x86, mce: rename mce_notify_user to mce_notify_irq
[linux-2.6/linux-2.6-openrd.git] / fs / libfs.c
blob80046ddf5063a41768e8063ac405ce5d55e92aef
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/mount.h>
9 #include <linux/vfs.h>
10 #include <linux/mutex.h>
11 #include <linux/exportfs.h>
13 #include <asm/uaccess.h>
15 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
16 struct kstat *stat)
18 struct inode *inode = dentry->d_inode;
19 generic_fillattr(inode, stat);
20 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
21 return 0;
24 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
26 buf->f_type = dentry->d_sb->s_magic;
27 buf->f_bsize = PAGE_CACHE_SIZE;
28 buf->f_namelen = NAME_MAX;
29 return 0;
33 * Retaining negative dentries for an in-memory filesystem just wastes
34 * memory and lookup time: arrange for them to be deleted immediately.
36 static int simple_delete_dentry(struct dentry *dentry)
38 return 1;
42 * Lookup the data. This is trivial - if the dentry didn't already
43 * exist, we know it is negative. Set d_op to delete negative dentries.
45 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
47 static const struct dentry_operations simple_dentry_operations = {
48 .d_delete = simple_delete_dentry,
51 if (dentry->d_name.len > NAME_MAX)
52 return ERR_PTR(-ENAMETOOLONG);
53 dentry->d_op = &simple_dentry_operations;
54 d_add(dentry, NULL);
55 return NULL;
58 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
60 return 0;
63 int dcache_dir_open(struct inode *inode, struct file *file)
65 static struct qstr cursor_name = {.len = 1, .name = "."};
67 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
69 return file->private_data ? 0 : -ENOMEM;
72 int dcache_dir_close(struct inode *inode, struct file *file)
74 dput(file->private_data);
75 return 0;
78 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
80 mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
81 switch (origin) {
82 case 1:
83 offset += file->f_pos;
84 case 0:
85 if (offset >= 0)
86 break;
87 default:
88 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
89 return -EINVAL;
91 if (offset != file->f_pos) {
92 file->f_pos = offset;
93 if (file->f_pos >= 2) {
94 struct list_head *p;
95 struct dentry *cursor = file->private_data;
96 loff_t n = file->f_pos - 2;
98 spin_lock(&dcache_lock);
99 list_del(&cursor->d_u.d_child);
100 p = file->f_path.dentry->d_subdirs.next;
101 while (n && p != &file->f_path.dentry->d_subdirs) {
102 struct dentry *next;
103 next = list_entry(p, struct dentry, d_u.d_child);
104 if (!d_unhashed(next) && next->d_inode)
105 n--;
106 p = p->next;
108 list_add_tail(&cursor->d_u.d_child, p);
109 spin_unlock(&dcache_lock);
112 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
113 return offset;
116 /* Relationship between i_mode and the DT_xxx types */
117 static inline unsigned char dt_type(struct inode *inode)
119 return (inode->i_mode >> 12) & 15;
123 * Directory is locked and all positive dentries in it are safe, since
124 * for ramfs-type trees they can't go away without unlink() or rmdir(),
125 * both impossible due to the lock on directory.
128 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
130 struct dentry *dentry = filp->f_path.dentry;
131 struct dentry *cursor = filp->private_data;
132 struct list_head *p, *q = &cursor->d_u.d_child;
133 ino_t ino;
134 int i = filp->f_pos;
136 switch (i) {
137 case 0:
138 ino = dentry->d_inode->i_ino;
139 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
140 break;
141 filp->f_pos++;
142 i++;
143 /* fallthrough */
144 case 1:
145 ino = parent_ino(dentry);
146 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
147 break;
148 filp->f_pos++;
149 i++;
150 /* fallthrough */
151 default:
152 spin_lock(&dcache_lock);
153 if (filp->f_pos == 2)
154 list_move(q, &dentry->d_subdirs);
156 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
157 struct dentry *next;
158 next = list_entry(p, struct dentry, d_u.d_child);
159 if (d_unhashed(next) || !next->d_inode)
160 continue;
162 spin_unlock(&dcache_lock);
163 if (filldir(dirent, next->d_name.name,
164 next->d_name.len, filp->f_pos,
165 next->d_inode->i_ino,
166 dt_type(next->d_inode)) < 0)
167 return 0;
168 spin_lock(&dcache_lock);
169 /* next is still alive */
170 list_move(q, p);
171 p = q;
172 filp->f_pos++;
174 spin_unlock(&dcache_lock);
176 return 0;
179 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
181 return -EISDIR;
184 const struct file_operations simple_dir_operations = {
185 .open = dcache_dir_open,
186 .release = dcache_dir_close,
187 .llseek = dcache_dir_lseek,
188 .read = generic_read_dir,
189 .readdir = dcache_readdir,
190 .fsync = simple_sync_file,
193 const struct inode_operations simple_dir_inode_operations = {
194 .lookup = simple_lookup,
197 static const struct super_operations simple_super_operations = {
198 .statfs = simple_statfs,
202 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
203 * will never be mountable)
205 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
206 const struct super_operations *ops, unsigned long magic,
207 struct vfsmount *mnt)
209 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
210 struct dentry *dentry;
211 struct inode *root;
212 struct qstr d_name = {.name = name, .len = strlen(name)};
214 if (IS_ERR(s))
215 return PTR_ERR(s);
217 s->s_flags = MS_NOUSER;
218 s->s_maxbytes = ~0ULL;
219 s->s_blocksize = PAGE_SIZE;
220 s->s_blocksize_bits = PAGE_SHIFT;
221 s->s_magic = magic;
222 s->s_op = ops ? ops : &simple_super_operations;
223 s->s_time_gran = 1;
224 root = new_inode(s);
225 if (!root)
226 goto Enomem;
228 * since this is the first inode, make it number 1. New inodes created
229 * after this must take care not to collide with it (by passing
230 * max_reserved of 1 to iunique).
232 root->i_ino = 1;
233 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
234 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
235 dentry = d_alloc(NULL, &d_name);
236 if (!dentry) {
237 iput(root);
238 goto Enomem;
240 dentry->d_sb = s;
241 dentry->d_parent = dentry;
242 d_instantiate(dentry, root);
243 s->s_root = dentry;
244 s->s_flags |= MS_ACTIVE;
245 simple_set_mnt(mnt, s);
246 return 0;
248 Enomem:
249 deactivate_locked_super(s);
250 return -ENOMEM;
253 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
255 struct inode *inode = old_dentry->d_inode;
257 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
258 inc_nlink(inode);
259 atomic_inc(&inode->i_count);
260 dget(dentry);
261 d_instantiate(dentry, inode);
262 return 0;
265 static inline int simple_positive(struct dentry *dentry)
267 return dentry->d_inode && !d_unhashed(dentry);
270 int simple_empty(struct dentry *dentry)
272 struct dentry *child;
273 int ret = 0;
275 spin_lock(&dcache_lock);
276 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
277 if (simple_positive(child))
278 goto out;
279 ret = 1;
280 out:
281 spin_unlock(&dcache_lock);
282 return ret;
285 int simple_unlink(struct inode *dir, struct dentry *dentry)
287 struct inode *inode = dentry->d_inode;
289 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
290 drop_nlink(inode);
291 dput(dentry);
292 return 0;
295 int simple_rmdir(struct inode *dir, struct dentry *dentry)
297 if (!simple_empty(dentry))
298 return -ENOTEMPTY;
300 drop_nlink(dentry->d_inode);
301 simple_unlink(dir, dentry);
302 drop_nlink(dir);
303 return 0;
306 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
307 struct inode *new_dir, struct dentry *new_dentry)
309 struct inode *inode = old_dentry->d_inode;
310 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
312 if (!simple_empty(new_dentry))
313 return -ENOTEMPTY;
315 if (new_dentry->d_inode) {
316 simple_unlink(new_dir, new_dentry);
317 if (they_are_dirs)
318 drop_nlink(old_dir);
319 } else if (they_are_dirs) {
320 drop_nlink(old_dir);
321 inc_nlink(new_dir);
324 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
325 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
327 return 0;
330 int simple_readpage(struct file *file, struct page *page)
332 clear_highpage(page);
333 flush_dcache_page(page);
334 SetPageUptodate(page);
335 unlock_page(page);
336 return 0;
339 int simple_prepare_write(struct file *file, struct page *page,
340 unsigned from, unsigned to)
342 if (!PageUptodate(page)) {
343 if (to - from != PAGE_CACHE_SIZE)
344 zero_user_segments(page,
345 0, from,
346 to, PAGE_CACHE_SIZE);
348 return 0;
351 int simple_write_begin(struct file *file, struct address_space *mapping,
352 loff_t pos, unsigned len, unsigned flags,
353 struct page **pagep, void **fsdata)
355 struct page *page;
356 pgoff_t index;
357 unsigned from;
359 index = pos >> PAGE_CACHE_SHIFT;
360 from = pos & (PAGE_CACHE_SIZE - 1);
362 page = grab_cache_page_write_begin(mapping, index, flags);
363 if (!page)
364 return -ENOMEM;
366 *pagep = page;
368 return simple_prepare_write(file, page, from, from+len);
371 static int simple_commit_write(struct file *file, struct page *page,
372 unsigned from, unsigned to)
374 struct inode *inode = page->mapping->host;
375 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
377 if (!PageUptodate(page))
378 SetPageUptodate(page);
380 * No need to use i_size_read() here, the i_size
381 * cannot change under us because we hold the i_mutex.
383 if (pos > inode->i_size)
384 i_size_write(inode, pos);
385 set_page_dirty(page);
386 return 0;
389 int simple_write_end(struct file *file, struct address_space *mapping,
390 loff_t pos, unsigned len, unsigned copied,
391 struct page *page, void *fsdata)
393 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
395 /* zero the stale part of the page if we did a short copy */
396 if (copied < len) {
397 void *kaddr = kmap_atomic(page, KM_USER0);
398 memset(kaddr + from + copied, 0, len - copied);
399 flush_dcache_page(page);
400 kunmap_atomic(kaddr, KM_USER0);
403 simple_commit_write(file, page, from, from+copied);
405 unlock_page(page);
406 page_cache_release(page);
408 return copied;
412 * the inodes created here are not hashed. If you use iunique to generate
413 * unique inode values later for this filesystem, then you must take care
414 * to pass it an appropriate max_reserved value to avoid collisions.
416 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
418 struct inode *inode;
419 struct dentry *root;
420 struct dentry *dentry;
421 int i;
423 s->s_blocksize = PAGE_CACHE_SIZE;
424 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
425 s->s_magic = magic;
426 s->s_op = &simple_super_operations;
427 s->s_time_gran = 1;
429 inode = new_inode(s);
430 if (!inode)
431 return -ENOMEM;
433 * because the root inode is 1, the files array must not contain an
434 * entry at index 1
436 inode->i_ino = 1;
437 inode->i_mode = S_IFDIR | 0755;
438 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
439 inode->i_op = &simple_dir_inode_operations;
440 inode->i_fop = &simple_dir_operations;
441 inode->i_nlink = 2;
442 root = d_alloc_root(inode);
443 if (!root) {
444 iput(inode);
445 return -ENOMEM;
447 for (i = 0; !files->name || files->name[0]; i++, files++) {
448 if (!files->name)
449 continue;
451 /* warn if it tries to conflict with the root inode */
452 if (unlikely(i == 1))
453 printk(KERN_WARNING "%s: %s passed in a files array"
454 "with an index of 1!\n", __func__,
455 s->s_type->name);
457 dentry = d_alloc_name(root, files->name);
458 if (!dentry)
459 goto out;
460 inode = new_inode(s);
461 if (!inode)
462 goto out;
463 inode->i_mode = S_IFREG | files->mode;
464 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
465 inode->i_fop = files->ops;
466 inode->i_ino = i;
467 d_add(dentry, inode);
469 s->s_root = root;
470 return 0;
471 out:
472 d_genocide(root);
473 dput(root);
474 return -ENOMEM;
477 static DEFINE_SPINLOCK(pin_fs_lock);
479 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
481 struct vfsmount *mnt = NULL;
482 spin_lock(&pin_fs_lock);
483 if (unlikely(!*mount)) {
484 spin_unlock(&pin_fs_lock);
485 mnt = vfs_kern_mount(type, 0, type->name, NULL);
486 if (IS_ERR(mnt))
487 return PTR_ERR(mnt);
488 spin_lock(&pin_fs_lock);
489 if (!*mount)
490 *mount = mnt;
492 mntget(*mount);
493 ++*count;
494 spin_unlock(&pin_fs_lock);
495 mntput(mnt);
496 return 0;
499 void simple_release_fs(struct vfsmount **mount, int *count)
501 struct vfsmount *mnt;
502 spin_lock(&pin_fs_lock);
503 mnt = *mount;
504 if (!--*count)
505 *mount = NULL;
506 spin_unlock(&pin_fs_lock);
507 mntput(mnt);
511 * simple_read_from_buffer - copy data from the buffer to user space
512 * @to: the user space buffer to read to
513 * @count: the maximum number of bytes to read
514 * @ppos: the current position in the buffer
515 * @from: the buffer to read from
516 * @available: the size of the buffer
518 * The simple_read_from_buffer() function reads up to @count bytes from the
519 * buffer @from at offset @ppos into the user space address starting at @to.
521 * On success, the number of bytes read is returned and the offset @ppos is
522 * advanced by this number, or negative value is returned on error.
524 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
525 const void *from, size_t available)
527 loff_t pos = *ppos;
528 if (pos < 0)
529 return -EINVAL;
530 if (pos >= available)
531 return 0;
532 if (count > available - pos)
533 count = available - pos;
534 if (copy_to_user(to, from + pos, count))
535 return -EFAULT;
536 *ppos = pos + count;
537 return count;
541 * memory_read_from_buffer - copy data from the buffer
542 * @to: the kernel space buffer to read to
543 * @count: the maximum number of bytes to read
544 * @ppos: the current position in the buffer
545 * @from: the buffer to read from
546 * @available: the size of the buffer
548 * The memory_read_from_buffer() function reads up to @count bytes from the
549 * buffer @from at offset @ppos into the kernel space address starting at @to.
551 * On success, the number of bytes read is returned and the offset @ppos is
552 * advanced by this number, or negative value is returned on error.
554 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
555 const void *from, size_t available)
557 loff_t pos = *ppos;
559 if (pos < 0)
560 return -EINVAL;
561 if (pos >= available)
562 return 0;
563 if (count > available - pos)
564 count = available - pos;
565 memcpy(to, from + pos, count);
566 *ppos = pos + count;
568 return count;
572 * Transaction based IO.
573 * The file expects a single write which triggers the transaction, and then
574 * possibly a read which collects the result - which is stored in a
575 * file-local buffer.
578 void simple_transaction_set(struct file *file, size_t n)
580 struct simple_transaction_argresp *ar = file->private_data;
582 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
585 * The barrier ensures that ar->size will really remain zero until
586 * ar->data is ready for reading.
588 smp_mb();
589 ar->size = n;
592 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
594 struct simple_transaction_argresp *ar;
595 static DEFINE_SPINLOCK(simple_transaction_lock);
597 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
598 return ERR_PTR(-EFBIG);
600 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
601 if (!ar)
602 return ERR_PTR(-ENOMEM);
604 spin_lock(&simple_transaction_lock);
606 /* only one write allowed per open */
607 if (file->private_data) {
608 spin_unlock(&simple_transaction_lock);
609 free_page((unsigned long)ar);
610 return ERR_PTR(-EBUSY);
613 file->private_data = ar;
615 spin_unlock(&simple_transaction_lock);
617 if (copy_from_user(ar->data, buf, size))
618 return ERR_PTR(-EFAULT);
620 return ar->data;
623 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
625 struct simple_transaction_argresp *ar = file->private_data;
627 if (!ar)
628 return 0;
629 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
632 int simple_transaction_release(struct inode *inode, struct file *file)
634 free_page((unsigned long)file->private_data);
635 return 0;
638 /* Simple attribute files */
640 struct simple_attr {
641 int (*get)(void *, u64 *);
642 int (*set)(void *, u64);
643 char get_buf[24]; /* enough to store a u64 and "\n\0" */
644 char set_buf[24];
645 void *data;
646 const char *fmt; /* format for read operation */
647 struct mutex mutex; /* protects access to these buffers */
650 /* simple_attr_open is called by an actual attribute open file operation
651 * to set the attribute specific access operations. */
652 int simple_attr_open(struct inode *inode, struct file *file,
653 int (*get)(void *, u64 *), int (*set)(void *, u64),
654 const char *fmt)
656 struct simple_attr *attr;
658 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
659 if (!attr)
660 return -ENOMEM;
662 attr->get = get;
663 attr->set = set;
664 attr->data = inode->i_private;
665 attr->fmt = fmt;
666 mutex_init(&attr->mutex);
668 file->private_data = attr;
670 return nonseekable_open(inode, file);
673 int simple_attr_release(struct inode *inode, struct file *file)
675 kfree(file->private_data);
676 return 0;
679 /* read from the buffer that is filled with the get function */
680 ssize_t simple_attr_read(struct file *file, char __user *buf,
681 size_t len, loff_t *ppos)
683 struct simple_attr *attr;
684 size_t size;
685 ssize_t ret;
687 attr = file->private_data;
689 if (!attr->get)
690 return -EACCES;
692 ret = mutex_lock_interruptible(&attr->mutex);
693 if (ret)
694 return ret;
696 if (*ppos) { /* continued read */
697 size = strlen(attr->get_buf);
698 } else { /* first read */
699 u64 val;
700 ret = attr->get(attr->data, &val);
701 if (ret)
702 goto out;
704 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
705 attr->fmt, (unsigned long long)val);
708 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
709 out:
710 mutex_unlock(&attr->mutex);
711 return ret;
714 /* interpret the buffer as a number to call the set function with */
715 ssize_t simple_attr_write(struct file *file, const char __user *buf,
716 size_t len, loff_t *ppos)
718 struct simple_attr *attr;
719 u64 val;
720 size_t size;
721 ssize_t ret;
723 attr = file->private_data;
724 if (!attr->set)
725 return -EACCES;
727 ret = mutex_lock_interruptible(&attr->mutex);
728 if (ret)
729 return ret;
731 ret = -EFAULT;
732 size = min(sizeof(attr->set_buf) - 1, len);
733 if (copy_from_user(attr->set_buf, buf, size))
734 goto out;
736 ret = len; /* claim we got the whole input */
737 attr->set_buf[size] = '\0';
738 val = simple_strtol(attr->set_buf, NULL, 0);
739 attr->set(attr->data, val);
740 out:
741 mutex_unlock(&attr->mutex);
742 return ret;
746 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
747 * @sb: filesystem to do the file handle conversion on
748 * @fid: file handle to convert
749 * @fh_len: length of the file handle in bytes
750 * @fh_type: type of file handle
751 * @get_inode: filesystem callback to retrieve inode
753 * This function decodes @fid as long as it has one of the well-known
754 * Linux filehandle types and calls @get_inode on it to retrieve the
755 * inode for the object specified in the file handle.
757 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
758 int fh_len, int fh_type, struct inode *(*get_inode)
759 (struct super_block *sb, u64 ino, u32 gen))
761 struct inode *inode = NULL;
763 if (fh_len < 2)
764 return NULL;
766 switch (fh_type) {
767 case FILEID_INO32_GEN:
768 case FILEID_INO32_GEN_PARENT:
769 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
770 break;
773 return d_obtain_alias(inode);
775 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
778 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
779 * @sb: filesystem to do the file handle conversion on
780 * @fid: file handle to convert
781 * @fh_len: length of the file handle in bytes
782 * @fh_type: type of file handle
783 * @get_inode: filesystem callback to retrieve inode
785 * This function decodes @fid as long as it has one of the well-known
786 * Linux filehandle types and calls @get_inode on it to retrieve the
787 * inode for the _parent_ object specified in the file handle if it
788 * is specified in the file handle, or NULL otherwise.
790 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
791 int fh_len, int fh_type, struct inode *(*get_inode)
792 (struct super_block *sb, u64 ino, u32 gen))
794 struct inode *inode = NULL;
796 if (fh_len <= 2)
797 return NULL;
799 switch (fh_type) {
800 case FILEID_INO32_GEN_PARENT:
801 inode = get_inode(sb, fid->i32.parent_ino,
802 (fh_len > 3 ? fid->i32.parent_gen : 0));
803 break;
806 return d_obtain_alias(inode);
808 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
810 EXPORT_SYMBOL(dcache_dir_close);
811 EXPORT_SYMBOL(dcache_dir_lseek);
812 EXPORT_SYMBOL(dcache_dir_open);
813 EXPORT_SYMBOL(dcache_readdir);
814 EXPORT_SYMBOL(generic_read_dir);
815 EXPORT_SYMBOL(get_sb_pseudo);
816 EXPORT_SYMBOL(simple_write_begin);
817 EXPORT_SYMBOL(simple_write_end);
818 EXPORT_SYMBOL(simple_dir_inode_operations);
819 EXPORT_SYMBOL(simple_dir_operations);
820 EXPORT_SYMBOL(simple_empty);
821 EXPORT_SYMBOL(d_alloc_name);
822 EXPORT_SYMBOL(simple_fill_super);
823 EXPORT_SYMBOL(simple_getattr);
824 EXPORT_SYMBOL(simple_link);
825 EXPORT_SYMBOL(simple_lookup);
826 EXPORT_SYMBOL(simple_pin_fs);
827 EXPORT_UNUSED_SYMBOL(simple_prepare_write);
828 EXPORT_SYMBOL(simple_readpage);
829 EXPORT_SYMBOL(simple_release_fs);
830 EXPORT_SYMBOL(simple_rename);
831 EXPORT_SYMBOL(simple_rmdir);
832 EXPORT_SYMBOL(simple_statfs);
833 EXPORT_SYMBOL(simple_sync_file);
834 EXPORT_SYMBOL(simple_unlink);
835 EXPORT_SYMBOL(simple_read_from_buffer);
836 EXPORT_SYMBOL(memory_read_from_buffer);
837 EXPORT_SYMBOL(simple_transaction_set);
838 EXPORT_SYMBOL(simple_transaction_get);
839 EXPORT_SYMBOL(simple_transaction_read);
840 EXPORT_SYMBOL(simple_transaction_release);
841 EXPORT_SYMBOL_GPL(simple_attr_open);
842 EXPORT_SYMBOL_GPL(simple_attr_release);
843 EXPORT_SYMBOL_GPL(simple_attr_read);
844 EXPORT_SYMBOL_GPL(simple_attr_write);