2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
32 #include "intel_drv.h"
35 #include "drm_dp_helper.h"
37 #include "drm_crtc_helper.h"
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
);
42 static void intel_update_watermarks(struct drm_device
*dev
);
43 static void intel_increase_pllclock(struct drm_crtc
*crtc
, bool schedule
);
66 #define INTEL_P2_NUM 2
67 typedef struct intel_limit intel_limit_t
;
69 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
71 bool (* find_pll
)(const intel_limit_t
*, struct drm_crtc
*,
72 int, int, intel_clock_t
*);
73 bool (* find_reduced_pll
)(const intel_limit_t
*, struct drm_crtc
*,
74 int, int, intel_clock_t
*);
77 #define I8XX_DOT_MIN 25000
78 #define I8XX_DOT_MAX 350000
79 #define I8XX_VCO_MIN 930000
80 #define I8XX_VCO_MAX 1400000
84 #define I8XX_M_MAX 140
85 #define I8XX_M1_MIN 18
86 #define I8XX_M1_MAX 26
88 #define I8XX_M2_MAX 16
90 #define I8XX_P_MAX 128
92 #define I8XX_P1_MAX 33
93 #define I8XX_P1_LVDS_MIN 1
94 #define I8XX_P1_LVDS_MAX 6
95 #define I8XX_P2_SLOW 4
96 #define I8XX_P2_FAST 2
97 #define I8XX_P2_LVDS_SLOW 14
98 #define I8XX_P2_LVDS_FAST 7
99 #define I8XX_P2_SLOW_LIMIT 165000
101 #define I9XX_DOT_MIN 20000
102 #define I9XX_DOT_MAX 400000
103 #define I9XX_VCO_MIN 1400000
104 #define I9XX_VCO_MAX 2800000
105 #define PINEVIEW_VCO_MIN 1700000
106 #define PINEVIEW_VCO_MAX 3500000
109 /* Pineview's Ncounter is a ring counter */
110 #define PINEVIEW_N_MIN 3
111 #define PINEVIEW_N_MAX 6
112 #define I9XX_M_MIN 70
113 #define I9XX_M_MAX 120
114 #define PINEVIEW_M_MIN 2
115 #define PINEVIEW_M_MAX 256
116 #define I9XX_M1_MIN 10
117 #define I9XX_M1_MAX 22
118 #define I9XX_M2_MIN 5
119 #define I9XX_M2_MAX 9
120 /* Pineview M1 is reserved, and must be 0 */
121 #define PINEVIEW_M1_MIN 0
122 #define PINEVIEW_M1_MAX 0
123 #define PINEVIEW_M2_MIN 0
124 #define PINEVIEW_M2_MAX 254
125 #define I9XX_P_SDVO_DAC_MIN 5
126 #define I9XX_P_SDVO_DAC_MAX 80
127 #define I9XX_P_LVDS_MIN 7
128 #define I9XX_P_LVDS_MAX 98
129 #define PINEVIEW_P_LVDS_MIN 7
130 #define PINEVIEW_P_LVDS_MAX 112
131 #define I9XX_P1_MIN 1
132 #define I9XX_P1_MAX 8
133 #define I9XX_P2_SDVO_DAC_SLOW 10
134 #define I9XX_P2_SDVO_DAC_FAST 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
136 #define I9XX_P2_LVDS_SLOW 14
137 #define I9XX_P2_LVDS_FAST 7
138 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN 25000
142 #define G4X_DOT_SDVO_MAX 270000
143 #define G4X_VCO_MIN 1750000
144 #define G4X_VCO_MAX 3500000
145 #define G4X_N_SDVO_MIN 1
146 #define G4X_N_SDVO_MAX 4
147 #define G4X_M_SDVO_MIN 104
148 #define G4X_M_SDVO_MAX 138
149 #define G4X_M1_SDVO_MIN 17
150 #define G4X_M1_SDVO_MAX 23
151 #define G4X_M2_SDVO_MIN 5
152 #define G4X_M2_SDVO_MAX 11
153 #define G4X_P_SDVO_MIN 10
154 #define G4X_P_SDVO_MAX 30
155 #define G4X_P1_SDVO_MIN 1
156 #define G4X_P1_SDVO_MAX 3
157 #define G4X_P2_SDVO_SLOW 10
158 #define G4X_P2_SDVO_FAST 10
159 #define G4X_P2_SDVO_LIMIT 270000
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN 22000
163 #define G4X_DOT_HDMI_DAC_MAX 400000
164 #define G4X_N_HDMI_DAC_MIN 1
165 #define G4X_N_HDMI_DAC_MAX 4
166 #define G4X_M_HDMI_DAC_MIN 104
167 #define G4X_M_HDMI_DAC_MAX 138
168 #define G4X_M1_HDMI_DAC_MIN 16
169 #define G4X_M1_HDMI_DAC_MAX 23
170 #define G4X_M2_HDMI_DAC_MIN 5
171 #define G4X_M2_HDMI_DAC_MAX 11
172 #define G4X_P_HDMI_DAC_MIN 5
173 #define G4X_P_HDMI_DAC_MAX 80
174 #define G4X_P1_HDMI_DAC_MIN 1
175 #define G4X_P1_HDMI_DAC_MAX 8
176 #define G4X_P2_HDMI_DAC_SLOW 10
177 #define G4X_P2_HDMI_DAC_FAST 5
178 #define G4X_P2_HDMI_DAC_LIMIT 165000
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN 161670
220 #define G4X_DOT_DISPLAY_PORT_MAX 227000
221 #define G4X_N_DISPLAY_PORT_MIN 1
222 #define G4X_N_DISPLAY_PORT_MAX 2
223 #define G4X_M_DISPLAY_PORT_MIN 97
224 #define G4X_M_DISPLAY_PORT_MAX 108
225 #define G4X_M1_DISPLAY_PORT_MIN 0x10
226 #define G4X_M1_DISPLAY_PORT_MAX 0x12
227 #define G4X_M2_DISPLAY_PORT_MIN 0x05
228 #define G4X_M2_DISPLAY_PORT_MAX 0x06
229 #define G4X_P_DISPLAY_PORT_MIN 10
230 #define G4X_P_DISPLAY_PORT_MAX 20
231 #define G4X_P1_DISPLAY_PORT_MIN 1
232 #define G4X_P1_DISPLAY_PORT_MAX 2
233 #define G4X_P2_DISPLAY_PORT_SLOW 10
234 #define G4X_P2_DISPLAY_PORT_FAST 10
235 #define G4X_P2_DISPLAY_PORT_LIMIT 0
238 /* as we calculate clock using (register_value + 2) for
239 N/M1/M2, so here the range value for them is (actual_value-2).
241 #define IRONLAKE_DOT_MIN 25000
242 #define IRONLAKE_DOT_MAX 350000
243 #define IRONLAKE_VCO_MIN 1760000
244 #define IRONLAKE_VCO_MAX 3510000
245 #define IRONLAKE_N_MIN 1
246 #define IRONLAKE_N_MAX 5
247 #define IRONLAKE_M_MIN 79
248 #define IRONLAKE_M_MAX 118
249 #define IRONLAKE_M1_MIN 12
250 #define IRONLAKE_M1_MAX 23
251 #define IRONLAKE_M2_MIN 5
252 #define IRONLAKE_M2_MAX 9
253 #define IRONLAKE_P_SDVO_DAC_MIN 5
254 #define IRONLAKE_P_SDVO_DAC_MAX 80
255 #define IRONLAKE_P_LVDS_MIN 28
256 #define IRONLAKE_P_LVDS_MAX 112
257 #define IRONLAKE_P1_MIN 1
258 #define IRONLAKE_P1_MAX 8
259 #define IRONLAKE_P2_SDVO_DAC_SLOW 10
260 #define IRONLAKE_P2_SDVO_DAC_FAST 5
261 #define IRONLAKE_P2_LVDS_SLOW 14 /* single channel */
262 #define IRONLAKE_P2_LVDS_FAST 7 /* double channel */
263 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
266 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
267 int target
, int refclk
, intel_clock_t
*best_clock
);
269 intel_find_best_reduced_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
270 int target
, int refclk
, intel_clock_t
*best_clock
);
272 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
273 int target
, int refclk
, intel_clock_t
*best_clock
);
275 intel_ironlake_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
276 int target
, int refclk
, intel_clock_t
*best_clock
);
279 intel_find_pll_g4x_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
280 int target
, int refclk
, intel_clock_t
*best_clock
);
282 intel_find_pll_ironlake_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
283 int target
, int refclk
, intel_clock_t
*best_clock
);
285 static const intel_limit_t intel_limits_i8xx_dvo
= {
286 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
287 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
288 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
289 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
290 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
291 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
292 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
293 .p1
= { .min
= I8XX_P1_MIN
, .max
= I8XX_P1_MAX
},
294 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
295 .p2_slow
= I8XX_P2_SLOW
, .p2_fast
= I8XX_P2_FAST
},
296 .find_pll
= intel_find_best_PLL
,
297 .find_reduced_pll
= intel_find_best_reduced_PLL
,
300 static const intel_limit_t intel_limits_i8xx_lvds
= {
301 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
302 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
303 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
304 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
305 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
306 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
307 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
308 .p1
= { .min
= I8XX_P1_LVDS_MIN
, .max
= I8XX_P1_LVDS_MAX
},
309 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
310 .p2_slow
= I8XX_P2_LVDS_SLOW
, .p2_fast
= I8XX_P2_LVDS_FAST
},
311 .find_pll
= intel_find_best_PLL
,
312 .find_reduced_pll
= intel_find_best_reduced_PLL
,
315 static const intel_limit_t intel_limits_i9xx_sdvo
= {
316 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
317 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
318 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
319 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
320 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
321 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
322 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
323 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
324 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
325 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
326 .find_pll
= intel_find_best_PLL
,
327 .find_reduced_pll
= intel_find_best_reduced_PLL
,
330 static const intel_limit_t intel_limits_i9xx_lvds
= {
331 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
332 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
333 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
334 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
335 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
336 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
337 .p
= { .min
= I9XX_P_LVDS_MIN
, .max
= I9XX_P_LVDS_MAX
},
338 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
339 /* The single-channel range is 25-112Mhz, and dual-channel
340 * is 80-224Mhz. Prefer single channel as much as possible.
342 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
343 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_FAST
},
344 .find_pll
= intel_find_best_PLL
,
345 .find_reduced_pll
= intel_find_best_reduced_PLL
,
348 /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo
= {
350 .dot
= { .min
= G4X_DOT_SDVO_MIN
, .max
= G4X_DOT_SDVO_MAX
},
351 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
352 .n
= { .min
= G4X_N_SDVO_MIN
, .max
= G4X_N_SDVO_MAX
},
353 .m
= { .min
= G4X_M_SDVO_MIN
, .max
= G4X_M_SDVO_MAX
},
354 .m1
= { .min
= G4X_M1_SDVO_MIN
, .max
= G4X_M1_SDVO_MAX
},
355 .m2
= { .min
= G4X_M2_SDVO_MIN
, .max
= G4X_M2_SDVO_MAX
},
356 .p
= { .min
= G4X_P_SDVO_MIN
, .max
= G4X_P_SDVO_MAX
},
357 .p1
= { .min
= G4X_P1_SDVO_MIN
, .max
= G4X_P1_SDVO_MAX
},
358 .p2
= { .dot_limit
= G4X_P2_SDVO_LIMIT
,
359 .p2_slow
= G4X_P2_SDVO_SLOW
,
360 .p2_fast
= G4X_P2_SDVO_FAST
362 .find_pll
= intel_g4x_find_best_PLL
,
363 .find_reduced_pll
= intel_g4x_find_best_PLL
,
366 static const intel_limit_t intel_limits_g4x_hdmi
= {
367 .dot
= { .min
= G4X_DOT_HDMI_DAC_MIN
, .max
= G4X_DOT_HDMI_DAC_MAX
},
368 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
369 .n
= { .min
= G4X_N_HDMI_DAC_MIN
, .max
= G4X_N_HDMI_DAC_MAX
},
370 .m
= { .min
= G4X_M_HDMI_DAC_MIN
, .max
= G4X_M_HDMI_DAC_MAX
},
371 .m1
= { .min
= G4X_M1_HDMI_DAC_MIN
, .max
= G4X_M1_HDMI_DAC_MAX
},
372 .m2
= { .min
= G4X_M2_HDMI_DAC_MIN
, .max
= G4X_M2_HDMI_DAC_MAX
},
373 .p
= { .min
= G4X_P_HDMI_DAC_MIN
, .max
= G4X_P_HDMI_DAC_MAX
},
374 .p1
= { .min
= G4X_P1_HDMI_DAC_MIN
, .max
= G4X_P1_HDMI_DAC_MAX
},
375 .p2
= { .dot_limit
= G4X_P2_HDMI_DAC_LIMIT
,
376 .p2_slow
= G4X_P2_HDMI_DAC_SLOW
,
377 .p2_fast
= G4X_P2_HDMI_DAC_FAST
379 .find_pll
= intel_g4x_find_best_PLL
,
380 .find_reduced_pll
= intel_g4x_find_best_PLL
,
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds
= {
384 .dot
= { .min
= G4X_DOT_SINGLE_CHANNEL_LVDS_MIN
,
385 .max
= G4X_DOT_SINGLE_CHANNEL_LVDS_MAX
},
386 .vco
= { .min
= G4X_VCO_MIN
,
387 .max
= G4X_VCO_MAX
},
388 .n
= { .min
= G4X_N_SINGLE_CHANNEL_LVDS_MIN
,
389 .max
= G4X_N_SINGLE_CHANNEL_LVDS_MAX
},
390 .m
= { .min
= G4X_M_SINGLE_CHANNEL_LVDS_MIN
,
391 .max
= G4X_M_SINGLE_CHANNEL_LVDS_MAX
},
392 .m1
= { .min
= G4X_M1_SINGLE_CHANNEL_LVDS_MIN
,
393 .max
= G4X_M1_SINGLE_CHANNEL_LVDS_MAX
},
394 .m2
= { .min
= G4X_M2_SINGLE_CHANNEL_LVDS_MIN
,
395 .max
= G4X_M2_SINGLE_CHANNEL_LVDS_MAX
},
396 .p
= { .min
= G4X_P_SINGLE_CHANNEL_LVDS_MIN
,
397 .max
= G4X_P_SINGLE_CHANNEL_LVDS_MAX
},
398 .p1
= { .min
= G4X_P1_SINGLE_CHANNEL_LVDS_MIN
,
399 .max
= G4X_P1_SINGLE_CHANNEL_LVDS_MAX
},
400 .p2
= { .dot_limit
= G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT
,
401 .p2_slow
= G4X_P2_SINGLE_CHANNEL_LVDS_SLOW
,
402 .p2_fast
= G4X_P2_SINGLE_CHANNEL_LVDS_FAST
404 .find_pll
= intel_g4x_find_best_PLL
,
405 .find_reduced_pll
= intel_g4x_find_best_PLL
,
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds
= {
409 .dot
= { .min
= G4X_DOT_DUAL_CHANNEL_LVDS_MIN
,
410 .max
= G4X_DOT_DUAL_CHANNEL_LVDS_MAX
},
411 .vco
= { .min
= G4X_VCO_MIN
,
412 .max
= G4X_VCO_MAX
},
413 .n
= { .min
= G4X_N_DUAL_CHANNEL_LVDS_MIN
,
414 .max
= G4X_N_DUAL_CHANNEL_LVDS_MAX
},
415 .m
= { .min
= G4X_M_DUAL_CHANNEL_LVDS_MIN
,
416 .max
= G4X_M_DUAL_CHANNEL_LVDS_MAX
},
417 .m1
= { .min
= G4X_M1_DUAL_CHANNEL_LVDS_MIN
,
418 .max
= G4X_M1_DUAL_CHANNEL_LVDS_MAX
},
419 .m2
= { .min
= G4X_M2_DUAL_CHANNEL_LVDS_MIN
,
420 .max
= G4X_M2_DUAL_CHANNEL_LVDS_MAX
},
421 .p
= { .min
= G4X_P_DUAL_CHANNEL_LVDS_MIN
,
422 .max
= G4X_P_DUAL_CHANNEL_LVDS_MAX
},
423 .p1
= { .min
= G4X_P1_DUAL_CHANNEL_LVDS_MIN
,
424 .max
= G4X_P1_DUAL_CHANNEL_LVDS_MAX
},
425 .p2
= { .dot_limit
= G4X_P2_DUAL_CHANNEL_LVDS_LIMIT
,
426 .p2_slow
= G4X_P2_DUAL_CHANNEL_LVDS_SLOW
,
427 .p2_fast
= G4X_P2_DUAL_CHANNEL_LVDS_FAST
429 .find_pll
= intel_g4x_find_best_PLL
,
430 .find_reduced_pll
= intel_g4x_find_best_PLL
,
433 static const intel_limit_t intel_limits_g4x_display_port
= {
434 .dot
= { .min
= G4X_DOT_DISPLAY_PORT_MIN
,
435 .max
= G4X_DOT_DISPLAY_PORT_MAX
},
436 .vco
= { .min
= G4X_VCO_MIN
,
438 .n
= { .min
= G4X_N_DISPLAY_PORT_MIN
,
439 .max
= G4X_N_DISPLAY_PORT_MAX
},
440 .m
= { .min
= G4X_M_DISPLAY_PORT_MIN
,
441 .max
= G4X_M_DISPLAY_PORT_MAX
},
442 .m1
= { .min
= G4X_M1_DISPLAY_PORT_MIN
,
443 .max
= G4X_M1_DISPLAY_PORT_MAX
},
444 .m2
= { .min
= G4X_M2_DISPLAY_PORT_MIN
,
445 .max
= G4X_M2_DISPLAY_PORT_MAX
},
446 .p
= { .min
= G4X_P_DISPLAY_PORT_MIN
,
447 .max
= G4X_P_DISPLAY_PORT_MAX
},
448 .p1
= { .min
= G4X_P1_DISPLAY_PORT_MIN
,
449 .max
= G4X_P1_DISPLAY_PORT_MAX
},
450 .p2
= { .dot_limit
= G4X_P2_DISPLAY_PORT_LIMIT
,
451 .p2_slow
= G4X_P2_DISPLAY_PORT_SLOW
,
452 .p2_fast
= G4X_P2_DISPLAY_PORT_FAST
},
453 .find_pll
= intel_find_pll_g4x_dp
,
456 static const intel_limit_t intel_limits_pineview_sdvo
= {
457 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
458 .vco
= { .min
= PINEVIEW_VCO_MIN
, .max
= PINEVIEW_VCO_MAX
},
459 .n
= { .min
= PINEVIEW_N_MIN
, .max
= PINEVIEW_N_MAX
},
460 .m
= { .min
= PINEVIEW_M_MIN
, .max
= PINEVIEW_M_MAX
},
461 .m1
= { .min
= PINEVIEW_M1_MIN
, .max
= PINEVIEW_M1_MAX
},
462 .m2
= { .min
= PINEVIEW_M2_MIN
, .max
= PINEVIEW_M2_MAX
},
463 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
464 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
465 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
466 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
467 .find_pll
= intel_find_best_PLL
,
468 .find_reduced_pll
= intel_find_best_reduced_PLL
,
471 static const intel_limit_t intel_limits_pineview_lvds
= {
472 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
473 .vco
= { .min
= PINEVIEW_VCO_MIN
, .max
= PINEVIEW_VCO_MAX
},
474 .n
= { .min
= PINEVIEW_N_MIN
, .max
= PINEVIEW_N_MAX
},
475 .m
= { .min
= PINEVIEW_M_MIN
, .max
= PINEVIEW_M_MAX
},
476 .m1
= { .min
= PINEVIEW_M1_MIN
, .max
= PINEVIEW_M1_MAX
},
477 .m2
= { .min
= PINEVIEW_M2_MIN
, .max
= PINEVIEW_M2_MAX
},
478 .p
= { .min
= PINEVIEW_P_LVDS_MIN
, .max
= PINEVIEW_P_LVDS_MAX
},
479 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
480 /* Pineview only supports single-channel mode. */
481 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
482 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_SLOW
},
483 .find_pll
= intel_find_best_PLL
,
484 .find_reduced_pll
= intel_find_best_reduced_PLL
,
487 static const intel_limit_t intel_limits_ironlake_sdvo
= {
488 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
489 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
490 .n
= { .min
= IRONLAKE_N_MIN
, .max
= IRONLAKE_N_MAX
},
491 .m
= { .min
= IRONLAKE_M_MIN
, .max
= IRONLAKE_M_MAX
},
492 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
493 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
494 .p
= { .min
= IRONLAKE_P_SDVO_DAC_MIN
, .max
= IRONLAKE_P_SDVO_DAC_MAX
},
495 .p1
= { .min
= IRONLAKE_P1_MIN
, .max
= IRONLAKE_P1_MAX
},
496 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
497 .p2_slow
= IRONLAKE_P2_SDVO_DAC_SLOW
,
498 .p2_fast
= IRONLAKE_P2_SDVO_DAC_FAST
},
499 .find_pll
= intel_ironlake_find_best_PLL
,
502 static const intel_limit_t intel_limits_ironlake_lvds
= {
503 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
504 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
505 .n
= { .min
= IRONLAKE_N_MIN
, .max
= IRONLAKE_N_MAX
},
506 .m
= { .min
= IRONLAKE_M_MIN
, .max
= IRONLAKE_M_MAX
},
507 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
508 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
509 .p
= { .min
= IRONLAKE_P_LVDS_MIN
, .max
= IRONLAKE_P_LVDS_MAX
},
510 .p1
= { .min
= IRONLAKE_P1_MIN
, .max
= IRONLAKE_P1_MAX
},
511 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
512 .p2_slow
= IRONLAKE_P2_LVDS_SLOW
,
513 .p2_fast
= IRONLAKE_P2_LVDS_FAST
},
514 .find_pll
= intel_ironlake_find_best_PLL
,
517 static const intel_limit_t
*intel_ironlake_limit(struct drm_crtc
*crtc
)
519 const intel_limit_t
*limit
;
520 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
521 limit
= &intel_limits_ironlake_lvds
;
523 limit
= &intel_limits_ironlake_sdvo
;
528 static const intel_limit_t
*intel_g4x_limit(struct drm_crtc
*crtc
)
530 struct drm_device
*dev
= crtc
->dev
;
531 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
532 const intel_limit_t
*limit
;
534 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
535 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
537 /* LVDS with dual channel */
538 limit
= &intel_limits_g4x_dual_channel_lvds
;
540 /* LVDS with dual channel */
541 limit
= &intel_limits_g4x_single_channel_lvds
;
542 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
) ||
543 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
)) {
544 limit
= &intel_limits_g4x_hdmi
;
545 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_SDVO
)) {
546 limit
= &intel_limits_g4x_sdvo
;
547 } else if (intel_pipe_has_type (crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
548 limit
= &intel_limits_g4x_display_port
;
549 } else /* The option is for other outputs */
550 limit
= &intel_limits_i9xx_sdvo
;
555 static const intel_limit_t
*intel_limit(struct drm_crtc
*crtc
)
557 struct drm_device
*dev
= crtc
->dev
;
558 const intel_limit_t
*limit
;
560 if (IS_IRONLAKE(dev
))
561 limit
= intel_ironlake_limit(crtc
);
562 else if (IS_G4X(dev
)) {
563 limit
= intel_g4x_limit(crtc
);
564 } else if (IS_I9XX(dev
) && !IS_PINEVIEW(dev
)) {
565 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
566 limit
= &intel_limits_i9xx_lvds
;
568 limit
= &intel_limits_i9xx_sdvo
;
569 } else if (IS_PINEVIEW(dev
)) {
570 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
571 limit
= &intel_limits_pineview_lvds
;
573 limit
= &intel_limits_pineview_sdvo
;
575 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
576 limit
= &intel_limits_i8xx_lvds
;
578 limit
= &intel_limits_i8xx_dvo
;
583 /* m1 is reserved as 0 in Pineview, n is a ring counter */
584 static void pineview_clock(int refclk
, intel_clock_t
*clock
)
586 clock
->m
= clock
->m2
+ 2;
587 clock
->p
= clock
->p1
* clock
->p2
;
588 clock
->vco
= refclk
* clock
->m
/ clock
->n
;
589 clock
->dot
= clock
->vco
/ clock
->p
;
592 static void intel_clock(struct drm_device
*dev
, int refclk
, intel_clock_t
*clock
)
594 if (IS_PINEVIEW(dev
)) {
595 pineview_clock(refclk
, clock
);
598 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
599 clock
->p
= clock
->p1
* clock
->p2
;
600 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
601 clock
->dot
= clock
->vco
/ clock
->p
;
605 * Returns whether any output on the specified pipe is of the specified type
607 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
)
609 struct drm_device
*dev
= crtc
->dev
;
610 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
611 struct drm_connector
*l_entry
;
613 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
614 if (l_entry
->encoder
&&
615 l_entry
->encoder
->crtc
== crtc
) {
616 struct intel_output
*intel_output
= to_intel_output(l_entry
);
617 if (intel_output
->type
== type
)
624 struct drm_connector
*
625 intel_pipe_get_output (struct drm_crtc
*crtc
)
627 struct drm_device
*dev
= crtc
->dev
;
628 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
629 struct drm_connector
*l_entry
, *ret
= NULL
;
631 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
632 if (l_entry
->encoder
&&
633 l_entry
->encoder
->crtc
== crtc
) {
641 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
643 * Returns whether the given set of divisors are valid for a given refclk with
644 * the given connectors.
647 static bool intel_PLL_is_valid(struct drm_crtc
*crtc
, intel_clock_t
*clock
)
649 const intel_limit_t
*limit
= intel_limit (crtc
);
650 struct drm_device
*dev
= crtc
->dev
;
652 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
653 INTELPllInvalid ("p1 out of range\n");
654 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
655 INTELPllInvalid ("p out of range\n");
656 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
657 INTELPllInvalid ("m2 out of range\n");
658 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
659 INTELPllInvalid ("m1 out of range\n");
660 if (clock
->m1
<= clock
->m2
&& !IS_PINEVIEW(dev
))
661 INTELPllInvalid ("m1 <= m2\n");
662 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
663 INTELPllInvalid ("m out of range\n");
664 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
665 INTELPllInvalid ("n out of range\n");
666 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
667 INTELPllInvalid ("vco out of range\n");
668 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669 * connector, etc., rather than just a single range.
671 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
672 INTELPllInvalid ("dot out of range\n");
678 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
679 int target
, int refclk
, intel_clock_t
*best_clock
)
682 struct drm_device
*dev
= crtc
->dev
;
683 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
687 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
688 (I915_READ(LVDS
)) != 0) {
690 * For LVDS, if the panel is on, just rely on its current
691 * settings for dual-channel. We haven't figured out how to
692 * reliably set up different single/dual channel state, if we
695 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
697 clock
.p2
= limit
->p2
.p2_fast
;
699 clock
.p2
= limit
->p2
.p2_slow
;
701 if (target
< limit
->p2
.dot_limit
)
702 clock
.p2
= limit
->p2
.p2_slow
;
704 clock
.p2
= limit
->p2
.p2_fast
;
707 memset (best_clock
, 0, sizeof (*best_clock
));
709 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
711 for (clock
.m2
= limit
->m2
.min
;
712 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
713 /* m1 is always 0 in Pineview */
714 if (clock
.m2
>= clock
.m1
&& !IS_PINEVIEW(dev
))
716 for (clock
.n
= limit
->n
.min
;
717 clock
.n
<= limit
->n
.max
; clock
.n
++) {
718 for (clock
.p1
= limit
->p1
.min
;
719 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
722 intel_clock(dev
, refclk
, &clock
);
724 if (!intel_PLL_is_valid(crtc
, &clock
))
727 this_err
= abs(clock
.dot
- target
);
728 if (this_err
< err
) {
737 return (err
!= target
);
742 intel_find_best_reduced_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
743 int target
, int refclk
, intel_clock_t
*best_clock
)
746 struct drm_device
*dev
= crtc
->dev
;
751 memcpy(&clock
, best_clock
, sizeof(intel_clock_t
));
753 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
; clock
.m1
++) {
754 for (clock
.m2
= limit
->m2
.min
; clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
755 /* m1 is always 0 in Pineview */
756 if (clock
.m2
>= clock
.m1
&& !IS_PINEVIEW(dev
))
758 for (clock
.n
= limit
->n
.min
; clock
.n
<= limit
->n
.max
;
762 intel_clock(dev
, refclk
, &clock
);
764 if (!intel_PLL_is_valid(crtc
, &clock
))
767 this_err
= abs(clock
.dot
- target
);
768 if (this_err
< err
) {
781 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
782 int target
, int refclk
, intel_clock_t
*best_clock
)
784 struct drm_device
*dev
= crtc
->dev
;
785 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
789 /* approximately equals target * 0.00488 */
790 int err_most
= (target
>> 8) + (target
>> 10);
793 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
794 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
796 clock
.p2
= limit
->p2
.p2_fast
;
798 clock
.p2
= limit
->p2
.p2_slow
;
800 if (target
< limit
->p2
.dot_limit
)
801 clock
.p2
= limit
->p2
.p2_slow
;
803 clock
.p2
= limit
->p2
.p2_fast
;
806 memset(best_clock
, 0, sizeof(*best_clock
));
807 max_n
= limit
->n
.max
;
808 /* based on hardware requriment prefer smaller n to precision */
809 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
810 /* based on hardware requirment prefere larger m1,m2 */
811 for (clock
.m1
= limit
->m1
.max
;
812 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
813 for (clock
.m2
= limit
->m2
.max
;
814 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
815 for (clock
.p1
= limit
->p1
.max
;
816 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
819 intel_clock(dev
, refclk
, &clock
);
820 if (!intel_PLL_is_valid(crtc
, &clock
))
822 this_err
= abs(clock
.dot
- target
) ;
823 if (this_err
< err_most
) {
837 intel_find_pll_ironlake_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
838 int target
, int refclk
, intel_clock_t
*best_clock
)
840 struct drm_device
*dev
= crtc
->dev
;
842 if (target
< 200000) {
855 intel_clock(dev
, refclk
, &clock
);
856 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
861 intel_ironlake_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
862 int target
, int refclk
, intel_clock_t
*best_clock
)
864 struct drm_device
*dev
= crtc
->dev
;
865 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
870 /* eDP has only 2 clock choice, no n/m/p setting */
874 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
))
875 return intel_find_pll_ironlake_dp(limit
, crtc
, target
,
878 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
879 if ((I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) ==
881 clock
.p2
= limit
->p2
.p2_fast
;
883 clock
.p2
= limit
->p2
.p2_slow
;
885 if (target
< limit
->p2
.dot_limit
)
886 clock
.p2
= limit
->p2
.p2_slow
;
888 clock
.p2
= limit
->p2
.p2_fast
;
891 memset(best_clock
, 0, sizeof(*best_clock
));
892 for (clock
.p1
= limit
->p1
.max
; clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
893 /* based on hardware requriment prefer smaller n to precision */
894 for (clock
.n
= limit
->n
.min
; clock
.n
<= limit
->n
.max
; clock
.n
++) {
895 /* based on hardware requirment prefere larger m1,m2 */
896 for (clock
.m1
= limit
->m1
.max
;
897 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
898 for (clock
.m2
= limit
->m2
.max
;
899 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
902 intel_clock(dev
, refclk
, &clock
);
903 if (!intel_PLL_is_valid(crtc
, &clock
))
905 this_err
= abs((10000 - (target
*10000/clock
.dot
)));
906 if (this_err
< err_most
) {
908 /* found on first matching */
910 } else if (this_err
< err_min
) {
922 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
924 intel_find_pll_g4x_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
925 int target
, int refclk
, intel_clock_t
*best_clock
)
928 if (target
< 200000) {
941 clock
.m
= 5 * (clock
.m1
+ 2) + (clock
.m2
+ 2);
942 clock
.p
= (clock
.p1
* clock
.p2
);
943 clock
.dot
= 96000 * clock
.m
/ (clock
.n
+ 2) / clock
.p
;
945 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
950 intel_wait_for_vblank(struct drm_device
*dev
)
952 /* Wait for 20ms, i.e. one cycle at 50hz. */
956 /* Parameters have changed, update FBC info */
957 static void i8xx_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
959 struct drm_device
*dev
= crtc
->dev
;
960 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
961 struct drm_framebuffer
*fb
= crtc
->fb
;
962 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
963 struct drm_i915_gem_object
*obj_priv
= intel_fb
->obj
->driver_private
;
964 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
966 u32 fbc_ctl
, fbc_ctl2
;
968 dev_priv
->cfb_pitch
= dev_priv
->cfb_size
/ FBC_LL_SIZE
;
970 if (fb
->pitch
< dev_priv
->cfb_pitch
)
971 dev_priv
->cfb_pitch
= fb
->pitch
;
973 /* FBC_CTL wants 64B units */
974 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
975 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
976 dev_priv
->cfb_plane
= intel_crtc
->plane
;
977 plane
= dev_priv
->cfb_plane
== 0 ? FBC_CTL_PLANEA
: FBC_CTL_PLANEB
;
980 for (i
= 0; i
< (FBC_LL_SIZE
/ 32) + 1; i
++)
981 I915_WRITE(FBC_TAG
+ (i
* 4), 0);
984 fbc_ctl2
= FBC_CTL_FENCE_DBL
| FBC_CTL_IDLE_IMM
| plane
;
985 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
986 fbc_ctl2
|= FBC_CTL_CPU_FENCE
;
987 I915_WRITE(FBC_CONTROL2
, fbc_ctl2
);
988 I915_WRITE(FBC_FENCE_OFF
, crtc
->y
);
991 fbc_ctl
= FBC_CTL_EN
| FBC_CTL_PERIODIC
;
992 fbc_ctl
|= (dev_priv
->cfb_pitch
& 0xff) << FBC_CTL_STRIDE_SHIFT
;
993 fbc_ctl
|= (interval
& 0x2fff) << FBC_CTL_INTERVAL_SHIFT
;
994 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
995 fbc_ctl
|= dev_priv
->cfb_fence
;
996 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
998 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
999 dev_priv
->cfb_pitch
, crtc
->y
, dev_priv
->cfb_plane
);
1002 void i8xx_disable_fbc(struct drm_device
*dev
)
1004 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1007 if (!I915_HAS_FBC(dev
))
1010 /* Disable compression */
1011 fbc_ctl
= I915_READ(FBC_CONTROL
);
1012 fbc_ctl
&= ~FBC_CTL_EN
;
1013 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1015 /* Wait for compressing bit to clear */
1016 while (I915_READ(FBC_STATUS
) & FBC_STAT_COMPRESSING
)
1019 intel_wait_for_vblank(dev
);
1021 DRM_DEBUG_KMS("disabled FBC\n");
1024 static bool i8xx_fbc_enabled(struct drm_crtc
*crtc
)
1026 struct drm_device
*dev
= crtc
->dev
;
1027 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1029 return I915_READ(FBC_CONTROL
) & FBC_CTL_EN
;
1032 static void g4x_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1034 struct drm_device
*dev
= crtc
->dev
;
1035 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1036 struct drm_framebuffer
*fb
= crtc
->fb
;
1037 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1038 struct drm_i915_gem_object
*obj_priv
= intel_fb
->obj
->driver_private
;
1039 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1040 int plane
= (intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
:
1042 unsigned long stall_watermark
= 200;
1045 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1046 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1047 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1049 dpfc_ctl
= plane
| DPFC_SR_EN
| DPFC_CTL_LIMIT_1X
;
1050 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1051 dpfc_ctl
|= DPFC_CTL_FENCE_EN
| dev_priv
->cfb_fence
;
1052 I915_WRITE(DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1054 I915_WRITE(DPFC_CHICKEN
, ~DPFC_HT_MODIFY
);
1057 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1058 I915_WRITE(DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1059 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1060 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1061 I915_WRITE(DPFC_FENCE_YOFF
, crtc
->y
);
1064 I915_WRITE(DPFC_CONTROL
, I915_READ(DPFC_CONTROL
) | DPFC_CTL_EN
);
1066 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1069 void g4x_disable_fbc(struct drm_device
*dev
)
1071 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1074 /* Disable compression */
1075 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1076 dpfc_ctl
&= ~DPFC_CTL_EN
;
1077 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1078 intel_wait_for_vblank(dev
);
1080 DRM_DEBUG_KMS("disabled FBC\n");
1083 static bool g4x_fbc_enabled(struct drm_crtc
*crtc
)
1085 struct drm_device
*dev
= crtc
->dev
;
1086 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1088 return I915_READ(DPFC_CONTROL
) & DPFC_CTL_EN
;
1092 * intel_update_fbc - enable/disable FBC as needed
1093 * @crtc: CRTC to point the compressor at
1094 * @mode: mode in use
1096 * Set up the framebuffer compression hardware at mode set time. We
1097 * enable it if possible:
1098 * - plane A only (on pre-965)
1099 * - no pixel mulitply/line duplication
1100 * - no alpha buffer discard
1102 * - framebuffer <= 2048 in width, 1536 in height
1104 * We can't assume that any compression will take place (worst case),
1105 * so the compressed buffer has to be the same size as the uncompressed
1106 * one. It also must reside (along with the line length buffer) in
1109 * We need to enable/disable FBC on a global basis.
1111 static void intel_update_fbc(struct drm_crtc
*crtc
,
1112 struct drm_display_mode
*mode
)
1114 struct drm_device
*dev
= crtc
->dev
;
1115 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1116 struct drm_framebuffer
*fb
= crtc
->fb
;
1117 struct intel_framebuffer
*intel_fb
;
1118 struct drm_i915_gem_object
*obj_priv
;
1119 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1120 int plane
= intel_crtc
->plane
;
1122 if (!i915_powersave
)
1125 if (!dev_priv
->display
.fbc_enabled
||
1126 !dev_priv
->display
.enable_fbc
||
1127 !dev_priv
->display
.disable_fbc
)
1133 intel_fb
= to_intel_framebuffer(fb
);
1134 obj_priv
= intel_fb
->obj
->driver_private
;
1137 * If FBC is already on, we just have to verify that we can
1138 * keep it that way...
1139 * Need to disable if:
1140 * - changing FBC params (stride, fence, mode)
1141 * - new fb is too large to fit in compressed buffer
1142 * - going to an unsupported config (interlace, pixel multiply, etc.)
1144 if (intel_fb
->obj
->size
> dev_priv
->cfb_size
) {
1145 DRM_DEBUG_KMS("framebuffer too large, disabling "
1149 if ((mode
->flags
& DRM_MODE_FLAG_INTERLACE
) ||
1150 (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
)) {
1151 DRM_DEBUG_KMS("mode incompatible with compression, "
1155 if ((mode
->hdisplay
> 2048) ||
1156 (mode
->vdisplay
> 1536)) {
1157 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1160 if ((IS_I915GM(dev
) || IS_I945GM(dev
)) && plane
!= 0) {
1161 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1164 if (obj_priv
->tiling_mode
!= I915_TILING_X
) {
1165 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1169 if (dev_priv
->display
.fbc_enabled(crtc
)) {
1170 /* We can re-enable it in this case, but need to update pitch */
1171 if (fb
->pitch
> dev_priv
->cfb_pitch
)
1172 dev_priv
->display
.disable_fbc(dev
);
1173 if (obj_priv
->fence_reg
!= dev_priv
->cfb_fence
)
1174 dev_priv
->display
.disable_fbc(dev
);
1175 if (plane
!= dev_priv
->cfb_plane
)
1176 dev_priv
->display
.disable_fbc(dev
);
1179 if (!dev_priv
->display
.fbc_enabled(crtc
)) {
1180 /* Now try to turn it back on if possible */
1181 dev_priv
->display
.enable_fbc(crtc
, 500);
1187 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1188 /* Multiple disables should be harmless */
1189 if (dev_priv
->display
.fbc_enabled(crtc
))
1190 dev_priv
->display
.disable_fbc(dev
);
1194 intel_pin_and_fence_fb_obj(struct drm_device
*dev
, struct drm_gem_object
*obj
)
1196 struct drm_i915_gem_object
*obj_priv
= obj
->driver_private
;
1200 switch (obj_priv
->tiling_mode
) {
1201 case I915_TILING_NONE
:
1202 alignment
= 64 * 1024;
1205 /* pin() will align the object as required by fence */
1209 /* FIXME: Is this true? */
1210 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1216 ret
= i915_gem_object_pin(obj
, alignment
);
1220 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1221 * fence, whereas 965+ only requires a fence if using
1222 * framebuffer compression. For simplicity, we always install
1223 * a fence as the cost is not that onerous.
1225 if (obj_priv
->fence_reg
== I915_FENCE_REG_NONE
&&
1226 obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1227 ret
= i915_gem_object_get_fence_reg(obj
);
1229 i915_gem_object_unpin(obj
);
1238 intel_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
1239 struct drm_framebuffer
*old_fb
)
1241 struct drm_device
*dev
= crtc
->dev
;
1242 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1243 struct drm_i915_master_private
*master_priv
;
1244 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1245 struct intel_framebuffer
*intel_fb
;
1246 struct drm_i915_gem_object
*obj_priv
;
1247 struct drm_gem_object
*obj
;
1248 int pipe
= intel_crtc
->pipe
;
1249 int plane
= intel_crtc
->plane
;
1250 unsigned long Start
, Offset
;
1251 int dspbase
= (plane
== 0 ? DSPAADDR
: DSPBADDR
);
1252 int dspsurf
= (plane
== 0 ? DSPASURF
: DSPBSURF
);
1253 int dspstride
= (plane
== 0) ? DSPASTRIDE
: DSPBSTRIDE
;
1254 int dsptileoff
= (plane
== 0 ? DSPATILEOFF
: DSPBTILEOFF
);
1255 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1261 DRM_DEBUG_KMS("No FB bound\n");
1270 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
1274 intel_fb
= to_intel_framebuffer(crtc
->fb
);
1275 obj
= intel_fb
->obj
;
1276 obj_priv
= obj
->driver_private
;
1278 mutex_lock(&dev
->struct_mutex
);
1279 ret
= intel_pin_and_fence_fb_obj(dev
, obj
);
1281 mutex_unlock(&dev
->struct_mutex
);
1285 ret
= i915_gem_object_set_to_gtt_domain(obj
, 1);
1287 i915_gem_object_unpin(obj
);
1288 mutex_unlock(&dev
->struct_mutex
);
1292 dspcntr
= I915_READ(dspcntr_reg
);
1293 /* Mask out pixel format bits in case we change it */
1294 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
1295 switch (crtc
->fb
->bits_per_pixel
) {
1297 dspcntr
|= DISPPLANE_8BPP
;
1300 if (crtc
->fb
->depth
== 15)
1301 dspcntr
|= DISPPLANE_15_16BPP
;
1303 dspcntr
|= DISPPLANE_16BPP
;
1307 if (crtc
->fb
->depth
== 30)
1308 dspcntr
|= DISPPLANE_32BPP_30BIT_NO_ALPHA
;
1310 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
1313 DRM_ERROR("Unknown color depth\n");
1314 i915_gem_object_unpin(obj
);
1315 mutex_unlock(&dev
->struct_mutex
);
1318 if (IS_I965G(dev
)) {
1319 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1320 dspcntr
|= DISPPLANE_TILED
;
1322 dspcntr
&= ~DISPPLANE_TILED
;
1325 if (IS_IRONLAKE(dev
))
1327 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
1329 I915_WRITE(dspcntr_reg
, dspcntr
);
1331 Start
= obj_priv
->gtt_offset
;
1332 Offset
= y
* crtc
->fb
->pitch
+ x
* (crtc
->fb
->bits_per_pixel
/ 8);
1334 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start
, Offset
, x
, y
);
1335 I915_WRITE(dspstride
, crtc
->fb
->pitch
);
1336 if (IS_I965G(dev
)) {
1337 I915_WRITE(dspbase
, Offset
);
1339 I915_WRITE(dspsurf
, Start
);
1341 I915_WRITE(dsptileoff
, (y
<< 16) | x
);
1343 I915_WRITE(dspbase
, Start
+ Offset
);
1347 if ((IS_I965G(dev
) || plane
== 0))
1348 intel_update_fbc(crtc
, &crtc
->mode
);
1350 intel_wait_for_vblank(dev
);
1353 intel_fb
= to_intel_framebuffer(old_fb
);
1354 obj_priv
= intel_fb
->obj
->driver_private
;
1355 i915_gem_object_unpin(intel_fb
->obj
);
1357 intel_increase_pllclock(crtc
, true);
1359 mutex_unlock(&dev
->struct_mutex
);
1361 if (!dev
->primary
->master
)
1364 master_priv
= dev
->primary
->master
->driver_priv
;
1365 if (!master_priv
->sarea_priv
)
1369 master_priv
->sarea_priv
->pipeB_x
= x
;
1370 master_priv
->sarea_priv
->pipeB_y
= y
;
1372 master_priv
->sarea_priv
->pipeA_x
= x
;
1373 master_priv
->sarea_priv
->pipeA_y
= y
;
1379 /* Disable the VGA plane that we never use */
1380 static void i915_disable_vga (struct drm_device
*dev
)
1382 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1386 if (IS_IRONLAKE(dev
))
1387 vga_reg
= CPU_VGACNTRL
;
1391 if (I915_READ(vga_reg
) & VGA_DISP_DISABLE
)
1394 I915_WRITE8(VGA_SR_INDEX
, 1);
1395 sr1
= I915_READ8(VGA_SR_DATA
);
1396 I915_WRITE8(VGA_SR_DATA
, sr1
| (1 << 5));
1399 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
1402 static void ironlake_disable_pll_edp (struct drm_crtc
*crtc
)
1404 struct drm_device
*dev
= crtc
->dev
;
1405 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1408 DRM_DEBUG_KMS("\n");
1409 dpa_ctl
= I915_READ(DP_A
);
1410 dpa_ctl
&= ~DP_PLL_ENABLE
;
1411 I915_WRITE(DP_A
, dpa_ctl
);
1414 static void ironlake_enable_pll_edp (struct drm_crtc
*crtc
)
1416 struct drm_device
*dev
= crtc
->dev
;
1417 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1420 dpa_ctl
= I915_READ(DP_A
);
1421 dpa_ctl
|= DP_PLL_ENABLE
;
1422 I915_WRITE(DP_A
, dpa_ctl
);
1427 static void ironlake_set_pll_edp (struct drm_crtc
*crtc
, int clock
)
1429 struct drm_device
*dev
= crtc
->dev
;
1430 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1433 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock
);
1434 dpa_ctl
= I915_READ(DP_A
);
1435 dpa_ctl
&= ~DP_PLL_FREQ_MASK
;
1437 if (clock
< 200000) {
1439 dpa_ctl
|= DP_PLL_FREQ_160MHZ
;
1440 /* workaround for 160Mhz:
1441 1) program 0x4600c bits 15:0 = 0x8124
1442 2) program 0x46010 bit 0 = 1
1443 3) program 0x46034 bit 24 = 1
1444 4) program 0x64000 bit 14 = 1
1446 temp
= I915_READ(0x4600c);
1448 I915_WRITE(0x4600c, temp
| 0x8124);
1450 temp
= I915_READ(0x46010);
1451 I915_WRITE(0x46010, temp
| 1);
1453 temp
= I915_READ(0x46034);
1454 I915_WRITE(0x46034, temp
| (1 << 24));
1456 dpa_ctl
|= DP_PLL_FREQ_270MHZ
;
1458 I915_WRITE(DP_A
, dpa_ctl
);
1463 static void ironlake_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
1465 struct drm_device
*dev
= crtc
->dev
;
1466 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1467 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1468 int pipe
= intel_crtc
->pipe
;
1469 int plane
= intel_crtc
->plane
;
1470 int pch_dpll_reg
= (pipe
== 0) ? PCH_DPLL_A
: PCH_DPLL_B
;
1471 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
1472 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1473 int dspbase_reg
= (plane
== 0) ? DSPAADDR
: DSPBADDR
;
1474 int fdi_tx_reg
= (pipe
== 0) ? FDI_TXA_CTL
: FDI_TXB_CTL
;
1475 int fdi_rx_reg
= (pipe
== 0) ? FDI_RXA_CTL
: FDI_RXB_CTL
;
1476 int fdi_rx_iir_reg
= (pipe
== 0) ? FDI_RXA_IIR
: FDI_RXB_IIR
;
1477 int fdi_rx_imr_reg
= (pipe
== 0) ? FDI_RXA_IMR
: FDI_RXB_IMR
;
1478 int transconf_reg
= (pipe
== 0) ? TRANSACONF
: TRANSBCONF
;
1479 int pf_ctl_reg
= (pipe
== 0) ? PFA_CTL_1
: PFB_CTL_1
;
1480 int pf_win_size
= (pipe
== 0) ? PFA_WIN_SZ
: PFB_WIN_SZ
;
1481 int pf_win_pos
= (pipe
== 0) ? PFA_WIN_POS
: PFB_WIN_POS
;
1482 int cpu_htot_reg
= (pipe
== 0) ? HTOTAL_A
: HTOTAL_B
;
1483 int cpu_hblank_reg
= (pipe
== 0) ? HBLANK_A
: HBLANK_B
;
1484 int cpu_hsync_reg
= (pipe
== 0) ? HSYNC_A
: HSYNC_B
;
1485 int cpu_vtot_reg
= (pipe
== 0) ? VTOTAL_A
: VTOTAL_B
;
1486 int cpu_vblank_reg
= (pipe
== 0) ? VBLANK_A
: VBLANK_B
;
1487 int cpu_vsync_reg
= (pipe
== 0) ? VSYNC_A
: VSYNC_B
;
1488 int trans_htot_reg
= (pipe
== 0) ? TRANS_HTOTAL_A
: TRANS_HTOTAL_B
;
1489 int trans_hblank_reg
= (pipe
== 0) ? TRANS_HBLANK_A
: TRANS_HBLANK_B
;
1490 int trans_hsync_reg
= (pipe
== 0) ? TRANS_HSYNC_A
: TRANS_HSYNC_B
;
1491 int trans_vtot_reg
= (pipe
== 0) ? TRANS_VTOTAL_A
: TRANS_VTOTAL_B
;
1492 int trans_vblank_reg
= (pipe
== 0) ? TRANS_VBLANK_A
: TRANS_VBLANK_B
;
1493 int trans_vsync_reg
= (pipe
== 0) ? TRANS_VSYNC_A
: TRANS_VSYNC_B
;
1495 int tries
= 5, j
, n
;
1497 /* XXX: When our outputs are all unaware of DPMS modes other than off
1498 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1501 case DRM_MODE_DPMS_ON
:
1502 case DRM_MODE_DPMS_STANDBY
:
1503 case DRM_MODE_DPMS_SUSPEND
:
1504 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe
);
1506 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
1507 temp
= I915_READ(PCH_LVDS
);
1508 if ((temp
& LVDS_PORT_EN
) == 0) {
1509 I915_WRITE(PCH_LVDS
, temp
| LVDS_PORT_EN
);
1510 POSTING_READ(PCH_LVDS
);
1515 /* enable eDP PLL */
1516 ironlake_enable_pll_edp(crtc
);
1518 /* enable PCH DPLL */
1519 temp
= I915_READ(pch_dpll_reg
);
1520 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
1521 I915_WRITE(pch_dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1522 I915_READ(pch_dpll_reg
);
1525 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1526 temp
= I915_READ(fdi_rx_reg
);
1527 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_PLL_ENABLE
|
1529 FDI_DP_PORT_WIDTH_X4
); /* default 4 lanes */
1530 I915_READ(fdi_rx_reg
);
1533 /* Enable CPU FDI TX PLL, always on for Ironlake */
1534 temp
= I915_READ(fdi_tx_reg
);
1535 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
1536 I915_WRITE(fdi_tx_reg
, temp
| FDI_TX_PLL_ENABLE
);
1537 I915_READ(fdi_tx_reg
);
1542 /* Enable panel fitting for LVDS */
1543 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
1544 temp
= I915_READ(pf_ctl_reg
);
1545 I915_WRITE(pf_ctl_reg
, temp
| PF_ENABLE
| PF_FILTER_MED_3x3
);
1547 /* currently full aspect */
1548 I915_WRITE(pf_win_pos
, 0);
1550 I915_WRITE(pf_win_size
,
1551 (dev_priv
->panel_fixed_mode
->hdisplay
<< 16) |
1552 (dev_priv
->panel_fixed_mode
->vdisplay
));
1555 /* Enable CPU pipe */
1556 temp
= I915_READ(pipeconf_reg
);
1557 if ((temp
& PIPEACONF_ENABLE
) == 0) {
1558 I915_WRITE(pipeconf_reg
, temp
| PIPEACONF_ENABLE
);
1559 I915_READ(pipeconf_reg
);
1563 /* configure and enable CPU plane */
1564 temp
= I915_READ(dspcntr_reg
);
1565 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
1566 I915_WRITE(dspcntr_reg
, temp
| DISPLAY_PLANE_ENABLE
);
1567 /* Flush the plane changes */
1568 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1572 /* enable CPU FDI TX and PCH FDI RX */
1573 temp
= I915_READ(fdi_tx_reg
);
1574 temp
|= FDI_TX_ENABLE
;
1575 temp
|= FDI_DP_PORT_WIDTH_X4
; /* default */
1576 temp
&= ~FDI_LINK_TRAIN_NONE
;
1577 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1578 I915_WRITE(fdi_tx_reg
, temp
);
1579 I915_READ(fdi_tx_reg
);
1581 temp
= I915_READ(fdi_rx_reg
);
1582 temp
&= ~FDI_LINK_TRAIN_NONE
;
1583 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1584 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_ENABLE
);
1585 I915_READ(fdi_rx_reg
);
1590 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1592 temp
= I915_READ(fdi_rx_imr_reg
);
1593 temp
&= ~FDI_RX_SYMBOL_LOCK
;
1594 temp
&= ~FDI_RX_BIT_LOCK
;
1595 I915_WRITE(fdi_rx_imr_reg
, temp
);
1596 I915_READ(fdi_rx_imr_reg
);
1599 temp
= I915_READ(fdi_rx_iir_reg
);
1600 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1602 if ((temp
& FDI_RX_BIT_LOCK
) == 0) {
1603 for (j
= 0; j
< tries
; j
++) {
1604 temp
= I915_READ(fdi_rx_iir_reg
);
1605 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1607 if (temp
& FDI_RX_BIT_LOCK
)
1612 I915_WRITE(fdi_rx_iir_reg
,
1613 temp
| FDI_RX_BIT_LOCK
);
1615 DRM_DEBUG_KMS("train 1 fail\n");
1617 I915_WRITE(fdi_rx_iir_reg
,
1618 temp
| FDI_RX_BIT_LOCK
);
1619 DRM_DEBUG_KMS("train 1 ok 2!\n");
1621 temp
= I915_READ(fdi_tx_reg
);
1622 temp
&= ~FDI_LINK_TRAIN_NONE
;
1623 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1624 I915_WRITE(fdi_tx_reg
, temp
);
1626 temp
= I915_READ(fdi_rx_reg
);
1627 temp
&= ~FDI_LINK_TRAIN_NONE
;
1628 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1629 I915_WRITE(fdi_rx_reg
, temp
);
1633 temp
= I915_READ(fdi_rx_iir_reg
);
1634 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1636 if ((temp
& FDI_RX_SYMBOL_LOCK
) == 0) {
1637 for (j
= 0; j
< tries
; j
++) {
1638 temp
= I915_READ(fdi_rx_iir_reg
);
1639 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1641 if (temp
& FDI_RX_SYMBOL_LOCK
)
1646 I915_WRITE(fdi_rx_iir_reg
,
1647 temp
| FDI_RX_SYMBOL_LOCK
);
1648 DRM_DEBUG_KMS("train 2 ok 1!\n");
1650 DRM_DEBUG_KMS("train 2 fail\n");
1652 I915_WRITE(fdi_rx_iir_reg
,
1653 temp
| FDI_RX_SYMBOL_LOCK
);
1654 DRM_DEBUG_KMS("train 2 ok 2!\n");
1656 DRM_DEBUG_KMS("train done\n");
1658 /* set transcoder timing */
1659 I915_WRITE(trans_htot_reg
, I915_READ(cpu_htot_reg
));
1660 I915_WRITE(trans_hblank_reg
, I915_READ(cpu_hblank_reg
));
1661 I915_WRITE(trans_hsync_reg
, I915_READ(cpu_hsync_reg
));
1663 I915_WRITE(trans_vtot_reg
, I915_READ(cpu_vtot_reg
));
1664 I915_WRITE(trans_vblank_reg
, I915_READ(cpu_vblank_reg
));
1665 I915_WRITE(trans_vsync_reg
, I915_READ(cpu_vsync_reg
));
1667 /* enable PCH transcoder */
1668 temp
= I915_READ(transconf_reg
);
1669 I915_WRITE(transconf_reg
, temp
| TRANS_ENABLE
);
1670 I915_READ(transconf_reg
);
1672 while ((I915_READ(transconf_reg
) & TRANS_STATE_ENABLE
) == 0)
1677 temp
= I915_READ(fdi_tx_reg
);
1678 temp
&= ~FDI_LINK_TRAIN_NONE
;
1679 I915_WRITE(fdi_tx_reg
, temp
| FDI_LINK_TRAIN_NONE
|
1680 FDI_TX_ENHANCE_FRAME_ENABLE
);
1681 I915_READ(fdi_tx_reg
);
1683 temp
= I915_READ(fdi_rx_reg
);
1684 temp
&= ~FDI_LINK_TRAIN_NONE
;
1685 I915_WRITE(fdi_rx_reg
, temp
| FDI_LINK_TRAIN_NONE
|
1686 FDI_RX_ENHANCE_FRAME_ENABLE
);
1687 I915_READ(fdi_rx_reg
);
1689 /* wait one idle pattern time */
1694 intel_crtc_load_lut(crtc
);
1697 case DRM_MODE_DPMS_OFF
:
1698 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe
);
1700 /* Disable display plane */
1701 temp
= I915_READ(dspcntr_reg
);
1702 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
1703 I915_WRITE(dspcntr_reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
1704 /* Flush the plane changes */
1705 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1706 I915_READ(dspbase_reg
);
1709 i915_disable_vga(dev
);
1711 /* disable cpu pipe, disable after all planes disabled */
1712 temp
= I915_READ(pipeconf_reg
);
1713 if ((temp
& PIPEACONF_ENABLE
) != 0) {
1714 I915_WRITE(pipeconf_reg
, temp
& ~PIPEACONF_ENABLE
);
1715 I915_READ(pipeconf_reg
);
1717 /* wait for cpu pipe off, pipe state */
1718 while ((I915_READ(pipeconf_reg
) & I965_PIPECONF_ACTIVE
) != 0) {
1724 DRM_DEBUG_KMS("pipe %d off delay\n",
1730 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe
);
1735 temp
= I915_READ(pf_ctl_reg
);
1736 if ((temp
& PF_ENABLE
) != 0) {
1737 I915_WRITE(pf_ctl_reg
, temp
& ~PF_ENABLE
);
1738 I915_READ(pf_ctl_reg
);
1740 I915_WRITE(pf_win_size
, 0);
1742 /* disable CPU FDI tx and PCH FDI rx */
1743 temp
= I915_READ(fdi_tx_reg
);
1744 I915_WRITE(fdi_tx_reg
, temp
& ~FDI_TX_ENABLE
);
1745 I915_READ(fdi_tx_reg
);
1747 temp
= I915_READ(fdi_rx_reg
);
1748 I915_WRITE(fdi_rx_reg
, temp
& ~FDI_RX_ENABLE
);
1749 I915_READ(fdi_rx_reg
);
1753 /* still set train pattern 1 */
1754 temp
= I915_READ(fdi_tx_reg
);
1755 temp
&= ~FDI_LINK_TRAIN_NONE
;
1756 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1757 I915_WRITE(fdi_tx_reg
, temp
);
1759 temp
= I915_READ(fdi_rx_reg
);
1760 temp
&= ~FDI_LINK_TRAIN_NONE
;
1761 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1762 I915_WRITE(fdi_rx_reg
, temp
);
1766 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
1767 temp
= I915_READ(PCH_LVDS
);
1768 I915_WRITE(PCH_LVDS
, temp
& ~LVDS_PORT_EN
);
1769 I915_READ(PCH_LVDS
);
1773 /* disable PCH transcoder */
1774 temp
= I915_READ(transconf_reg
);
1775 if ((temp
& TRANS_ENABLE
) != 0) {
1776 I915_WRITE(transconf_reg
, temp
& ~TRANS_ENABLE
);
1777 I915_READ(transconf_reg
);
1779 /* wait for PCH transcoder off, transcoder state */
1780 while ((I915_READ(transconf_reg
) & TRANS_STATE_ENABLE
) != 0) {
1786 DRM_DEBUG_KMS("transcoder %d off "
1795 /* disable PCH DPLL */
1796 temp
= I915_READ(pch_dpll_reg
);
1797 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
1798 I915_WRITE(pch_dpll_reg
, temp
& ~DPLL_VCO_ENABLE
);
1799 I915_READ(pch_dpll_reg
);
1803 ironlake_disable_pll_edp(crtc
);
1806 temp
= I915_READ(fdi_rx_reg
);
1807 temp
&= ~FDI_SEL_PCDCLK
;
1808 I915_WRITE(fdi_rx_reg
, temp
);
1809 I915_READ(fdi_rx_reg
);
1811 temp
= I915_READ(fdi_rx_reg
);
1812 temp
&= ~FDI_RX_PLL_ENABLE
;
1813 I915_WRITE(fdi_rx_reg
, temp
);
1814 I915_READ(fdi_rx_reg
);
1816 /* Disable CPU FDI TX PLL */
1817 temp
= I915_READ(fdi_tx_reg
);
1818 if ((temp
& FDI_TX_PLL_ENABLE
) != 0) {
1819 I915_WRITE(fdi_tx_reg
, temp
& ~FDI_TX_PLL_ENABLE
);
1820 I915_READ(fdi_tx_reg
);
1824 /* Wait for the clocks to turn off. */
1830 static void intel_crtc_dpms_overlay(struct intel_crtc
*intel_crtc
, bool enable
)
1832 struct intel_overlay
*overlay
;
1835 if (!enable
&& intel_crtc
->overlay
) {
1836 overlay
= intel_crtc
->overlay
;
1837 mutex_lock(&overlay
->dev
->struct_mutex
);
1839 ret
= intel_overlay_switch_off(overlay
);
1843 ret
= intel_overlay_recover_from_interrupt(overlay
, 0);
1845 /* overlay doesn't react anymore. Usually
1846 * results in a black screen and an unkillable
1849 overlay
->hw_wedged
= HW_WEDGED
;
1853 mutex_unlock(&overlay
->dev
->struct_mutex
);
1855 /* Let userspace switch the overlay on again. In most cases userspace
1856 * has to recompute where to put it anyway. */
1861 static void i9xx_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
1863 struct drm_device
*dev
= crtc
->dev
;
1864 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1865 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1866 int pipe
= intel_crtc
->pipe
;
1867 int plane
= intel_crtc
->plane
;
1868 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
1869 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1870 int dspbase_reg
= (plane
== 0) ? DSPAADDR
: DSPBADDR
;
1871 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
1874 /* XXX: When our outputs are all unaware of DPMS modes other than off
1875 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1878 case DRM_MODE_DPMS_ON
:
1879 case DRM_MODE_DPMS_STANDBY
:
1880 case DRM_MODE_DPMS_SUSPEND
:
1881 intel_update_watermarks(dev
);
1883 /* Enable the DPLL */
1884 temp
= I915_READ(dpll_reg
);
1885 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
1886 I915_WRITE(dpll_reg
, temp
);
1887 I915_READ(dpll_reg
);
1888 /* Wait for the clocks to stabilize. */
1890 I915_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1891 I915_READ(dpll_reg
);
1892 /* Wait for the clocks to stabilize. */
1894 I915_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1895 I915_READ(dpll_reg
);
1896 /* Wait for the clocks to stabilize. */
1900 /* Enable the pipe */
1901 temp
= I915_READ(pipeconf_reg
);
1902 if ((temp
& PIPEACONF_ENABLE
) == 0)
1903 I915_WRITE(pipeconf_reg
, temp
| PIPEACONF_ENABLE
);
1905 /* Enable the plane */
1906 temp
= I915_READ(dspcntr_reg
);
1907 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
1908 I915_WRITE(dspcntr_reg
, temp
| DISPLAY_PLANE_ENABLE
);
1909 /* Flush the plane changes */
1910 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1913 intel_crtc_load_lut(crtc
);
1915 if ((IS_I965G(dev
) || plane
== 0))
1916 intel_update_fbc(crtc
, &crtc
->mode
);
1918 /* Give the overlay scaler a chance to enable if it's on this pipe */
1919 intel_crtc_dpms_overlay(intel_crtc
, true);
1921 case DRM_MODE_DPMS_OFF
:
1922 intel_update_watermarks(dev
);
1924 /* Give the overlay scaler a chance to disable if it's on this pipe */
1925 intel_crtc_dpms_overlay(intel_crtc
, false);
1926 drm_vblank_off(dev
, pipe
);
1928 if (dev_priv
->cfb_plane
== plane
&&
1929 dev_priv
->display
.disable_fbc
)
1930 dev_priv
->display
.disable_fbc(dev
);
1932 /* Disable the VGA plane that we never use */
1933 i915_disable_vga(dev
);
1935 /* Disable display plane */
1936 temp
= I915_READ(dspcntr_reg
);
1937 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
1938 I915_WRITE(dspcntr_reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
1939 /* Flush the plane changes */
1940 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1941 I915_READ(dspbase_reg
);
1944 if (!IS_I9XX(dev
)) {
1945 /* Wait for vblank for the disable to take effect */
1946 intel_wait_for_vblank(dev
);
1949 /* Next, disable display pipes */
1950 temp
= I915_READ(pipeconf_reg
);
1951 if ((temp
& PIPEACONF_ENABLE
) != 0) {
1952 I915_WRITE(pipeconf_reg
, temp
& ~PIPEACONF_ENABLE
);
1953 I915_READ(pipeconf_reg
);
1956 /* Wait for vblank for the disable to take effect. */
1957 intel_wait_for_vblank(dev
);
1959 temp
= I915_READ(dpll_reg
);
1960 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
1961 I915_WRITE(dpll_reg
, temp
& ~DPLL_VCO_ENABLE
);
1962 I915_READ(dpll_reg
);
1965 /* Wait for the clocks to turn off. */
1972 * Sets the power management mode of the pipe and plane.
1974 * This code should probably grow support for turning the cursor off and back
1975 * on appropriately at the same time as we're turning the pipe off/on.
1977 static void intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
1979 struct drm_device
*dev
= crtc
->dev
;
1980 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1981 struct drm_i915_master_private
*master_priv
;
1982 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1983 int pipe
= intel_crtc
->pipe
;
1986 dev_priv
->display
.dpms(crtc
, mode
);
1988 intel_crtc
->dpms_mode
= mode
;
1990 if (!dev
->primary
->master
)
1993 master_priv
= dev
->primary
->master
->driver_priv
;
1994 if (!master_priv
->sarea_priv
)
1997 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
2001 master_priv
->sarea_priv
->pipeA_w
= enabled
? crtc
->mode
.hdisplay
: 0;
2002 master_priv
->sarea_priv
->pipeA_h
= enabled
? crtc
->mode
.vdisplay
: 0;
2005 master_priv
->sarea_priv
->pipeB_w
= enabled
? crtc
->mode
.hdisplay
: 0;
2006 master_priv
->sarea_priv
->pipeB_h
= enabled
? crtc
->mode
.vdisplay
: 0;
2009 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe
);
2014 static void intel_crtc_prepare (struct drm_crtc
*crtc
)
2016 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
2017 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
2020 static void intel_crtc_commit (struct drm_crtc
*crtc
)
2022 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
2023 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
2026 void intel_encoder_prepare (struct drm_encoder
*encoder
)
2028 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
2029 /* lvds has its own version of prepare see intel_lvds_prepare */
2030 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
2033 void intel_encoder_commit (struct drm_encoder
*encoder
)
2035 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
2036 /* lvds has its own version of commit see intel_lvds_commit */
2037 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
2040 static bool intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
2041 struct drm_display_mode
*mode
,
2042 struct drm_display_mode
*adjusted_mode
)
2044 struct drm_device
*dev
= crtc
->dev
;
2045 if (IS_IRONLAKE(dev
)) {
2046 /* FDI link clock is fixed at 2.7G */
2047 if (mode
->clock
* 3 > 27000 * 4)
2048 return MODE_CLOCK_HIGH
;
2053 static int i945_get_display_clock_speed(struct drm_device
*dev
)
2058 static int i915_get_display_clock_speed(struct drm_device
*dev
)
2063 static int i9xx_misc_get_display_clock_speed(struct drm_device
*dev
)
2068 static int i915gm_get_display_clock_speed(struct drm_device
*dev
)
2072 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
2074 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
2077 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
2078 case GC_DISPLAY_CLOCK_333_MHZ
:
2081 case GC_DISPLAY_CLOCK_190_200_MHZ
:
2087 static int i865_get_display_clock_speed(struct drm_device
*dev
)
2092 static int i855_get_display_clock_speed(struct drm_device
*dev
)
2095 /* Assume that the hardware is in the high speed state. This
2096 * should be the default.
2098 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
2099 case GC_CLOCK_133_200
:
2100 case GC_CLOCK_100_200
:
2102 case GC_CLOCK_166_250
:
2104 case GC_CLOCK_100_133
:
2108 /* Shouldn't happen */
2112 static int i830_get_display_clock_speed(struct drm_device
*dev
)
2118 * Return the pipe currently connected to the panel fitter,
2119 * or -1 if the panel fitter is not present or not in use
2121 int intel_panel_fitter_pipe (struct drm_device
*dev
)
2123 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2126 /* i830 doesn't have a panel fitter */
2130 pfit_control
= I915_READ(PFIT_CONTROL
);
2132 /* See if the panel fitter is in use */
2133 if ((pfit_control
& PFIT_ENABLE
) == 0)
2136 /* 965 can place panel fitter on either pipe */
2138 return (pfit_control
>> 29) & 0x3;
2140 /* older chips can only use pipe 1 */
2153 fdi_reduce_ratio(u32
*num
, u32
*den
)
2155 while (*num
> 0xffffff || *den
> 0xffffff) {
2161 #define DATA_N 0x800000
2162 #define LINK_N 0x80000
2165 ironlake_compute_m_n(int bits_per_pixel
, int nlanes
, int pixel_clock
,
2166 int link_clock
, struct fdi_m_n
*m_n
)
2170 m_n
->tu
= 64; /* default size */
2172 temp
= (u64
) DATA_N
* pixel_clock
;
2173 temp
= div_u64(temp
, link_clock
);
2174 m_n
->gmch_m
= div_u64(temp
* bits_per_pixel
, nlanes
);
2175 m_n
->gmch_m
>>= 3; /* convert to bytes_per_pixel */
2176 m_n
->gmch_n
= DATA_N
;
2177 fdi_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
2179 temp
= (u64
) LINK_N
* pixel_clock
;
2180 m_n
->link_m
= div_u64(temp
, link_clock
);
2181 m_n
->link_n
= LINK_N
;
2182 fdi_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
2186 struct intel_watermark_params
{
2187 unsigned long fifo_size
;
2188 unsigned long max_wm
;
2189 unsigned long default_wm
;
2190 unsigned long guard_size
;
2191 unsigned long cacheline_size
;
2194 /* Pineview has different values for various configs */
2195 static struct intel_watermark_params pineview_display_wm
= {
2196 PINEVIEW_DISPLAY_FIFO
,
2200 PINEVIEW_FIFO_LINE_SIZE
2202 static struct intel_watermark_params pineview_display_hplloff_wm
= {
2203 PINEVIEW_DISPLAY_FIFO
,
2205 PINEVIEW_DFT_HPLLOFF_WM
,
2207 PINEVIEW_FIFO_LINE_SIZE
2209 static struct intel_watermark_params pineview_cursor_wm
= {
2210 PINEVIEW_CURSOR_FIFO
,
2211 PINEVIEW_CURSOR_MAX_WM
,
2212 PINEVIEW_CURSOR_DFT_WM
,
2213 PINEVIEW_CURSOR_GUARD_WM
,
2214 PINEVIEW_FIFO_LINE_SIZE
,
2216 static struct intel_watermark_params pineview_cursor_hplloff_wm
= {
2217 PINEVIEW_CURSOR_FIFO
,
2218 PINEVIEW_CURSOR_MAX_WM
,
2219 PINEVIEW_CURSOR_DFT_WM
,
2220 PINEVIEW_CURSOR_GUARD_WM
,
2221 PINEVIEW_FIFO_LINE_SIZE
2223 static struct intel_watermark_params g4x_wm_info
= {
2230 static struct intel_watermark_params i945_wm_info
= {
2237 static struct intel_watermark_params i915_wm_info
= {
2244 static struct intel_watermark_params i855_wm_info
= {
2251 static struct intel_watermark_params i830_wm_info
= {
2260 * intel_calculate_wm - calculate watermark level
2261 * @clock_in_khz: pixel clock
2262 * @wm: chip FIFO params
2263 * @pixel_size: display pixel size
2264 * @latency_ns: memory latency for the platform
2266 * Calculate the watermark level (the level at which the display plane will
2267 * start fetching from memory again). Each chip has a different display
2268 * FIFO size and allocation, so the caller needs to figure that out and pass
2269 * in the correct intel_watermark_params structure.
2271 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2272 * on the pixel size. When it reaches the watermark level, it'll start
2273 * fetching FIFO line sized based chunks from memory until the FIFO fills
2274 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2275 * will occur, and a display engine hang could result.
2277 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
2278 struct intel_watermark_params
*wm
,
2280 unsigned long latency_ns
)
2282 long entries_required
, wm_size
;
2285 * Note: we need to make sure we don't overflow for various clock &
2287 * clocks go from a few thousand to several hundred thousand.
2288 * latency is usually a few thousand
2290 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
2292 entries_required
/= wm
->cacheline_size
;
2294 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required
);
2296 wm_size
= wm
->fifo_size
- (entries_required
+ wm
->guard_size
);
2298 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size
);
2300 /* Don't promote wm_size to unsigned... */
2301 if (wm_size
> (long)wm
->max_wm
)
2302 wm_size
= wm
->max_wm
;
2304 wm_size
= wm
->default_wm
;
2308 struct cxsr_latency
{
2310 unsigned long fsb_freq
;
2311 unsigned long mem_freq
;
2312 unsigned long display_sr
;
2313 unsigned long display_hpll_disable
;
2314 unsigned long cursor_sr
;
2315 unsigned long cursor_hpll_disable
;
2318 static struct cxsr_latency cxsr_latency_table
[] = {
2319 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2320 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2321 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2323 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2324 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2325 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2327 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2328 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2329 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2331 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2332 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2333 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2335 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2336 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2337 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2339 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2340 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2341 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2344 static struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
, int fsb
,
2348 struct cxsr_latency
*latency
;
2350 if (fsb
== 0 || mem
== 0)
2353 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
2354 latency
= &cxsr_latency_table
[i
];
2355 if (is_desktop
== latency
->is_desktop
&&
2356 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
2360 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2365 static void pineview_disable_cxsr(struct drm_device
*dev
)
2367 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2370 /* deactivate cxsr */
2371 reg
= I915_READ(DSPFW3
);
2372 reg
&= ~(PINEVIEW_SELF_REFRESH_EN
);
2373 I915_WRITE(DSPFW3
, reg
);
2374 DRM_INFO("Big FIFO is disabled\n");
2377 static void pineview_enable_cxsr(struct drm_device
*dev
, unsigned long clock
,
2380 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2383 struct cxsr_latency
*latency
;
2385 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev
), dev_priv
->fsb_freq
,
2386 dev_priv
->mem_freq
);
2388 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2389 pineview_disable_cxsr(dev
);
2394 wm
= intel_calculate_wm(clock
, &pineview_display_wm
, pixel_size
,
2395 latency
->display_sr
);
2396 reg
= I915_READ(DSPFW1
);
2399 I915_WRITE(DSPFW1
, reg
);
2400 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
2403 wm
= intel_calculate_wm(clock
, &pineview_cursor_wm
, pixel_size
,
2404 latency
->cursor_sr
);
2405 reg
= I915_READ(DSPFW3
);
2406 reg
&= ~(0x3f << 24);
2407 reg
|= (wm
& 0x3f) << 24;
2408 I915_WRITE(DSPFW3
, reg
);
2410 /* Display HPLL off SR */
2411 wm
= intel_calculate_wm(clock
, &pineview_display_hplloff_wm
,
2412 latency
->display_hpll_disable
, I915_FIFO_LINE_SIZE
);
2413 reg
= I915_READ(DSPFW3
);
2416 I915_WRITE(DSPFW3
, reg
);
2418 /* cursor HPLL off SR */
2419 wm
= intel_calculate_wm(clock
, &pineview_cursor_hplloff_wm
, pixel_size
,
2420 latency
->cursor_hpll_disable
);
2421 reg
= I915_READ(DSPFW3
);
2422 reg
&= ~(0x3f << 16);
2423 reg
|= (wm
& 0x3f) << 16;
2424 I915_WRITE(DSPFW3
, reg
);
2425 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
2428 reg
= I915_READ(DSPFW3
);
2429 reg
|= PINEVIEW_SELF_REFRESH_EN
;
2430 I915_WRITE(DSPFW3
, reg
);
2432 DRM_INFO("Big FIFO is enabled\n");
2438 * Latency for FIFO fetches is dependent on several factors:
2439 * - memory configuration (speed, channels)
2441 * - current MCH state
2442 * It can be fairly high in some situations, so here we assume a fairly
2443 * pessimal value. It's a tradeoff between extra memory fetches (if we
2444 * set this value too high, the FIFO will fetch frequently to stay full)
2445 * and power consumption (set it too low to save power and we might see
2446 * FIFO underruns and display "flicker").
2448 * A value of 5us seems to be a good balance; safe for very low end
2449 * platforms but not overly aggressive on lower latency configs.
2451 static const int latency_ns
= 5000;
2453 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
2455 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2456 uint32_t dsparb
= I915_READ(DSPARB
);
2460 size
= dsparb
& 0x7f;
2462 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) -
2465 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2466 plane
? "B" : "A", size
);
2471 static int i85x_get_fifo_size(struct drm_device
*dev
, int plane
)
2473 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2474 uint32_t dsparb
= I915_READ(DSPARB
);
2478 size
= dsparb
& 0x1ff;
2480 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) -
2482 size
>>= 1; /* Convert to cachelines */
2484 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2485 plane
? "B" : "A", size
);
2490 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
2492 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2493 uint32_t dsparb
= I915_READ(DSPARB
);
2496 size
= dsparb
& 0x7f;
2497 size
>>= 2; /* Convert to cachelines */
2499 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2506 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
2508 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2509 uint32_t dsparb
= I915_READ(DSPARB
);
2512 size
= dsparb
& 0x7f;
2513 size
>>= 1; /* Convert to cachelines */
2515 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2516 plane
? "B" : "A", size
);
2521 static void g4x_update_wm(struct drm_device
*dev
, int planea_clock
,
2522 int planeb_clock
, int sr_hdisplay
, int pixel_size
)
2524 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2525 int total_size
, cacheline_size
;
2526 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
, cursor_sr
;
2527 struct intel_watermark_params planea_params
, planeb_params
;
2528 unsigned long line_time_us
;
2529 int sr_clock
, sr_entries
= 0, entries_required
;
2531 /* Create copies of the base settings for each pipe */
2532 planea_params
= planeb_params
= g4x_wm_info
;
2534 /* Grab a couple of global values before we overwrite them */
2535 total_size
= planea_params
.fifo_size
;
2536 cacheline_size
= planea_params
.cacheline_size
;
2539 * Note: we need to make sure we don't overflow for various clock &
2541 * clocks go from a few thousand to several hundred thousand.
2542 * latency is usually a few thousand
2544 entries_required
= ((planea_clock
/ 1000) * pixel_size
* latency_ns
) /
2546 entries_required
/= G4X_FIFO_LINE_SIZE
;
2547 planea_wm
= entries_required
+ planea_params
.guard_size
;
2549 entries_required
= ((planeb_clock
/ 1000) * pixel_size
* latency_ns
) /
2551 entries_required
/= G4X_FIFO_LINE_SIZE
;
2552 planeb_wm
= entries_required
+ planeb_params
.guard_size
;
2554 cursora_wm
= cursorb_wm
= 16;
2557 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
2559 /* Calc sr entries for one plane configs */
2560 if (sr_hdisplay
&& (!planea_clock
|| !planeb_clock
)) {
2561 /* self-refresh has much higher latency */
2562 static const int sr_latency_ns
= 12000;
2564 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
2565 line_time_us
= ((sr_hdisplay
* 1000) / sr_clock
);
2567 /* Use ns/us then divide to preserve precision */
2568 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1) *
2569 pixel_size
* sr_hdisplay
) / 1000;
2570 sr_entries
= roundup(sr_entries
/ cacheline_size
, 1);
2571 DRM_DEBUG("self-refresh entries: %d\n", sr_entries
);
2572 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
2575 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2576 planea_wm
, planeb_wm
, sr_entries
);
2581 I915_WRITE(DSPFW1
, (sr_entries
<< DSPFW_SR_SHIFT
) |
2582 (cursorb_wm
<< DSPFW_CURSORB_SHIFT
) |
2583 (planeb_wm
<< DSPFW_PLANEB_SHIFT
) | planea_wm
);
2584 I915_WRITE(DSPFW2
, (I915_READ(DSPFW2
) & DSPFW_CURSORA_MASK
) |
2585 (cursora_wm
<< DSPFW_CURSORA_SHIFT
));
2586 /* HPLL off in SR has some issues on G4x... disable it */
2587 I915_WRITE(DSPFW3
, (I915_READ(DSPFW3
) & ~DSPFW_HPLL_SR_EN
) |
2588 (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
2591 static void i965_update_wm(struct drm_device
*dev
, int planea_clock
,
2592 int planeb_clock
, int sr_hdisplay
, int pixel_size
)
2594 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2595 unsigned long line_time_us
;
2596 int sr_clock
, sr_entries
, srwm
= 1;
2598 /* Calc sr entries for one plane configs */
2599 if (sr_hdisplay
&& (!planea_clock
|| !planeb_clock
)) {
2600 /* self-refresh has much higher latency */
2601 static const int sr_latency_ns
= 12000;
2603 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
2604 line_time_us
= ((sr_hdisplay
* 1000) / sr_clock
);
2606 /* Use ns/us then divide to preserve precision */
2607 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1) *
2608 pixel_size
* sr_hdisplay
) / 1000;
2609 sr_entries
= roundup(sr_entries
/ I915_FIFO_LINE_SIZE
, 1);
2610 DRM_DEBUG("self-refresh entries: %d\n", sr_entries
);
2611 srwm
= I945_FIFO_SIZE
- sr_entries
;
2615 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
2618 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2621 /* 965 has limitations... */
2622 I915_WRITE(DSPFW1
, (srwm
<< DSPFW_SR_SHIFT
) | (8 << 16) | (8 << 8) |
2624 I915_WRITE(DSPFW2
, (8 << 8) | (8 << 0));
2627 static void i9xx_update_wm(struct drm_device
*dev
, int planea_clock
,
2628 int planeb_clock
, int sr_hdisplay
, int pixel_size
)
2630 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2633 int total_size
, cacheline_size
, cwm
, srwm
= 1;
2634 int planea_wm
, planeb_wm
;
2635 struct intel_watermark_params planea_params
, planeb_params
;
2636 unsigned long line_time_us
;
2637 int sr_clock
, sr_entries
= 0;
2639 /* Create copies of the base settings for each pipe */
2640 if (IS_I965GM(dev
) || IS_I945GM(dev
))
2641 planea_params
= planeb_params
= i945_wm_info
;
2642 else if (IS_I9XX(dev
))
2643 planea_params
= planeb_params
= i915_wm_info
;
2645 planea_params
= planeb_params
= i855_wm_info
;
2647 /* Grab a couple of global values before we overwrite them */
2648 total_size
= planea_params
.fifo_size
;
2649 cacheline_size
= planea_params
.cacheline_size
;
2651 /* Update per-plane FIFO sizes */
2652 planea_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
2653 planeb_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
2655 planea_wm
= intel_calculate_wm(planea_clock
, &planea_params
,
2656 pixel_size
, latency_ns
);
2657 planeb_wm
= intel_calculate_wm(planeb_clock
, &planeb_params
,
2658 pixel_size
, latency_ns
);
2659 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
2662 * Overlay gets an aggressive default since video jitter is bad.
2666 /* Calc sr entries for one plane configs */
2667 if (HAS_FW_BLC(dev
) && sr_hdisplay
&&
2668 (!planea_clock
|| !planeb_clock
)) {
2669 /* self-refresh has much higher latency */
2670 static const int sr_latency_ns
= 6000;
2672 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
2673 line_time_us
= ((sr_hdisplay
* 1000) / sr_clock
);
2675 /* Use ns/us then divide to preserve precision */
2676 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1) *
2677 pixel_size
* sr_hdisplay
) / 1000;
2678 sr_entries
= roundup(sr_entries
/ cacheline_size
, 1);
2679 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries
);
2680 srwm
= total_size
- sr_entries
;
2683 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
| (srwm
& 0x3f));
2686 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2687 planea_wm
, planeb_wm
, cwm
, srwm
);
2689 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
2690 fwater_hi
= (cwm
& 0x1f);
2692 /* Set request length to 8 cachelines per fetch */
2693 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
2694 fwater_hi
= fwater_hi
| (1 << 8);
2696 I915_WRITE(FW_BLC
, fwater_lo
);
2697 I915_WRITE(FW_BLC2
, fwater_hi
);
2700 static void i830_update_wm(struct drm_device
*dev
, int planea_clock
, int unused
,
2701 int unused2
, int pixel_size
)
2703 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2704 uint32_t fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
2707 i830_wm_info
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
2709 planea_wm
= intel_calculate_wm(planea_clock
, &i830_wm_info
,
2710 pixel_size
, latency_ns
);
2711 fwater_lo
|= (3<<8) | planea_wm
;
2713 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
2715 I915_WRITE(FW_BLC
, fwater_lo
);
2719 * intel_update_watermarks - update FIFO watermark values based on current modes
2721 * Calculate watermark values for the various WM regs based on current mode
2722 * and plane configuration.
2724 * There are several cases to deal with here:
2725 * - normal (i.e. non-self-refresh)
2726 * - self-refresh (SR) mode
2727 * - lines are large relative to FIFO size (buffer can hold up to 2)
2728 * - lines are small relative to FIFO size (buffer can hold more than 2
2729 * lines), so need to account for TLB latency
2731 * The normal calculation is:
2732 * watermark = dotclock * bytes per pixel * latency
2733 * where latency is platform & configuration dependent (we assume pessimal
2736 * The SR calculation is:
2737 * watermark = (trunc(latency/line time)+1) * surface width *
2740 * line time = htotal / dotclock
2741 * and latency is assumed to be high, as above.
2743 * The final value programmed to the register should always be rounded up,
2744 * and include an extra 2 entries to account for clock crossings.
2746 * We don't use the sprite, so we can ignore that. And on Crestline we have
2747 * to set the non-SR watermarks to 8.
2749 static void intel_update_watermarks(struct drm_device
*dev
)
2751 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2752 struct drm_crtc
*crtc
;
2753 struct intel_crtc
*intel_crtc
;
2754 int sr_hdisplay
= 0;
2755 unsigned long planea_clock
= 0, planeb_clock
= 0, sr_clock
= 0;
2756 int enabled
= 0, pixel_size
= 0;
2758 if (!dev_priv
->display
.update_wm
)
2761 /* Get the clock config from both planes */
2762 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
2763 intel_crtc
= to_intel_crtc(crtc
);
2764 if (crtc
->enabled
) {
2766 if (intel_crtc
->plane
== 0) {
2767 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2768 intel_crtc
->pipe
, crtc
->mode
.clock
);
2769 planea_clock
= crtc
->mode
.clock
;
2771 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2772 intel_crtc
->pipe
, crtc
->mode
.clock
);
2773 planeb_clock
= crtc
->mode
.clock
;
2775 sr_hdisplay
= crtc
->mode
.hdisplay
;
2776 sr_clock
= crtc
->mode
.clock
;
2778 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
2780 pixel_size
= 4; /* by default */
2787 /* Single plane configs can enable self refresh */
2788 if (enabled
== 1 && IS_PINEVIEW(dev
))
2789 pineview_enable_cxsr(dev
, sr_clock
, pixel_size
);
2790 else if (IS_PINEVIEW(dev
))
2791 pineview_disable_cxsr(dev
);
2793 dev_priv
->display
.update_wm(dev
, planea_clock
, planeb_clock
,
2794 sr_hdisplay
, pixel_size
);
2797 static int intel_crtc_mode_set(struct drm_crtc
*crtc
,
2798 struct drm_display_mode
*mode
,
2799 struct drm_display_mode
*adjusted_mode
,
2801 struct drm_framebuffer
*old_fb
)
2803 struct drm_device
*dev
= crtc
->dev
;
2804 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2805 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2806 int pipe
= intel_crtc
->pipe
;
2807 int plane
= intel_crtc
->plane
;
2808 int fp_reg
= (pipe
== 0) ? FPA0
: FPB0
;
2809 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
2810 int dpll_md_reg
= (intel_crtc
->pipe
== 0) ? DPLL_A_MD
: DPLL_B_MD
;
2811 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
2812 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
2813 int htot_reg
= (pipe
== 0) ? HTOTAL_A
: HTOTAL_B
;
2814 int hblank_reg
= (pipe
== 0) ? HBLANK_A
: HBLANK_B
;
2815 int hsync_reg
= (pipe
== 0) ? HSYNC_A
: HSYNC_B
;
2816 int vtot_reg
= (pipe
== 0) ? VTOTAL_A
: VTOTAL_B
;
2817 int vblank_reg
= (pipe
== 0) ? VBLANK_A
: VBLANK_B
;
2818 int vsync_reg
= (pipe
== 0) ? VSYNC_A
: VSYNC_B
;
2819 int dspsize_reg
= (plane
== 0) ? DSPASIZE
: DSPBSIZE
;
2820 int dsppos_reg
= (plane
== 0) ? DSPAPOS
: DSPBPOS
;
2821 int pipesrc_reg
= (pipe
== 0) ? PIPEASRC
: PIPEBSRC
;
2822 int refclk
, num_outputs
= 0;
2823 intel_clock_t clock
, reduced_clock
;
2824 u32 dpll
= 0, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
2825 bool ok
, has_reduced_clock
= false, is_sdvo
= false, is_dvo
= false;
2826 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
2827 bool is_edp
= false;
2828 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
2829 struct drm_connector
*connector
;
2830 const intel_limit_t
*limit
;
2832 struct fdi_m_n m_n
= {0};
2833 int data_m1_reg
= (pipe
== 0) ? PIPEA_DATA_M1
: PIPEB_DATA_M1
;
2834 int data_n1_reg
= (pipe
== 0) ? PIPEA_DATA_N1
: PIPEB_DATA_N1
;
2835 int link_m1_reg
= (pipe
== 0) ? PIPEA_LINK_M1
: PIPEB_LINK_M1
;
2836 int link_n1_reg
= (pipe
== 0) ? PIPEA_LINK_N1
: PIPEB_LINK_N1
;
2837 int pch_fp_reg
= (pipe
== 0) ? PCH_FPA0
: PCH_FPB0
;
2838 int pch_dpll_reg
= (pipe
== 0) ? PCH_DPLL_A
: PCH_DPLL_B
;
2839 int fdi_rx_reg
= (pipe
== 0) ? FDI_RXA_CTL
: FDI_RXB_CTL
;
2840 int lvds_reg
= LVDS
;
2842 int sdvo_pixel_multiply
;
2845 drm_vblank_pre_modeset(dev
, pipe
);
2847 list_for_each_entry(connector
, &mode_config
->connector_list
, head
) {
2848 struct intel_output
*intel_output
= to_intel_output(connector
);
2850 if (!connector
->encoder
|| connector
->encoder
->crtc
!= crtc
)
2853 switch (intel_output
->type
) {
2854 case INTEL_OUTPUT_LVDS
:
2857 case INTEL_OUTPUT_SDVO
:
2858 case INTEL_OUTPUT_HDMI
:
2860 if (intel_output
->needs_tv_clock
)
2863 case INTEL_OUTPUT_DVO
:
2866 case INTEL_OUTPUT_TVOUT
:
2869 case INTEL_OUTPUT_ANALOG
:
2872 case INTEL_OUTPUT_DISPLAYPORT
:
2875 case INTEL_OUTPUT_EDP
:
2883 if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_outputs
< 2) {
2884 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
2885 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2887 } else if (IS_I9XX(dev
)) {
2889 if (IS_IRONLAKE(dev
))
2890 refclk
= 120000; /* 120Mhz refclk */
2897 * Returns a set of divisors for the desired target clock with the given
2898 * refclk, or FALSE. The returned values represent the clock equation:
2899 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2901 limit
= intel_limit(crtc
);
2902 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
2904 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2905 drm_vblank_post_modeset(dev
, pipe
);
2909 if (is_lvds
&& limit
->find_reduced_pll
&&
2910 dev_priv
->lvds_downclock_avail
) {
2911 memcpy(&reduced_clock
, &clock
, sizeof(intel_clock_t
));
2912 has_reduced_clock
= limit
->find_reduced_pll(limit
, crtc
,
2913 dev_priv
->lvds_downclock
,
2916 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
2918 * If the different P is found, it means that we can't
2919 * switch the display clock by using the FP0/FP1.
2920 * In such case we will disable the LVDS downclock
2923 DRM_DEBUG_KMS("Different P is found for "
2924 "LVDS clock/downclock\n");
2925 has_reduced_clock
= 0;
2928 /* SDVO TV has fixed PLL values depend on its clock range,
2929 this mirrors vbios setting. */
2930 if (is_sdvo
&& is_tv
) {
2931 if (adjusted_mode
->clock
>= 100000
2932 && adjusted_mode
->clock
< 140500) {
2938 } else if (adjusted_mode
->clock
>= 140500
2939 && adjusted_mode
->clock
<= 200000) {
2949 if (IS_IRONLAKE(dev
)) {
2950 int lane
, link_bw
, bpp
;
2951 /* eDP doesn't require FDI link, so just set DP M/N
2952 according to current link config */
2954 struct drm_connector
*edp
;
2955 target_clock
= mode
->clock
;
2956 edp
= intel_pipe_get_output(crtc
);
2957 intel_edp_link_config(to_intel_output(edp
),
2960 /* DP over FDI requires target mode clock
2961 instead of link clock */
2963 target_clock
= mode
->clock
;
2965 target_clock
= adjusted_mode
->clock
;
2970 /* determine panel color depth */
2971 temp
= I915_READ(pipeconf_reg
);
2973 switch (temp
& PIPE_BPC_MASK
) {
2987 DRM_ERROR("unknown pipe bpc value\n");
2991 ironlake_compute_m_n(bpp
, lane
, target_clock
, link_bw
, &m_n
);
2994 /* Ironlake: try to setup display ref clock before DPLL
2995 * enabling. This is only under driver's control after
2996 * PCH B stepping, previous chipset stepping should be
2997 * ignoring this setting.
2999 if (IS_IRONLAKE(dev
)) {
3000 temp
= I915_READ(PCH_DREF_CONTROL
);
3001 /* Always enable nonspread source */
3002 temp
&= ~DREF_NONSPREAD_SOURCE_MASK
;
3003 temp
|= DREF_NONSPREAD_SOURCE_ENABLE
;
3004 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3005 POSTING_READ(PCH_DREF_CONTROL
);
3007 temp
&= ~DREF_SSC_SOURCE_MASK
;
3008 temp
|= DREF_SSC_SOURCE_ENABLE
;
3009 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3010 POSTING_READ(PCH_DREF_CONTROL
);
3015 if (dev_priv
->lvds_use_ssc
) {
3016 temp
|= DREF_SSC1_ENABLE
;
3017 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3018 POSTING_READ(PCH_DREF_CONTROL
);
3022 temp
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
3023 temp
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
3024 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3025 POSTING_READ(PCH_DREF_CONTROL
);
3027 temp
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
3028 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3029 POSTING_READ(PCH_DREF_CONTROL
);
3034 if (IS_PINEVIEW(dev
)) {
3035 fp
= (1 << clock
.n
) << 16 | clock
.m1
<< 8 | clock
.m2
;
3036 if (has_reduced_clock
)
3037 fp2
= (1 << reduced_clock
.n
) << 16 |
3038 reduced_clock
.m1
<< 8 | reduced_clock
.m2
;
3040 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
3041 if (has_reduced_clock
)
3042 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
3046 if (!IS_IRONLAKE(dev
))
3047 dpll
= DPLL_VGA_MODE_DIS
;
3051 dpll
|= DPLLB_MODE_LVDS
;
3053 dpll
|= DPLLB_MODE_DAC_SERIAL
;
3055 dpll
|= DPLL_DVO_HIGH_SPEED
;
3056 sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
3057 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
))
3058 dpll
|= (sdvo_pixel_multiply
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
3059 else if (IS_IRONLAKE(dev
))
3060 dpll
|= (sdvo_pixel_multiply
- 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
3063 dpll
|= DPLL_DVO_HIGH_SPEED
;
3065 /* compute bitmask from p1 value */
3066 if (IS_PINEVIEW(dev
))
3067 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
;
3069 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3071 if (IS_IRONLAKE(dev
))
3072 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
3073 if (IS_G4X(dev
) && has_reduced_clock
)
3074 dpll
|= (1 << (reduced_clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
3078 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
3081 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
3084 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
3087 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
3090 if (IS_I965G(dev
) && !IS_IRONLAKE(dev
))
3091 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
3094 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3097 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
3099 dpll
|= (clock
.p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3101 dpll
|= PLL_P2_DIVIDE_BY_4
;
3105 if (is_sdvo
&& is_tv
)
3106 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
3108 /* XXX: just matching BIOS for now */
3109 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3111 else if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_outputs
< 2)
3112 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
3114 dpll
|= PLL_REF_INPUT_DREFCLK
;
3116 /* setup pipeconf */
3117 pipeconf
= I915_READ(pipeconf_reg
);
3119 /* Set up the display plane register */
3120 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
3122 /* Ironlake's plane is forced to pipe, bit 24 is to
3123 enable color space conversion */
3124 if (!IS_IRONLAKE(dev
)) {
3126 dspcntr
&= ~DISPPLANE_SEL_PIPE_MASK
;
3128 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
3131 if (pipe
== 0 && !IS_I965G(dev
)) {
3132 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3135 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3139 dev_priv
->display
.get_display_clock_speed(dev
) * 9 / 10)
3140 pipeconf
|= PIPEACONF_DOUBLE_WIDE
;
3142 pipeconf
&= ~PIPEACONF_DOUBLE_WIDE
;
3145 dspcntr
|= DISPLAY_PLANE_ENABLE
;
3146 pipeconf
|= PIPEACONF_ENABLE
;
3147 dpll
|= DPLL_VCO_ENABLE
;
3150 /* Disable the panel fitter if it was on our pipe */
3151 if (!IS_IRONLAKE(dev
) && intel_panel_fitter_pipe(dev
) == pipe
)
3152 I915_WRITE(PFIT_CONTROL
, 0);
3154 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
3155 drm_mode_debug_printmodeline(mode
);
3157 /* assign to Ironlake registers */
3158 if (IS_IRONLAKE(dev
)) {
3159 fp_reg
= pch_fp_reg
;
3160 dpll_reg
= pch_dpll_reg
;
3164 ironlake_disable_pll_edp(crtc
);
3165 } else if ((dpll
& DPLL_VCO_ENABLE
)) {
3166 I915_WRITE(fp_reg
, fp
);
3167 I915_WRITE(dpll_reg
, dpll
& ~DPLL_VCO_ENABLE
);
3168 I915_READ(dpll_reg
);
3172 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3173 * This is an exception to the general rule that mode_set doesn't turn
3179 if (IS_IRONLAKE(dev
))
3180 lvds_reg
= PCH_LVDS
;
3182 lvds
= I915_READ(lvds_reg
);
3183 lvds
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
| LVDS_PIPEB_SELECT
;
3184 /* set the corresponsding LVDS_BORDER bit */
3185 lvds
|= dev_priv
->lvds_border_bits
;
3186 /* Set the B0-B3 data pairs corresponding to whether we're going to
3187 * set the DPLLs for dual-channel mode or not.
3190 lvds
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
3192 lvds
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
3194 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3195 * appropriately here, but we need to look more thoroughly into how
3196 * panels behave in the two modes.
3199 I915_WRITE(lvds_reg
, lvds
);
3200 I915_READ(lvds_reg
);
3203 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
3206 I915_WRITE(fp_reg
, fp
);
3207 I915_WRITE(dpll_reg
, dpll
);
3208 I915_READ(dpll_reg
);
3209 /* Wait for the clocks to stabilize. */
3212 if (IS_I965G(dev
) && !IS_IRONLAKE(dev
)) {
3214 sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
3215 I915_WRITE(dpll_md_reg
, (0 << DPLL_MD_UDI_DIVIDER_SHIFT
) |
3216 ((sdvo_pixel_multiply
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
));
3218 I915_WRITE(dpll_md_reg
, 0);
3220 /* write it again -- the BIOS does, after all */
3221 I915_WRITE(dpll_reg
, dpll
);
3223 I915_READ(dpll_reg
);
3224 /* Wait for the clocks to stabilize. */
3228 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
3229 I915_WRITE(fp_reg
+ 4, fp2
);
3230 intel_crtc
->lowfreq_avail
= true;
3231 if (HAS_PIPE_CXSR(dev
)) {
3232 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3233 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
3236 I915_WRITE(fp_reg
+ 4, fp
);
3237 intel_crtc
->lowfreq_avail
= false;
3238 if (HAS_PIPE_CXSR(dev
)) {
3239 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3240 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
3244 I915_WRITE(htot_reg
, (adjusted_mode
->crtc_hdisplay
- 1) |
3245 ((adjusted_mode
->crtc_htotal
- 1) << 16));
3246 I915_WRITE(hblank_reg
, (adjusted_mode
->crtc_hblank_start
- 1) |
3247 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
3248 I915_WRITE(hsync_reg
, (adjusted_mode
->crtc_hsync_start
- 1) |
3249 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
3250 I915_WRITE(vtot_reg
, (adjusted_mode
->crtc_vdisplay
- 1) |
3251 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
3252 I915_WRITE(vblank_reg
, (adjusted_mode
->crtc_vblank_start
- 1) |
3253 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
3254 I915_WRITE(vsync_reg
, (adjusted_mode
->crtc_vsync_start
- 1) |
3255 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
3256 /* pipesrc and dspsize control the size that is scaled from, which should
3257 * always be the user's requested size.
3259 if (!IS_IRONLAKE(dev
)) {
3260 I915_WRITE(dspsize_reg
, ((mode
->vdisplay
- 1) << 16) |
3261 (mode
->hdisplay
- 1));
3262 I915_WRITE(dsppos_reg
, 0);
3264 I915_WRITE(pipesrc_reg
, ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
3266 if (IS_IRONLAKE(dev
)) {
3267 I915_WRITE(data_m1_reg
, TU_SIZE(m_n
.tu
) | m_n
.gmch_m
);
3268 I915_WRITE(data_n1_reg
, TU_SIZE(m_n
.tu
) | m_n
.gmch_n
);
3269 I915_WRITE(link_m1_reg
, m_n
.link_m
);
3270 I915_WRITE(link_n1_reg
, m_n
.link_n
);
3273 ironlake_set_pll_edp(crtc
, adjusted_mode
->clock
);
3275 /* enable FDI RX PLL too */
3276 temp
= I915_READ(fdi_rx_reg
);
3277 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_PLL_ENABLE
);
3282 I915_WRITE(pipeconf_reg
, pipeconf
);
3283 I915_READ(pipeconf_reg
);
3285 intel_wait_for_vblank(dev
);
3287 if (IS_IRONLAKE(dev
)) {
3288 /* enable address swizzle for tiling buffer */
3289 temp
= I915_READ(DISP_ARB_CTL
);
3290 I915_WRITE(DISP_ARB_CTL
, temp
| DISP_TILE_SURFACE_SWIZZLING
);
3293 I915_WRITE(dspcntr_reg
, dspcntr
);
3295 /* Flush the plane changes */
3296 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
3298 if ((IS_I965G(dev
) || plane
== 0))
3299 intel_update_fbc(crtc
, &crtc
->mode
);
3301 intel_update_watermarks(dev
);
3303 drm_vblank_post_modeset(dev
, pipe
);
3308 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3309 void intel_crtc_load_lut(struct drm_crtc
*crtc
)
3311 struct drm_device
*dev
= crtc
->dev
;
3312 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3313 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3314 int palreg
= (intel_crtc
->pipe
== 0) ? PALETTE_A
: PALETTE_B
;
3317 /* The clocks have to be on to load the palette. */
3321 /* use legacy palette for Ironlake */
3322 if (IS_IRONLAKE(dev
))
3323 palreg
= (intel_crtc
->pipe
== 0) ? LGC_PALETTE_A
:
3326 for (i
= 0; i
< 256; i
++) {
3327 I915_WRITE(palreg
+ 4 * i
,
3328 (intel_crtc
->lut_r
[i
] << 16) |
3329 (intel_crtc
->lut_g
[i
] << 8) |
3330 intel_crtc
->lut_b
[i
]);
3334 static int intel_crtc_cursor_set(struct drm_crtc
*crtc
,
3335 struct drm_file
*file_priv
,
3337 uint32_t width
, uint32_t height
)
3339 struct drm_device
*dev
= crtc
->dev
;
3340 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3341 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3342 struct drm_gem_object
*bo
;
3343 struct drm_i915_gem_object
*obj_priv
;
3344 int pipe
= intel_crtc
->pipe
;
3345 uint32_t control
= (pipe
== 0) ? CURACNTR
: CURBCNTR
;
3346 uint32_t base
= (pipe
== 0) ? CURABASE
: CURBBASE
;
3347 uint32_t temp
= I915_READ(control
);
3351 DRM_DEBUG_KMS("\n");
3353 /* if we want to turn off the cursor ignore width and height */
3355 DRM_DEBUG_KMS("cursor off\n");
3356 if (IS_MOBILE(dev
) || IS_I9XX(dev
)) {
3357 temp
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
3358 temp
|= CURSOR_MODE_DISABLE
;
3360 temp
&= ~(CURSOR_ENABLE
| CURSOR_GAMMA_ENABLE
);
3364 mutex_lock(&dev
->struct_mutex
);
3368 /* Currently we only support 64x64 cursors */
3369 if (width
!= 64 || height
!= 64) {
3370 DRM_ERROR("we currently only support 64x64 cursors\n");
3374 bo
= drm_gem_object_lookup(dev
, file_priv
, handle
);
3378 obj_priv
= bo
->driver_private
;
3380 if (bo
->size
< width
* height
* 4) {
3381 DRM_ERROR("buffer is to small\n");
3386 /* we only need to pin inside GTT if cursor is non-phy */
3387 mutex_lock(&dev
->struct_mutex
);
3388 if (!dev_priv
->info
->cursor_needs_physical
) {
3389 ret
= i915_gem_object_pin(bo
, PAGE_SIZE
);
3391 DRM_ERROR("failed to pin cursor bo\n");
3394 addr
= obj_priv
->gtt_offset
;
3396 ret
= i915_gem_attach_phys_object(dev
, bo
, (pipe
== 0) ? I915_GEM_PHYS_CURSOR_0
: I915_GEM_PHYS_CURSOR_1
);
3398 DRM_ERROR("failed to attach phys object\n");
3401 addr
= obj_priv
->phys_obj
->handle
->busaddr
;
3405 I915_WRITE(CURSIZE
, (height
<< 12) | width
);
3407 /* Hooray for CUR*CNTR differences */
3408 if (IS_MOBILE(dev
) || IS_I9XX(dev
)) {
3409 temp
&= ~(CURSOR_MODE
| MCURSOR_PIPE_SELECT
);
3410 temp
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
3411 temp
|= (pipe
<< 28); /* Connect to correct pipe */
3413 temp
&= ~(CURSOR_FORMAT_MASK
);
3414 temp
|= CURSOR_ENABLE
;
3415 temp
|= CURSOR_FORMAT_ARGB
| CURSOR_GAMMA_ENABLE
;
3419 I915_WRITE(control
, temp
);
3420 I915_WRITE(base
, addr
);
3422 if (intel_crtc
->cursor_bo
) {
3423 if (dev_priv
->info
->cursor_needs_physical
) {
3424 if (intel_crtc
->cursor_bo
!= bo
)
3425 i915_gem_detach_phys_object(dev
, intel_crtc
->cursor_bo
);
3427 i915_gem_object_unpin(intel_crtc
->cursor_bo
);
3428 drm_gem_object_unreference(intel_crtc
->cursor_bo
);
3431 mutex_unlock(&dev
->struct_mutex
);
3433 intel_crtc
->cursor_addr
= addr
;
3434 intel_crtc
->cursor_bo
= bo
;
3438 mutex_lock(&dev
->struct_mutex
);
3440 drm_gem_object_unreference(bo
);
3441 mutex_unlock(&dev
->struct_mutex
);
3445 static int intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
3447 struct drm_device
*dev
= crtc
->dev
;
3448 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3449 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3450 struct intel_framebuffer
*intel_fb
;
3451 int pipe
= intel_crtc
->pipe
;
3456 intel_fb
= to_intel_framebuffer(crtc
->fb
);
3457 intel_mark_busy(dev
, intel_fb
->obj
);
3461 temp
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
3465 temp
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
3469 temp
|= x
<< CURSOR_X_SHIFT
;
3470 temp
|= y
<< CURSOR_Y_SHIFT
;
3472 adder
= intel_crtc
->cursor_addr
;
3473 I915_WRITE((pipe
== 0) ? CURAPOS
: CURBPOS
, temp
);
3474 I915_WRITE((pipe
== 0) ? CURABASE
: CURBBASE
, adder
);
3479 /** Sets the color ramps on behalf of RandR */
3480 void intel_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
3481 u16 blue
, int regno
)
3483 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3485 intel_crtc
->lut_r
[regno
] = red
>> 8;
3486 intel_crtc
->lut_g
[regno
] = green
>> 8;
3487 intel_crtc
->lut_b
[regno
] = blue
>> 8;
3490 void intel_crtc_fb_gamma_get(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
3491 u16
*blue
, int regno
)
3493 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3495 *red
= intel_crtc
->lut_r
[regno
] << 8;
3496 *green
= intel_crtc
->lut_g
[regno
] << 8;
3497 *blue
= intel_crtc
->lut_b
[regno
] << 8;
3500 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
3501 u16
*blue
, uint32_t size
)
3503 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3509 for (i
= 0; i
< 256; i
++) {
3510 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
3511 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
3512 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
3515 intel_crtc_load_lut(crtc
);
3519 * Get a pipe with a simple mode set on it for doing load-based monitor
3522 * It will be up to the load-detect code to adjust the pipe as appropriate for
3523 * its requirements. The pipe will be connected to no other outputs.
3525 * Currently this code will only succeed if there is a pipe with no outputs
3526 * configured for it. In the future, it could choose to temporarily disable
3527 * some outputs to free up a pipe for its use.
3529 * \return crtc, or NULL if no pipes are available.
3532 /* VESA 640x480x72Hz mode to set on the pipe */
3533 static struct drm_display_mode load_detect_mode
= {
3534 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
3535 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
3538 struct drm_crtc
*intel_get_load_detect_pipe(struct intel_output
*intel_output
,
3539 struct drm_display_mode
*mode
,
3542 struct intel_crtc
*intel_crtc
;
3543 struct drm_crtc
*possible_crtc
;
3544 struct drm_crtc
*supported_crtc
=NULL
;
3545 struct drm_encoder
*encoder
= &intel_output
->enc
;
3546 struct drm_crtc
*crtc
= NULL
;
3547 struct drm_device
*dev
= encoder
->dev
;
3548 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3549 struct drm_crtc_helper_funcs
*crtc_funcs
;
3553 * Algorithm gets a little messy:
3554 * - if the connector already has an assigned crtc, use it (but make
3555 * sure it's on first)
3556 * - try to find the first unused crtc that can drive this connector,
3557 * and use that if we find one
3558 * - if there are no unused crtcs available, try to use the first
3559 * one we found that supports the connector
3562 /* See if we already have a CRTC for this connector */
3563 if (encoder
->crtc
) {
3564 crtc
= encoder
->crtc
;
3565 /* Make sure the crtc and connector are running */
3566 intel_crtc
= to_intel_crtc(crtc
);
3567 *dpms_mode
= intel_crtc
->dpms_mode
;
3568 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
3569 crtc_funcs
= crtc
->helper_private
;
3570 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
3571 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
3576 /* Find an unused one (if possible) */
3577 list_for_each_entry(possible_crtc
, &dev
->mode_config
.crtc_list
, head
) {
3579 if (!(encoder
->possible_crtcs
& (1 << i
)))
3581 if (!possible_crtc
->enabled
) {
3582 crtc
= possible_crtc
;
3585 if (!supported_crtc
)
3586 supported_crtc
= possible_crtc
;
3590 * If we didn't find an unused CRTC, don't use any.
3596 encoder
->crtc
= crtc
;
3597 intel_output
->base
.encoder
= encoder
;
3598 intel_output
->load_detect_temp
= true;
3600 intel_crtc
= to_intel_crtc(crtc
);
3601 *dpms_mode
= intel_crtc
->dpms_mode
;
3603 if (!crtc
->enabled
) {
3605 mode
= &load_detect_mode
;
3606 drm_crtc_helper_set_mode(crtc
, mode
, 0, 0, crtc
->fb
);
3608 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
3609 crtc_funcs
= crtc
->helper_private
;
3610 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
3613 /* Add this connector to the crtc */
3614 encoder_funcs
->mode_set(encoder
, &crtc
->mode
, &crtc
->mode
);
3615 encoder_funcs
->commit(encoder
);
3617 /* let the connector get through one full cycle before testing */
3618 intel_wait_for_vblank(dev
);
3623 void intel_release_load_detect_pipe(struct intel_output
*intel_output
, int dpms_mode
)
3625 struct drm_encoder
*encoder
= &intel_output
->enc
;
3626 struct drm_device
*dev
= encoder
->dev
;
3627 struct drm_crtc
*crtc
= encoder
->crtc
;
3628 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3629 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
3631 if (intel_output
->load_detect_temp
) {
3632 encoder
->crtc
= NULL
;
3633 intel_output
->base
.encoder
= NULL
;
3634 intel_output
->load_detect_temp
= false;
3635 crtc
->enabled
= drm_helper_crtc_in_use(crtc
);
3636 drm_helper_disable_unused_functions(dev
);
3639 /* Switch crtc and output back off if necessary */
3640 if (crtc
->enabled
&& dpms_mode
!= DRM_MODE_DPMS_ON
) {
3641 if (encoder
->crtc
== crtc
)
3642 encoder_funcs
->dpms(encoder
, dpms_mode
);
3643 crtc_funcs
->dpms(crtc
, dpms_mode
);
3647 /* Returns the clock of the currently programmed mode of the given pipe. */
3648 static int intel_crtc_clock_get(struct drm_device
*dev
, struct drm_crtc
*crtc
)
3650 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3651 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3652 int pipe
= intel_crtc
->pipe
;
3653 u32 dpll
= I915_READ((pipe
== 0) ? DPLL_A
: DPLL_B
);
3655 intel_clock_t clock
;
3657 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
3658 fp
= I915_READ((pipe
== 0) ? FPA0
: FPB0
);
3660 fp
= I915_READ((pipe
== 0) ? FPA1
: FPB1
);
3662 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
3663 if (IS_PINEVIEW(dev
)) {
3664 clock
.n
= ffs((fp
& FP_N_PINEVIEW_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
3665 clock
.m2
= (fp
& FP_M2_PINEVIEW_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
3667 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
3668 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
3672 if (IS_PINEVIEW(dev
))
3673 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW
) >>
3674 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
);
3676 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
3677 DPLL_FPA01_P1_POST_DIV_SHIFT
);
3679 switch (dpll
& DPLL_MODE_MASK
) {
3680 case DPLLB_MODE_DAC_SERIAL
:
3681 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
3684 case DPLLB_MODE_LVDS
:
3685 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
3689 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3690 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
3694 /* XXX: Handle the 100Mhz refclk */
3695 intel_clock(dev
, 96000, &clock
);
3697 bool is_lvds
= (pipe
== 1) && (I915_READ(LVDS
) & LVDS_PORT_EN
);
3700 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
3701 DPLL_FPA01_P1_POST_DIV_SHIFT
);
3704 if ((dpll
& PLL_REF_INPUT_MASK
) ==
3705 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
3706 /* XXX: might not be 66MHz */
3707 intel_clock(dev
, 66000, &clock
);
3709 intel_clock(dev
, 48000, &clock
);
3711 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
3714 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
3715 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
3717 if (dpll
& PLL_P2_DIVIDE_BY_4
)
3722 intel_clock(dev
, 48000, &clock
);
3726 /* XXX: It would be nice to validate the clocks, but we can't reuse
3727 * i830PllIsValid() because it relies on the xf86_config connector
3728 * configuration being accurate, which it isn't necessarily.
3734 /** Returns the currently programmed mode of the given pipe. */
3735 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
3736 struct drm_crtc
*crtc
)
3738 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3739 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3740 int pipe
= intel_crtc
->pipe
;
3741 struct drm_display_mode
*mode
;
3742 int htot
= I915_READ((pipe
== 0) ? HTOTAL_A
: HTOTAL_B
);
3743 int hsync
= I915_READ((pipe
== 0) ? HSYNC_A
: HSYNC_B
);
3744 int vtot
= I915_READ((pipe
== 0) ? VTOTAL_A
: VTOTAL_B
);
3745 int vsync
= I915_READ((pipe
== 0) ? VSYNC_A
: VSYNC_B
);
3747 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
3751 mode
->clock
= intel_crtc_clock_get(dev
, crtc
);
3752 mode
->hdisplay
= (htot
& 0xffff) + 1;
3753 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
3754 mode
->hsync_start
= (hsync
& 0xffff) + 1;
3755 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
3756 mode
->vdisplay
= (vtot
& 0xffff) + 1;
3757 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
3758 mode
->vsync_start
= (vsync
& 0xffff) + 1;
3759 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
3761 drm_mode_set_name(mode
);
3762 drm_mode_set_crtcinfo(mode
, 0);
3767 #define GPU_IDLE_TIMEOUT 500 /* ms */
3769 /* When this timer fires, we've been idle for awhile */
3770 static void intel_gpu_idle_timer(unsigned long arg
)
3772 struct drm_device
*dev
= (struct drm_device
*)arg
;
3773 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3775 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3777 dev_priv
->busy
= false;
3779 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
3782 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3784 static void intel_crtc_idle_timer(unsigned long arg
)
3786 struct intel_crtc
*intel_crtc
= (struct intel_crtc
*)arg
;
3787 struct drm_crtc
*crtc
= &intel_crtc
->base
;
3788 drm_i915_private_t
*dev_priv
= crtc
->dev
->dev_private
;
3790 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3792 intel_crtc
->busy
= false;
3794 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
3797 static void intel_increase_pllclock(struct drm_crtc
*crtc
, bool schedule
)
3799 struct drm_device
*dev
= crtc
->dev
;
3800 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3801 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3802 int pipe
= intel_crtc
->pipe
;
3803 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
3804 int dpll
= I915_READ(dpll_reg
);
3806 if (IS_IRONLAKE(dev
))
3809 if (!dev_priv
->lvds_downclock_avail
)
3812 if (!HAS_PIPE_CXSR(dev
) && (dpll
& DISPLAY_RATE_SELECT_FPA1
)) {
3813 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3815 /* Unlock panel regs */
3816 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) | (0xabcd << 16));
3818 dpll
&= ~DISPLAY_RATE_SELECT_FPA1
;
3819 I915_WRITE(dpll_reg
, dpll
);
3820 dpll
= I915_READ(dpll_reg
);
3821 intel_wait_for_vblank(dev
);
3822 dpll
= I915_READ(dpll_reg
);
3823 if (dpll
& DISPLAY_RATE_SELECT_FPA1
)
3824 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3826 /* ...and lock them again */
3827 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
3830 /* Schedule downclock */
3832 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
3833 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
3836 static void intel_decrease_pllclock(struct drm_crtc
*crtc
)
3838 struct drm_device
*dev
= crtc
->dev
;
3839 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3840 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3841 int pipe
= intel_crtc
->pipe
;
3842 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
3843 int dpll
= I915_READ(dpll_reg
);
3845 if (IS_IRONLAKE(dev
))
3848 if (!dev_priv
->lvds_downclock_avail
)
3852 * Since this is called by a timer, we should never get here in
3855 if (!HAS_PIPE_CXSR(dev
) && intel_crtc
->lowfreq_avail
) {
3856 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3858 /* Unlock panel regs */
3859 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) | (0xabcd << 16));
3861 dpll
|= DISPLAY_RATE_SELECT_FPA1
;
3862 I915_WRITE(dpll_reg
, dpll
);
3863 dpll
= I915_READ(dpll_reg
);
3864 intel_wait_for_vblank(dev
);
3865 dpll
= I915_READ(dpll_reg
);
3866 if (!(dpll
& DISPLAY_RATE_SELECT_FPA1
))
3867 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
3869 /* ...and lock them again */
3870 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
3876 * intel_idle_update - adjust clocks for idleness
3877 * @work: work struct
3879 * Either the GPU or display (or both) went idle. Check the busy status
3880 * here and adjust the CRTC and GPU clocks as necessary.
3882 static void intel_idle_update(struct work_struct
*work
)
3884 drm_i915_private_t
*dev_priv
= container_of(work
, drm_i915_private_t
,
3886 struct drm_device
*dev
= dev_priv
->dev
;
3887 struct drm_crtc
*crtc
;
3888 struct intel_crtc
*intel_crtc
;
3890 if (!i915_powersave
)
3893 mutex_lock(&dev
->struct_mutex
);
3895 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
3896 /* Skip inactive CRTCs */
3900 intel_crtc
= to_intel_crtc(crtc
);
3901 if (!intel_crtc
->busy
)
3902 intel_decrease_pllclock(crtc
);
3905 mutex_unlock(&dev
->struct_mutex
);
3909 * intel_mark_busy - mark the GPU and possibly the display busy
3911 * @obj: object we're operating on
3913 * Callers can use this function to indicate that the GPU is busy processing
3914 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
3915 * buffer), we'll also mark the display as busy, so we know to increase its
3918 void intel_mark_busy(struct drm_device
*dev
, struct drm_gem_object
*obj
)
3920 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3921 struct drm_crtc
*crtc
= NULL
;
3922 struct intel_framebuffer
*intel_fb
;
3923 struct intel_crtc
*intel_crtc
;
3925 if (!drm_core_check_feature(dev
, DRIVER_MODESET
))
3928 if (!dev_priv
->busy
)
3929 dev_priv
->busy
= true;
3931 mod_timer(&dev_priv
->idle_timer
, jiffies
+
3932 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
3934 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
3938 intel_crtc
= to_intel_crtc(crtc
);
3939 intel_fb
= to_intel_framebuffer(crtc
->fb
);
3940 if (intel_fb
->obj
== obj
) {
3941 if (!intel_crtc
->busy
) {
3942 /* Non-busy -> busy, upclock */
3943 intel_increase_pllclock(crtc
, true);
3944 intel_crtc
->busy
= true;
3946 /* Busy -> busy, put off timer */
3947 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
3948 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
3954 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
3956 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3958 drm_crtc_cleanup(crtc
);
3962 struct intel_unpin_work
{
3963 struct work_struct work
;
3964 struct drm_device
*dev
;
3965 struct drm_gem_object
*obj
;
3966 struct drm_pending_vblank_event
*event
;
3970 static void intel_unpin_work_fn(struct work_struct
*__work
)
3972 struct intel_unpin_work
*work
=
3973 container_of(__work
, struct intel_unpin_work
, work
);
3975 mutex_lock(&work
->dev
->struct_mutex
);
3976 i915_gem_object_unpin(work
->obj
);
3977 drm_gem_object_unreference(work
->obj
);
3978 mutex_unlock(&work
->dev
->struct_mutex
);
3982 void intel_finish_page_flip(struct drm_device
*dev
, int pipe
)
3984 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3985 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
3986 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3987 struct intel_unpin_work
*work
;
3988 struct drm_i915_gem_object
*obj_priv
;
3989 struct drm_pending_vblank_event
*e
;
3991 unsigned long flags
;
3993 /* Ignore early vblank irqs */
3994 if (intel_crtc
== NULL
)
3997 spin_lock_irqsave(&dev
->event_lock
, flags
);
3998 work
= intel_crtc
->unpin_work
;
3999 if (work
== NULL
|| !work
->pending
) {
4000 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4004 intel_crtc
->unpin_work
= NULL
;
4005 drm_vblank_put(dev
, intel_crtc
->pipe
);
4009 do_gettimeofday(&now
);
4010 e
->event
.sequence
= drm_vblank_count(dev
, intel_crtc
->pipe
);
4011 e
->event
.tv_sec
= now
.tv_sec
;
4012 e
->event
.tv_usec
= now
.tv_usec
;
4013 list_add_tail(&e
->base
.link
,
4014 &e
->base
.file_priv
->event_list
);
4015 wake_up_interruptible(&e
->base
.file_priv
->event_wait
);
4018 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4020 obj_priv
= work
->obj
->driver_private
;
4021 if (atomic_dec_and_test(&obj_priv
->pending_flip
))
4022 DRM_WAKEUP(&dev_priv
->pending_flip_queue
);
4023 schedule_work(&work
->work
);
4026 void intel_prepare_page_flip(struct drm_device
*dev
, int plane
)
4028 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4029 struct intel_crtc
*intel_crtc
=
4030 to_intel_crtc(dev_priv
->plane_to_crtc_mapping
[plane
]);
4031 unsigned long flags
;
4033 spin_lock_irqsave(&dev
->event_lock
, flags
);
4034 if (intel_crtc
->unpin_work
)
4035 intel_crtc
->unpin_work
->pending
= 1;
4036 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4039 static int intel_crtc_page_flip(struct drm_crtc
*crtc
,
4040 struct drm_framebuffer
*fb
,
4041 struct drm_pending_vblank_event
*event
)
4043 struct drm_device
*dev
= crtc
->dev
;
4044 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4045 struct intel_framebuffer
*intel_fb
;
4046 struct drm_i915_gem_object
*obj_priv
;
4047 struct drm_gem_object
*obj
;
4048 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4049 struct intel_unpin_work
*work
;
4050 unsigned long flags
;
4054 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
4058 mutex_lock(&dev
->struct_mutex
);
4060 work
->event
= event
;
4061 work
->dev
= crtc
->dev
;
4062 intel_fb
= to_intel_framebuffer(crtc
->fb
);
4063 work
->obj
= intel_fb
->obj
;
4064 INIT_WORK(&work
->work
, intel_unpin_work_fn
);
4066 /* We borrow the event spin lock for protecting unpin_work */
4067 spin_lock_irqsave(&dev
->event_lock
, flags
);
4068 if (intel_crtc
->unpin_work
) {
4069 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4071 mutex_unlock(&dev
->struct_mutex
);
4074 intel_crtc
->unpin_work
= work
;
4075 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4077 intel_fb
= to_intel_framebuffer(fb
);
4078 obj
= intel_fb
->obj
;
4080 ret
= intel_pin_and_fence_fb_obj(dev
, obj
);
4083 mutex_unlock(&dev
->struct_mutex
);
4087 /* Reference the old fb object for the scheduled work. */
4088 drm_gem_object_reference(work
->obj
);
4091 i915_gem_object_flush_write_domain(obj
);
4092 drm_vblank_get(dev
, intel_crtc
->pipe
);
4093 obj_priv
= obj
->driver_private
;
4094 atomic_inc(&obj_priv
->pending_flip
);
4097 OUT_RING(MI_DISPLAY_FLIP
|
4098 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
4099 OUT_RING(fb
->pitch
);
4100 if (IS_I965G(dev
)) {
4101 OUT_RING(obj_priv
->gtt_offset
| obj_priv
->tiling_mode
);
4102 OUT_RING((fb
->width
<< 16) | fb
->height
);
4104 OUT_RING(obj_priv
->gtt_offset
);
4109 mutex_unlock(&dev
->struct_mutex
);
4114 static const struct drm_crtc_helper_funcs intel_helper_funcs
= {
4115 .dpms
= intel_crtc_dpms
,
4116 .mode_fixup
= intel_crtc_mode_fixup
,
4117 .mode_set
= intel_crtc_mode_set
,
4118 .mode_set_base
= intel_pipe_set_base
,
4119 .prepare
= intel_crtc_prepare
,
4120 .commit
= intel_crtc_commit
,
4121 .load_lut
= intel_crtc_load_lut
,
4124 static const struct drm_crtc_funcs intel_crtc_funcs
= {
4125 .cursor_set
= intel_crtc_cursor_set
,
4126 .cursor_move
= intel_crtc_cursor_move
,
4127 .gamma_set
= intel_crtc_gamma_set
,
4128 .set_config
= drm_crtc_helper_set_config
,
4129 .destroy
= intel_crtc_destroy
,
4130 .page_flip
= intel_crtc_page_flip
,
4134 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
4136 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4137 struct intel_crtc
*intel_crtc
;
4140 intel_crtc
= kzalloc(sizeof(struct intel_crtc
) + (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)), GFP_KERNEL
);
4141 if (intel_crtc
== NULL
)
4144 drm_crtc_init(dev
, &intel_crtc
->base
, &intel_crtc_funcs
);
4146 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
4147 intel_crtc
->pipe
= pipe
;
4148 intel_crtc
->plane
= pipe
;
4149 for (i
= 0; i
< 256; i
++) {
4150 intel_crtc
->lut_r
[i
] = i
;
4151 intel_crtc
->lut_g
[i
] = i
;
4152 intel_crtc
->lut_b
[i
] = i
;
4155 /* Swap pipes & planes for FBC on pre-965 */
4156 intel_crtc
->pipe
= pipe
;
4157 intel_crtc
->plane
= pipe
;
4158 if (IS_MOBILE(dev
) && (IS_I9XX(dev
) && !IS_I965G(dev
))) {
4159 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4160 intel_crtc
->plane
= ((pipe
== 0) ? 1 : 0);
4163 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
4164 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] != NULL
);
4165 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] = &intel_crtc
->base
;
4166 dev_priv
->pipe_to_crtc_mapping
[intel_crtc
->pipe
] = &intel_crtc
->base
;
4168 intel_crtc
->cursor_addr
= 0;
4169 intel_crtc
->dpms_mode
= DRM_MODE_DPMS_OFF
;
4170 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
4172 intel_crtc
->busy
= false;
4174 setup_timer(&intel_crtc
->idle_timer
, intel_crtc_idle_timer
,
4175 (unsigned long)intel_crtc
);
4178 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
4179 struct drm_file
*file_priv
)
4181 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4182 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
4183 struct drm_mode_object
*drmmode_obj
;
4184 struct intel_crtc
*crtc
;
4187 DRM_ERROR("called with no initialization\n");
4191 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
4192 DRM_MODE_OBJECT_CRTC
);
4195 DRM_ERROR("no such CRTC id\n");
4199 crtc
= to_intel_crtc(obj_to_crtc(drmmode_obj
));
4200 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
4205 struct drm_crtc
*intel_get_crtc_from_pipe(struct drm_device
*dev
, int pipe
)
4207 struct drm_crtc
*crtc
= NULL
;
4209 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4210 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4211 if (intel_crtc
->pipe
== pipe
)
4217 static int intel_connector_clones(struct drm_device
*dev
, int type_mask
)
4220 struct drm_connector
*connector
;
4223 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
4224 struct intel_output
*intel_output
= to_intel_output(connector
);
4225 if (type_mask
& intel_output
->clone_mask
)
4226 index_mask
|= (1 << entry
);
4233 static void intel_setup_outputs(struct drm_device
*dev
)
4235 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4236 struct drm_connector
*connector
;
4238 intel_crt_init(dev
);
4240 /* Set up integrated LVDS */
4241 if (IS_MOBILE(dev
) && !IS_I830(dev
))
4242 intel_lvds_init(dev
);
4244 if (IS_IRONLAKE(dev
)) {
4247 if (IS_MOBILE(dev
) && (I915_READ(DP_A
) & DP_DETECTED
))
4248 intel_dp_init(dev
, DP_A
);
4250 if (I915_READ(HDMIB
) & PORT_DETECTED
) {
4252 /* found = intel_sdvo_init(dev, HDMIB); */
4255 intel_hdmi_init(dev
, HDMIB
);
4256 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
4257 intel_dp_init(dev
, PCH_DP_B
);
4260 if (I915_READ(HDMIC
) & PORT_DETECTED
)
4261 intel_hdmi_init(dev
, HDMIC
);
4263 if (I915_READ(HDMID
) & PORT_DETECTED
)
4264 intel_hdmi_init(dev
, HDMID
);
4266 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
4267 intel_dp_init(dev
, PCH_DP_C
);
4269 if (I915_READ(PCH_DP_D
) & DP_DETECTED
)
4270 intel_dp_init(dev
, PCH_DP_D
);
4272 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev
)) {
4275 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
4276 DRM_DEBUG_KMS("probing SDVOB\n");
4277 found
= intel_sdvo_init(dev
, SDVOB
);
4278 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
)) {
4279 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4280 intel_hdmi_init(dev
, SDVOB
);
4283 if (!found
&& SUPPORTS_INTEGRATED_DP(dev
)) {
4284 DRM_DEBUG_KMS("probing DP_B\n");
4285 intel_dp_init(dev
, DP_B
);
4289 /* Before G4X SDVOC doesn't have its own detect register */
4291 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
4292 DRM_DEBUG_KMS("probing SDVOC\n");
4293 found
= intel_sdvo_init(dev
, SDVOC
);
4296 if (!found
&& (I915_READ(SDVOC
) & SDVO_DETECTED
)) {
4298 if (SUPPORTS_INTEGRATED_HDMI(dev
)) {
4299 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4300 intel_hdmi_init(dev
, SDVOC
);
4302 if (SUPPORTS_INTEGRATED_DP(dev
)) {
4303 DRM_DEBUG_KMS("probing DP_C\n");
4304 intel_dp_init(dev
, DP_C
);
4308 if (SUPPORTS_INTEGRATED_DP(dev
) &&
4309 (I915_READ(DP_D
) & DP_DETECTED
)) {
4310 DRM_DEBUG_KMS("probing DP_D\n");
4311 intel_dp_init(dev
, DP_D
);
4313 } else if (IS_I8XX(dev
))
4314 intel_dvo_init(dev
);
4316 if (SUPPORTS_TV(dev
))
4319 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
4320 struct intel_output
*intel_output
= to_intel_output(connector
);
4321 struct drm_encoder
*encoder
= &intel_output
->enc
;
4323 encoder
->possible_crtcs
= intel_output
->crtc_mask
;
4324 encoder
->possible_clones
= intel_connector_clones(dev
,
4325 intel_output
->clone_mask
);
4329 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
4331 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
4332 struct drm_device
*dev
= fb
->dev
;
4335 intelfb_remove(dev
, fb
);
4337 drm_framebuffer_cleanup(fb
);
4338 mutex_lock(&dev
->struct_mutex
);
4339 drm_gem_object_unreference(intel_fb
->obj
);
4340 mutex_unlock(&dev
->struct_mutex
);
4345 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
4346 struct drm_file
*file_priv
,
4347 unsigned int *handle
)
4349 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
4350 struct drm_gem_object
*object
= intel_fb
->obj
;
4352 return drm_gem_handle_create(file_priv
, object
, handle
);
4355 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
4356 .destroy
= intel_user_framebuffer_destroy
,
4357 .create_handle
= intel_user_framebuffer_create_handle
,
4360 int intel_framebuffer_create(struct drm_device
*dev
,
4361 struct drm_mode_fb_cmd
*mode_cmd
,
4362 struct drm_framebuffer
**fb
,
4363 struct drm_gem_object
*obj
)
4365 struct intel_framebuffer
*intel_fb
;
4368 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
4372 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
4374 DRM_ERROR("framebuffer init failed %d\n", ret
);
4378 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
4380 intel_fb
->obj
= obj
;
4382 *fb
= &intel_fb
->base
;
4388 static struct drm_framebuffer
*
4389 intel_user_framebuffer_create(struct drm_device
*dev
,
4390 struct drm_file
*filp
,
4391 struct drm_mode_fb_cmd
*mode_cmd
)
4393 struct drm_gem_object
*obj
;
4394 struct drm_framebuffer
*fb
;
4397 obj
= drm_gem_object_lookup(dev
, filp
, mode_cmd
->handle
);
4401 ret
= intel_framebuffer_create(dev
, mode_cmd
, &fb
, obj
);
4403 mutex_lock(&dev
->struct_mutex
);
4404 drm_gem_object_unreference(obj
);
4405 mutex_unlock(&dev
->struct_mutex
);
4412 static const struct drm_mode_config_funcs intel_mode_funcs
= {
4413 .fb_create
= intel_user_framebuffer_create
,
4414 .fb_changed
= intelfb_probe
,
4417 static struct drm_gem_object
*
4418 intel_alloc_power_context(struct drm_device
*dev
)
4420 struct drm_gem_object
*pwrctx
;
4423 pwrctx
= drm_gem_object_alloc(dev
, 4096);
4425 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4429 mutex_lock(&dev
->struct_mutex
);
4430 ret
= i915_gem_object_pin(pwrctx
, 4096);
4432 DRM_ERROR("failed to pin power context: %d\n", ret
);
4436 ret
= i915_gem_object_set_to_gtt_domain(pwrctx
, 1);
4438 DRM_ERROR("failed to set-domain on power context: %d\n", ret
);
4441 mutex_unlock(&dev
->struct_mutex
);
4446 i915_gem_object_unpin(pwrctx
);
4448 drm_gem_object_unreference(pwrctx
);
4449 mutex_unlock(&dev
->struct_mutex
);
4453 void intel_init_clock_gating(struct drm_device
*dev
)
4455 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4458 * Disable clock gating reported to work incorrectly according to the
4459 * specs, but enable as much else as we can.
4461 if (IS_IRONLAKE(dev
)) {
4463 } else if (IS_G4X(dev
)) {
4464 uint32_t dspclk_gate
;
4465 I915_WRITE(RENCLK_GATE_D1
, 0);
4466 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
4467 GS_UNIT_CLOCK_GATE_DISABLE
|
4468 CL_UNIT_CLOCK_GATE_DISABLE
);
4469 I915_WRITE(RAMCLK_GATE_D
, 0);
4470 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
4471 OVRUNIT_CLOCK_GATE_DISABLE
|
4472 OVCUNIT_CLOCK_GATE_DISABLE
;
4474 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
4475 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
4476 } else if (IS_I965GM(dev
)) {
4477 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
4478 I915_WRITE(RENCLK_GATE_D2
, 0);
4479 I915_WRITE(DSPCLK_GATE_D
, 0);
4480 I915_WRITE(RAMCLK_GATE_D
, 0);
4481 I915_WRITE16(DEUC
, 0);
4482 } else if (IS_I965G(dev
)) {
4483 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
4484 I965_RCC_CLOCK_GATE_DISABLE
|
4485 I965_RCPB_CLOCK_GATE_DISABLE
|
4486 I965_ISC_CLOCK_GATE_DISABLE
|
4487 I965_FBC_CLOCK_GATE_DISABLE
);
4488 I915_WRITE(RENCLK_GATE_D2
, 0);
4489 } else if (IS_I9XX(dev
)) {
4490 u32 dstate
= I915_READ(D_STATE
);
4492 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
4493 DSTATE_DOT_CLOCK_GATING
;
4494 I915_WRITE(D_STATE
, dstate
);
4495 } else if (IS_I85X(dev
) || IS_I865G(dev
)) {
4496 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
4497 } else if (IS_I830(dev
)) {
4498 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
4502 * GPU can automatically power down the render unit if given a page
4505 if (I915_HAS_RC6(dev
) && drm_core_check_feature(dev
, DRIVER_MODESET
)) {
4506 struct drm_i915_gem_object
*obj_priv
= NULL
;
4508 if (dev_priv
->pwrctx
) {
4509 obj_priv
= dev_priv
->pwrctx
->driver_private
;
4511 struct drm_gem_object
*pwrctx
;
4513 pwrctx
= intel_alloc_power_context(dev
);
4515 dev_priv
->pwrctx
= pwrctx
;
4516 obj_priv
= pwrctx
->driver_private
;
4521 I915_WRITE(PWRCTXA
, obj_priv
->gtt_offset
| PWRCTX_EN
);
4522 I915_WRITE(MCHBAR_RENDER_STANDBY
,
4523 I915_READ(MCHBAR_RENDER_STANDBY
) & ~RCX_SW_EXIT
);
4528 /* Set up chip specific display functions */
4529 static void intel_init_display(struct drm_device
*dev
)
4531 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4533 /* We always want a DPMS function */
4534 if (IS_IRONLAKE(dev
))
4535 dev_priv
->display
.dpms
= ironlake_crtc_dpms
;
4537 dev_priv
->display
.dpms
= i9xx_crtc_dpms
;
4539 /* Only mobile has FBC, leave pointers NULL for other chips */
4540 if (IS_MOBILE(dev
)) {
4542 dev_priv
->display
.fbc_enabled
= g4x_fbc_enabled
;
4543 dev_priv
->display
.enable_fbc
= g4x_enable_fbc
;
4544 dev_priv
->display
.disable_fbc
= g4x_disable_fbc
;
4545 } else if (IS_I965GM(dev
) || IS_I945GM(dev
) || IS_I915GM(dev
)) {
4546 dev_priv
->display
.fbc_enabled
= i8xx_fbc_enabled
;
4547 dev_priv
->display
.enable_fbc
= i8xx_enable_fbc
;
4548 dev_priv
->display
.disable_fbc
= i8xx_disable_fbc
;
4550 /* 855GM needs testing */
4553 /* Returns the core display clock speed */
4554 if (IS_I945G(dev
) || (IS_G33(dev
) && ! IS_PINEVIEW_M(dev
)))
4555 dev_priv
->display
.get_display_clock_speed
=
4556 i945_get_display_clock_speed
;
4557 else if (IS_I915G(dev
))
4558 dev_priv
->display
.get_display_clock_speed
=
4559 i915_get_display_clock_speed
;
4560 else if (IS_I945GM(dev
) || IS_845G(dev
) || IS_PINEVIEW_M(dev
))
4561 dev_priv
->display
.get_display_clock_speed
=
4562 i9xx_misc_get_display_clock_speed
;
4563 else if (IS_I915GM(dev
))
4564 dev_priv
->display
.get_display_clock_speed
=
4565 i915gm_get_display_clock_speed
;
4566 else if (IS_I865G(dev
))
4567 dev_priv
->display
.get_display_clock_speed
=
4568 i865_get_display_clock_speed
;
4569 else if (IS_I85X(dev
))
4570 dev_priv
->display
.get_display_clock_speed
=
4571 i855_get_display_clock_speed
;
4573 dev_priv
->display
.get_display_clock_speed
=
4574 i830_get_display_clock_speed
;
4576 /* For FIFO watermark updates */
4577 if (IS_IRONLAKE(dev
))
4578 dev_priv
->display
.update_wm
= NULL
;
4579 else if (IS_G4X(dev
))
4580 dev_priv
->display
.update_wm
= g4x_update_wm
;
4581 else if (IS_I965G(dev
))
4582 dev_priv
->display
.update_wm
= i965_update_wm
;
4583 else if (IS_I9XX(dev
) || IS_MOBILE(dev
)) {
4584 dev_priv
->display
.update_wm
= i9xx_update_wm
;
4585 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
4588 dev_priv
->display
.get_fifo_size
= i85x_get_fifo_size
;
4589 else if (IS_845G(dev
))
4590 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
4592 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
4593 dev_priv
->display
.update_wm
= i830_update_wm
;
4597 void intel_modeset_init(struct drm_device
*dev
)
4599 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4603 drm_mode_config_init(dev
);
4605 dev
->mode_config
.min_width
= 0;
4606 dev
->mode_config
.min_height
= 0;
4608 dev
->mode_config
.funcs
= (void *)&intel_mode_funcs
;
4610 intel_init_display(dev
);
4612 if (IS_I965G(dev
)) {
4613 dev
->mode_config
.max_width
= 8192;
4614 dev
->mode_config
.max_height
= 8192;
4615 } else if (IS_I9XX(dev
)) {
4616 dev
->mode_config
.max_width
= 4096;
4617 dev
->mode_config
.max_height
= 4096;
4619 dev
->mode_config
.max_width
= 2048;
4620 dev
->mode_config
.max_height
= 2048;
4623 /* set memory base */
4625 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 2);
4627 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 0);
4629 if (IS_MOBILE(dev
) || IS_I9XX(dev
))
4633 DRM_DEBUG_KMS("%d display pipe%s available.\n",
4634 num_pipe
, num_pipe
> 1 ? "s" : "");
4637 pci_read_config_word(dev
->pdev
, HPLLCC
, &dev_priv
->orig_clock
);
4638 else if (IS_I9XX(dev
) || IS_G4X(dev
))
4639 pci_read_config_word(dev
->pdev
, GCFGC
, &dev_priv
->orig_clock
);
4641 for (i
= 0; i
< num_pipe
; i
++) {
4642 intel_crtc_init(dev
, i
);
4645 intel_setup_outputs(dev
);
4647 intel_init_clock_gating(dev
);
4649 INIT_WORK(&dev_priv
->idle_work
, intel_idle_update
);
4650 setup_timer(&dev_priv
->idle_timer
, intel_gpu_idle_timer
,
4651 (unsigned long)dev
);
4653 intel_setup_overlay(dev
);
4655 if (IS_PINEVIEW(dev
) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev
),
4657 dev_priv
->mem_freq
))
4658 DRM_INFO("failed to find known CxSR latency "
4659 "(found fsb freq %d, mem freq %d), disabling CxSR\n",
4660 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
4663 void intel_modeset_cleanup(struct drm_device
*dev
)
4665 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4666 struct drm_crtc
*crtc
;
4667 struct intel_crtc
*intel_crtc
;
4669 mutex_lock(&dev
->struct_mutex
);
4671 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4672 /* Skip inactive CRTCs */
4676 intel_crtc
= to_intel_crtc(crtc
);
4677 intel_increase_pllclock(crtc
, false);
4678 del_timer_sync(&intel_crtc
->idle_timer
);
4681 del_timer_sync(&dev_priv
->idle_timer
);
4683 if (dev_priv
->display
.disable_fbc
)
4684 dev_priv
->display
.disable_fbc(dev
);
4686 if (dev_priv
->pwrctx
) {
4687 struct drm_i915_gem_object
*obj_priv
;
4689 obj_priv
= dev_priv
->pwrctx
->driver_private
;
4690 I915_WRITE(PWRCTXA
, obj_priv
->gtt_offset
&~ PWRCTX_EN
);
4692 i915_gem_object_unpin(dev_priv
->pwrctx
);
4693 drm_gem_object_unreference(dev_priv
->pwrctx
);
4696 mutex_unlock(&dev
->struct_mutex
);
4698 drm_mode_config_cleanup(dev
);
4702 /* current intel driver doesn't take advantage of encoders
4703 always give back the encoder for the connector
4705 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
4707 struct intel_output
*intel_output
= to_intel_output(connector
);
4709 return &intel_output
->enc
;
4713 * set vga decode state - true == enable VGA decode
4715 int intel_modeset_vga_set_state(struct drm_device
*dev
, bool state
)
4717 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4720 pci_read_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, &gmch_ctrl
);
4722 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
4724 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
4725 pci_write_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, gmch_ctrl
);