2 * spidev.c -- simple synchronous userspace interface to SPI devices
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
27 #include <linux/device.h>
28 #include <linux/err.h>
29 #include <linux/list.h>
30 #include <linux/errno.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/smp_lock.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/spidev.h>
38 #include <asm/uaccess.h>
42 * This supports acccess to SPI devices using normal userspace I/O calls.
43 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
44 * and often mask message boundaries, full SPI support requires full duplex
45 * transfers. There are several kinds of of internal message boundaries to
46 * handle chipselect management and other protocol options.
48 * SPI has a character major number assigned. We allocate minor numbers
49 * dynamically using a bitmask. You must use hotplug tools, such as udev
50 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
51 * nodes, since there is no fixed association of minor numbers with any
52 * particular SPI bus or device.
54 #define SPIDEV_MAJOR 153 /* assigned */
55 #define N_SPI_MINORS 32 /* ... up to 256 */
57 static unsigned long minors
[N_SPI_MINORS
/ BITS_PER_LONG
];
60 /* Bit masks for spi_device.mode management. Note that incorrect
61 * settings for CS_HIGH and 3WIRE can cause *lots* of trouble for other
62 * devices on a shared bus: CS_HIGH, because this device will be
63 * active when it shouldn't be; 3WIRE, because when active it won't
64 * behave as it should.
66 * REVISIT should changing those two modes be privileged?
68 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
69 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP)
74 struct spi_device
*spi
;
75 struct list_head device_entry
;
77 /* buffer is NULL unless this device is open (users > 0) */
78 struct mutex buf_lock
;
83 static LIST_HEAD(device_list
);
84 static DEFINE_MUTEX(device_list_lock
);
86 static unsigned bufsiz
= 4096;
87 module_param(bufsiz
, uint
, S_IRUGO
);
88 MODULE_PARM_DESC(bufsiz
, "data bytes in biggest supported SPI message");
90 /*-------------------------------------------------------------------------*/
93 * We can't use the standard synchronous wrappers for file I/O; we
94 * need to protect against async removal of the underlying spi_device.
96 static void spidev_complete(void *arg
)
102 spidev_sync(struct spidev_data
*spidev
, struct spi_message
*message
)
104 DECLARE_COMPLETION_ONSTACK(done
);
107 message
->complete
= spidev_complete
;
108 message
->context
= &done
;
110 spin_lock_irq(&spidev
->spi_lock
);
111 if (spidev
->spi
== NULL
)
114 status
= spi_async(spidev
->spi
, message
);
115 spin_unlock_irq(&spidev
->spi_lock
);
118 wait_for_completion(&done
);
119 status
= message
->status
;
121 status
= message
->actual_length
;
126 static inline ssize_t
127 spidev_sync_write(struct spidev_data
*spidev
, size_t len
)
129 struct spi_transfer t
= {
130 .tx_buf
= spidev
->buffer
,
133 struct spi_message m
;
135 spi_message_init(&m
);
136 spi_message_add_tail(&t
, &m
);
137 return spidev_sync(spidev
, &m
);
140 static inline ssize_t
141 spidev_sync_read(struct spidev_data
*spidev
, size_t len
)
143 struct spi_transfer t
= {
144 .rx_buf
= spidev
->buffer
,
147 struct spi_message m
;
149 spi_message_init(&m
);
150 spi_message_add_tail(&t
, &m
);
151 return spidev_sync(spidev
, &m
);
154 /*-------------------------------------------------------------------------*/
156 /* Read-only message with current device setup */
158 spidev_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*f_pos
)
160 struct spidev_data
*spidev
;
163 /* chipselect only toggles at start or end of operation */
167 spidev
= filp
->private_data
;
169 mutex_lock(&spidev
->buf_lock
);
170 status
= spidev_sync_read(spidev
, count
);
172 unsigned long missing
;
174 missing
= copy_to_user(buf
, spidev
->buffer
, status
);
175 if (missing
== status
)
178 status
= status
- missing
;
180 mutex_unlock(&spidev
->buf_lock
);
185 /* Write-only message with current device setup */
187 spidev_write(struct file
*filp
, const char __user
*buf
,
188 size_t count
, loff_t
*f_pos
)
190 struct spidev_data
*spidev
;
192 unsigned long missing
;
194 /* chipselect only toggles at start or end of operation */
198 spidev
= filp
->private_data
;
200 mutex_lock(&spidev
->buf_lock
);
201 missing
= copy_from_user(spidev
->buffer
, buf
, count
);
203 status
= spidev_sync_write(spidev
, count
);
206 mutex_unlock(&spidev
->buf_lock
);
211 static int spidev_message(struct spidev_data
*spidev
,
212 struct spi_ioc_transfer
*u_xfers
, unsigned n_xfers
)
214 struct spi_message msg
;
215 struct spi_transfer
*k_xfers
;
216 struct spi_transfer
*k_tmp
;
217 struct spi_ioc_transfer
*u_tmp
;
220 int status
= -EFAULT
;
222 spi_message_init(&msg
);
223 k_xfers
= kcalloc(n_xfers
, sizeof(*k_tmp
), GFP_KERNEL
);
227 /* Construct spi_message, copying any tx data to bounce buffer.
228 * We walk the array of user-provided transfers, using each one
229 * to initialize a kernel version of the same transfer.
231 buf
= spidev
->buffer
;
233 for (n
= n_xfers
, k_tmp
= k_xfers
, u_tmp
= u_xfers
;
235 n
--, k_tmp
++, u_tmp
++) {
236 k_tmp
->len
= u_tmp
->len
;
239 if (total
> bufsiz
) {
246 if (!access_ok(VERIFY_WRITE
, (u8 __user
*)
247 (uintptr_t) u_tmp
->rx_buf
,
253 if (copy_from_user(buf
, (const u8 __user
*)
254 (uintptr_t) u_tmp
->tx_buf
,
260 k_tmp
->cs_change
= !!u_tmp
->cs_change
;
261 k_tmp
->bits_per_word
= u_tmp
->bits_per_word
;
262 k_tmp
->delay_usecs
= u_tmp
->delay_usecs
;
263 k_tmp
->speed_hz
= u_tmp
->speed_hz
;
266 " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
268 u_tmp
->rx_buf
? "rx " : "",
269 u_tmp
->tx_buf
? "tx " : "",
270 u_tmp
->cs_change
? "cs " : "",
271 u_tmp
->bits_per_word
? : spi
->bits_per_word
,
273 u_tmp
->speed_hz
? : spi
->max_speed_hz
);
275 spi_message_add_tail(k_tmp
, &msg
);
278 status
= spidev_sync(spidev
, &msg
);
282 /* copy any rx data out of bounce buffer */
283 buf
= spidev
->buffer
;
284 for (n
= n_xfers
, u_tmp
= u_xfers
; n
; n
--, u_tmp
++) {
286 if (__copy_to_user((u8 __user
*)
287 (uintptr_t) u_tmp
->rx_buf
, buf
,
303 spidev_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
307 struct spidev_data
*spidev
;
308 struct spi_device
*spi
;
311 struct spi_ioc_transfer
*ioc
;
313 /* Check type and command number */
314 if (_IOC_TYPE(cmd
) != SPI_IOC_MAGIC
)
317 /* Check access direction once here; don't repeat below.
318 * IOC_DIR is from the user perspective, while access_ok is
319 * from the kernel perspective; so they look reversed.
321 if (_IOC_DIR(cmd
) & _IOC_READ
)
322 err
= !access_ok(VERIFY_WRITE
,
323 (void __user
*)arg
, _IOC_SIZE(cmd
));
324 if (err
== 0 && _IOC_DIR(cmd
) & _IOC_WRITE
)
325 err
= !access_ok(VERIFY_READ
,
326 (void __user
*)arg
, _IOC_SIZE(cmd
));
330 /* guard against device removal before, or while,
331 * we issue this ioctl.
333 spidev
= filp
->private_data
;
334 spin_lock_irq(&spidev
->spi_lock
);
335 spi
= spi_dev_get(spidev
->spi
);
336 spin_unlock_irq(&spidev
->spi_lock
);
341 /* use the buffer lock here for triple duty:
342 * - prevent I/O (from us) so calling spi_setup() is safe;
343 * - prevent concurrent SPI_IOC_WR_* from morphing
344 * data fields while SPI_IOC_RD_* reads them;
345 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
347 mutex_lock(&spidev
->buf_lock
);
351 case SPI_IOC_RD_MODE
:
352 retval
= __put_user(spi
->mode
& SPI_MODE_MASK
,
355 case SPI_IOC_RD_LSB_FIRST
:
356 retval
= __put_user((spi
->mode
& SPI_LSB_FIRST
) ? 1 : 0,
359 case SPI_IOC_RD_BITS_PER_WORD
:
360 retval
= __put_user(spi
->bits_per_word
, (__u8 __user
*)arg
);
362 case SPI_IOC_RD_MAX_SPEED_HZ
:
363 retval
= __put_user(spi
->max_speed_hz
, (__u32 __user
*)arg
);
367 case SPI_IOC_WR_MODE
:
368 retval
= __get_user(tmp
, (u8 __user
*)arg
);
372 if (tmp
& ~SPI_MODE_MASK
) {
377 tmp
|= spi
->mode
& ~SPI_MODE_MASK
;
379 retval
= spi_setup(spi
);
383 dev_dbg(&spi
->dev
, "spi mode %02x\n", tmp
);
386 case SPI_IOC_WR_LSB_FIRST
:
387 retval
= __get_user(tmp
, (__u8 __user
*)arg
);
392 spi
->mode
|= SPI_LSB_FIRST
;
394 spi
->mode
&= ~SPI_LSB_FIRST
;
395 retval
= spi_setup(spi
);
399 dev_dbg(&spi
->dev
, "%csb first\n",
403 case SPI_IOC_WR_BITS_PER_WORD
:
404 retval
= __get_user(tmp
, (__u8 __user
*)arg
);
406 u8 save
= spi
->bits_per_word
;
408 spi
->bits_per_word
= tmp
;
409 retval
= spi_setup(spi
);
411 spi
->bits_per_word
= save
;
413 dev_dbg(&spi
->dev
, "%d bits per word\n", tmp
);
416 case SPI_IOC_WR_MAX_SPEED_HZ
:
417 retval
= __get_user(tmp
, (__u32 __user
*)arg
);
419 u32 save
= spi
->max_speed_hz
;
421 spi
->max_speed_hz
= tmp
;
422 retval
= spi_setup(spi
);
424 spi
->max_speed_hz
= save
;
426 dev_dbg(&spi
->dev
, "%d Hz (max)\n", tmp
);
431 /* segmented and/or full-duplex I/O request */
432 if (_IOC_NR(cmd
) != _IOC_NR(SPI_IOC_MESSAGE(0))
433 || _IOC_DIR(cmd
) != _IOC_WRITE
) {
438 tmp
= _IOC_SIZE(cmd
);
439 if ((tmp
% sizeof(struct spi_ioc_transfer
)) != 0) {
443 n_ioc
= tmp
/ sizeof(struct spi_ioc_transfer
);
447 /* copy into scratch area */
448 ioc
= kmalloc(tmp
, GFP_KERNEL
);
453 if (__copy_from_user(ioc
, (void __user
*)arg
, tmp
)) {
459 /* translate to spi_message, execute */
460 retval
= spidev_message(spidev
, ioc
, n_ioc
);
465 mutex_unlock(&spidev
->buf_lock
);
470 static int spidev_open(struct inode
*inode
, struct file
*filp
)
472 struct spidev_data
*spidev
;
476 mutex_lock(&device_list_lock
);
478 list_for_each_entry(spidev
, &device_list
, device_entry
) {
479 if (spidev
->devt
== inode
->i_rdev
) {
485 if (!spidev
->buffer
) {
486 spidev
->buffer
= kmalloc(bufsiz
, GFP_KERNEL
);
487 if (!spidev
->buffer
) {
488 dev_dbg(&spidev
->spi
->dev
, "open/ENOMEM\n");
494 filp
->private_data
= spidev
;
495 nonseekable_open(inode
, filp
);
498 pr_debug("spidev: nothing for minor %d\n", iminor(inode
));
500 mutex_unlock(&device_list_lock
);
505 static int spidev_release(struct inode
*inode
, struct file
*filp
)
507 struct spidev_data
*spidev
;
510 mutex_lock(&device_list_lock
);
511 spidev
= filp
->private_data
;
512 filp
->private_data
= NULL
;
516 if (!spidev
->users
) {
519 kfree(spidev
->buffer
);
520 spidev
->buffer
= NULL
;
522 /* ... after we unbound from the underlying device? */
523 spin_lock_irq(&spidev
->spi_lock
);
524 dofree
= (spidev
->spi
== NULL
);
525 spin_unlock_irq(&spidev
->spi_lock
);
530 mutex_unlock(&device_list_lock
);
535 static struct file_operations spidev_fops
= {
536 .owner
= THIS_MODULE
,
537 /* REVISIT switch to aio primitives, so that userspace
538 * gets more complete API coverage. It'll simplify things
539 * too, except for the locking.
541 .write
= spidev_write
,
543 .unlocked_ioctl
= spidev_ioctl
,
545 .release
= spidev_release
,
548 /*-------------------------------------------------------------------------*/
550 /* The main reason to have this class is to make mdev/udev create the
551 * /dev/spidevB.C character device nodes exposing our userspace API.
552 * It also simplifies memory management.
555 static struct class *spidev_class
;
557 /*-------------------------------------------------------------------------*/
559 static int spidev_probe(struct spi_device
*spi
)
561 struct spidev_data
*spidev
;
565 /* Allocate driver data */
566 spidev
= kzalloc(sizeof(*spidev
), GFP_KERNEL
);
570 /* Initialize the driver data */
572 spin_lock_init(&spidev
->spi_lock
);
573 mutex_init(&spidev
->buf_lock
);
575 INIT_LIST_HEAD(&spidev
->device_entry
);
577 /* If we can allocate a minor number, hook up this device.
578 * Reusing minors is fine so long as udev or mdev is working.
580 mutex_lock(&device_list_lock
);
581 minor
= find_first_zero_bit(minors
, N_SPI_MINORS
);
582 if (minor
< N_SPI_MINORS
) {
585 spidev
->devt
= MKDEV(SPIDEV_MAJOR
, minor
);
586 dev
= device_create(spidev_class
, &spi
->dev
, spidev
->devt
,
587 spidev
, "spidev%d.%d",
588 spi
->master
->bus_num
, spi
->chip_select
);
589 status
= IS_ERR(dev
) ? PTR_ERR(dev
) : 0;
591 dev_dbg(&spi
->dev
, "no minor number available!\n");
595 set_bit(minor
, minors
);
596 list_add(&spidev
->device_entry
, &device_list
);
598 mutex_unlock(&device_list_lock
);
601 spi_set_drvdata(spi
, spidev
);
608 static int spidev_remove(struct spi_device
*spi
)
610 struct spidev_data
*spidev
= spi_get_drvdata(spi
);
612 /* make sure ops on existing fds can abort cleanly */
613 spin_lock_irq(&spidev
->spi_lock
);
615 spi_set_drvdata(spi
, NULL
);
616 spin_unlock_irq(&spidev
->spi_lock
);
618 /* prevent new opens */
619 mutex_lock(&device_list_lock
);
620 list_del(&spidev
->device_entry
);
621 device_destroy(spidev_class
, spidev
->devt
);
622 clear_bit(MINOR(spidev
->devt
), minors
);
623 if (spidev
->users
== 0)
625 mutex_unlock(&device_list_lock
);
630 static struct spi_driver spidev_spi
= {
633 .owner
= THIS_MODULE
,
635 .probe
= spidev_probe
,
636 .remove
= __devexit_p(spidev_remove
),
638 /* NOTE: suspend/resume methods are not necessary here.
639 * We don't do anything except pass the requests to/from
640 * the underlying controller. The refrigerator handles
641 * most issues; the controller driver handles the rest.
645 /*-------------------------------------------------------------------------*/
647 static int __init
spidev_init(void)
651 /* Claim our 256 reserved device numbers. Then register a class
652 * that will key udev/mdev to add/remove /dev nodes. Last, register
653 * the driver which manages those device numbers.
655 BUILD_BUG_ON(N_SPI_MINORS
> 256);
656 status
= register_chrdev(SPIDEV_MAJOR
, "spi", &spidev_fops
);
660 spidev_class
= class_create(THIS_MODULE
, "spidev");
661 if (IS_ERR(spidev_class
)) {
662 unregister_chrdev(SPIDEV_MAJOR
, spidev_spi
.driver
.name
);
663 return PTR_ERR(spidev_class
);
666 status
= spi_register_driver(&spidev_spi
);
668 class_destroy(spidev_class
);
669 unregister_chrdev(SPIDEV_MAJOR
, spidev_spi
.driver
.name
);
673 module_init(spidev_init
);
675 static void __exit
spidev_exit(void)
677 spi_unregister_driver(&spidev_spi
);
678 class_destroy(spidev_class
);
679 unregister_chrdev(SPIDEV_MAJOR
, spidev_spi
.driver
.name
);
681 module_exit(spidev_exit
);
683 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
684 MODULE_DESCRIPTION("User mode SPI device interface");
685 MODULE_LICENSE("GPL");