NR_MEMSLOTS:
1223 r = KVM_MEMORY_SLOTS;
1224 break;
1225 case KVM_CAP_PV_MMU:
1226 r = !tdp_enabled;
1227 break;
1228 case KVM_CAP_IOMMU:
1229 r = iommu_found();
1230 break;
1231 case KVM_CAP_MCE:
1232 r = KVM_MAX_MCE_BANKS;
1233 break;
1234 default:
1235 r = 0;
1236 break;
1238 return r;
1242 long kvm_arch_dev_ioctl(struct file *filp,
1243 unsigned int ioctl, unsigned long arg)
1245 void __user *argp = (void __user *)arg;
1246 long r;
1248 switch (ioctl) {
1249 case KVM_GET_MSR_INDEX_LIST: {
1250 struct kvm_msr_list __user *user_msr_list = argp;
1251 struct kvm_msr_list msr_list;
1252 unsigned n;
1254 r = -EFAULT;
1255 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1256 goto out;
1257 n = msr_list.nmsrs;
1258 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1259 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1260 goto out;
1261 r = -E2BIG;
1262 if (n < msr_list.nmsrs)
1263 goto out;
1264 r = -EFAULT;
1265 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1266 num_msrs_to_save * sizeof(u32)))
1267 goto out;
1268 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1269 &emulated_msrs,
1270 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1271 goto out;
1272 r = 0;
1273 break;
1275 case KVM_GET_SUPPORTED_CPUID: {
1276 struct kvm_cpuid2 __user *cpuid_arg = argp;
1277 struct kvm_cpuid2 cpuid;
1279 r = -EFAULT;
1280 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1281 goto out;
1282 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1283 cpuid_arg->entries);
1284 if (r)
1285 goto out;
1287 r = -EFAULT;
1288 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1289 goto out;
1290 r = 0;
1291 break;
1293 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1294 u64 mce_cap;
1296 mce_cap = KVM_MCE_CAP_SUPPORTED;
1297 r = -EFAULT;
1298 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1299 goto out;
1300 r = 0;
1301 break;
1303 default:
1304 r = -EINVAL;
1306 out:
1307 return r;
1310 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1312 kvm_x86_ops->vcpu_load(vcpu, cpu);
1313 kvm_request_guest_time_update(vcpu);
1316 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1318 kvm_x86_ops->vcpu_put(vcpu);
1319 kvm_put_guest_fpu(vcpu);
1322 static int is_efer_nx(void)
1324 unsigned long long efer = 0;
1326 rdmsrl_safe(MSR_EFER, &efer);
1327 return efer & EFER_NX;
1330 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1332 int i;
1333 struct kvm_cpuid_entry2 *e, *entry;
1335 entry = NULL;
1336 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1337 e = &vcpu->arch.cpuid_entries[i];
1338 if (e->function == 0x80000001) {
1339 entry = e;
1340 break;
1343 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1344 entry->edx &= ~(1 << 20);
1345 printk(KERN_INFO "kvm: guest NX capability removed\n");
1349 /* when an old userspace process fills a new kernel module */
1350 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1351 struct kvm_cpuid *cpuid,
1352 struct kvm_cpuid_entry __user *entries)
1354 int r, i;
1355 struct kvm_cpuid_entry *cpuid_entries;
1357 r = -E2BIG;
1358 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1359 goto out;
1360 r = -ENOMEM;
1361 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1362 if (!cpuid_entries)
1363 goto out;
1364 r = -EFAULT;
1365 if (copy_from_user(cpuid_entries, entries,
1366 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1367 goto out_free;
1368 for (i = 0; i < cpuid->nent; i++) {
1369 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1370 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1371 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1372 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1373 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1374 vcpu->arch.cpuid_entries[i].index = 0;
1375 vcpu->arch.cpuid_entries[i].flags = 0;
1376 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1377 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1378 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1380 vcpu->arch.cpuid_nent = cpuid->nent;
1381 cpuid_fix_nx_cap(vcpu);
1382 r = 0;
1383 kvm_apic_set_version(vcpu);
1385 out_free:
1386 vfree(cpuid_entries);
1387 out:
1388 return r;
1391 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1392 struct kvm_cpuid2 *cpuid,
1393 struct kvm_cpuid_entry2 __user *entries)
1395 int r;
1397 r = -E2BIG;
1398 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1399 goto out;
1400 r = -EFAULT;
1401 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1402 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1403 goto out;
1404 vcpu->arch.cpuid_nent = cpuid->nent;
1405 kvm_apic_set_version(vcpu);
1406 return 0;
1408 out:
1409 return r;
1412 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1413 struct kvm_cpuid2 *cpuid,
1414 struct kvm_cpuid_entry2 __user *entries)
1416 int r;
1418 r = -E2BIG;
1419 if (cpuid->nent < vcpu->arch.cpuid_nent)
1420 goto out;
1421 r = -EFAULT;
1422 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1423 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1424 goto out;
1425 return 0;
1427 out:
1428 cpuid->nent = vcpu->arch.cpuid_nent;
1429 return r;
1432 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1433 u32 index)
1435 entry->function = function;
1436 entry->index = index;
1437 cpuid_count(entry->function, entry->index,
1438 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1439 entry->flags = 0;
1442 #define F(x) bit(X86_FEATURE_##x)
1444 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1445 u32 index, int *nent, int maxnent)
1447 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1448 #ifdef CONFIG_X86_64
1449 unsigned f_lm = F(LM);
1450 #else
1451 unsigned f_lm = 0;
1452 #endif
1454 /* cpuid 1.edx */
1455 const u32 kvm_supported_word0_x86_features =
1456 F(FPU) | F(VME) | F(DE) | F(PSE) |
1457 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1458 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1459 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1460 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1461 0 /* Reserved, DS, ACPI */ | F(MMX) |
1462 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1463 0 /* HTT, TM, Reserved, PBE */;
1464 /* cpuid 0x80000001.edx */
1465 const u32 kvm_supported_word1_x86_features =
1466 F(FPU) | F(VME) | F(DE) | F(PSE) |
1467 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1468 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1469 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1470 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1471 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1472 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1473 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1474 /* cpuid 1.ecx */
1475 const u32 kvm_supported_word4_x86_features =
1476 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1477 0 /* DS-CPL, VMX, SMX, EST */ |
1478 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1479 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1480 0 /* Reserved, DCA */ | F(XMM4_1) |
1481 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1482 0 /* Reserved, XSAVE, OSXSAVE */;
1483 /* cpuid 0x80000001.ecx */
1484 const u32 kvm_supported_word6_x86_features =
1485 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1486 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1487 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1488 0 /* SKINIT */ | 0 /* WDT */;
1490 /* all calls to cpuid_count() should be made on the same cpu */
1491 get_cpu();
1492 do_cpuid_1_ent(entry, function, index);
1493 ++*nent;
1495 switch (function) {
1496 case 0:
1497 entry->eax = min(entry->eax, (u32)0xb);
1498 break;
1499 case 1:
1500 entry->edx &= kvm_supported_word0_x86_features;
1501 entry->ecx &= kvm_supported_word4_x86_features;
1502 /* we support x2apic emulation even if host does not support
1503 * it since we emulate x2apic in software */
1504 entry->ecx |= F(X2APIC);
1505 break;
1506 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1507 * may return different values. This forces us to get_cpu() before
1508 * issuing the first command, and also to emulate this annoying behavior
1509 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1510 case 2: {
1511 int t, times = entry->eax & 0xff;
1513 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1514 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1515 for (t = 1; t < times && *nent < maxnent; ++t) {
1516 do_cpuid_1_ent(&entry[t], function, 0);
1517 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1518 ++*nent;
1520 break;
1522 /* function 4 and 0xb have additional index. */
1523 case 4: {
1524 int i, cache_type;
1526 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1527 /* read more entries until cache_type is zero */
1528 for (i = 1; *nent < maxnent; ++i) {
1529 cache_type = entry[i - 1].eax & 0x1f;
1530 if (!cache_type)
1531 break;
1532 do_cpuid_1_ent(&entry[i], function, i);
1533 entry[i].flags |=
1534 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1535 ++*nent;
1537 break;
1539 case 0xb: {
1540 int i, level_type;
1542 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1543 /* read more entries until level_type is zero */
1544 for (i = 1; *nent < maxnent; ++i) {
1545 level_type = entry[i - 1].ecx & 0xff00;
1546 if (!level_type)
1547 break;
1548 do_cpuid_1_ent(&entry[i], function, i);
1549 entry[i].flags |=
1550 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1551 ++*nent;
1553 break;
1555 case 0x80000000:
1556 entry->eax = min(entry->eax, 0x8000001a);
1557 break;
1558 case 0x80000001:
1559 entry->edx &= kvm_supported_word1_x86_features;
1560 entry->ecx &= kvm_supported_word6_x86_features;
1561 break;
1563 put_cpu();
1566 #undef F
1568 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1569 struct kvm_cpuid_entry2 __user *entries)
1571 struct kvm_cpuid_entry2 *cpuid_entries;
1572 int limit, nent = 0, r = -E2BIG;
1573 u32 func;
1575 if (cpuid->nent < 1)
1576 goto out;
1577 r = -ENOMEM;
1578 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1579 if (!cpuid_entries)
1580 goto out;
1582 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1583 limit = cpuid_entries[0].eax;
1584 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1585 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1586 &nent, cpuid->nent);
1587 r = -E2BIG;
1588 if (nent >= cpuid->nent)
1589 goto out_free;
1591 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1592 limit = cpuid_entries[nent - 1].eax;
1593 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1594 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1595 &nent, cpuid->nent);
1596 r = -E2BIG;
1597 if (nent >= cpuid->nent)
1598 goto out_free;
1600 r = -EFAULT;
1601 if (copy_to_user(entries, cpuid_entries,
1602 nent * sizeof(struct kvm_cpuid_entry2)))
1603 goto out_free;
1604 cpuid->nent = nent;
1605 r = 0;
1607 out_free:
1608 vfree(cpuid_entries);
1609 out:
1610 return r;
1613 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1614 struct kvm_lapic_state *s)
1616 vcpu_load(vcpu);
1617 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1618 vcpu_put(vcpu);
1620 return 0;
1623 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1624 struct kvm_lapic_state *s)
1626 vcpu_load(vcpu);
1627 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1628 kvm_apic_post_state_restore(vcpu);
1629 vcpu_put(vcpu);
1631 return 0;
1634 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1635 struct kvm_interrupt *irq)
1637 if (irq->irq < 0 || irq->irq >= 256)
1638 return -EINVAL;
1639 if (irqchip_in_kernel(vcpu->kvm))
1640 return -ENXIO;
1641 vcpu_load(vcpu);
1643 kvm_queue_interrupt(vcpu, irq->irq, false);
1645 vcpu_put(vcpu);
1647 return 0;
1650 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1652 vcpu_load(vcpu);
1653 kvm_inject_nmi(vcpu);
1654 vcpu_put(vcpu);
1656 return 0;
1659 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1660 struct kvm_tpr_access_ctl *tac)
1662 if (tac->flags)
1663 return -EINVAL;
1664 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1665 return 0;
1668 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1669 u64 mcg_cap)
1671 int r;
1672 unsigned bank_num = mcg_cap & 0xff, bank;
1674 r = -EINVAL;
1675 if (!bank_num)
1676 goto out;
1677 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1678 goto out;
1679 r = 0;
1680 vcpu->arch.mcg_cap = mcg_cap;
1681 /* Init IA32_MCG_CTL to all 1s */
1682 if (mcg_cap & MCG_CTL_P)
1683 vcpu->arch.mcg_ctl = ~(u64)0;
1684 /* Init IA32_MCi_CTL to all 1s */
1685 for (bank = 0; bank < bank_num; bank++)
1686 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1687 out:
1688 return r;
1691 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1692 struct kvm_x86_mce *mce)
1694 u64 mcg_cap = vcpu->arch.mcg_cap;
1695 unsigned bank_num = mcg_cap & 0xff;
1696 u64 *banks = vcpu->arch.mce_banks;
1698 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1699 return -EINVAL;
1701 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1702 * reporting is disabled
1704 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1705 vcpu->arch.mcg_ctl != ~(u64)0)
1706 return 0;
1707 banks += 4 * mce->bank;
1709 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1710 * reporting is disabled for the bank
1712 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1713 return 0;
1714 if (mce->status & MCI_STATUS_UC) {
1715 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1716 !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1717 printk(KERN_DEBUG "kvm: set_mce: "
1718 "injects mce exception while "
1719 "previous one is in progress!\n");
1720 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1721 return 0;
1723 if (banks[1] & MCI_STATUS_VAL)
1724 mce->status |= MCI_STATUS_OVER;
1725 banks[2] = mce->addr;
1726 banks[3] = mce->misc;
1727 vcpu->arch.mcg_status = mce->mcg_status;
1728 banks[1] = mce->status;
1729 kvm_queue_exception(vcpu, MC_VECTOR);
1730 } else if (!(banks[1] & MCI_STATUS_VAL)
1731 || !(banks[1] & MCI_STATUS_UC)) {
1732 if (banks[1] & MCI_STATUS_VAL)
1733 mce->status |= MCI_STATUS_OVER;
1734 banks[2] = mce->addr;
1735 banks[3] = mce->misc;
1736 banks[1] = mce->status;
1737 } else
1738 banks[1] |= MCI_STATUS_OVER;
1739 return 0;
1742 long kvm_arch_vcpu_ioctl(struct file *filp,
1743 unsigned int ioctl, unsigned long arg)
1745 struct kvm_vcpu *vcpu = filp->private_data;
1746 void __user *argp = (void __user *)arg;
1747 int r;
1748 struct kvm_lapic_state *lapic = NULL;
1750 switch (ioctl) {
1751 case KVM_GET_LAPIC: {
1752 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1754 r = -ENOMEM;
1755 if (!lapic)
1756 goto out;
1757 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1758 if (r)
1759 goto out;
1760 r = -EFAULT;
1761 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1762 goto out;
1763 r = 0;
1764 break;
1766 case KVM_SET_LAPIC: {
1767 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1768 r = -ENOMEM;
1769 if (!lapic)
1770 goto out;
1771 r = -EFAULT;
1772 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1773 goto out;
1774 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1775 if (r)
1776 goto out;
1777 r = 0;
1778 break;
1780 case KVM_INTERRUPT: {
1781 struct kvm_interrupt irq;
1783 r = -EFAULT;
1784 if (copy_from_user(&irq, argp, sizeof irq))
1785 goto out;
1786 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1787 if (r)
1788 goto out;
1789 r = 0;
1790 break;
1792 case KVM_NMI: {
1793 r = kvm_vcpu_ioctl_nmi(vcpu);
1794 if (r)
1795 goto out;
1796 r = 0;
1797 break;
1799 case KVM_SET_CPUID: {
1800 struct kvm_cpuid __user *cpuid_arg = argp;
1801 struct kvm_cpuid cpuid;
1803 r = -EFAULT;
1804 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1805 goto out;
1806 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1807 if (r)
1808 goto out;
1809 break;
1811 case KVM_SET_CPUID2: {
1812 struct kvm_cpuid2 __user *cpuid_arg = argp;
1813 struct kvm_cpuid2 cpuid;
1815 r = -EFAULT;
1816 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1817 goto out;
1818 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1819 cpuid_arg->entries);
1820 if (r)
1821 goto out;
1822 break;
1824 case KVM_GET_CPUID2: {
1825 struct kvm_cpuid2 __user *cpuid_arg = argp;
1826 struct kvm_cpuid2 cpuid;
1828 r = -EFAULT;
1829 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1830 goto out;
1831 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1832 cpuid_arg->entries);
1833 if (r)
1834 goto out;
1835 r = -EFAULT;
1836 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1837 goto out;
1838 r = 0;
1839 break;
1841 case KVM_GET_MSRS:
1842 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1843 break;
1844 case KVM_SET_MSRS:
1845 r = msr_io(vcpu, argp, do_set_msr, 0);
1846 break;
1847 case KVM_TPR_ACCESS_REPORTING: {
1848 struct kvm_tpr_access_ctl tac;
1850 r = -EFAULT;
1851 if (copy_from_user(&tac, argp, sizeof tac))
1852 goto out;
1853 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1854 if (r)
1855 goto out;
1856 r = -EFAULT;
1857 if (copy_to_user(argp, &tac, sizeof tac))
1858 goto out;
1859 r = 0;
1860 break;
1862 case KVM_SET_VAPIC_ADDR: {
1863 struct kvm_vapic_addr va;
1865 r = -EINVAL;
1866 if (!irqchip_in_kernel(vcpu->kvm))
1867 goto out;
1868 r = -EFAULT;
1869 if (copy_from_user(&va, argp, sizeof va))
1870 goto out;
1871 r = 0;
1872 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1873 break;
1875 case KVM_X86_SETUP_MCE: {
1876 u64 mcg_cap;
1878 r = -EFAULT;
1879 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1880 goto out;
1881 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1882 break;
1884 case KVM_X86_SET_MCE: {
1885 struct kvm_x86_mce mce;
1887 r = -EFAULT;
1888 if (copy_from_user(&mce, argp, sizeof mce))
1889 goto out;
1890 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1891 break;
1893 default:
1894 r = -EINVAL;
1896 out:
1897 kfree(lapic);
1898 return r;
1901 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1903 int ret;
1905 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1906 return -1;
1907 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1908 return ret;
1911 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1912 u32 kvm_nr_mmu_pages)
1914 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1915 return -EINVAL;
1917 down_write(&kvm->slots_lock);
1918 spin_lock(&kvm->mmu_lock);
1920 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1921 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1923 spin_unlock(&kvm->mmu_lock);
1924 up_write(&kvm->slots_lock);
1925 return 0;
1928 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1930 return kvm->arch.n_alloc_mmu_pages;
1933 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1935 int i;
1936 struct kvm_mem_alias *alias;
1938 for (i = 0; i < kvm->arch.naliases; ++i) {
1939 alias = &kvm->arch.aliases[i];
1940 if (gfn >= alias->base_gfn
1941 && gfn < alias->base_gfn + alias->npages)
1942 return alias->target_gfn + gfn - alias->base_gfn;
1944 return gfn;
1948 * Set a new alias region. Aliases map a portion of physical memory into
1949 * another portion. This is useful for memory windows, for example the PC
1950 * VGA region.
1952 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1953 struct kvm_memory_alias *alias)
1955 int r, n;
1956 struct kvm_mem_alias *p;
1958 r = -EINVAL;
1959 /* General sanity checks */
1960 if (alias->memory_size & (PAGE_SIZE - 1))
1961 goto out;
1962 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1963 goto out;
1964 if (alias->slot >= KVM_ALIAS_SLOTS)
1965 goto out;
1966 if (alias->guest_phys_addr + alias->memory_size
1967 < alias->guest_phys_addr)
1968 goto out;
1969 if (alias->target_phys_addr + alias->memory_size
1970 < alias->target_phys_addr)
1971 goto out;
1973 down_write(&kvm->slots_lock);
1974 spin_lock(&kvm->mmu_lock);
1976 p = &kvm->arch.aliases[alias->slot];
1977 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1978 p->npages = alias->memory_size >> PAGE_SHIFT;
1979 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1981 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1982 if (kvm->arch.aliases[n - 1].npages)
1983 break;
1984 kvm->arch.naliases = n;
1986 spin_unlock(&kvm->mmu_lock);
1987 kvm_mmu_zap_all(kvm);
1989 up_write(&kvm->slots_lock);
1991 return 0;
1993 out:
1994 return r;
1997 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1999 int r;
2001 r = 0;
2002 switch (chip->chip_id) {
2003 case KVM_IRQCHIP_PIC_MASTER:
2004 memcpy(&chip->chip.pic,
2005 &pic_irqchip(kvm)->pics[0],
2006 sizeof(struct kvm_pic_state));
2007 break;
2008 case KVM_IRQCHIP_PIC_SLAVE:
2009 memcpy(&chip->chip.pic,
2010 &pic_irqchip(kvm)->pics[1],
2011 sizeof(struct kvm_pic_state));
2012 break;
2013 case KVM_IRQCHIP_IOAPIC:
2014 memcpy(&chip->chip.ioapic,
2015 ioapic_irqchip(kvm),
2016 sizeof(struct kvm_ioapic_state));
2017 break;
2018 default:
2019 r = -EINVAL;
2020 break;
2022 return r;
2025 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2027 int r;
2029 r = 0;
2030 switch (chip->chip_id) {
2031 case KVM_IRQCHIP_PIC_MASTER:
2032 spin_lock(&pic_irqchip(kvm)->lock);
2033 memcpy(&pic_irqchip(kvm)->pics[0],
2034 &chip->chip.pic,
2035 sizeof(struct kvm_pic_state));
2036 spin_unlock(&pic_irqchip(kvm)->lock);
2037 break;
2038 case KVM_IRQCHIP_PIC_SLAVE:
2039 spin_lock(&pic_irqchip(kvm)->lock);
2040 memcpy(&pic_irqchip(kvm)->pics[1],
2041 &chip->chip.pic,
2042 sizeof(struct kvm_pic_state));
2043 spin_unlock(&pic_irqchip(kvm)->lock);
2044 break;
2045 case KVM_IRQCHIP_IOAPIC:
2046 mutex_lock(&kvm->irq_lock);
2047 memcpy(ioapic_irqchip(kvm),
2048 &chip->chip.ioapic,
2049 sizeof(struct kvm_ioapic_state));
2050 mutex_unlock(&kvm->irq_lock);
2051 break;
2052 default:
2053 r = -EINVAL;
2054 break;
2056 kvm_pic_update_irq(pic_irqchip(kvm));
2057 return r;
2060 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2062 int r = 0;
2064 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2065 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2066 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2067 return r;
2070 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2072 int r = 0;
2074 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2075 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2076 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2077 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2078 return r;
2081 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2083 int r = 0;
2085 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2086 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2087 sizeof(ps->channels));
2088 ps->flags = kvm->arch.vpit->pit_state.flags;
2089 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2090 return r;
2093 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2095 int r = 0, start = 0;
2096 u32 prev_legacy, cur_legacy;
2097 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2098 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2099 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2100 if (!prev_legacy && cur_legacy)
2101 start = 1;
2102 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2103 sizeof(kvm->arch.vpit->pit_state.channels));
2104 kvm->arch.vpit->pit_state.flags = ps->flags;
2105 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2106 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2107 return r;
2110 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2111 struct kvm_reinject_control *control)
2113 if (!kvm->arch.vpit)
2114 return -ENXIO;
2115 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2116 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2117 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2118 return 0;
2122 * Get (and clear) the dirty memory log for a memory slot.
2124 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2125 struct kvm_dirty_log *log)
2127 int r;
2128 int n;
2129 struct kvm_memory_slot *memslot;
2130 int is_dirty = 0;
2132 down_write(&kvm->slots_lock);
2134 r = kvm_get_dirty_log(kvm, log, &is_dirty);
2135 if (r)
2136 goto out;
2138 /* If nothing is dirty, don't bother messing with page tables. */
2139 if (is_dirty) {
2140 spin_lock(&kvm->mmu_lock);
2141 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2142 spin_unlock(&kvm->mmu_lock);
2143 kvm_flush_remote_tlbs(kvm);
2144 memslot = &kvm->memslots[log->slot];
2145 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2146 memset(memslot->dirty_bitmap, 0, n);
2148 r = 0;
2149 out:
2150 up_write(&kvm->slots_lock);
2151 return r;
2154 long kvm_arch_vm_ioctl(struct file *filp,
2155 unsigned int ioctl, unsigned long arg)
2157 struct kvm *kvm = filp->private_data;
2158 void __user *argp = (void __user *)arg;
2159 int r = -EINVAL;
2161 * This union makes it completely explicit to gcc-3.x
2162 * that these two variables' stack usage should be
2163 * combined, not added together.
2165 union {
2166 struct kvm_pit_state ps;
2167 struct kvm_pit_state2 ps2;
2168 struct kvm_memory_alias alias;
2169 struct kvm_pit_config pit_config;
2170 } u;
2172 switch (ioctl) {
2173 case KVM_SET_TSS_ADDR:
2174 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2175 if (r < 0)
2176 goto out;
2177 break;
2178 case KVM_SET_MEMORY_REGION: {
2179 struct kvm_memory_region kvm_mem;
2180 struct kvm_userspace_memory_region kvm_userspace_mem;
2182 r = -EFAULT;
2183 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2184 goto out;
2185 kvm_userspace_mem.slot = kvm_mem.slot;
2186 kvm_userspace_mem.flags = kvm_mem.flags;
2187 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2188 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2189 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2190 if (r)
2191 goto out;
2192 break;
2194 case KVM_SET_NR_MMU_PAGES:
2195 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2196 if (r)
2197 goto out;
2198 break;
2199 case KVM_GET_NR_MMU_PAGES:
2200 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2201 break;
2202 case KVM_SET_MEMORY_ALIAS:
2203 r = -EFAULT;
2204 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2205 goto out;
2206 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2207 if (r)
2208 goto out;
2209 break;
2210 case KVM_CREATE_IRQCHIP:
2211 r = -ENOMEM;
2212 kvm->arch.vpic = kvm_create_pic(kvm);
2213 if (kvm->arch.vpic) {
2214 r = kvm_ioapic_init(kvm);
2215 if (r) {
2216 kfree(kvm->arch.vpic);
2217 kvm->arch.vpic = NULL;
2218 goto out;
2220 } else
2221 goto out;
2222 r = kvm_setup_default_irq_routing(kvm);
2223 if (r) {
2224 kfree(kvm->arch.vpic);
2225 kfree(kvm->arch.vioapic);
2226 goto out;
2228 break;
2229 case KVM_CREATE_PIT:
2230 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2231 goto create_pit;
2232 case KVM_CREATE_PIT2:
2233 r = -EFAULT;
2234 if (copy_from_user(&u.pit_config, argp,
2235 sizeof(struct kvm_pit_config)))
2236 goto out;
2237 create_pit:
2238 down_write(&kvm->slots_lock);
2239 r = -EEXIST;
2240 if (kvm->arch.vpit)
2241 goto create_pit_unlock;
2242 r = -ENOMEM;
2243 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2244 if (kvm->arch.vpit)
2245 r = 0;
2246 create_pit_unlock:
2247 up_write(&kvm->slots_lock);
2248 break;
2249 case KVM_IRQ_LINE_STATUS:
2250 case KVM_IRQ_LINE: {
2251 struct kvm_irq_level irq_event;
2253 r = -EFAULT;
2254 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2255 goto out;
2256 if (irqchip_in_kernel(kvm)) {
2257 __s32 status;
2258 mutex_lock(&kvm->irq_lock);
2259 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2260 irq_event.irq, irq_event.level);
2261 mutex_unlock(&kvm->irq_lock);
2262 if (ioctl == KVM_IRQ_LINE_STATUS) {
2263 irq_event.status = status;
2264 if (copy_to_user(argp, &irq_event,
2265 sizeof irq_event))
2266 goto out;
2268 r = 0;
2270 break;
2272 case KVM_GET_IRQCHIP: {
2273 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2274 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2276 r = -ENOMEM;
2277 if (!chip)
2278 goto out;
2279 r = -EFAULT;
2280 if (copy_from_user(chip, argp, sizeof *chip))
2281 goto get_irqchip_out;
2282 r = -ENXIO;
2283 if (!irqchip_in_kernel(kvm))
2284 goto get_irqchip_out;
2285 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2286 if (r)
2287 goto get_irqchip_out;
2288 r = -EFAULT;
2289 if (copy_to_user(argp, chip, sizeof *chip))
2290 goto get_irqchip_out;
2291 r = 0;
2292 get_irqchip_out:
2293 kfree(chip);
2294 if (r)
2295 goto out;
2296 break;
2298 case KVM_SET_IRQCHIP: {
2299 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2300 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2302 r = -ENOMEM;
2303 if (!chip)
2304 goto out;
2305 r = -EFAULT;
2306 if (copy_from_user(chip, argp, sizeof *chip))
2307 goto set_irqchip_out;
2308 r = -ENXIO;
2309 if (!irqchip_in_kernel(kvm))
2310 goto set_irqchip_out;
2311 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2312 if (r)
2313 goto set_irqchip_out;
2314 r = 0;
2315 set_irqchip_out:
2316 kfree(chip);
2317 if (r)
2318 goto out;
2319 break;
2321 case KVM_GET_PIT: {
2322 r = -EFAULT;
2323 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2324 goto out;
2325 r = -ENXIO;
2326 if (!kvm->arch.vpit)
2327 goto out;
2328 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2329 if (r)
2330 goto out;
2331 r = -EFAULT;
2332 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2333 goto out;
2334 r = 0;
2335 break;
2337 case KVM_SET_PIT: {
2338 r = -EFAULT;
2339 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2340 goto out;
2341 r = -ENXIO;
2342 if (!kvm->arch.vpit)
2343 goto out;
2344 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2345 if (r)
2346 goto out;
2347 r = 0;
2348 break;
2350 case KVM_GET_PIT2: {
2351 r = -ENXIO;
2352 if (!kvm->arch.vpit)
2353 goto out;
2354 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2355 if (r)
2356 goto out;
2357 r = -EFAULT;
2358 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2359 goto out;
2360 r = 0;
2361 break;
2363 case KVM_SET_PIT2: {
2364 r = -EFAULT;
2365 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2366 goto out;
2367 r = -ENXIO;
2368 if (!kvm->arch.vpit)
2369 goto out;
2370 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2371 if (r)
2372 goto out;
2373 r = 0;
2374 break;
2376 case KVM_REINJECT_CONTROL: {
2377 struct kvm_reinject_control control;
2378 r = -EFAULT;
2379 if (copy_from_user(&control, argp, sizeof(control)))
2380 goto out;
2381 r = kvm_vm_ioctl_reinject(kvm, &control);
2382 if (r)
2383 goto out;
2384 r = 0;
2385 break;
2387 default:
2390 out:
2391 return r;
2394 static void kvm_init_msr_list(void)
2396 u32 dummy[2];
2397 unsigned i, j;
2399 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2400 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2401 continue;
2402 if (j < i)
2403 msrs_to_save[j] = msrs_to_save[i];
2404 j++;
2406 num_msrs_to_save = j;
2409 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2410 const void *v)
2412 if (vcpu->arch.apic &&
2413 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2414 return 0;
2416 return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2419 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2421 if (vcpu->arch.apic &&
2422 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2423 return 0;
2425 return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2428 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2429 struct kvm_vcpu *vcpu)
2431 void *data = val;
2432 int r = X86EMUL_CONTINUE;
2434 while (bytes) {
2435 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2436 unsigned offset = addr & (PAGE_SIZE-1);
2437 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2438 int ret;
2440 if (gpa == UNMAPPED_GVA) {
2441 r = X86EMUL_PROPAGATE_FAULT;
2442 goto out;
2444 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2445 if (ret < 0) {
2446 r = X86EMUL_UNHANDLEABLE;
2447 goto out;
2450 bytes -= toread;
2451 data += toread;
2452 addr += toread;
2454 out:
2455 return r;
2458 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2459 struct kvm_vcpu *vcpu)
2461 void *data = val;
2462 int r = X86EMUL_CONTINUE;
2464 while (bytes) {
2465 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2466 unsigned offset = addr & (PAGE_SIZE-1);
2467 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2468 int ret;
2470 if (gpa == UNMAPPED_GVA) {
2471 r = X86EMUL_PROPAGATE_FAULT;
2472 goto out;
2474 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2475 if (ret < 0) {
2476 r = X86EMUL_UNHANDLEABLE;
2477 goto out;
2480 bytes -= towrite;
2481 data += towrite;
2482 addr += towrite;
2484 out:
2485 return r;
2489 static int emulator_read_emulated(unsigned long addr,
2490 void *val,
2491 unsigned int bytes,
2492 struct kvm_vcpu *vcpu)
2494 gpa_t gpa;
2496 if (vcpu->mmio_read_completed) {
2497 memcpy(val, vcpu->mmio_data, bytes);
2498 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2499 vcpu->mmio_phys_addr, *(u64 *)val);
2500 vcpu->mmio_read_completed = 0;
2501 return X86EMUL_CONTINUE;
2504 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2506 /* For APIC access vmexit */
2507 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2508 goto mmio;
2510 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2511 == X86EMUL_CONTINUE)
2512 return X86EMUL_CONTINUE;
2513 if (gpa == UNMAPPED_GVA)
2514 return X86EMUL_PROPAGATE_FAULT;
2516 mmio:
2518 * Is this MMIO handled locally?
2520 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2521 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2522 return X86EMUL_CONTINUE;
2525 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2527 vcpu->mmio_needed = 1;
2528 vcpu->mmio_phys_addr = gpa;
2529 vcpu->mmio_size = bytes;
2530 vcpu->mmio_is_write = 0;
2532 return X86EMUL_UNHANDLEABLE;
2535 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2536 const void *val, int bytes)
2538 int ret;
2540 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2541 if (ret < 0)
2542 return 0;
2543 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2544 return 1;
2547 static int emulator_write_emulated_onepage(unsigned long addr,
2548 const void *val,
2549 unsigned int bytes,
2550 struct kvm_vcpu *vcpu)
2552 gpa_t gpa;
2554 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2556 if (gpa == UNMAPPED_GVA) {
2557 kvm_inject_page_fault(vcpu, addr, 2);
2558 return X86EMUL_PROPAGATE_FAULT;
2561 /* For APIC access vmexit */
2562 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2563 goto mmio;
2565 if (emulator_write_phys(vcpu, gpa, val, bytes))
2566 return X86EMUL_CONTINUE;
2568 mmio:
2569 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2571 * Is this MMIO handled locally?
2573 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2574 return X86EMUL_CONTINUE;
2576 vcpu->mmio_needed = 1;
2577 vcpu->mmio_phys_addr = gpa;
2578 vcpu->mmio_size = bytes;
2579 vcpu->mmio_is_write = 1;
2580 memcpy(vcpu->mmio_data, val, bytes);
2582 return X86EMUL_CONTINUE;
2585 int emulator_write_emulated(unsigned long addr,
2586 const void *val,
2587 unsigned int bytes,
2588 struct kvm_vcpu *vcpu)
2590 /* Crossing a page boundary? */
2591 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2592 int rc, now;
2594 now = -addr & ~PAGE_MASK;
2595 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2596 if (rc != X86EMUL_CONTINUE)
2597 return rc;
2598 addr += now;
2599 val += now;
2600 bytes -= now;
2602 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2604 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2606 static int emulator_cmpxchg_emulated(unsigned long addr,
2607 const void *old,
2608 const void *new,
2609 unsigned int bytes,
2610 struct kvm_vcpu *vcpu)
2612 static int reported;
2614 if (!reported) {
2615 reported = 1;
2616 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2618 #ifndef CONFIG_X86_64
2619 /* guests cmpxchg8b have to be emulated atomically */
2620 if (bytes == 8) {
2621 gpa_t gpa;
2622 struct page *page;
2623 char *kaddr;
2624 u64 val;
2626 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2628 if (gpa == UNMAPPED_GVA ||
2629 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2630 goto emul_write;
2632 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2633 goto emul_write;
2635 val = *(u64 *)new;
2637 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2639 kaddr = kmap_atomic(page, KM_USER0);
2640 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2641 kunmap_atomic(kaddr, KM_USER0);
2642 kvm_release_page_dirty(page);
2644 emul_write:
2645 #endif
2647 return emulator_write_emulated(addr, new, bytes, vcpu);
2650 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2652 return kvm_x86_ops->get_segment_base(vcpu, seg);
2655 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2657 kvm_mmu_invlpg(vcpu, address);
2658 return X86EMUL_CONTINUE;
2661 int emulate_clts(struct kvm_vcpu *vcpu)
2663 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2664 return X86EMUL_CONTINUE;
2667 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2669 struct kvm_vcpu *vcpu = ctxt->vcpu;
2671 switch (dr) {
2672 case 0 ... 3:
2673 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2674 return X86EMUL_CONTINUE;
2675 default:
2676 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2677 return X86EMUL_UNHANDLEABLE;
2681 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2683 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2684 int exception;
2686 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2687 if (exception) {
2688 /* FIXME: better handling */
2689 return X86EMUL_UNHANDLEABLE;
2691 return X86EMUL_CONTINUE;
2694 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2696 u8 opcodes[4];
2697 unsigned long rip = kvm_rip_read(vcpu);
2698 unsigned long rip_linear;
2700 if (!printk_ratelimit())
2701 return;
2703 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2705 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2707 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2708 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2710 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2712 static struct x86_emulate_ops emulate_ops = {
2713 .read_std = kvm_read_guest_virt,
2714 .read_emulated = emulator_read_emulated,
2715 .write_emulated = emulator_write_emulated,
2716 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2719 static void cache_all_regs(struct kvm_vcpu *vcpu)
2721 kvm_register_read(vcpu, VCPU_REGS_RAX);
2722 kvm_register_read(vcpu, VCPU_REGS_RSP);
2723 kvm_register_read(vcpu, VCPU_REGS_RIP);
2724 vcpu->arch.regs_dirty = ~0;
2727 int emulate_instruction(struct kvm_vcpu *vcpu,
2728 struct kvm_run *run,
2729 unsigned long cr2,
2730 u16 error_code,
2731 int emulation_type)
2733 int r, shadow_mask;
2734 struct decode_cache *c;
2736 kvm_clear_exception_queue(vcpu);
2737 vcpu->arch.mmio_fault_cr2 = cr2;
2739 * TODO: fix x86_emulate.c to use guest_read/write_register
2740 * instead of direct ->regs accesses, can save hundred cycles
2741 * on Intel for instructions that don't read/change RSP, for
2742 * for example.
2744 cache_all_regs(vcpu);
2746 vcpu->mmio_is_write = 0;
2747 vcpu->arch.pio.string = 0;
2749 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2750 int cs_db, cs_l;
2751 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2753 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2754 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2755 vcpu->arch.emulate_ctxt.mode =
2756 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2757 ? X86EMUL_MODE_REAL : cs_l
2758 ? X86EMUL_MODE_PROT64 : cs_db
2759 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2761 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2763 /* Only allow emulation of specific instructions on #UD
2764 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2765 c = &vcpu->arch.emulate_ctxt.decode;
2766 if (emulation_type & EMULTYPE_TRAP_UD) {
2767 if (!c->twobyte)
2768 return EMULATE_FAIL;
2769 switch (c->b) {
2770 case 0x01: /* VMMCALL */
2771 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2772 return EMULATE_FAIL;
2773 break;
2774 case 0x34: /* sysenter */
2775 case 0x35: /* sysexit */
2776 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2777 return EMULATE_FAIL;
2778 break;
2779 case 0x05: /* syscall */
2780 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2781 return EMULATE_FAIL;
2782 break;
2783 default:
2784 return EMULATE_FAIL;
2787 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2788 return EMULATE_FAIL;
2791 ++vcpu->stat.insn_emulation;
2792 if (r) {
2793 ++vcpu->stat.insn_emulation_fail;
2794 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2795 return EMULATE_DONE;
2796 return EMULATE_FAIL;
2800 if (emulation_type & EMULTYPE_SKIP) {
2801 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2802 return EMULATE_DONE;
2805 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2806 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2808 if (r == 0)
2809 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2811 if (vcpu->arch.pio.string)
2812 return EMULATE_DO_MMIO;
2814 if ((r || vcpu->mmio_is_write) && run) {
2815 run->exit_reason = KVM_EXIT_MMIO;
2816 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2817 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2818 run->mmio.len = vcpu->mmio_size;
2819 run->mmio.is_write = vcpu->mmio_is_write;
2822 if (r) {
2823 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2824 return EMULATE_DONE;
2825 if (!vcpu->mmio_needed) {
2826 kvm_report_emulation_failure(vcpu, "mmio");
2827 return EMULATE_FAIL;
2829 return EMULATE_DO_MMIO;
2832 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2834 if (vcpu->mmio_is_write) {
2835 vcpu->mmio_needed = 0;
2836 return EMULATE_DO_MMIO;
2839 return EMULATE_DONE;
2841 EXPORT_SYMBOL_GPL(emulate_instruction);
2843 static int pio_copy_data(struct kvm_vcpu *vcpu)
2845 void *p = vcpu->arch.pio_data;
2846 gva_t q = vcpu->arch.pio.guest_gva;
2847 unsigned bytes;
2848 int ret;
2850 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2851 if (vcpu->arch.pio.in)
2852 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2853 else
2854 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2855 return ret;
2858 int complete_pio(struct kvm_vcpu *vcpu)
2860 struct kvm_pio_request *io = &vcpu->arch.pio;
2861 long delta;
2862 int r;
2863 unsigned long val;
2865 if (!io->string) {
2866 if (io->in) {
2867 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2868 memcpy(&val, vcpu->arch.pio_data, io->size);
2869 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2871 } else {
2872 if (io->in) {
2873 r = pio_copy_data(vcpu);
2874 if (r)
2875 return r;
2878 delta = 1;
2879 if (io->rep) {
2880 delta *= io->cur_count;
2882 * The size of the register should really depend on
2883 * current address size.
2885 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2886 val -= delta;
2887 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2889 if (io->down)
2890 delta = -delta;
2891 delta *= io->size;
2892 if (io->in) {
2893 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2894 val += delta;
2895 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2896 } else {
2897 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2898 val += delta;
2899 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2903 io->count -= io->cur_count;
2904 io->cur_count = 0;
2906 return 0;
2909 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2911 /* TODO: String I/O for in kernel device */
2912 int r;
2914 if (vcpu->arch.pio.in)
2915 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2916 vcpu->arch.pio.size, pd);
2917 else
2918 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2919 vcpu->arch.pio.size, pd);
2920 return r;
2923 static int pio_string_write(struct kvm_vcpu *vcpu)
2925 struct kvm_pio_request *io = &vcpu->arch.pio;
2926 void *pd = vcpu->arch.pio_data;
2927 int i, r = 0;
2929 for (i = 0; i < io->cur_count; i++) {
2930 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2931 io->port, io->size, pd)) {
2932 r = -EOPNOTSUPP;
2933 break;
2935 pd += io->size;
2937 return r;
2940 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2941 int size, unsigned port)
2943 unsigned long val;
2945 vcpu->run->exit_reason = KVM_EXIT_IO;
2946 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2947 vcpu->run->io.size = vcpu->arch.pio.size = size;
2948 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2949 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2950 vcpu->run->io.port = vcpu->arch.pio.port = port;
2951 vcpu->arch.pio.in = in;
2952 vcpu->arch.pio.string = 0;
2953 vcpu->arch.pio.down = 0;
2954 vcpu->arch.pio.rep = 0;
2956 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2957 size, 1);
2959 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2960 memcpy(vcpu->arch.pio_data, &val, 4);
2962 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2963 complete_pio(vcpu);
2964 return 1;
2966 return 0;
2968 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2970 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2971 int size, unsigned long count, int down,
2972 gva_t address, int rep, unsigned port)
2974 unsigned now, in_page;
2975 int ret = 0;
2977 vcpu->run->exit_reason = KVM_EXIT_IO;
2978 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2979 vcpu->run->io.size = vcpu->arch.pio.size = size;
2980 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2981 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2982 vcpu->run->io.port = vcpu->arch.pio.port = port;
2983 vcpu->arch.pio.in = in;
2984 vcpu->arch.pio.string = 1;
2985 vcpu->arch.pio.down = down;
2986 vcpu->arch.pio.rep = rep;
2988 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2989 size, count);
2991 if (!count) {
2992 kvm_x86_ops->skip_emulated_instruction(vcpu);
2993 return 1;
2996 if (!down)
2997 in_page = PAGE_SIZE - offset_in_page(address);
2998 else
2999 in_page = offset_in_page(address) + size;
3000 now = min(count, (unsigned long)in_page / size);
3001 if (!now)
3002 now = 1;
3003 if (down) {
3005 * String I/O in reverse. Yuck. Kill the guest, fix later.
3007 pr_unimpl(vcpu, "guest string pio down\n");
3008 kvm_inject_gp(vcpu, 0);
3009 return 1;
3011 vcpu->run->io.count = now;
3012 vcpu->arch.pio.cur_count = now;
3014 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3015 kvm_x86_ops->skip_emulated_instruction(vcpu);
3017 vcpu->arch.pio.guest_gva = address;
3019 if (!vcpu->arch.pio.in) {
3020 /* string PIO write */
3021 ret = pio_copy_data(vcpu);
3022 if (ret == X86EMUL_PROPAGATE_FAULT) {
3023 kvm_inject_gp(vcpu, 0);
3024 return 1;
3026 if (ret == 0 && !pio_string_write(vcpu)) {
3027 complete_pio(vcpu);
3028 if (vcpu->arch.pio.count == 0)
3029 ret = 1;
3032 /* no string PIO read support yet */
3034 return ret;
3036 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3038 static void bounce_off(void *info)
3040 /* nothing */
3043 static unsigned int ref_freq;
3044 static unsigned long tsc_khz_ref;
3046 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3047 void *data)
3049 struct cpufreq_freqs *freq = data;
3050 struct kvm *kvm;
3051 struct kvm_vcpu *vcpu;
3052 int i, send_ipi = 0;
3054 if (!ref_freq)
3055 ref_freq = freq->old;
3057 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3058 return 0;
3059 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3060 return 0;
3061 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3063 spin_lock(&kvm_lock);
3064 list_for_each_entry(kvm, &vm_list, vm_list) {
3065 kvm_for_each_vcpu(i, vcpu, kvm) {
3066 if (vcpu->cpu != freq->cpu)
3067 continue;
3068 if (!kvm_request_guest_time_update(vcpu))
3069 continue;
3070 if (vcpu->cpu != smp_processor_id())
3071 send_ipi++;
3074 spin_unlock(&kvm_lock);
3076 if (freq->old < freq->new && send_ipi) {
3078 * We upscale the frequency. Must make the guest
3079 * doesn't see old kvmclock values while running with
3080 * the new frequency, otherwise we risk the guest sees
3081 * time go backwards.
3083 * In case we update the frequency for another cpu
3084 * (which might be in guest context) send an interrupt
3085 * to kick the cpu out of guest context. Next time
3086 * guest context is entered kvmclock will be updated,
3087 * so the guest will not see stale values.
3089 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3091 return 0;
3094 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3095 .notifier_call = kvmclock_cpufreq_notifier
3098 int kvm_arch_init(void *opaque)
3100 int r, cpu;
3101 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3103 if (kvm_x86_ops) {
3104 printk(KERN_ERR "kvm: already loaded the other module\n");
3105 r = -EEXIST;
3106 goto out;
3109 if (!ops->cpu_has_kvm_support()) {
3110 printk(KERN_ERR "kvm: no hardware support\n");
3111 r = -EOPNOTSUPP;
3112 goto out;
3114 if (ops->disabled_by_bios()) {
3115 printk(KERN_ERR "kvm: disabled by bios\n");
3116 r = -EOPNOTSUPP;
3117 goto out;
3120 r = kvm_mmu_module_init();
3121 if (r)
3122 goto out;
3124 kvm_init_msr_list();
3126 kvm_x86_ops = ops;
3127 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3128 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3129 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3130 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3132 for_each_possible_cpu(cpu)
3133 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3134 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3135 tsc_khz_ref = tsc_khz;
3136 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3137 CPUFREQ_TRANSITION_NOTIFIER);
3140 return 0;
3142 out:
3143 return r;
3146 void kvm_arch_exit(void)
3148 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3149 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3150 CPUFREQ_TRANSITION_NOTIFIER);
3151 kvm_x86_ops = NULL;
3152 kvm_mmu_module_exit();
3155 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3157 ++vcpu->stat.halt_exits;
3158 if (irqchip_in_kernel(vcpu->kvm)) {
3159 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3160 return 1;
3161 } else {
3162 vcpu->run->exit_reason = KVM_EXIT_HLT;
3163 return 0;
3166 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3168 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3169 unsigned long a1)
3171 if (is_long_mode(vcpu))
3172 return a0;
3173 else
3174 return a0 | ((gpa_t)a1 << 32);
3177 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3179 unsigned long nr, a0, a1, a2, a3, ret;
3180 int r = 1;
3182 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3183 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3184 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3185 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3186 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3188 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3190 if (!is_long_mode(vcpu)) {
3191 nr &= 0xFFFFFFFF;
3192 a0 &= 0xFFFFFFFF;
3193 a1 &= 0xFFFFFFFF;
3194 a2 &= 0xFFFFFFFF;
3195 a3 &= 0xFFFFFFFF;
3198 switch (nr) {
3199 case KVM_HC_VAPIC_POLL_IRQ:
3200 ret = 0;
3201 break;
3202 case KVM_HC_MMU_OP:
3203 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3204 break;
3205 default:
3206 ret = -KVM_ENOSYS;
3207 break;
3209 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3210 ++vcpu->stat.hypercalls;
3211 return r;
3213 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3215 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3217 char instruction[3];
3218 int ret = 0;
3219 unsigned long rip = kvm_rip_read(vcpu);
3223 * Blow out the MMU to ensure that no other VCPU has an active mapping
3224 * to ensure that the updated hypercall appears atomically across all
3225 * VCPUs.
3227 kvm_mmu_zap_all(vcpu->kvm);
3229 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3230 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3231 != X86EMUL_CONTINUE)
3232 ret = -EFAULT;
3234 return ret;
3237 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3239 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3242 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3244 struct descriptor_table dt = { limit, base };
3246 kvm_x86_ops->set_gdt(vcpu, &dt);
3249 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3251 struct descriptor_table dt = { limit, base };
3253 kvm_x86_ops->set_idt(vcpu, &dt);
3256 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3257 unsigned long *rflags)
3259 kvm_lmsw(vcpu, msw);
3260 *rflags = kvm_x86_ops->get_rflags(vcpu);
3263 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3265 unsigned long value;
3267 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3268 switch (cr) {
3269 case 0:
3270 value = vcpu->arch.cr0;
3271 break;
3272 case 2:
3273 value = vcpu->arch.cr2;
3274 break;
3275 case 3:
3276 value = vcpu->arch.cr3;
3277 break;
3278 case 4:
3279 value = vcpu->arch.cr4;
3280 break;
3281 case 8:
3282 value = kvm_get_cr8(vcpu);
3283 break;
3284 default:
3285 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3286 return 0;
3289 return value;
3292 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3293 unsigned long *rflags)
3295 switch (cr) {
3296 case 0:
3297 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3298 *rflags = kvm_x86_ops->get_rflags(vcpu);
3299 break;
3300 case 2:
3301 vcpu->arch.cr2 = val;
3302 break;
3303 case 3:
3304 kvm_set_cr3(vcpu, val);
3305 break;
3306 case 4:
3307 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3308 break;
3309 case 8:
3310 kvm_set_cr8(vcpu, val & 0xfUL);
3311 break;
3312 default:
3313 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3317 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3319 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3320 int j, nent = vcpu->arch.cpuid_nent;
3322 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3323 /* when no next entry is found, the current entry[i] is reselected */
3324 for (j = i + 1; ; j = (j + 1) % nent) {
3325 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3326 if (ej->function == e->function) {
3327 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3328 return j;
3331 return 0; /* silence gcc, even though control never reaches here */
3334 /* find an entry with matching function, matching index (if needed), and that
3335 * should be read next (if it's stateful) */
3336 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3337 u32 function, u32 index)
3339 if (e->function != function)
3340 return 0;
3341 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3342 return 0;
3343 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3344 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3345 return 0;
3346 return 1;
3349 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3350 u32 function, u32 index)
3352 int i;
3353 struct kvm_cpuid_entry2 *best = NULL;
3355 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3356 struct kvm_cpuid_entry2 *e;
3358 e = &vcpu->arch.cpuid_entries[i];
3359 if (is_matching_cpuid_entry(e, function, index)) {
3360 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3361 move_to_next_stateful_cpuid_entry(vcpu, i);
3362 best = e;
3363 break;
3366 * Both basic or both extended?
3368 if (((e->function ^ function) & 0x80000000) == 0)
3369 if (!best || e->function > best->function)
3370 best = e;
3372 return best;
3375 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3377 struct kvm_cpuid_entry2 *best;
3379 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3380 if (best)
3381 return best->eax & 0xff;
3382 return 36;
3385 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3387 u32 function, index;
3388 struct kvm_cpuid_entry2 *best;
3390 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3391 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3392 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3393 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3394 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3395 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3396 best = kvm_find_cpuid_entry(vcpu, function, index);
3397 if (best) {
3398 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3399 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3400 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3401 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3403 kvm_x86_ops->skip_emulated_instruction(vcpu);
3404 trace_kvm_cpuid(function,
3405 kvm_register_read(vcpu, VCPU_REGS_RAX),
3406 kvm_register_read(vcpu, VCPU_REGS_RBX),
3407 kvm_register_read(vcpu, VCPU_REGS_RCX),
3408 kvm_register_read(vcpu, VCPU_REGS_RDX));
3410 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3413 * Check if userspace requested an interrupt window, and that the
3414 * interrupt window is open.
3416 * No need to exit to userspace if we already have an interrupt queued.
3418 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3419 struct kvm_run *kvm_run)
3421 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3422 kvm_run->request_interrupt_window &&
3423 kvm_arch_interrupt_allowed(vcpu));
3426 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3427 struct kvm_run *kvm_run)
3429 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3430 kvm_run->cr8 = kvm_get_cr8(vcpu);
3431 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3432 if (irqchip_in_kernel(vcpu->kvm))
3433 kvm_run->ready_for_interrupt_injection = 1;
3434 else
3435 kvm_run->ready_for_interrupt_injection =
3436 kvm_arch_interrupt_allowed(vcpu) &&
3437 !kvm_cpu_has_interrupt(vcpu) &&
3438 !kvm_event_needs_reinjection(vcpu);
3441 static void vapic_enter(struct kvm_vcpu *vcpu)
3443 struct kvm_lapic *apic = vcpu->arch.apic;
3444 struct page *page;
3446 if (!apic || !apic->vapic_addr)
3447 return;
3449 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3451 vcpu->arch.apic->vapic_page = page;
3454 static void vapic_exit(struct kvm_vcpu *vcpu)
3456 struct kvm_lapic *apic = vcpu->arch.apic;
3458 if (!apic || !apic->vapic_addr)
3459 return;
3461 down_read(&vcpu->kvm->slots_lock);
3462 kvm_release_page_dirty(apic->vapic_page);
3463 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3464 up_read(&vcpu->kvm->slots_lock);
3467 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3469 int max_irr, tpr;
3471 if (!kvm_x86_ops->update_cr8_intercept)
3472 return;
3474 if (!vcpu->arch.apic->vapic_addr)
3475 max_irr = kvm_lapic_find_highest_irr(vcpu);
3476 else
3477 max_irr = -1;
3479 if (max_irr != -1)
3480 max_irr >>= 4;
3482 tpr = kvm_lapic_get_cr8(vcpu);
3484 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3487 static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3489 /* try to reinject previous events if any */
3490 if (vcpu->arch.exception.pending) {
3491 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3492 vcpu->arch.exception.has_error_code,
3493 vcpu->arch.exception.error_code);
3494 return;
3497 if (vcpu->arch.nmi_injected) {
3498 kvm_x86_ops->set_nmi(vcpu);
3499 return;
3502 if (vcpu->arch.interrupt.pending) {
3503 kvm_x86_ops->set_irq(vcpu);
3504 return;
3507 /* try to inject new event if pending */
3508 if (vcpu->arch.nmi_pending) {
3509 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3510 vcpu->arch.nmi_pending = false;
3511 vcpu->arch.nmi_injected = true;
3512 kvm_x86_ops->set_nmi(vcpu);
3514 } else if (kvm_cpu_has_interrupt(vcpu)) {
3515 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3516 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3517 false);
3518 kvm_x86_ops->set_irq(vcpu);
3523 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3525 int r;
3526 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3527 kvm_run->request_interrupt_window;
3529 if (vcpu->requests)
3530 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3531 kvm_mmu_unload(vcpu);
3533 r = kvm_mmu_reload(vcpu);
3534 if (unlikely(r))
3535 goto out;
3537 if (vcpu->requests) {
3538 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3539 __kvm_migrate_timers(vcpu);
3540 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3541 kvm_write_guest_time(vcpu);
3542 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3543 kvm_mmu_sync_roots(vcpu);
3544 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3545 kvm_x86_ops->tlb_flush(vcpu);
3546 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3547 &vcpu->requests)) {
3548 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3549 r = 0;
3550 goto out;
3552 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3553 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3554 r = 0;
3555 goto out;
3559 preempt_disable();
3561 kvm_x86_ops->prepare_guest_switch(vcpu);
3562 kvm_load_guest_fpu(vcpu);
3564 local_irq_disable();
3566 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3567 smp_mb__after_clear_bit();
3569 if (vcpu->requests || need_resched() || signal_pending(current)) {
3570 set_bit(KVM_REQ_KICK, &vcpu->requests);
3571 local_irq_enable();
3572 preempt_enable();
3573 r = 1;
3574 goto out;
3577 inject_pending_event(vcpu, kvm_run);
3579 /* enable NMI/IRQ window open exits if needed */
3580 if (vcpu->arch.nmi_pending)
3581 kvm_x86_ops->enable_nmi_window(vcpu);
3582 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3583 kvm_x86_ops->enable_irq_window(vcpu);
3585 if (kvm_lapic_enabled(vcpu)) {
3586 update_cr8_intercept(vcpu);
3587 kvm_lapic_sync_to_vapic(vcpu);
3590 up_read(&vcpu->kvm->slots_lock);
3592 kvm_guest_enter();
3594 get_debugreg(vcpu->arch.host_dr6, 6);
3595 get_debugreg(vcpu->arch.host_dr7, 7);
3596 if (unlikely(vcpu->arch.switch_db_regs)) {
3597 get_debugreg(vcpu->arch.host_db[0], 0);
3598 get_debugreg(vcpu->arch.host_db[1], 1);
3599 get_debugreg(vcpu->arch.host_db[2], 2);
3600 get_debugreg(vcpu->arch.host_db[3], 3);
3602 set_debugreg(0, 7);
3603 set_debugreg(vcpu->arch.eff_db[0], 0);
3604 set_debugreg(vcpu->arch.eff_db[1], 1);
3605 set_debugreg(vcpu->arch.eff_db[2], 2);
3606 set_debugreg(vcpu->arch.eff_db[3], 3);
3609 trace_kvm_entry(vcpu->vcpu_id);
3610 kvm_x86_ops->run(vcpu, kvm_run);
3612 if (unlikely(vcpu->arch.switch_db_regs)) {
3613 set_debugreg(0, 7);
3614 set_debugreg(vcpu->arch.host_db[0], 0);
3615 set_debugreg(vcpu->arch.host_db[1], 1);
3616 set_debugreg(vcpu->arch.host_db[2], 2);
3617 set_debugreg(vcpu->arch.host_db[3], 3);
3619 set_debugreg(vcpu->arch.host_dr6, 6);
3620 set_debugreg(vcpu->arch.host_dr7, 7);
3622 set_bit(KVM_REQ_KICK, &vcpu->requests);
3623 local_irq_enable();
3625 ++vcpu->stat.exits;
3628 * We must have an instruction between local_irq_enable() and
3629 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3630 * the interrupt shadow. The stat.exits increment will do nicely.
3631 * But we need to prevent reordering, hence this barrier():
3633 barrier();
3635 kvm_guest_exit();
3637 preempt_enable();
3639 down_read(&vcpu->kvm->slots_lock);
3642 * Profile KVM exit RIPs:
3644 if (unlikely(prof_on == KVM_PROFILING)) {
3645 unsigned long rip = kvm_rip_read(vcpu);
3646 profile_hit(KVM_PROFILING, (void *)rip);
3650 kvm_lapic_sync_from_vapic(vcpu);
3652 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3653 out:
3654 return r;
3658 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3660 int r;
3662 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3663 pr_debug("vcpu %d received sipi with vector # %x\n",
3664 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3665 kvm_lapic_reset(vcpu);
3666 r = kvm_arch_vcpu_reset(vcpu);
3667 if (r)
3668 return r;
3669 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3672 down_read(&vcpu->kvm->slots_lock);
3673 vapic_enter(vcpu);
3675 r = 1;
3676 while (r > 0) {
3677 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3678 r = vcpu_enter_guest(vcpu, kvm_run);
3679 else {
3680 up_read(&vcpu->kvm->slots_lock);
3681 kvm_vcpu_block(vcpu);
3682 down_read(&vcpu->kvm->slots_lock);
3683 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3685 switch(vcpu->arch.mp_state) {
3686 case KVM_MP_STATE_HALTED:
3687 vcpu->arch.mp_state =
3688 KVM_MP_STATE_RUNNABLE;
3689 case KVM_MP_STATE_RUNNABLE:
3690 break;
3691 case KVM_MP_STATE_SIPI_RECEIVED:
3692 default:
3693 r = -EINTR;
3694 break;
3699 if (r <= 0)
3700 break;
3702 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3703 if (kvm_cpu_has_pending_timer(vcpu))
3704 kvm_inject_pending_timer_irqs(vcpu);
3706 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3707 r = -EINTR;
3708 kvm_run->exit_reason = KVM_EXIT_INTR;
3709 ++vcpu->stat.request_irq_exits;
3711 if (signal_pending(current)) {
3712 r = -EINTR;
3713 kvm_run->exit_reason = KVM_EXIT_INTR;
3714 ++vcpu->stat.signal_exits;
3716 if (need_resched()) {
3717 up_read(&vcpu->kvm->slots_lock);
3718 kvm_resched(vcpu);
3719 down_read(&vcpu->kvm->slots_lock);
3723 up_read(&vcpu->kvm->slots_lock);
3724 post_kvm_run_save(vcpu, kvm_run);
3726 vapic_exit(vcpu);
3728 return r;
3731 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3733 int r;
3734 sigset_t sigsaved;
3736 vcpu_load(vcpu);
3738 if (vcpu->sigset_active)
3739 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3741 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3742 kvm_vcpu_block(vcpu);
3743 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3744 r = -EAGAIN;
3745 goto out;
3748 /* re-sync apic's tpr */
3749 if (!irqchip_in_kernel(vcpu->kvm))
3750 kvm_set_cr8(vcpu, kvm_run->cr8);
3752 if (vcpu->arch.pio.cur_count) {
3753 r = complete_pio(vcpu);
3754 if (r)
3755 goto out;
3757 #if CONFIG_HAS_IOMEM
3758 if (vcpu->mmio_needed) {
3759 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3760 vcpu->mmio_read_completed = 1;
3761 vcpu->mmio_needed = 0;
3763 down_read(&vcpu->kvm->slots_lock);
3764 r = emulate_instruction(vcpu, kvm_run,
3765 vcpu->arch.mmio_fault_cr2, 0,
3766 EMULTYPE_NO_DECODE);
3767 up_read(&vcpu->kvm->slots_lock);
3768 if (r == EMULATE_DO_MMIO) {
3770 * Read-modify-write. Back to userspace.
3772 r = 0;
3773 goto out;
3776 #endif
3777 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3778 kvm_register_write(vcpu, VCPU_REGS_RAX,
3779 kvm_run->hypercall.ret);
3781 r = __vcpu_run(vcpu, kvm_run);
3783 out:
3784 if (vcpu->sigset_active)
3785 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3787 vcpu_put(vcpu);
3788 return r;
3791 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3793 vcpu_load(vcpu);
3795 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3796 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3797 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3798 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3799 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3800 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3801 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3802 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3803 #ifdef CONFIG_X86_64
3804 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3805 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3806 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3807 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3808 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3809 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3810 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3811 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3812 #endif
3814 regs->rip = kvm_rip_read(vcpu);
3815 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3818 * Don't leak debug flags in case they were set for guest debugging
3820 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3821 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3823 vcpu_put(vcpu);
3825 return 0;
3828 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3830 vcpu_load(vcpu);
3832 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3833 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3834 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3835 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3836 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3837 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3838 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3839 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3840 #ifdef CONFIG_X86_64
3841 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3842 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3843 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3844 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3845 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3846 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3847 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3848 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3850 #endif
3852 kvm_rip_write(vcpu, regs->rip);
3853 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3856 vcpu->arch.exception.pending = false;
3858 vcpu_put(vcpu);
3860 return 0;
3863 void kvm_get_segment(struct kvm_vcpu *vcpu,
3864 struct kvm_segment *var, int seg)
3866 kvm_x86_ops->get_segment(vcpu, var, seg);
3869 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3871 struct kvm_segment cs;
3873 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3874 *db = cs.db;
3875 *l = cs.l;
3877 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3879 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3880 struct kvm_sregs *sregs)
3882 struct descriptor_table dt;
3884 vcpu_load(vcpu);
3886 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3887 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3888 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3889 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3890 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3891 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3893 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3894 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3896 kvm_x86_ops->get_idt(vcpu, &dt);
3897 sregs->idt.limit = dt.limit;
3898 sregs->idt.base = dt.base;
3899 kvm_x86_ops->get_gdt(vcpu, &dt);
3900 sregs->gdt.limit = dt.limit;
3901 sregs->gdt.base = dt.base;
3903 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3904 sregs->cr0 = vcpu->arch.cr0;
3905 sregs->cr2 = vcpu->arch.cr2;
3906 sregs->cr3 = vcpu->arch.cr3;
3907 sregs->cr4 = vcpu->arch.cr4;
3908 sregs->cr8 = kvm_get_cr8(vcpu);
3909 sregs->efer = vcpu->arch.shadow_efer;
3910 sregs->apic_base = kvm_get_apic_base(vcpu);
3912 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3914 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3915 set_bit(vcpu->arch.interrupt.nr,
3916 (unsigned long *)sregs->interrupt_bitmap);
3918 vcpu_put(vcpu);
3920 return 0;
3923 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3924 struct kvm_mp_state *mp_state)
3926 vcpu_load(vcpu);
3927 mp_state->mp_state = vcpu->arch.mp_state;
3928 vcpu_put(vcpu);
3929 return 0;
3932 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3933 struct kvm_mp_state *mp_state)
3935 vcpu_load(vcpu);
3936 vcpu->arch.mp_state = mp_state->mp_state;
3937 vcpu_put(vcpu);
3938 return 0;
3941 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3942 struct kvm_segment *var, int seg)
3944 kvm_x86_ops->set_segment(vcpu, var, seg);
3947 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3948 struct kvm_segment *kvm_desct)
3950 kvm_desct->base = seg_desc->base0;
3951 kvm_desct->base |= seg_desc->base1 << 16;
3952 kvm_desct->base |= seg_desc->base2 << 24;
3953 kvm_desct->limit = seg_desc->limit0;
3954 kvm_desct->limit |= seg_desc->limit << 16;
3955 if (seg_desc->g) {
3956 kvm_desct->limit <<= 12;
3957 kvm_desct->limit |= 0xfff;
3959 kvm_desct->selector = selector;
3960 kvm_desct->type = seg_desc->type;
3961 kvm_desct->present = seg_desc->p;
3962 kvm_desct->dpl = seg_desc->dpl;
3963 kvm_desct->db = seg_desc->d;
3964 kvm_desct->s = seg_desc->s;
3965 kvm_desct->l = seg_desc->l;
3966 kvm_desct->g = seg_desc->g;
3967 kvm_desct->avl = seg_desc->avl;
3968 if (!selector)
3969 kvm_desct->unusable = 1;
3970 else
3971 kvm_desct->unusable = 0;
3972 kvm_desct->padding = 0;
3975 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3976 u16 selector,
3977 struct descriptor_table *dtable)
3979 if (selector & 1 << 2) {
3980 struct kvm_segment kvm_seg;
3982 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3984 if (kvm_seg.unusable)
3985 dtable->limit = 0;
3986 else
3987 dtable->limit = kvm_seg.limit;
3988 dtable->base = kvm_seg.base;
3990 else
3991 kvm_x86_ops->get_gdt(vcpu, dtable);
3994 /* allowed just for 8 bytes segments */
3995 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3996 struct desc_struct *seg_desc)
3998 gpa_t gpa;
3999 struct descriptor_table dtable;
4000 u16 index = selector >> 3;
4002 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4004 if (dtable.limit < index * 8 + 7) {
4005 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4006 return 1;
4008 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
4009 gpa += index * 8;
4010 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
4013 /* allowed just for 8 bytes segments */
4014 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4015 struct desc_struct *seg_desc)
4017 gpa_t gpa;
4018 struct descriptor_table dtable;
4019 u16 index = selector >> 3;
4021 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4023 if (dtable.limit < index * 8 + 7)
4024 return 1;
4025 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
4026 gpa += index * 8;
4027 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
4030 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
4031 struct desc_struct *seg_desc)
4033 u32 base_addr;
4035 base_addr = seg_desc->base0;
4036 base_addr |= (seg_desc->base1 << 16);
4037 base_addr |= (seg_desc->base2 << 24);
4039 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4042 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4044 struct kvm_segment kvm_seg;
4046 kvm_get_segment(vcpu, &kvm_seg, seg);
4047 return kvm_seg.selector;
4050 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4051 u16 selector,
4052 struct kvm_segment *kvm_seg)
4054 struct desc_struct seg_desc;
4056 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4057 return 1;
4058 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4059 return 0;
4062 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4064 struct kvm_segment segvar = {
4065 .base = selector << 4,
4066 .limit = 0xffff,
4067 .selector = selector,
4068 .type = 3,
4069 .present = 1,
4070 .dpl = 3,
4071 .db = 0,
4072 .s = 1,
4073 .l = 0,
4074 .g = 0,
4075 .avl = 0,
4076 .unusable = 0,
4078 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4079 return 0;
4082 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4083 int type_bits, int seg)
4085 struct kvm_segment kvm_seg;
4087 if (!(vcpu->arch.cr0 & X86_CR0_PE))
4088 return kvm_load_realmode_segment(vcpu, selector, seg);
4089 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4090 return 1;
4091 kvm_seg.type |= type_bits;
4093 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4094 seg != VCPU_SREG_LDTR)
4095 if (!kvm_seg.s)
4096 kvm_seg.unusable = 1;
4098 kvm_set_segment(vcpu, &kvm_seg, seg);
4099 return 0;
4102 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4103 struct tss_segment_32 *tss)
4105 tss->cr3 = vcpu->arch.cr3;
4106 tss->eip = kvm_rip_read(vcpu);
4107 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4108 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4109 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4110 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4111 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4112 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4113 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4114 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4115 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4116 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4117 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4118 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4119 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4120 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4121 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4122 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4125 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4126 struct tss_segment_32 *tss)
4128 kvm_set_cr3(vcpu, tss->cr3);
4130 kvm_rip_write(vcpu, tss->eip);
4131 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4133 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4134 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4135 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4136 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4137 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4138 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4139 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4140 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4142 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4143 return 1;
4145 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4146 return 1;
4148 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4149 return 1;
4151 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4152 return 1;
4154 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4155 return 1;
4157 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4158 return 1;
4160 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4161 return 1;
4162 return 0;
4165 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4166 struct tss_segment_16 *tss)
4168 tss->ip = kvm_rip_read(vcpu);
4169 tss->flag = kvm_x86_ops->get_rflags(vcpu);
4170 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4171 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4172 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4173 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4174 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4175 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4176 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4177 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4179 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4180 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4181 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4182 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4183 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4184 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4187 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4188 struct tss_segment_16 *tss)
4190 kvm_rip_write(vcpu, tss->ip);
4191 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4192 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4193 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4194 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4195 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4196 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4197 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4198 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4199 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4201 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4202 return 1;
4204 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4205 return 1;
4207 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4208 return 1;
4210 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4211 return 1;
4213 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4214 return 1;
4215 return 0;
4218 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4219 u16 old_tss_sel, u32 old_tss_base,
4220 struct desc_struct *nseg_desc)
4222 struct tss_segment_16 tss_segment_16;
4223 int ret = 0;
4225 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4226 sizeof tss_segment_16))
4227 goto out;
4229 save_state_to_tss16(vcpu, &tss_segment_16);
4231 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4232 sizeof tss_segment_16))
4233 goto out;
4235 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4236 &tss_segment_16, sizeof tss_segment_16))
4237 goto out;
4239 if (old_tss_sel != 0xffff) {
4240 tss_segment_16.prev_task_link = old_tss_sel;
4242 if (kvm_write_guest(vcpu->kvm,
4243 get_tss_base_addr(vcpu, nseg_desc),
4244 &tss_segment_16.prev_task_link,
4245 sizeof tss_segment_16.prev_task_link))
4246 goto out;
4249 if (load_state_from_tss16(vcpu, &tss_segment_16))
4250 goto out;
4252 ret = 1;
4253 out:
4254 return ret;
4257 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4258 u16 old_tss_sel, u32 old_tss_base,
4259 struct desc_struct *nseg_desc)
4261 struct tss_segment_32 tss_segment_32;
4262 int ret = 0;
4264 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4265 sizeof tss_segment_32))
4266 goto out;
4268 save_state_to_tss32(vcpu, &tss_segment_32);
4270 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4271 sizeof tss_segment_32))
4272 goto out;
4274 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4275 &tss_segment_32, sizeof tss_segment_32))
4276 goto out;
4278 if (old_tss_sel != 0xffff) {
4279 tss_segment_32.prev_task_link = old_tss_sel;
4281 if (kvm_write_guest(vcpu->kvm,
4282 get_tss_base_addr(vcpu, nseg_desc),
4283 &tss_segment_32.prev_task_link,
4284 sizeof tss_segment_32.prev_task_link))
4285 goto out;
4288 if (load_state_from_tss32(vcpu, &tss_segment_32))
4289 goto out;
4291 ret = 1;
4292 out:
4293 return ret;
4296 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4298 struct kvm_segment tr_seg;
4299 struct desc_struct cseg_desc;
4300 struct desc_struct nseg_desc;
4301 int ret = 0;
4302 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4303 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4305 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4307 /* FIXME: Handle errors. Failure to read either TSS or their
4308 * descriptors should generate a pagefault.
4310 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4311 goto out;
4313 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4314 goto out;
4316 if (reason != TASK_SWITCH_IRET) {
4317 int cpl;
4319 cpl = kvm_x86_ops->get_cpl(vcpu);
4320 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4321 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4322 return 1;
4326 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
4327 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4328 return 1;
4331 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4332 cseg_desc.type &= ~(1 << 1); //clear the B flag
4333 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4336 if (reason == TASK_SWITCH_IRET) {
4337 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4338 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4341 /* set back link to prev task only if NT bit is set in eflags
4342 note that old_tss_sel is not used afetr this point */
4343 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4344 old_tss_sel = 0xffff;
4346 /* set back link to prev task only if NT bit is set in eflags
4347 note that old_tss_sel is not used afetr this point */
4348 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4349 old_tss_sel = 0xffff;
4351 if (nseg_desc.type & 8)
4352 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4353 old_tss_base, &nseg_desc);
4354 else
4355 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4356 old_tss_base, &nseg_desc);
4358 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4359 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4360 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4363 if (reason != TASK_SWITCH_IRET) {
4364 nseg_desc.type |= (1 << 1);
4365 save_guest_segment_descriptor(vcpu, tss_selector,
4366 &nseg_desc);
4369 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4370 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4371 tr_seg.type = 11;
4372 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4373 out:
4374 return ret;
4376 EXPORT_SYMBOL_GPL(kvm_task_switch);
4378 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4379 struct kvm_sregs *sregs)
4381 int mmu_reset_needed = 0;
4382 int pending_vec, max_bits;
4383 struct descriptor_table dt;
4385 vcpu_load(vcpu);
4387 dt.limit = sregs->idt.limit;
4388 dt.base = sregs->idt.base;
4389 kvm_x86_ops->set_idt(vcpu, &dt);
4390 dt.limit = sregs->gdt.limit;
4391 dt.base = sregs->gdt.base;
4392 kvm_x86_ops->set_gdt(vcpu, &dt);
4394 vcpu->arch.cr2 = sregs->cr2;
4395 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4396 vcpu->arch.cr3 = sregs->cr3;
4398 kvm_set_cr8(vcpu, sregs->cr8);
4400 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4401 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4402 kvm_set_apic_base(vcpu, sregs->apic_base);
4404 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4406 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4407 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4408 vcpu->arch.cr0 = sregs->cr0;
4410 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4411 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4412 if (!is_long_mode(vcpu) && is_pae(vcpu))
4413 load_pdptrs(vcpu, vcpu->arch.cr3);
4415 if (mmu_reset_needed)
4416 kvm_mmu_reset_context(vcpu);
4418 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4419 pending_vec = find_first_bit(
4420 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4421 if (pending_vec < max_bits) {
4422 kvm_queue_interrupt(vcpu, pending_vec, false);
4423 pr_debug("Set back pending irq %d\n", pending_vec);
4424 if (irqchip_in_kernel(vcpu->kvm))
4425 kvm_pic_clear_isr_ack(vcpu->kvm);
4428 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4429 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4430 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4431 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4432 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4433 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4435 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4436 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4438 /* Older userspace won't unhalt the vcpu on reset. */
4439 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4440 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4441 !(vcpu->arch.cr0 & X86_CR0_PE))
4442 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4444 vcpu_put(vcpu);
4446 return 0;
4449 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4450 struct kvm_guest_debug *dbg)
4452 int i, r;
4454 vcpu_load(vcpu);
4456 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4457 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4458 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4459 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4460 vcpu->arch.switch_db_regs =
4461 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4462 } else {
4463 for (i = 0; i < KVM_NR_DB_REGS; i++)
4464 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4465 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4468 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4470 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4471 kvm_queue_exception(vcpu, DB_VECTOR);
4472 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4473 kvm_queue_exception(vcpu, BP_VECTOR);
4475 vcpu_put(vcpu);
4477 return r;
4481 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4482 * we have asm/x86/processor.h
4484 struct fxsave {
4485 u16 cwd;
4486 u16 swd;
4487 u16 twd;
4488 u16 fop;
4489 u64 rip;
4490 u64 rdp;
4491 u32 mxcsr;
4492 u32 mxcsr_mask;
4493 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4494 #ifdef CONFIG_X86_64
4495 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4496 #else
4497 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4498 #endif
4502 * Translate a guest virtual address to a guest physical address.
4504 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4505 struct kvm_translation *tr)
4507 unsigned long vaddr = tr->linear_address;
4508 gpa_t gpa;
4510 vcpu_load(vcpu);
4511 down_read(&vcpu->kvm->slots_lock);
4512 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4513 up_read(&vcpu->kvm->slots_lock);
4514 tr->physical_address = gpa;
4515 tr->valid = gpa != UNMAPPED_GVA;
4516 tr->writeable = 1;
4517 tr->usermode = 0;
4518 vcpu_put(vcpu);
4520 return 0;
4523 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4525 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4527 vcpu_load(vcpu);
4529 memcpy(fpu->fpr, fxsave->st_space, 128);
4530 fpu->fcw = fxsave->cwd;
4531 fpu->fsw = fxsave->swd;
4532 fpu->ftwx = fxsave->twd;
4533 fpu->last_opcode = fxsave->fop;
4534 fpu->last_ip = fxsave->rip;
4535 fpu->last_dp = fxsave->rdp;
4536 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4538 vcpu_put(vcpu);
4540 return 0;
4543 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4545 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4547 vcpu_load(vcpu);
4549 memcpy(fxsave->st_space, fpu->fpr, 128);
4550 fxsave->cwd = fpu->fcw;
4551 fxsave->swd = fpu->fsw;
4552 fxsave->twd = fpu->ftwx;
4553 fxsave->fop = fpu->last_opcode;
4554 fxsave->rip = fpu->last_ip;
4555 fxsave->rdp = fpu->last_dp;
4556 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4558 vcpu_put(vcpu);
4560 return 0;
4563 void fx_init(struct kvm_vcpu *vcpu)
4565 unsigned after_mxcsr_mask;
4568 * Touch the fpu the first time in non atomic context as if
4569 * this is the first fpu instruction the exception handler
4570 * will fire before the instruction returns and it'll have to
4571 * allocate ram with GFP_KERNEL.
4573 if (!used_math())
4574 kvm_fx_save(&vcpu->arch.host_fx_image);
4576 /* Initialize guest FPU by resetting ours and saving into guest's */
4577 preempt_disable();
4578 kvm_fx_save(&vcpu->arch.host_fx_image);
4579 kvm_fx_finit();
4580 kvm_fx_save(&vcpu->arch.guest_fx_image);
4581 kvm_fx_restore(&vcpu->arch.host_fx_image);
4582 preempt_enable();
4584 vcpu->arch.cr0 |= X86_CR0_ET;
4585 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4586 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4587 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4588 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4590 EXPORT_SYMBOL_GPL(fx_init);
4592 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4594 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4595 return;
4597 vcpu->guest_fpu_loaded = 1;
4598 kvm_fx_save(&vcpu->arch.host_fx_image);
4599 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4601 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4603 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4605 if (!vcpu->guest_fpu_loaded)
4606 return;
4608 vcpu->guest_fpu_loaded = 0;
4609 kvm_fx_save(&vcpu->arch.guest_fx_image);
4610 kvm_fx_restore(&vcpu->arch.host_fx_image);
4611 ++vcpu->stat.fpu_reload;
4613 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4615 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4617 if (vcpu->arch.time_page) {
4618 kvm_release_page_dirty(vcpu->arch.time_page);
4619 vcpu->arch.time_page = NULL;
4622 kvm_x86_ops->vcpu_free(vcpu);
4625 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4626 unsigned int id)
4628 return kvm_x86_ops->vcpu_create(kvm, id);
4631 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4633 int r;
4635 /* We do fxsave: this must be aligned. */
4636 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4638 vcpu->arch.mtrr_state.have_fixed = 1;
4639 vcpu_load(vcpu);
4640 r = kvm_arch_vcpu_reset(vcpu);
4641 if (r == 0)
4642 r = kvm_mmu_setup(vcpu);
4643 vcpu_put(vcpu);
4644 if (r < 0)
4645 goto free_vcpu;
4647 return 0;
4648 free_vcpu:
4649 kvm_x86_ops->vcpu_free(vcpu);
4650 return r;
4653 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4655 vcpu_load(vcpu);
4656 kvm_mmu_unload(vcpu);
4657 vcpu_put(vcpu);
4659 kvm_x86_ops->vcpu_free(vcpu);
4662 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4664 vcpu->arch.nmi_pending = false;
4665 vcpu->arch.nmi_injected = false;
4667 vcpu->arch.switch_db_regs = 0;
4668 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4669 vcpu->arch.dr6 = DR6_FIXED_1;
4670 vcpu->arch.dr7 = DR7_FIXED_1;
4672 return kvm_x86_ops->vcpu_reset(vcpu);
4675 void kvm_arch_hardware_enable(void *garbage)
4677 kvm_x86_ops->hardware_enable(garbage);
4680 void kvm_arch_hardware_disable(void *garbage)
4682 kvm_x86_ops->hardware_disable(garbage);
4685 int kvm_arch_hardware_setup(void)
4687 return kvm_x86_ops->hardware_setup();
4690 void kvm_arch_hardware_unsetup(void)
4692 kvm_x86_ops->hardware_unsetup();
4695 void kvm_arch_check_processor_compat(void *rtn)
4697 kvm_x86_ops->check_processor_compatibility(rtn);
4700 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4702 struct page *page;
4703 struct kvm *kvm;
4704 int r;
4706 BUG_ON(vcpu->kvm == NULL);
4707 kvm = vcpu->kvm;
4709 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4710 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4711 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4712 else
4713 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4715 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4716 if (!page) {
4717 r = -ENOMEM;
4718 goto fail;
4720 vcpu->arch.pio_data = page_address(page);
4722 r = kvm_mmu_create(vcpu);
4723 if (r < 0)
4724 goto fail_free_pio_data;
4726 if (irqchip_in_kernel(kvm)) {
4727 r = kvm_create_lapic(vcpu);
4728 if (r < 0)
4729 goto fail_mmu_destroy;
4732 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4733 GFP_KERNEL);
4734 if (!vcpu->arch.mce_banks) {
4735 r = -ENOMEM;
4736 goto fail_mmu_destroy;
4738 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4740 return 0;
4742 fail_mmu_destroy:
4743 kvm_mmu_destroy(vcpu);
4744 fail_free_pio_data:
4745 free_page((unsigned long)vcpu->arch.pio_data);
4746 fail:
4747 return r;
4750 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4752 kvm_free_lapic(vcpu);
4753 down_read(&vcpu->kvm->slots_lock);
4754 kvm_mmu_destroy(vcpu);
4755 up_read(&vcpu->kvm->slots_lock);
4756 free_page((unsigned long)vcpu->arch.pio_data);
4759 struct kvm *kvm_arch_create_vm(void)
4761 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4763 if (!kvm)
4764 return ERR_PTR(-ENOMEM);
4766 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4767 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4769 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4770 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4772 rdtscll(kvm->arch.vm_init_tsc);
4774 return kvm;
4777 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4779 vcpu_load(vcpu);
4780 kvm_mmu_unload(vcpu);
4781 vcpu_put(vcpu);
4784 static void kvm_free_vcpus(struct kvm *kvm)
4786 unsigned int i;
4787 struct kvm_vcpu *vcpu;
4790 * Unpin any mmu pages first.
4792 kvm_for_each_vcpu(i, vcpu, kvm)
4793 kvm_unload_vcpu_mmu(vcpu);
4794 kvm_for_each_vcpu(i, vcpu, kvm)
4795 kvm_arch_vcpu_free(vcpu);
4797 mutex_lock(&kvm->lock);
4798 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4799 kvm->vcpus[i] = NULL;
4801 atomic_set(&kvm->online_vcpus, 0);
4802 mutex_unlock(&kvm->lock);
4805 void kvm_arch_sync_events(struct kvm *kvm)
4807 kvm_free_all_assigned_devices(kvm);
4810 void kvm_arch_destroy_vm(struct kvm *kvm)
4812 kvm_iommu_unmap_guest(kvm);
4813 kvm_free_pit(kvm);
4814 kfree(kvm->arch.vpic);
4815 kfree(kvm->arch.vioapic);
4816 kvm_free_vcpus(kvm);
4817 kvm_free_physmem(kvm);
4818 if (kvm->arch.apic_access_page)
4819 put_page(kvm->arch.apic_access_page);
4820 if (kvm->arch.ept_identity_pagetable)
4821 put_page(kvm->arch.ept_identity_pagetable);
4822 kfree(kvm);
4825 int kvm_arch_set_memory_region(struct kvm *kvm,
4826 struct kvm_userspace_memory_region *mem,
4827 struct kvm_memory_slot old,
4828 int user_alloc)
4830 int npages = mem->memory_size >> PAGE_SHIFT;
4831 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4833 /*To keep backward compatibility with older userspace,
4834 *x86 needs to hanlde !user_alloc case.
4836 if (!user_alloc) {
4837 if (npages && !old.rmap) {
4838 unsigned long userspace_addr;
4840 down_write(&current->mm->mmap_sem);
4841 userspace_addr = do_mmap(NULL, 0,
4842 npages * PAGE_SIZE,
4843 PROT_READ | PROT_WRITE,
4844 MAP_PRIVATE | MAP_ANONYMOUS,
4846 up_write(&current->mm->mmap_sem);
4848 if (IS_ERR((void *)userspace_addr))
4849 return PTR_ERR((void *)userspace_addr);
4851 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4852 spin_lock(&kvm->mmu_lock);
4853 memslot->userspace_addr = userspace_addr;
4854 spin_unlock(&kvm->mmu_lock);
4855 } else {
4856 if (!old.user_alloc && old.rmap) {
4857 int ret;
4859 down_write(&current->mm->mmap_sem);
4860 ret = do_munmap(current->mm, old.userspace_addr,
4861 old.npages * PAGE_SIZE);
4862 up_write(&current->mm->mmap_sem);
4863 if (ret < 0)
4864 printk(KERN_WARNING
4865 "kvm_vm_ioctl_set_memory_region: "
4866 "failed to munmap memory\n");
4871 spin_lock(&kvm->mmu_lock);
4872 if (!kvm->arch.n_requested_mmu_pages) {
4873 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4874 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4877 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4878 spin_unlock(&kvm->mmu_lock);
4879 kvm_flush_remote_tlbs(kvm);
4881 return 0;
4884 void kvm_arch_flush_shadow(struct kvm *kvm)
4886 kvm_mmu_zap_all(kvm);
4887 kvm_reload_remote_mmus(kvm);
4890 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4892 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4893 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4894 || vcpu->arch.nmi_pending ||
4895 (kvm_arch_interrupt_allowed(vcpu) &&
4896 kvm_cpu_has_interrupt(vcpu));
4899 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4901 int me;
4902 int cpu = vcpu->cpu;
4904 if (waitqueue_active(&vcpu->wq)) {
4905 wake_up_interruptible(&vcpu->wq);
4906 ++vcpu->stat.halt_wakeup;
4909 me = get_cpu();
4910 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4911 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4912 smp_send_reschedule(cpu);
4913 put_cpu();
4916 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4918 return kvm_x86_ops->interrupt_allowed(vcpu);
4921 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4922 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4923 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4924 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4925 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);