drm/i915: Hold struct mutex whilst pinning power context bo.
[linux-2.6/linux-2.6-openrd.git] / drivers / gpu / drm / i915 / intel_display.c
blob84705b7e01ecacde85c48ae5185740dcb0837a5b
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "drm_dp_helper.h"
37 #include "drm_crtc_helper.h"
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45 typedef struct {
46 /* given values */
47 int n;
48 int m1, m2;
49 int p1, p2;
50 /* derived values */
51 int dot;
52 int vco;
53 int m;
54 int p;
55 } intel_clock_t;
57 typedef struct {
58 int min, max;
59 } intel_range_t;
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
66 #define INTEL_P2_NUM 2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69 intel_range_t dot, vco, n, m, m1, m2, p, p1;
70 intel_p2_t p2;
71 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72 int, int, intel_clock_t *);
73 bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74 int, int, intel_clock_t *);
77 #define I8XX_DOT_MIN 25000
78 #define I8XX_DOT_MAX 350000
79 #define I8XX_VCO_MIN 930000
80 #define I8XX_VCO_MAX 1400000
81 #define I8XX_N_MIN 3
82 #define I8XX_N_MAX 16
83 #define I8XX_M_MIN 96
84 #define I8XX_M_MAX 140
85 #define I8XX_M1_MIN 18
86 #define I8XX_M1_MAX 26
87 #define I8XX_M2_MIN 6
88 #define I8XX_M2_MAX 16
89 #define I8XX_P_MIN 4
90 #define I8XX_P_MAX 128
91 #define I8XX_P1_MIN 2
92 #define I8XX_P1_MAX 33
93 #define I8XX_P1_LVDS_MIN 1
94 #define I8XX_P1_LVDS_MAX 6
95 #define I8XX_P2_SLOW 4
96 #define I8XX_P2_FAST 2
97 #define I8XX_P2_LVDS_SLOW 14
98 #define I8XX_P2_LVDS_FAST 7
99 #define I8XX_P2_SLOW_LIMIT 165000
101 #define I9XX_DOT_MIN 20000
102 #define I9XX_DOT_MAX 400000
103 #define I9XX_VCO_MIN 1400000
104 #define I9XX_VCO_MAX 2800000
105 #define PINEVIEW_VCO_MIN 1700000
106 #define PINEVIEW_VCO_MAX 3500000
107 #define I9XX_N_MIN 1
108 #define I9XX_N_MAX 6
109 /* Pineview's Ncounter is a ring counter */
110 #define PINEVIEW_N_MIN 3
111 #define PINEVIEW_N_MAX 6
112 #define I9XX_M_MIN 70
113 #define I9XX_M_MAX 120
114 #define PINEVIEW_M_MIN 2
115 #define PINEVIEW_M_MAX 256
116 #define I9XX_M1_MIN 10
117 #define I9XX_M1_MAX 22
118 #define I9XX_M2_MIN 5
119 #define I9XX_M2_MAX 9
120 /* Pineview M1 is reserved, and must be 0 */
121 #define PINEVIEW_M1_MIN 0
122 #define PINEVIEW_M1_MAX 0
123 #define PINEVIEW_M2_MIN 0
124 #define PINEVIEW_M2_MAX 254
125 #define I9XX_P_SDVO_DAC_MIN 5
126 #define I9XX_P_SDVO_DAC_MAX 80
127 #define I9XX_P_LVDS_MIN 7
128 #define I9XX_P_LVDS_MAX 98
129 #define PINEVIEW_P_LVDS_MIN 7
130 #define PINEVIEW_P_LVDS_MAX 112
131 #define I9XX_P1_MIN 1
132 #define I9XX_P1_MAX 8
133 #define I9XX_P2_SDVO_DAC_SLOW 10
134 #define I9XX_P2_SDVO_DAC_FAST 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
136 #define I9XX_P2_LVDS_SLOW 14
137 #define I9XX_P2_LVDS_FAST 7
138 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN 25000
142 #define G4X_DOT_SDVO_MAX 270000
143 #define G4X_VCO_MIN 1750000
144 #define G4X_VCO_MAX 3500000
145 #define G4X_N_SDVO_MIN 1
146 #define G4X_N_SDVO_MAX 4
147 #define G4X_M_SDVO_MIN 104
148 #define G4X_M_SDVO_MAX 138
149 #define G4X_M1_SDVO_MIN 17
150 #define G4X_M1_SDVO_MAX 23
151 #define G4X_M2_SDVO_MIN 5
152 #define G4X_M2_SDVO_MAX 11
153 #define G4X_P_SDVO_MIN 10
154 #define G4X_P_SDVO_MAX 30
155 #define G4X_P1_SDVO_MIN 1
156 #define G4X_P1_SDVO_MAX 3
157 #define G4X_P2_SDVO_SLOW 10
158 #define G4X_P2_SDVO_FAST 10
159 #define G4X_P2_SDVO_LIMIT 270000
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN 22000
163 #define G4X_DOT_HDMI_DAC_MAX 400000
164 #define G4X_N_HDMI_DAC_MIN 1
165 #define G4X_N_HDMI_DAC_MAX 4
166 #define G4X_M_HDMI_DAC_MIN 104
167 #define G4X_M_HDMI_DAC_MAX 138
168 #define G4X_M1_HDMI_DAC_MIN 16
169 #define G4X_M1_HDMI_DAC_MAX 23
170 #define G4X_M2_HDMI_DAC_MIN 5
171 #define G4X_M2_HDMI_DAC_MAX 11
172 #define G4X_P_HDMI_DAC_MIN 5
173 #define G4X_P_HDMI_DAC_MAX 80
174 #define G4X_P1_HDMI_DAC_MIN 1
175 #define G4X_P1_HDMI_DAC_MAX 8
176 #define G4X_P2_HDMI_DAC_SLOW 10
177 #define G4X_P2_HDMI_DAC_FAST 5
178 #define G4X_P2_HDMI_DAC_LIMIT 165000
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN 161670
220 #define G4X_DOT_DISPLAY_PORT_MAX 227000
221 #define G4X_N_DISPLAY_PORT_MIN 1
222 #define G4X_N_DISPLAY_PORT_MAX 2
223 #define G4X_M_DISPLAY_PORT_MIN 97
224 #define G4X_M_DISPLAY_PORT_MAX 108
225 #define G4X_M1_DISPLAY_PORT_MIN 0x10
226 #define G4X_M1_DISPLAY_PORT_MAX 0x12
227 #define G4X_M2_DISPLAY_PORT_MIN 0x05
228 #define G4X_M2_DISPLAY_PORT_MAX 0x06
229 #define G4X_P_DISPLAY_PORT_MIN 10
230 #define G4X_P_DISPLAY_PORT_MAX 20
231 #define G4X_P1_DISPLAY_PORT_MIN 1
232 #define G4X_P1_DISPLAY_PORT_MAX 2
233 #define G4X_P2_DISPLAY_PORT_SLOW 10
234 #define G4X_P2_DISPLAY_PORT_FAST 10
235 #define G4X_P2_DISPLAY_PORT_LIMIT 0
237 /* Ironlake */
238 /* as we calculate clock using (register_value + 2) for
239 N/M1/M2, so here the range value for them is (actual_value-2).
241 #define IRONLAKE_DOT_MIN 25000
242 #define IRONLAKE_DOT_MAX 350000
243 #define IRONLAKE_VCO_MIN 1760000
244 #define IRONLAKE_VCO_MAX 3510000
245 #define IRONLAKE_N_MIN 1
246 #define IRONLAKE_N_MAX 5
247 #define IRONLAKE_M_MIN 79
248 #define IRONLAKE_M_MAX 118
249 #define IRONLAKE_M1_MIN 12
250 #define IRONLAKE_M1_MAX 23
251 #define IRONLAKE_M2_MIN 5
252 #define IRONLAKE_M2_MAX 9
253 #define IRONLAKE_P_SDVO_DAC_MIN 5
254 #define IRONLAKE_P_SDVO_DAC_MAX 80
255 #define IRONLAKE_P_LVDS_MIN 28
256 #define IRONLAKE_P_LVDS_MAX 112
257 #define IRONLAKE_P1_MIN 1
258 #define IRONLAKE_P1_MAX 8
259 #define IRONLAKE_P2_SDVO_DAC_SLOW 10
260 #define IRONLAKE_P2_SDVO_DAC_FAST 5
261 #define IRONLAKE_P2_LVDS_SLOW 14 /* single channel */
262 #define IRONLAKE_P2_LVDS_FAST 7 /* double channel */
263 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267 int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270 int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273 int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_ironlake_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276 int target, int refclk, intel_clock_t *best_clock);
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280 int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
283 int target, int refclk, intel_clock_t *best_clock);
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
287 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
288 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
289 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
290 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
291 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
292 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
293 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
294 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
296 .find_pll = intel_find_best_PLL,
297 .find_reduced_pll = intel_find_best_reduced_PLL,
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
302 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
303 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
304 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
305 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
306 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
307 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
308 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
309 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
311 .find_pll = intel_find_best_PLL,
312 .find_reduced_pll = intel_find_best_reduced_PLL,
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
317 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
318 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
319 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
320 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
321 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
322 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
323 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
324 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326 .find_pll = intel_find_best_PLL,
327 .find_reduced_pll = intel_find_best_reduced_PLL,
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
332 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
333 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
334 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
335 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
336 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
337 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
338 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
339 /* The single-channel range is 25-112Mhz, and dual-channel
340 * is 80-224Mhz. Prefer single channel as much as possible.
342 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
344 .find_pll = intel_find_best_PLL,
345 .find_reduced_pll = intel_find_best_reduced_PLL,
348 /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
351 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
352 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
353 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
354 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
355 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
356 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
357 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
358 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
359 .p2_slow = G4X_P2_SDVO_SLOW,
360 .p2_fast = G4X_P2_SDVO_FAST
362 .find_pll = intel_g4x_find_best_PLL,
363 .find_reduced_pll = intel_g4x_find_best_PLL,
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
368 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
369 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
370 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
371 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
372 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
373 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
374 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
375 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377 .p2_fast = G4X_P2_HDMI_DAC_FAST
379 .find_pll = intel_g4x_find_best_PLL,
380 .find_reduced_pll = intel_g4x_find_best_PLL,
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386 .vco = { .min = G4X_VCO_MIN,
387 .max = G4X_VCO_MAX },
388 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
404 .find_pll = intel_g4x_find_best_PLL,
405 .find_reduced_pll = intel_g4x_find_best_PLL,
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411 .vco = { .min = G4X_VCO_MIN,
412 .max = G4X_VCO_MAX },
413 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
429 .find_pll = intel_g4x_find_best_PLL,
430 .find_reduced_pll = intel_g4x_find_best_PLL,
433 static const intel_limit_t intel_limits_g4x_display_port = {
434 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435 .max = G4X_DOT_DISPLAY_PORT_MAX },
436 .vco = { .min = G4X_VCO_MIN,
437 .max = G4X_VCO_MAX},
438 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
439 .max = G4X_N_DISPLAY_PORT_MAX },
440 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
441 .max = G4X_M_DISPLAY_PORT_MAX },
442 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
443 .max = G4X_M1_DISPLAY_PORT_MAX },
444 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
445 .max = G4X_M2_DISPLAY_PORT_MAX },
446 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
447 .max = G4X_P_DISPLAY_PORT_MAX },
448 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
449 .max = G4X_P1_DISPLAY_PORT_MAX},
450 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453 .find_pll = intel_find_pll_g4x_dp,
456 static const intel_limit_t intel_limits_pineview_sdvo = {
457 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
458 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
459 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
460 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
461 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
462 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
463 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
464 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
465 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467 .find_pll = intel_find_best_PLL,
468 .find_reduced_pll = intel_find_best_reduced_PLL,
471 static const intel_limit_t intel_limits_pineview_lvds = {
472 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
473 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
474 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
475 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
476 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
477 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
478 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
479 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
480 /* Pineview only supports single-channel mode. */
481 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
483 .find_pll = intel_find_best_PLL,
484 .find_reduced_pll = intel_find_best_reduced_PLL,
487 static const intel_limit_t intel_limits_ironlake_sdvo = {
488 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
489 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
490 .n = { .min = IRONLAKE_N_MIN, .max = IRONLAKE_N_MAX },
491 .m = { .min = IRONLAKE_M_MIN, .max = IRONLAKE_M_MAX },
492 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
493 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
494 .p = { .min = IRONLAKE_P_SDVO_DAC_MIN, .max = IRONLAKE_P_SDVO_DAC_MAX },
495 .p1 = { .min = IRONLAKE_P1_MIN, .max = IRONLAKE_P1_MAX },
496 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
497 .p2_slow = IRONLAKE_P2_SDVO_DAC_SLOW,
498 .p2_fast = IRONLAKE_P2_SDVO_DAC_FAST },
499 .find_pll = intel_ironlake_find_best_PLL,
502 static const intel_limit_t intel_limits_ironlake_lvds = {
503 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
504 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
505 .n = { .min = IRONLAKE_N_MIN, .max = IRONLAKE_N_MAX },
506 .m = { .min = IRONLAKE_M_MIN, .max = IRONLAKE_M_MAX },
507 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
508 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
509 .p = { .min = IRONLAKE_P_LVDS_MIN, .max = IRONLAKE_P_LVDS_MAX },
510 .p1 = { .min = IRONLAKE_P1_MIN, .max = IRONLAKE_P1_MAX },
511 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
512 .p2_slow = IRONLAKE_P2_LVDS_SLOW,
513 .p2_fast = IRONLAKE_P2_LVDS_FAST },
514 .find_pll = intel_ironlake_find_best_PLL,
517 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
519 const intel_limit_t *limit;
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521 limit = &intel_limits_ironlake_lvds;
522 else
523 limit = &intel_limits_ironlake_sdvo;
525 return limit;
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
530 struct drm_device *dev = crtc->dev;
531 struct drm_i915_private *dev_priv = dev->dev_private;
532 const intel_limit_t *limit;
534 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536 LVDS_CLKB_POWER_UP)
537 /* LVDS with dual channel */
538 limit = &intel_limits_g4x_dual_channel_lvds;
539 else
540 /* LVDS with dual channel */
541 limit = &intel_limits_g4x_single_channel_lvds;
542 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544 limit = &intel_limits_g4x_hdmi;
545 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546 limit = &intel_limits_g4x_sdvo;
547 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548 limit = &intel_limits_g4x_display_port;
549 } else /* The option is for other outputs */
550 limit = &intel_limits_i9xx_sdvo;
552 return limit;
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
557 struct drm_device *dev = crtc->dev;
558 const intel_limit_t *limit;
560 if (IS_IRONLAKE(dev))
561 limit = intel_ironlake_limit(crtc);
562 else if (IS_G4X(dev)) {
563 limit = intel_g4x_limit(crtc);
564 } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
565 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566 limit = &intel_limits_i9xx_lvds;
567 else
568 limit = &intel_limits_i9xx_sdvo;
569 } else if (IS_PINEVIEW(dev)) {
570 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571 limit = &intel_limits_pineview_lvds;
572 else
573 limit = &intel_limits_pineview_sdvo;
574 } else {
575 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576 limit = &intel_limits_i8xx_lvds;
577 else
578 limit = &intel_limits_i8xx_dvo;
580 return limit;
583 /* m1 is reserved as 0 in Pineview, n is a ring counter */
584 static void pineview_clock(int refclk, intel_clock_t *clock)
586 clock->m = clock->m2 + 2;
587 clock->p = clock->p1 * clock->p2;
588 clock->vco = refclk * clock->m / clock->n;
589 clock->dot = clock->vco / clock->p;
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
594 if (IS_PINEVIEW(dev)) {
595 pineview_clock(refclk, clock);
596 return;
598 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599 clock->p = clock->p1 * clock->p2;
600 clock->vco = refclk * clock->m / (clock->n + 2);
601 clock->dot = clock->vco / clock->p;
605 * Returns whether any output on the specified pipe is of the specified type
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
609 struct drm_device *dev = crtc->dev;
610 struct drm_mode_config *mode_config = &dev->mode_config;
611 struct drm_connector *l_entry;
613 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614 if (l_entry->encoder &&
615 l_entry->encoder->crtc == crtc) {
616 struct intel_output *intel_output = to_intel_output(l_entry);
617 if (intel_output->type == type)
618 return true;
621 return false;
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
627 struct drm_device *dev = crtc->dev;
628 struct drm_mode_config *mode_config = &dev->mode_config;
629 struct drm_connector *l_entry, *ret = NULL;
631 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632 if (l_entry->encoder &&
633 l_entry->encoder->crtc == crtc) {
634 ret = l_entry;
635 break;
638 return ret;
641 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
643 * Returns whether the given set of divisors are valid for a given refclk with
644 * the given connectors.
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
649 const intel_limit_t *limit = intel_limit (crtc);
650 struct drm_device *dev = crtc->dev;
652 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
653 INTELPllInvalid ("p1 out of range\n");
654 if (clock->p < limit->p.min || limit->p.max < clock->p)
655 INTELPllInvalid ("p out of range\n");
656 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
657 INTELPllInvalid ("m2 out of range\n");
658 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
659 INTELPllInvalid ("m1 out of range\n");
660 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
661 INTELPllInvalid ("m1 <= m2\n");
662 if (clock->m < limit->m.min || limit->m.max < clock->m)
663 INTELPllInvalid ("m out of range\n");
664 if (clock->n < limit->n.min || limit->n.max < clock->n)
665 INTELPllInvalid ("n out of range\n");
666 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667 INTELPllInvalid ("vco out of range\n");
668 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669 * connector, etc., rather than just a single range.
671 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672 INTELPllInvalid ("dot out of range\n");
674 return true;
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679 int target, int refclk, intel_clock_t *best_clock)
682 struct drm_device *dev = crtc->dev;
683 struct drm_i915_private *dev_priv = dev->dev_private;
684 intel_clock_t clock;
685 int err = target;
687 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688 (I915_READ(LVDS)) != 0) {
690 * For LVDS, if the panel is on, just rely on its current
691 * settings for dual-channel. We haven't figured out how to
692 * reliably set up different single/dual channel state, if we
693 * even can.
695 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696 LVDS_CLKB_POWER_UP)
697 clock.p2 = limit->p2.p2_fast;
698 else
699 clock.p2 = limit->p2.p2_slow;
700 } else {
701 if (target < limit->p2.dot_limit)
702 clock.p2 = limit->p2.p2_slow;
703 else
704 clock.p2 = limit->p2.p2_fast;
707 memset (best_clock, 0, sizeof (*best_clock));
709 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
710 clock.m1++) {
711 for (clock.m2 = limit->m2.min;
712 clock.m2 <= limit->m2.max; clock.m2++) {
713 /* m1 is always 0 in Pineview */
714 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
715 break;
716 for (clock.n = limit->n.min;
717 clock.n <= limit->n.max; clock.n++) {
718 for (clock.p1 = limit->p1.min;
719 clock.p1 <= limit->p1.max; clock.p1++) {
720 int this_err;
722 intel_clock(dev, refclk, &clock);
724 if (!intel_PLL_is_valid(crtc, &clock))
725 continue;
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
737 return (err != target);
741 static bool
742 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
743 int target, int refclk, intel_clock_t *best_clock)
746 struct drm_device *dev = crtc->dev;
747 intel_clock_t clock;
748 int err = target;
749 bool found = false;
751 memcpy(&clock, best_clock, sizeof(intel_clock_t));
753 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
754 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
755 /* m1 is always 0 in Pineview */
756 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
757 break;
758 for (clock.n = limit->n.min; clock.n <= limit->n.max;
759 clock.n++) {
760 int this_err;
762 intel_clock(dev, refclk, &clock);
764 if (!intel_PLL_is_valid(crtc, &clock))
765 continue;
767 this_err = abs(clock.dot - target);
768 if (this_err < err) {
769 *best_clock = clock;
770 err = this_err;
771 found = true;
777 return found;
780 static bool
781 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
782 int target, int refclk, intel_clock_t *best_clock)
784 struct drm_device *dev = crtc->dev;
785 struct drm_i915_private *dev_priv = dev->dev_private;
786 intel_clock_t clock;
787 int max_n;
788 bool found;
789 /* approximately equals target * 0.00488 */
790 int err_most = (target >> 8) + (target >> 10);
791 found = false;
793 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
794 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
795 LVDS_CLKB_POWER_UP)
796 clock.p2 = limit->p2.p2_fast;
797 else
798 clock.p2 = limit->p2.p2_slow;
799 } else {
800 if (target < limit->p2.dot_limit)
801 clock.p2 = limit->p2.p2_slow;
802 else
803 clock.p2 = limit->p2.p2_fast;
806 memset(best_clock, 0, sizeof(*best_clock));
807 max_n = limit->n.max;
808 /* based on hardware requriment prefer smaller n to precision */
809 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
810 /* based on hardware requirment prefere larger m1,m2 */
811 for (clock.m1 = limit->m1.max;
812 clock.m1 >= limit->m1.min; clock.m1--) {
813 for (clock.m2 = limit->m2.max;
814 clock.m2 >= limit->m2.min; clock.m2--) {
815 for (clock.p1 = limit->p1.max;
816 clock.p1 >= limit->p1.min; clock.p1--) {
817 int this_err;
819 intel_clock(dev, refclk, &clock);
820 if (!intel_PLL_is_valid(crtc, &clock))
821 continue;
822 this_err = abs(clock.dot - target) ;
823 if (this_err < err_most) {
824 *best_clock = clock;
825 err_most = this_err;
826 max_n = clock.n;
827 found = true;
833 return found;
836 static bool
837 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
838 int target, int refclk, intel_clock_t *best_clock)
840 struct drm_device *dev = crtc->dev;
841 intel_clock_t clock;
842 if (target < 200000) {
843 clock.n = 1;
844 clock.p1 = 2;
845 clock.p2 = 10;
846 clock.m1 = 12;
847 clock.m2 = 9;
848 } else {
849 clock.n = 2;
850 clock.p1 = 1;
851 clock.p2 = 10;
852 clock.m1 = 14;
853 clock.m2 = 8;
855 intel_clock(dev, refclk, &clock);
856 memcpy(best_clock, &clock, sizeof(intel_clock_t));
857 return true;
860 static bool
861 intel_ironlake_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
862 int target, int refclk, intel_clock_t *best_clock)
864 struct drm_device *dev = crtc->dev;
865 struct drm_i915_private *dev_priv = dev->dev_private;
866 intel_clock_t clock;
867 int err_most = 47;
868 int err_min = 10000;
870 /* eDP has only 2 clock choice, no n/m/p setting */
871 if (HAS_eDP)
872 return true;
874 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
875 return intel_find_pll_ironlake_dp(limit, crtc, target,
876 refclk, best_clock);
878 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
879 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
880 LVDS_CLKB_POWER_UP)
881 clock.p2 = limit->p2.p2_fast;
882 else
883 clock.p2 = limit->p2.p2_slow;
884 } else {
885 if (target < limit->p2.dot_limit)
886 clock.p2 = limit->p2.p2_slow;
887 else
888 clock.p2 = limit->p2.p2_fast;
891 memset(best_clock, 0, sizeof(*best_clock));
892 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
893 /* based on hardware requriment prefer smaller n to precision */
894 for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
895 /* based on hardware requirment prefere larger m1,m2 */
896 for (clock.m1 = limit->m1.max;
897 clock.m1 >= limit->m1.min; clock.m1--) {
898 for (clock.m2 = limit->m2.max;
899 clock.m2 >= limit->m2.min; clock.m2--) {
900 int this_err;
902 intel_clock(dev, refclk, &clock);
903 if (!intel_PLL_is_valid(crtc, &clock))
904 continue;
905 this_err = abs((10000 - (target*10000/clock.dot)));
906 if (this_err < err_most) {
907 *best_clock = clock;
908 /* found on first matching */
909 goto out;
910 } else if (this_err < err_min) {
911 *best_clock = clock;
912 err_min = this_err;
918 out:
919 return true;
922 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
923 static bool
924 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
925 int target, int refclk, intel_clock_t *best_clock)
927 intel_clock_t clock;
928 if (target < 200000) {
929 clock.p1 = 2;
930 clock.p2 = 10;
931 clock.n = 2;
932 clock.m1 = 23;
933 clock.m2 = 8;
934 } else {
935 clock.p1 = 1;
936 clock.p2 = 10;
937 clock.n = 1;
938 clock.m1 = 14;
939 clock.m2 = 2;
941 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
942 clock.p = (clock.p1 * clock.p2);
943 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
944 clock.vco = 0;
945 memcpy(best_clock, &clock, sizeof(intel_clock_t));
946 return true;
949 void
950 intel_wait_for_vblank(struct drm_device *dev)
952 /* Wait for 20ms, i.e. one cycle at 50hz. */
953 msleep(20);
956 /* Parameters have changed, update FBC info */
957 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
959 struct drm_device *dev = crtc->dev;
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 struct drm_framebuffer *fb = crtc->fb;
962 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
963 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
965 int plane, i;
966 u32 fbc_ctl, fbc_ctl2;
968 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
970 if (fb->pitch < dev_priv->cfb_pitch)
971 dev_priv->cfb_pitch = fb->pitch;
973 /* FBC_CTL wants 64B units */
974 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
975 dev_priv->cfb_fence = obj_priv->fence_reg;
976 dev_priv->cfb_plane = intel_crtc->plane;
977 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
979 /* Clear old tags */
980 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
981 I915_WRITE(FBC_TAG + (i * 4), 0);
983 /* Set it up... */
984 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
985 if (obj_priv->tiling_mode != I915_TILING_NONE)
986 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
987 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
988 I915_WRITE(FBC_FENCE_OFF, crtc->y);
990 /* enable it... */
991 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
992 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
993 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
994 if (obj_priv->tiling_mode != I915_TILING_NONE)
995 fbc_ctl |= dev_priv->cfb_fence;
996 I915_WRITE(FBC_CONTROL, fbc_ctl);
998 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
999 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1002 void i8xx_disable_fbc(struct drm_device *dev)
1004 struct drm_i915_private *dev_priv = dev->dev_private;
1005 u32 fbc_ctl;
1007 if (!I915_HAS_FBC(dev))
1008 return;
1010 /* Disable compression */
1011 fbc_ctl = I915_READ(FBC_CONTROL);
1012 fbc_ctl &= ~FBC_CTL_EN;
1013 I915_WRITE(FBC_CONTROL, fbc_ctl);
1015 /* Wait for compressing bit to clear */
1016 while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1017 ; /* nothing */
1019 intel_wait_for_vblank(dev);
1021 DRM_DEBUG_KMS("disabled FBC\n");
1024 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1026 struct drm_device *dev = crtc->dev;
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1029 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1032 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1034 struct drm_device *dev = crtc->dev;
1035 struct drm_i915_private *dev_priv = dev->dev_private;
1036 struct drm_framebuffer *fb = crtc->fb;
1037 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1038 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1040 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1041 DPFC_CTL_PLANEB);
1042 unsigned long stall_watermark = 200;
1043 u32 dpfc_ctl;
1045 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1046 dev_priv->cfb_fence = obj_priv->fence_reg;
1047 dev_priv->cfb_plane = intel_crtc->plane;
1049 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1050 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1051 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1052 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1053 } else {
1054 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1057 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1058 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1059 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1060 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1061 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1063 /* enable it... */
1064 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1066 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1069 void g4x_disable_fbc(struct drm_device *dev)
1071 struct drm_i915_private *dev_priv = dev->dev_private;
1072 u32 dpfc_ctl;
1074 /* Disable compression */
1075 dpfc_ctl = I915_READ(DPFC_CONTROL);
1076 dpfc_ctl &= ~DPFC_CTL_EN;
1077 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1078 intel_wait_for_vblank(dev);
1080 DRM_DEBUG_KMS("disabled FBC\n");
1083 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1085 struct drm_device *dev = crtc->dev;
1086 struct drm_i915_private *dev_priv = dev->dev_private;
1088 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1092 * intel_update_fbc - enable/disable FBC as needed
1093 * @crtc: CRTC to point the compressor at
1094 * @mode: mode in use
1096 * Set up the framebuffer compression hardware at mode set time. We
1097 * enable it if possible:
1098 * - plane A only (on pre-965)
1099 * - no pixel mulitply/line duplication
1100 * - no alpha buffer discard
1101 * - no dual wide
1102 * - framebuffer <= 2048 in width, 1536 in height
1104 * We can't assume that any compression will take place (worst case),
1105 * so the compressed buffer has to be the same size as the uncompressed
1106 * one. It also must reside (along with the line length buffer) in
1107 * stolen memory.
1109 * We need to enable/disable FBC on a global basis.
1111 static void intel_update_fbc(struct drm_crtc *crtc,
1112 struct drm_display_mode *mode)
1114 struct drm_device *dev = crtc->dev;
1115 struct drm_i915_private *dev_priv = dev->dev_private;
1116 struct drm_framebuffer *fb = crtc->fb;
1117 struct intel_framebuffer *intel_fb;
1118 struct drm_i915_gem_object *obj_priv;
1119 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1120 int plane = intel_crtc->plane;
1122 if (!i915_powersave)
1123 return;
1125 if (!dev_priv->display.fbc_enabled ||
1126 !dev_priv->display.enable_fbc ||
1127 !dev_priv->display.disable_fbc)
1128 return;
1130 if (!crtc->fb)
1131 return;
1133 intel_fb = to_intel_framebuffer(fb);
1134 obj_priv = intel_fb->obj->driver_private;
1137 * If FBC is already on, we just have to verify that we can
1138 * keep it that way...
1139 * Need to disable if:
1140 * - changing FBC params (stride, fence, mode)
1141 * - new fb is too large to fit in compressed buffer
1142 * - going to an unsupported config (interlace, pixel multiply, etc.)
1144 if (intel_fb->obj->size > dev_priv->cfb_size) {
1145 DRM_DEBUG_KMS("framebuffer too large, disabling "
1146 "compression\n");
1147 goto out_disable;
1149 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1150 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1151 DRM_DEBUG_KMS("mode incompatible with compression, "
1152 "disabling\n");
1153 goto out_disable;
1155 if ((mode->hdisplay > 2048) ||
1156 (mode->vdisplay > 1536)) {
1157 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1158 goto out_disable;
1160 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1161 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1162 goto out_disable;
1164 if (obj_priv->tiling_mode != I915_TILING_X) {
1165 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1166 goto out_disable;
1169 if (dev_priv->display.fbc_enabled(crtc)) {
1170 /* We can re-enable it in this case, but need to update pitch */
1171 if (fb->pitch > dev_priv->cfb_pitch)
1172 dev_priv->display.disable_fbc(dev);
1173 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1174 dev_priv->display.disable_fbc(dev);
1175 if (plane != dev_priv->cfb_plane)
1176 dev_priv->display.disable_fbc(dev);
1179 if (!dev_priv->display.fbc_enabled(crtc)) {
1180 /* Now try to turn it back on if possible */
1181 dev_priv->display.enable_fbc(crtc, 500);
1184 return;
1186 out_disable:
1187 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1188 /* Multiple disables should be harmless */
1189 if (dev_priv->display.fbc_enabled(crtc))
1190 dev_priv->display.disable_fbc(dev);
1193 static int
1194 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1196 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1197 u32 alignment;
1198 int ret;
1200 switch (obj_priv->tiling_mode) {
1201 case I915_TILING_NONE:
1202 alignment = 64 * 1024;
1203 break;
1204 case I915_TILING_X:
1205 /* pin() will align the object as required by fence */
1206 alignment = 0;
1207 break;
1208 case I915_TILING_Y:
1209 /* FIXME: Is this true? */
1210 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1211 return -EINVAL;
1212 default:
1213 BUG();
1216 ret = i915_gem_object_pin(obj, alignment);
1217 if (ret != 0)
1218 return ret;
1220 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1221 * fence, whereas 965+ only requires a fence if using
1222 * framebuffer compression. For simplicity, we always install
1223 * a fence as the cost is not that onerous.
1225 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1226 obj_priv->tiling_mode != I915_TILING_NONE) {
1227 ret = i915_gem_object_get_fence_reg(obj);
1228 if (ret != 0) {
1229 i915_gem_object_unpin(obj);
1230 return ret;
1234 return 0;
1237 static int
1238 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1239 struct drm_framebuffer *old_fb)
1241 struct drm_device *dev = crtc->dev;
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 struct drm_i915_master_private *master_priv;
1244 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1245 struct intel_framebuffer *intel_fb;
1246 struct drm_i915_gem_object *obj_priv;
1247 struct drm_gem_object *obj;
1248 int pipe = intel_crtc->pipe;
1249 int plane = intel_crtc->plane;
1250 unsigned long Start, Offset;
1251 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1252 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1253 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1254 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1255 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1256 u32 dspcntr;
1257 int ret;
1259 /* no fb bound */
1260 if (!crtc->fb) {
1261 DRM_DEBUG_KMS("No FB bound\n");
1262 return 0;
1265 switch (plane) {
1266 case 0:
1267 case 1:
1268 break;
1269 default:
1270 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1271 return -EINVAL;
1274 intel_fb = to_intel_framebuffer(crtc->fb);
1275 obj = intel_fb->obj;
1276 obj_priv = obj->driver_private;
1278 mutex_lock(&dev->struct_mutex);
1279 ret = intel_pin_and_fence_fb_obj(dev, obj);
1280 if (ret != 0) {
1281 mutex_unlock(&dev->struct_mutex);
1282 return ret;
1285 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1286 if (ret != 0) {
1287 i915_gem_object_unpin(obj);
1288 mutex_unlock(&dev->struct_mutex);
1289 return ret;
1292 dspcntr = I915_READ(dspcntr_reg);
1293 /* Mask out pixel format bits in case we change it */
1294 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1295 switch (crtc->fb->bits_per_pixel) {
1296 case 8:
1297 dspcntr |= DISPPLANE_8BPP;
1298 break;
1299 case 16:
1300 if (crtc->fb->depth == 15)
1301 dspcntr |= DISPPLANE_15_16BPP;
1302 else
1303 dspcntr |= DISPPLANE_16BPP;
1304 break;
1305 case 24:
1306 case 32:
1307 if (crtc->fb->depth == 30)
1308 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1309 else
1310 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1311 break;
1312 default:
1313 DRM_ERROR("Unknown color depth\n");
1314 i915_gem_object_unpin(obj);
1315 mutex_unlock(&dev->struct_mutex);
1316 return -EINVAL;
1318 if (IS_I965G(dev)) {
1319 if (obj_priv->tiling_mode != I915_TILING_NONE)
1320 dspcntr |= DISPPLANE_TILED;
1321 else
1322 dspcntr &= ~DISPPLANE_TILED;
1325 if (IS_IRONLAKE(dev))
1326 /* must disable */
1327 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1329 I915_WRITE(dspcntr_reg, dspcntr);
1331 Start = obj_priv->gtt_offset;
1332 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1334 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1335 I915_WRITE(dspstride, crtc->fb->pitch);
1336 if (IS_I965G(dev)) {
1337 I915_WRITE(dspbase, Offset);
1338 I915_READ(dspbase);
1339 I915_WRITE(dspsurf, Start);
1340 I915_READ(dspsurf);
1341 I915_WRITE(dsptileoff, (y << 16) | x);
1342 } else {
1343 I915_WRITE(dspbase, Start + Offset);
1344 I915_READ(dspbase);
1347 if ((IS_I965G(dev) || plane == 0))
1348 intel_update_fbc(crtc, &crtc->mode);
1350 intel_wait_for_vblank(dev);
1352 if (old_fb) {
1353 intel_fb = to_intel_framebuffer(old_fb);
1354 obj_priv = intel_fb->obj->driver_private;
1355 i915_gem_object_unpin(intel_fb->obj);
1357 intel_increase_pllclock(crtc, true);
1359 mutex_unlock(&dev->struct_mutex);
1361 if (!dev->primary->master)
1362 return 0;
1364 master_priv = dev->primary->master->driver_priv;
1365 if (!master_priv->sarea_priv)
1366 return 0;
1368 if (pipe) {
1369 master_priv->sarea_priv->pipeB_x = x;
1370 master_priv->sarea_priv->pipeB_y = y;
1371 } else {
1372 master_priv->sarea_priv->pipeA_x = x;
1373 master_priv->sarea_priv->pipeA_y = y;
1376 return 0;
1379 /* Disable the VGA plane that we never use */
1380 static void i915_disable_vga (struct drm_device *dev)
1382 struct drm_i915_private *dev_priv = dev->dev_private;
1383 u8 sr1;
1384 u32 vga_reg;
1386 if (IS_IRONLAKE(dev))
1387 vga_reg = CPU_VGACNTRL;
1388 else
1389 vga_reg = VGACNTRL;
1391 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1392 return;
1394 I915_WRITE8(VGA_SR_INDEX, 1);
1395 sr1 = I915_READ8(VGA_SR_DATA);
1396 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1397 udelay(100);
1399 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1402 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1404 struct drm_device *dev = crtc->dev;
1405 struct drm_i915_private *dev_priv = dev->dev_private;
1406 u32 dpa_ctl;
1408 DRM_DEBUG_KMS("\n");
1409 dpa_ctl = I915_READ(DP_A);
1410 dpa_ctl &= ~DP_PLL_ENABLE;
1411 I915_WRITE(DP_A, dpa_ctl);
1414 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1416 struct drm_device *dev = crtc->dev;
1417 struct drm_i915_private *dev_priv = dev->dev_private;
1418 u32 dpa_ctl;
1420 dpa_ctl = I915_READ(DP_A);
1421 dpa_ctl |= DP_PLL_ENABLE;
1422 I915_WRITE(DP_A, dpa_ctl);
1423 udelay(200);
1427 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1429 struct drm_device *dev = crtc->dev;
1430 struct drm_i915_private *dev_priv = dev->dev_private;
1431 u32 dpa_ctl;
1433 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1434 dpa_ctl = I915_READ(DP_A);
1435 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1437 if (clock < 200000) {
1438 u32 temp;
1439 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1440 /* workaround for 160Mhz:
1441 1) program 0x4600c bits 15:0 = 0x8124
1442 2) program 0x46010 bit 0 = 1
1443 3) program 0x46034 bit 24 = 1
1444 4) program 0x64000 bit 14 = 1
1446 temp = I915_READ(0x4600c);
1447 temp &= 0xffff0000;
1448 I915_WRITE(0x4600c, temp | 0x8124);
1450 temp = I915_READ(0x46010);
1451 I915_WRITE(0x46010, temp | 1);
1453 temp = I915_READ(0x46034);
1454 I915_WRITE(0x46034, temp | (1 << 24));
1455 } else {
1456 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1458 I915_WRITE(DP_A, dpa_ctl);
1460 udelay(500);
1463 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1465 struct drm_device *dev = crtc->dev;
1466 struct drm_i915_private *dev_priv = dev->dev_private;
1467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1468 int pipe = intel_crtc->pipe;
1469 int plane = intel_crtc->plane;
1470 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1471 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1472 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1473 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1474 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1475 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1476 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1477 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1478 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1479 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1480 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1481 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1482 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1483 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1484 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1485 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1486 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1487 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1488 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1489 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1490 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1491 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1492 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1493 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1494 u32 temp;
1495 int tries = 5, j, n;
1497 /* XXX: When our outputs are all unaware of DPMS modes other than off
1498 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1500 switch (mode) {
1501 case DRM_MODE_DPMS_ON:
1502 case DRM_MODE_DPMS_STANDBY:
1503 case DRM_MODE_DPMS_SUSPEND:
1504 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1506 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1507 temp = I915_READ(PCH_LVDS);
1508 if ((temp & LVDS_PORT_EN) == 0) {
1509 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1510 POSTING_READ(PCH_LVDS);
1514 if (HAS_eDP) {
1515 /* enable eDP PLL */
1516 ironlake_enable_pll_edp(crtc);
1517 } else {
1518 /* enable PCH DPLL */
1519 temp = I915_READ(pch_dpll_reg);
1520 if ((temp & DPLL_VCO_ENABLE) == 0) {
1521 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1522 I915_READ(pch_dpll_reg);
1525 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1526 temp = I915_READ(fdi_rx_reg);
1527 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1528 FDI_SEL_PCDCLK |
1529 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1530 I915_READ(fdi_rx_reg);
1531 udelay(200);
1533 /* Enable CPU FDI TX PLL, always on for Ironlake */
1534 temp = I915_READ(fdi_tx_reg);
1535 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1536 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1537 I915_READ(fdi_tx_reg);
1538 udelay(100);
1542 /* Enable panel fitting for LVDS */
1543 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1544 temp = I915_READ(pf_ctl_reg);
1545 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1547 /* currently full aspect */
1548 I915_WRITE(pf_win_pos, 0);
1550 I915_WRITE(pf_win_size,
1551 (dev_priv->panel_fixed_mode->hdisplay << 16) |
1552 (dev_priv->panel_fixed_mode->vdisplay));
1555 /* Enable CPU pipe */
1556 temp = I915_READ(pipeconf_reg);
1557 if ((temp & PIPEACONF_ENABLE) == 0) {
1558 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1559 I915_READ(pipeconf_reg);
1560 udelay(100);
1563 /* configure and enable CPU plane */
1564 temp = I915_READ(dspcntr_reg);
1565 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1566 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1567 /* Flush the plane changes */
1568 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1571 if (!HAS_eDP) {
1572 /* enable CPU FDI TX and PCH FDI RX */
1573 temp = I915_READ(fdi_tx_reg);
1574 temp |= FDI_TX_ENABLE;
1575 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1576 temp &= ~FDI_LINK_TRAIN_NONE;
1577 temp |= FDI_LINK_TRAIN_PATTERN_1;
1578 I915_WRITE(fdi_tx_reg, temp);
1579 I915_READ(fdi_tx_reg);
1581 temp = I915_READ(fdi_rx_reg);
1582 temp &= ~FDI_LINK_TRAIN_NONE;
1583 temp |= FDI_LINK_TRAIN_PATTERN_1;
1584 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1585 I915_READ(fdi_rx_reg);
1587 udelay(150);
1589 /* Train FDI. */
1590 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1591 for train result */
1592 temp = I915_READ(fdi_rx_imr_reg);
1593 temp &= ~FDI_RX_SYMBOL_LOCK;
1594 temp &= ~FDI_RX_BIT_LOCK;
1595 I915_WRITE(fdi_rx_imr_reg, temp);
1596 I915_READ(fdi_rx_imr_reg);
1597 udelay(150);
1599 temp = I915_READ(fdi_rx_iir_reg);
1600 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1602 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1603 for (j = 0; j < tries; j++) {
1604 temp = I915_READ(fdi_rx_iir_reg);
1605 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1606 temp);
1607 if (temp & FDI_RX_BIT_LOCK)
1608 break;
1609 udelay(200);
1611 if (j != tries)
1612 I915_WRITE(fdi_rx_iir_reg,
1613 temp | FDI_RX_BIT_LOCK);
1614 else
1615 DRM_DEBUG_KMS("train 1 fail\n");
1616 } else {
1617 I915_WRITE(fdi_rx_iir_reg,
1618 temp | FDI_RX_BIT_LOCK);
1619 DRM_DEBUG_KMS("train 1 ok 2!\n");
1621 temp = I915_READ(fdi_tx_reg);
1622 temp &= ~FDI_LINK_TRAIN_NONE;
1623 temp |= FDI_LINK_TRAIN_PATTERN_2;
1624 I915_WRITE(fdi_tx_reg, temp);
1626 temp = I915_READ(fdi_rx_reg);
1627 temp &= ~FDI_LINK_TRAIN_NONE;
1628 temp |= FDI_LINK_TRAIN_PATTERN_2;
1629 I915_WRITE(fdi_rx_reg, temp);
1631 udelay(150);
1633 temp = I915_READ(fdi_rx_iir_reg);
1634 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1636 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1637 for (j = 0; j < tries; j++) {
1638 temp = I915_READ(fdi_rx_iir_reg);
1639 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1640 temp);
1641 if (temp & FDI_RX_SYMBOL_LOCK)
1642 break;
1643 udelay(200);
1645 if (j != tries) {
1646 I915_WRITE(fdi_rx_iir_reg,
1647 temp | FDI_RX_SYMBOL_LOCK);
1648 DRM_DEBUG_KMS("train 2 ok 1!\n");
1649 } else
1650 DRM_DEBUG_KMS("train 2 fail\n");
1651 } else {
1652 I915_WRITE(fdi_rx_iir_reg,
1653 temp | FDI_RX_SYMBOL_LOCK);
1654 DRM_DEBUG_KMS("train 2 ok 2!\n");
1656 DRM_DEBUG_KMS("train done\n");
1658 /* set transcoder timing */
1659 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1660 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1661 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1663 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1664 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1665 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1667 /* enable PCH transcoder */
1668 temp = I915_READ(transconf_reg);
1669 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1670 I915_READ(transconf_reg);
1672 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1675 /* enable normal */
1677 temp = I915_READ(fdi_tx_reg);
1678 temp &= ~FDI_LINK_TRAIN_NONE;
1679 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1680 FDI_TX_ENHANCE_FRAME_ENABLE);
1681 I915_READ(fdi_tx_reg);
1683 temp = I915_READ(fdi_rx_reg);
1684 temp &= ~FDI_LINK_TRAIN_NONE;
1685 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1686 FDI_RX_ENHANCE_FRAME_ENABLE);
1687 I915_READ(fdi_rx_reg);
1689 /* wait one idle pattern time */
1690 udelay(100);
1694 intel_crtc_load_lut(crtc);
1696 break;
1697 case DRM_MODE_DPMS_OFF:
1698 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1700 /* Disable display plane */
1701 temp = I915_READ(dspcntr_reg);
1702 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1703 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1704 /* Flush the plane changes */
1705 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1706 I915_READ(dspbase_reg);
1709 i915_disable_vga(dev);
1711 /* disable cpu pipe, disable after all planes disabled */
1712 temp = I915_READ(pipeconf_reg);
1713 if ((temp & PIPEACONF_ENABLE) != 0) {
1714 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1715 I915_READ(pipeconf_reg);
1716 n = 0;
1717 /* wait for cpu pipe off, pipe state */
1718 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1719 n++;
1720 if (n < 60) {
1721 udelay(500);
1722 continue;
1723 } else {
1724 DRM_DEBUG_KMS("pipe %d off delay\n",
1725 pipe);
1726 break;
1729 } else
1730 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1732 udelay(100);
1734 /* Disable PF */
1735 temp = I915_READ(pf_ctl_reg);
1736 if ((temp & PF_ENABLE) != 0) {
1737 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1738 I915_READ(pf_ctl_reg);
1740 I915_WRITE(pf_win_size, 0);
1742 /* disable CPU FDI tx and PCH FDI rx */
1743 temp = I915_READ(fdi_tx_reg);
1744 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1745 I915_READ(fdi_tx_reg);
1747 temp = I915_READ(fdi_rx_reg);
1748 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1749 I915_READ(fdi_rx_reg);
1751 udelay(100);
1753 /* still set train pattern 1 */
1754 temp = I915_READ(fdi_tx_reg);
1755 temp &= ~FDI_LINK_TRAIN_NONE;
1756 temp |= FDI_LINK_TRAIN_PATTERN_1;
1757 I915_WRITE(fdi_tx_reg, temp);
1759 temp = I915_READ(fdi_rx_reg);
1760 temp &= ~FDI_LINK_TRAIN_NONE;
1761 temp |= FDI_LINK_TRAIN_PATTERN_1;
1762 I915_WRITE(fdi_rx_reg, temp);
1764 udelay(100);
1766 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1767 temp = I915_READ(PCH_LVDS);
1768 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
1769 I915_READ(PCH_LVDS);
1770 udelay(100);
1773 /* disable PCH transcoder */
1774 temp = I915_READ(transconf_reg);
1775 if ((temp & TRANS_ENABLE) != 0) {
1776 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1777 I915_READ(transconf_reg);
1778 n = 0;
1779 /* wait for PCH transcoder off, transcoder state */
1780 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1781 n++;
1782 if (n < 60) {
1783 udelay(500);
1784 continue;
1785 } else {
1786 DRM_DEBUG_KMS("transcoder %d off "
1787 "delay\n", pipe);
1788 break;
1793 udelay(100);
1795 /* disable PCH DPLL */
1796 temp = I915_READ(pch_dpll_reg);
1797 if ((temp & DPLL_VCO_ENABLE) != 0) {
1798 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1799 I915_READ(pch_dpll_reg);
1802 if (HAS_eDP) {
1803 ironlake_disable_pll_edp(crtc);
1806 temp = I915_READ(fdi_rx_reg);
1807 temp &= ~FDI_SEL_PCDCLK;
1808 I915_WRITE(fdi_rx_reg, temp);
1809 I915_READ(fdi_rx_reg);
1811 temp = I915_READ(fdi_rx_reg);
1812 temp &= ~FDI_RX_PLL_ENABLE;
1813 I915_WRITE(fdi_rx_reg, temp);
1814 I915_READ(fdi_rx_reg);
1816 /* Disable CPU FDI TX PLL */
1817 temp = I915_READ(fdi_tx_reg);
1818 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1819 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1820 I915_READ(fdi_tx_reg);
1821 udelay(100);
1824 /* Wait for the clocks to turn off. */
1825 udelay(100);
1826 break;
1830 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
1832 struct intel_overlay *overlay;
1833 int ret;
1835 if (!enable && intel_crtc->overlay) {
1836 overlay = intel_crtc->overlay;
1837 mutex_lock(&overlay->dev->struct_mutex);
1838 for (;;) {
1839 ret = intel_overlay_switch_off(overlay);
1840 if (ret == 0)
1841 break;
1843 ret = intel_overlay_recover_from_interrupt(overlay, 0);
1844 if (ret != 0) {
1845 /* overlay doesn't react anymore. Usually
1846 * results in a black screen and an unkillable
1847 * X server. */
1848 BUG();
1849 overlay->hw_wedged = HW_WEDGED;
1850 break;
1853 mutex_unlock(&overlay->dev->struct_mutex);
1855 /* Let userspace switch the overlay on again. In most cases userspace
1856 * has to recompute where to put it anyway. */
1858 return;
1861 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1863 struct drm_device *dev = crtc->dev;
1864 struct drm_i915_private *dev_priv = dev->dev_private;
1865 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1866 int pipe = intel_crtc->pipe;
1867 int plane = intel_crtc->plane;
1868 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1869 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1870 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1871 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1872 u32 temp;
1874 /* XXX: When our outputs are all unaware of DPMS modes other than off
1875 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1877 switch (mode) {
1878 case DRM_MODE_DPMS_ON:
1879 case DRM_MODE_DPMS_STANDBY:
1880 case DRM_MODE_DPMS_SUSPEND:
1881 intel_update_watermarks(dev);
1883 /* Enable the DPLL */
1884 temp = I915_READ(dpll_reg);
1885 if ((temp & DPLL_VCO_ENABLE) == 0) {
1886 I915_WRITE(dpll_reg, temp);
1887 I915_READ(dpll_reg);
1888 /* Wait for the clocks to stabilize. */
1889 udelay(150);
1890 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1891 I915_READ(dpll_reg);
1892 /* Wait for the clocks to stabilize. */
1893 udelay(150);
1894 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1895 I915_READ(dpll_reg);
1896 /* Wait for the clocks to stabilize. */
1897 udelay(150);
1900 /* Enable the pipe */
1901 temp = I915_READ(pipeconf_reg);
1902 if ((temp & PIPEACONF_ENABLE) == 0)
1903 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1905 /* Enable the plane */
1906 temp = I915_READ(dspcntr_reg);
1907 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1908 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1909 /* Flush the plane changes */
1910 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1913 intel_crtc_load_lut(crtc);
1915 if ((IS_I965G(dev) || plane == 0))
1916 intel_update_fbc(crtc, &crtc->mode);
1918 /* Give the overlay scaler a chance to enable if it's on this pipe */
1919 intel_crtc_dpms_overlay(intel_crtc, true);
1920 break;
1921 case DRM_MODE_DPMS_OFF:
1922 intel_update_watermarks(dev);
1924 /* Give the overlay scaler a chance to disable if it's on this pipe */
1925 intel_crtc_dpms_overlay(intel_crtc, false);
1926 drm_vblank_off(dev, pipe);
1928 if (dev_priv->cfb_plane == plane &&
1929 dev_priv->display.disable_fbc)
1930 dev_priv->display.disable_fbc(dev);
1932 /* Disable the VGA plane that we never use */
1933 i915_disable_vga(dev);
1935 /* Disable display plane */
1936 temp = I915_READ(dspcntr_reg);
1937 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1938 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1939 /* Flush the plane changes */
1940 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1941 I915_READ(dspbase_reg);
1944 if (!IS_I9XX(dev)) {
1945 /* Wait for vblank for the disable to take effect */
1946 intel_wait_for_vblank(dev);
1949 /* Next, disable display pipes */
1950 temp = I915_READ(pipeconf_reg);
1951 if ((temp & PIPEACONF_ENABLE) != 0) {
1952 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1953 I915_READ(pipeconf_reg);
1956 /* Wait for vblank for the disable to take effect. */
1957 intel_wait_for_vblank(dev);
1959 temp = I915_READ(dpll_reg);
1960 if ((temp & DPLL_VCO_ENABLE) != 0) {
1961 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1962 I915_READ(dpll_reg);
1965 /* Wait for the clocks to turn off. */
1966 udelay(150);
1967 break;
1972 * Sets the power management mode of the pipe and plane.
1974 * This code should probably grow support for turning the cursor off and back
1975 * on appropriately at the same time as we're turning the pipe off/on.
1977 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1979 struct drm_device *dev = crtc->dev;
1980 struct drm_i915_private *dev_priv = dev->dev_private;
1981 struct drm_i915_master_private *master_priv;
1982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1983 int pipe = intel_crtc->pipe;
1984 bool enabled;
1986 dev_priv->display.dpms(crtc, mode);
1988 intel_crtc->dpms_mode = mode;
1990 if (!dev->primary->master)
1991 return;
1993 master_priv = dev->primary->master->driver_priv;
1994 if (!master_priv->sarea_priv)
1995 return;
1997 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1999 switch (pipe) {
2000 case 0:
2001 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2002 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2003 break;
2004 case 1:
2005 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2006 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2007 break;
2008 default:
2009 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2010 break;
2014 static void intel_crtc_prepare (struct drm_crtc *crtc)
2016 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2017 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2020 static void intel_crtc_commit (struct drm_crtc *crtc)
2022 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2023 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2026 void intel_encoder_prepare (struct drm_encoder *encoder)
2028 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2029 /* lvds has its own version of prepare see intel_lvds_prepare */
2030 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2033 void intel_encoder_commit (struct drm_encoder *encoder)
2035 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2036 /* lvds has its own version of commit see intel_lvds_commit */
2037 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2040 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2041 struct drm_display_mode *mode,
2042 struct drm_display_mode *adjusted_mode)
2044 struct drm_device *dev = crtc->dev;
2045 if (IS_IRONLAKE(dev)) {
2046 /* FDI link clock is fixed at 2.7G */
2047 if (mode->clock * 3 > 27000 * 4)
2048 return MODE_CLOCK_HIGH;
2050 return true;
2053 static int i945_get_display_clock_speed(struct drm_device *dev)
2055 return 400000;
2058 static int i915_get_display_clock_speed(struct drm_device *dev)
2060 return 333000;
2063 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2065 return 200000;
2068 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2070 u16 gcfgc = 0;
2072 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2074 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2075 return 133000;
2076 else {
2077 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2078 case GC_DISPLAY_CLOCK_333_MHZ:
2079 return 333000;
2080 default:
2081 case GC_DISPLAY_CLOCK_190_200_MHZ:
2082 return 190000;
2087 static int i865_get_display_clock_speed(struct drm_device *dev)
2089 return 266000;
2092 static int i855_get_display_clock_speed(struct drm_device *dev)
2094 u16 hpllcc = 0;
2095 /* Assume that the hardware is in the high speed state. This
2096 * should be the default.
2098 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2099 case GC_CLOCK_133_200:
2100 case GC_CLOCK_100_200:
2101 return 200000;
2102 case GC_CLOCK_166_250:
2103 return 250000;
2104 case GC_CLOCK_100_133:
2105 return 133000;
2108 /* Shouldn't happen */
2109 return 0;
2112 static int i830_get_display_clock_speed(struct drm_device *dev)
2114 return 133000;
2118 * Return the pipe currently connected to the panel fitter,
2119 * or -1 if the panel fitter is not present or not in use
2121 int intel_panel_fitter_pipe (struct drm_device *dev)
2123 struct drm_i915_private *dev_priv = dev->dev_private;
2124 u32 pfit_control;
2126 /* i830 doesn't have a panel fitter */
2127 if (IS_I830(dev))
2128 return -1;
2130 pfit_control = I915_READ(PFIT_CONTROL);
2132 /* See if the panel fitter is in use */
2133 if ((pfit_control & PFIT_ENABLE) == 0)
2134 return -1;
2136 /* 965 can place panel fitter on either pipe */
2137 if (IS_I965G(dev))
2138 return (pfit_control >> 29) & 0x3;
2140 /* older chips can only use pipe 1 */
2141 return 1;
2144 struct fdi_m_n {
2145 u32 tu;
2146 u32 gmch_m;
2147 u32 gmch_n;
2148 u32 link_m;
2149 u32 link_n;
2152 static void
2153 fdi_reduce_ratio(u32 *num, u32 *den)
2155 while (*num > 0xffffff || *den > 0xffffff) {
2156 *num >>= 1;
2157 *den >>= 1;
2161 #define DATA_N 0x800000
2162 #define LINK_N 0x80000
2164 static void
2165 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2166 int link_clock, struct fdi_m_n *m_n)
2168 u64 temp;
2170 m_n->tu = 64; /* default size */
2172 temp = (u64) DATA_N * pixel_clock;
2173 temp = div_u64(temp, link_clock);
2174 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2175 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2176 m_n->gmch_n = DATA_N;
2177 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2179 temp = (u64) LINK_N * pixel_clock;
2180 m_n->link_m = div_u64(temp, link_clock);
2181 m_n->link_n = LINK_N;
2182 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2186 struct intel_watermark_params {
2187 unsigned long fifo_size;
2188 unsigned long max_wm;
2189 unsigned long default_wm;
2190 unsigned long guard_size;
2191 unsigned long cacheline_size;
2194 /* Pineview has different values for various configs */
2195 static struct intel_watermark_params pineview_display_wm = {
2196 PINEVIEW_DISPLAY_FIFO,
2197 PINEVIEW_MAX_WM,
2198 PINEVIEW_DFT_WM,
2199 PINEVIEW_GUARD_WM,
2200 PINEVIEW_FIFO_LINE_SIZE
2202 static struct intel_watermark_params pineview_display_hplloff_wm = {
2203 PINEVIEW_DISPLAY_FIFO,
2204 PINEVIEW_MAX_WM,
2205 PINEVIEW_DFT_HPLLOFF_WM,
2206 PINEVIEW_GUARD_WM,
2207 PINEVIEW_FIFO_LINE_SIZE
2209 static struct intel_watermark_params pineview_cursor_wm = {
2210 PINEVIEW_CURSOR_FIFO,
2211 PINEVIEW_CURSOR_MAX_WM,
2212 PINEVIEW_CURSOR_DFT_WM,
2213 PINEVIEW_CURSOR_GUARD_WM,
2214 PINEVIEW_FIFO_LINE_SIZE,
2216 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2217 PINEVIEW_CURSOR_FIFO,
2218 PINEVIEW_CURSOR_MAX_WM,
2219 PINEVIEW_CURSOR_DFT_WM,
2220 PINEVIEW_CURSOR_GUARD_WM,
2221 PINEVIEW_FIFO_LINE_SIZE
2223 static struct intel_watermark_params g4x_wm_info = {
2224 G4X_FIFO_SIZE,
2225 G4X_MAX_WM,
2226 G4X_MAX_WM,
2228 G4X_FIFO_LINE_SIZE,
2230 static struct intel_watermark_params i945_wm_info = {
2231 I945_FIFO_SIZE,
2232 I915_MAX_WM,
2235 I915_FIFO_LINE_SIZE
2237 static struct intel_watermark_params i915_wm_info = {
2238 I915_FIFO_SIZE,
2239 I915_MAX_WM,
2242 I915_FIFO_LINE_SIZE
2244 static struct intel_watermark_params i855_wm_info = {
2245 I855GM_FIFO_SIZE,
2246 I915_MAX_WM,
2249 I830_FIFO_LINE_SIZE
2251 static struct intel_watermark_params i830_wm_info = {
2252 I830_FIFO_SIZE,
2253 I915_MAX_WM,
2256 I830_FIFO_LINE_SIZE
2260 * intel_calculate_wm - calculate watermark level
2261 * @clock_in_khz: pixel clock
2262 * @wm: chip FIFO params
2263 * @pixel_size: display pixel size
2264 * @latency_ns: memory latency for the platform
2266 * Calculate the watermark level (the level at which the display plane will
2267 * start fetching from memory again). Each chip has a different display
2268 * FIFO size and allocation, so the caller needs to figure that out and pass
2269 * in the correct intel_watermark_params structure.
2271 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2272 * on the pixel size. When it reaches the watermark level, it'll start
2273 * fetching FIFO line sized based chunks from memory until the FIFO fills
2274 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2275 * will occur, and a display engine hang could result.
2277 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2278 struct intel_watermark_params *wm,
2279 int pixel_size,
2280 unsigned long latency_ns)
2282 long entries_required, wm_size;
2285 * Note: we need to make sure we don't overflow for various clock &
2286 * latency values.
2287 * clocks go from a few thousand to several hundred thousand.
2288 * latency is usually a few thousand
2290 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2291 1000;
2292 entries_required /= wm->cacheline_size;
2294 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2296 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2298 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2300 /* Don't promote wm_size to unsigned... */
2301 if (wm_size > (long)wm->max_wm)
2302 wm_size = wm->max_wm;
2303 if (wm_size <= 0)
2304 wm_size = wm->default_wm;
2305 return wm_size;
2308 struct cxsr_latency {
2309 int is_desktop;
2310 unsigned long fsb_freq;
2311 unsigned long mem_freq;
2312 unsigned long display_sr;
2313 unsigned long display_hpll_disable;
2314 unsigned long cursor_sr;
2315 unsigned long cursor_hpll_disable;
2318 static struct cxsr_latency cxsr_latency_table[] = {
2319 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2320 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2321 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2323 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2324 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2325 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2327 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2328 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2329 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2331 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2332 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2333 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2335 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2336 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2337 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2339 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2340 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2341 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2344 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2345 int mem)
2347 int i;
2348 struct cxsr_latency *latency;
2350 if (fsb == 0 || mem == 0)
2351 return NULL;
2353 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2354 latency = &cxsr_latency_table[i];
2355 if (is_desktop == latency->is_desktop &&
2356 fsb == latency->fsb_freq && mem == latency->mem_freq)
2357 return latency;
2360 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2362 return NULL;
2365 static void pineview_disable_cxsr(struct drm_device *dev)
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 u32 reg;
2370 /* deactivate cxsr */
2371 reg = I915_READ(DSPFW3);
2372 reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2373 I915_WRITE(DSPFW3, reg);
2374 DRM_INFO("Big FIFO is disabled\n");
2377 static void pineview_enable_cxsr(struct drm_device *dev, unsigned long clock,
2378 int pixel_size)
2380 struct drm_i915_private *dev_priv = dev->dev_private;
2381 u32 reg;
2382 unsigned long wm;
2383 struct cxsr_latency *latency;
2385 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
2386 dev_priv->mem_freq);
2387 if (!latency) {
2388 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2389 pineview_disable_cxsr(dev);
2390 return;
2393 /* Display SR */
2394 wm = intel_calculate_wm(clock, &pineview_display_wm, pixel_size,
2395 latency->display_sr);
2396 reg = I915_READ(DSPFW1);
2397 reg &= 0x7fffff;
2398 reg |= wm << 23;
2399 I915_WRITE(DSPFW1, reg);
2400 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2402 /* cursor SR */
2403 wm = intel_calculate_wm(clock, &pineview_cursor_wm, pixel_size,
2404 latency->cursor_sr);
2405 reg = I915_READ(DSPFW3);
2406 reg &= ~(0x3f << 24);
2407 reg |= (wm & 0x3f) << 24;
2408 I915_WRITE(DSPFW3, reg);
2410 /* Display HPLL off SR */
2411 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
2412 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2413 reg = I915_READ(DSPFW3);
2414 reg &= 0xfffffe00;
2415 reg |= wm & 0x1ff;
2416 I915_WRITE(DSPFW3, reg);
2418 /* cursor HPLL off SR */
2419 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pixel_size,
2420 latency->cursor_hpll_disable);
2421 reg = I915_READ(DSPFW3);
2422 reg &= ~(0x3f << 16);
2423 reg |= (wm & 0x3f) << 16;
2424 I915_WRITE(DSPFW3, reg);
2425 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2427 /* activate cxsr */
2428 reg = I915_READ(DSPFW3);
2429 reg |= PINEVIEW_SELF_REFRESH_EN;
2430 I915_WRITE(DSPFW3, reg);
2432 DRM_INFO("Big FIFO is enabled\n");
2434 return;
2438 * Latency for FIFO fetches is dependent on several factors:
2439 * - memory configuration (speed, channels)
2440 * - chipset
2441 * - current MCH state
2442 * It can be fairly high in some situations, so here we assume a fairly
2443 * pessimal value. It's a tradeoff between extra memory fetches (if we
2444 * set this value too high, the FIFO will fetch frequently to stay full)
2445 * and power consumption (set it too low to save power and we might see
2446 * FIFO underruns and display "flicker").
2448 * A value of 5us seems to be a good balance; safe for very low end
2449 * platforms but not overly aggressive on lower latency configs.
2451 static const int latency_ns = 5000;
2453 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2455 struct drm_i915_private *dev_priv = dev->dev_private;
2456 uint32_t dsparb = I915_READ(DSPARB);
2457 int size;
2459 if (plane == 0)
2460 size = dsparb & 0x7f;
2461 else
2462 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2463 (dsparb & 0x7f);
2465 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2466 plane ? "B" : "A", size);
2468 return size;
2471 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2473 struct drm_i915_private *dev_priv = dev->dev_private;
2474 uint32_t dsparb = I915_READ(DSPARB);
2475 int size;
2477 if (plane == 0)
2478 size = dsparb & 0x1ff;
2479 else
2480 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2481 (dsparb & 0x1ff);
2482 size >>= 1; /* Convert to cachelines */
2484 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2485 plane ? "B" : "A", size);
2487 return size;
2490 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 uint32_t dsparb = I915_READ(DSPARB);
2494 int size;
2496 size = dsparb & 0x7f;
2497 size >>= 2; /* Convert to cachelines */
2499 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2500 plane ? "B" : "A",
2501 size);
2503 return size;
2506 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2508 struct drm_i915_private *dev_priv = dev->dev_private;
2509 uint32_t dsparb = I915_READ(DSPARB);
2510 int size;
2512 size = dsparb & 0x7f;
2513 size >>= 1; /* Convert to cachelines */
2515 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2516 plane ? "B" : "A", size);
2518 return size;
2521 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
2522 int planeb_clock, int sr_hdisplay, int pixel_size)
2524 struct drm_i915_private *dev_priv = dev->dev_private;
2525 int total_size, cacheline_size;
2526 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2527 struct intel_watermark_params planea_params, planeb_params;
2528 unsigned long line_time_us;
2529 int sr_clock, sr_entries = 0, entries_required;
2531 /* Create copies of the base settings for each pipe */
2532 planea_params = planeb_params = g4x_wm_info;
2534 /* Grab a couple of global values before we overwrite them */
2535 total_size = planea_params.fifo_size;
2536 cacheline_size = planea_params.cacheline_size;
2539 * Note: we need to make sure we don't overflow for various clock &
2540 * latency values.
2541 * clocks go from a few thousand to several hundred thousand.
2542 * latency is usually a few thousand
2544 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2545 1000;
2546 entries_required /= G4X_FIFO_LINE_SIZE;
2547 planea_wm = entries_required + planea_params.guard_size;
2549 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2550 1000;
2551 entries_required /= G4X_FIFO_LINE_SIZE;
2552 planeb_wm = entries_required + planeb_params.guard_size;
2554 cursora_wm = cursorb_wm = 16;
2555 cursor_sr = 32;
2557 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2559 /* Calc sr entries for one plane configs */
2560 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2561 /* self-refresh has much higher latency */
2562 static const int sr_latency_ns = 12000;
2564 sr_clock = planea_clock ? planea_clock : planeb_clock;
2565 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2567 /* Use ns/us then divide to preserve precision */
2568 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2569 pixel_size * sr_hdisplay) / 1000;
2570 sr_entries = roundup(sr_entries / cacheline_size, 1);
2571 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2572 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2575 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2576 planea_wm, planeb_wm, sr_entries);
2578 planea_wm &= 0x3f;
2579 planeb_wm &= 0x3f;
2581 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2582 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2583 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2584 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2585 (cursora_wm << DSPFW_CURSORA_SHIFT));
2586 /* HPLL off in SR has some issues on G4x... disable it */
2587 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2588 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2591 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2592 int planeb_clock, int sr_hdisplay, int pixel_size)
2594 struct drm_i915_private *dev_priv = dev->dev_private;
2595 unsigned long line_time_us;
2596 int sr_clock, sr_entries, srwm = 1;
2598 /* Calc sr entries for one plane configs */
2599 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2600 /* self-refresh has much higher latency */
2601 static const int sr_latency_ns = 12000;
2603 sr_clock = planea_clock ? planea_clock : planeb_clock;
2604 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2606 /* Use ns/us then divide to preserve precision */
2607 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2608 pixel_size * sr_hdisplay) / 1000;
2609 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2610 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2611 srwm = I945_FIFO_SIZE - sr_entries;
2612 if (srwm < 0)
2613 srwm = 1;
2614 srwm &= 0x3f;
2615 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2618 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2619 srwm);
2621 /* 965 has limitations... */
2622 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2623 (8 << 0));
2624 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2627 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2628 int planeb_clock, int sr_hdisplay, int pixel_size)
2630 struct drm_i915_private *dev_priv = dev->dev_private;
2631 uint32_t fwater_lo;
2632 uint32_t fwater_hi;
2633 int total_size, cacheline_size, cwm, srwm = 1;
2634 int planea_wm, planeb_wm;
2635 struct intel_watermark_params planea_params, planeb_params;
2636 unsigned long line_time_us;
2637 int sr_clock, sr_entries = 0;
2639 /* Create copies of the base settings for each pipe */
2640 if (IS_I965GM(dev) || IS_I945GM(dev))
2641 planea_params = planeb_params = i945_wm_info;
2642 else if (IS_I9XX(dev))
2643 planea_params = planeb_params = i915_wm_info;
2644 else
2645 planea_params = planeb_params = i855_wm_info;
2647 /* Grab a couple of global values before we overwrite them */
2648 total_size = planea_params.fifo_size;
2649 cacheline_size = planea_params.cacheline_size;
2651 /* Update per-plane FIFO sizes */
2652 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2653 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2655 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2656 pixel_size, latency_ns);
2657 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2658 pixel_size, latency_ns);
2659 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2662 * Overlay gets an aggressive default since video jitter is bad.
2664 cwm = 2;
2666 /* Calc sr entries for one plane configs */
2667 if (HAS_FW_BLC(dev) && sr_hdisplay &&
2668 (!planea_clock || !planeb_clock)) {
2669 /* self-refresh has much higher latency */
2670 static const int sr_latency_ns = 6000;
2672 sr_clock = planea_clock ? planea_clock : planeb_clock;
2673 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2675 /* Use ns/us then divide to preserve precision */
2676 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2677 pixel_size * sr_hdisplay) / 1000;
2678 sr_entries = roundup(sr_entries / cacheline_size, 1);
2679 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2680 srwm = total_size - sr_entries;
2681 if (srwm < 0)
2682 srwm = 1;
2683 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2686 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2687 planea_wm, planeb_wm, cwm, srwm);
2689 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2690 fwater_hi = (cwm & 0x1f);
2692 /* Set request length to 8 cachelines per fetch */
2693 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2694 fwater_hi = fwater_hi | (1 << 8);
2696 I915_WRITE(FW_BLC, fwater_lo);
2697 I915_WRITE(FW_BLC2, fwater_hi);
2700 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2701 int unused2, int pixel_size)
2703 struct drm_i915_private *dev_priv = dev->dev_private;
2704 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2705 int planea_wm;
2707 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2709 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2710 pixel_size, latency_ns);
2711 fwater_lo |= (3<<8) | planea_wm;
2713 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2715 I915_WRITE(FW_BLC, fwater_lo);
2719 * intel_update_watermarks - update FIFO watermark values based on current modes
2721 * Calculate watermark values for the various WM regs based on current mode
2722 * and plane configuration.
2724 * There are several cases to deal with here:
2725 * - normal (i.e. non-self-refresh)
2726 * - self-refresh (SR) mode
2727 * - lines are large relative to FIFO size (buffer can hold up to 2)
2728 * - lines are small relative to FIFO size (buffer can hold more than 2
2729 * lines), so need to account for TLB latency
2731 * The normal calculation is:
2732 * watermark = dotclock * bytes per pixel * latency
2733 * where latency is platform & configuration dependent (we assume pessimal
2734 * values here).
2736 * The SR calculation is:
2737 * watermark = (trunc(latency/line time)+1) * surface width *
2738 * bytes per pixel
2739 * where
2740 * line time = htotal / dotclock
2741 * and latency is assumed to be high, as above.
2743 * The final value programmed to the register should always be rounded up,
2744 * and include an extra 2 entries to account for clock crossings.
2746 * We don't use the sprite, so we can ignore that. And on Crestline we have
2747 * to set the non-SR watermarks to 8.
2749 static void intel_update_watermarks(struct drm_device *dev)
2751 struct drm_i915_private *dev_priv = dev->dev_private;
2752 struct drm_crtc *crtc;
2753 struct intel_crtc *intel_crtc;
2754 int sr_hdisplay = 0;
2755 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2756 int enabled = 0, pixel_size = 0;
2758 if (!dev_priv->display.update_wm)
2759 return;
2761 /* Get the clock config from both planes */
2762 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2763 intel_crtc = to_intel_crtc(crtc);
2764 if (crtc->enabled) {
2765 enabled++;
2766 if (intel_crtc->plane == 0) {
2767 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2768 intel_crtc->pipe, crtc->mode.clock);
2769 planea_clock = crtc->mode.clock;
2770 } else {
2771 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2772 intel_crtc->pipe, crtc->mode.clock);
2773 planeb_clock = crtc->mode.clock;
2775 sr_hdisplay = crtc->mode.hdisplay;
2776 sr_clock = crtc->mode.clock;
2777 if (crtc->fb)
2778 pixel_size = crtc->fb->bits_per_pixel / 8;
2779 else
2780 pixel_size = 4; /* by default */
2784 if (enabled <= 0)
2785 return;
2787 /* Single plane configs can enable self refresh */
2788 if (enabled == 1 && IS_PINEVIEW(dev))
2789 pineview_enable_cxsr(dev, sr_clock, pixel_size);
2790 else if (IS_PINEVIEW(dev))
2791 pineview_disable_cxsr(dev);
2793 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2794 sr_hdisplay, pixel_size);
2797 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2798 struct drm_display_mode *mode,
2799 struct drm_display_mode *adjusted_mode,
2800 int x, int y,
2801 struct drm_framebuffer *old_fb)
2803 struct drm_device *dev = crtc->dev;
2804 struct drm_i915_private *dev_priv = dev->dev_private;
2805 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2806 int pipe = intel_crtc->pipe;
2807 int plane = intel_crtc->plane;
2808 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2809 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2810 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2811 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2812 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2813 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2814 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2815 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2816 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2817 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2818 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2819 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2820 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2821 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2822 int refclk, num_outputs = 0;
2823 intel_clock_t clock, reduced_clock;
2824 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2825 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2826 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2827 bool is_edp = false;
2828 struct drm_mode_config *mode_config = &dev->mode_config;
2829 struct drm_connector *connector;
2830 const intel_limit_t *limit;
2831 int ret;
2832 struct fdi_m_n m_n = {0};
2833 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2834 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2835 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2836 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2837 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2838 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2839 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2840 int lvds_reg = LVDS;
2841 u32 temp;
2842 int sdvo_pixel_multiply;
2843 int target_clock;
2845 drm_vblank_pre_modeset(dev, pipe);
2847 list_for_each_entry(connector, &mode_config->connector_list, head) {
2848 struct intel_output *intel_output = to_intel_output(connector);
2850 if (!connector->encoder || connector->encoder->crtc != crtc)
2851 continue;
2853 switch (intel_output->type) {
2854 case INTEL_OUTPUT_LVDS:
2855 is_lvds = true;
2856 break;
2857 case INTEL_OUTPUT_SDVO:
2858 case INTEL_OUTPUT_HDMI:
2859 is_sdvo = true;
2860 if (intel_output->needs_tv_clock)
2861 is_tv = true;
2862 break;
2863 case INTEL_OUTPUT_DVO:
2864 is_dvo = true;
2865 break;
2866 case INTEL_OUTPUT_TVOUT:
2867 is_tv = true;
2868 break;
2869 case INTEL_OUTPUT_ANALOG:
2870 is_crt = true;
2871 break;
2872 case INTEL_OUTPUT_DISPLAYPORT:
2873 is_dp = true;
2874 break;
2875 case INTEL_OUTPUT_EDP:
2876 is_edp = true;
2877 break;
2880 num_outputs++;
2883 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2884 refclk = dev_priv->lvds_ssc_freq * 1000;
2885 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2886 refclk / 1000);
2887 } else if (IS_I9XX(dev)) {
2888 refclk = 96000;
2889 if (IS_IRONLAKE(dev))
2890 refclk = 120000; /* 120Mhz refclk */
2891 } else {
2892 refclk = 48000;
2897 * Returns a set of divisors for the desired target clock with the given
2898 * refclk, or FALSE. The returned values represent the clock equation:
2899 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2901 limit = intel_limit(crtc);
2902 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2903 if (!ok) {
2904 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2905 drm_vblank_post_modeset(dev, pipe);
2906 return -EINVAL;
2909 if (is_lvds && limit->find_reduced_pll &&
2910 dev_priv->lvds_downclock_avail) {
2911 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2912 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2913 dev_priv->lvds_downclock,
2914 refclk,
2915 &reduced_clock);
2916 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
2918 * If the different P is found, it means that we can't
2919 * switch the display clock by using the FP0/FP1.
2920 * In such case we will disable the LVDS downclock
2921 * feature.
2923 DRM_DEBUG_KMS("Different P is found for "
2924 "LVDS clock/downclock\n");
2925 has_reduced_clock = 0;
2928 /* SDVO TV has fixed PLL values depend on its clock range,
2929 this mirrors vbios setting. */
2930 if (is_sdvo && is_tv) {
2931 if (adjusted_mode->clock >= 100000
2932 && adjusted_mode->clock < 140500) {
2933 clock.p1 = 2;
2934 clock.p2 = 10;
2935 clock.n = 3;
2936 clock.m1 = 16;
2937 clock.m2 = 8;
2938 } else if (adjusted_mode->clock >= 140500
2939 && adjusted_mode->clock <= 200000) {
2940 clock.p1 = 1;
2941 clock.p2 = 10;
2942 clock.n = 6;
2943 clock.m1 = 12;
2944 clock.m2 = 8;
2948 /* FDI link */
2949 if (IS_IRONLAKE(dev)) {
2950 int lane, link_bw, bpp;
2951 /* eDP doesn't require FDI link, so just set DP M/N
2952 according to current link config */
2953 if (is_edp) {
2954 struct drm_connector *edp;
2955 target_clock = mode->clock;
2956 edp = intel_pipe_get_output(crtc);
2957 intel_edp_link_config(to_intel_output(edp),
2958 &lane, &link_bw);
2959 } else {
2960 /* DP over FDI requires target mode clock
2961 instead of link clock */
2962 if (is_dp)
2963 target_clock = mode->clock;
2964 else
2965 target_clock = adjusted_mode->clock;
2966 lane = 4;
2967 link_bw = 270000;
2970 /* determine panel color depth */
2971 temp = I915_READ(pipeconf_reg);
2973 switch (temp & PIPE_BPC_MASK) {
2974 case PIPE_8BPC:
2975 bpp = 24;
2976 break;
2977 case PIPE_10BPC:
2978 bpp = 30;
2979 break;
2980 case PIPE_6BPC:
2981 bpp = 18;
2982 break;
2983 case PIPE_12BPC:
2984 bpp = 36;
2985 break;
2986 default:
2987 DRM_ERROR("unknown pipe bpc value\n");
2988 bpp = 24;
2991 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
2994 /* Ironlake: try to setup display ref clock before DPLL
2995 * enabling. This is only under driver's control after
2996 * PCH B stepping, previous chipset stepping should be
2997 * ignoring this setting.
2999 if (IS_IRONLAKE(dev)) {
3000 temp = I915_READ(PCH_DREF_CONTROL);
3001 /* Always enable nonspread source */
3002 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3003 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3004 I915_WRITE(PCH_DREF_CONTROL, temp);
3005 POSTING_READ(PCH_DREF_CONTROL);
3007 temp &= ~DREF_SSC_SOURCE_MASK;
3008 temp |= DREF_SSC_SOURCE_ENABLE;
3009 I915_WRITE(PCH_DREF_CONTROL, temp);
3010 POSTING_READ(PCH_DREF_CONTROL);
3012 udelay(200);
3014 if (is_edp) {
3015 if (dev_priv->lvds_use_ssc) {
3016 temp |= DREF_SSC1_ENABLE;
3017 I915_WRITE(PCH_DREF_CONTROL, temp);
3018 POSTING_READ(PCH_DREF_CONTROL);
3020 udelay(200);
3022 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3023 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3024 I915_WRITE(PCH_DREF_CONTROL, temp);
3025 POSTING_READ(PCH_DREF_CONTROL);
3026 } else {
3027 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3028 I915_WRITE(PCH_DREF_CONTROL, temp);
3029 POSTING_READ(PCH_DREF_CONTROL);
3034 if (IS_PINEVIEW(dev)) {
3035 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3036 if (has_reduced_clock)
3037 fp2 = (1 << reduced_clock.n) << 16 |
3038 reduced_clock.m1 << 8 | reduced_clock.m2;
3039 } else {
3040 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3041 if (has_reduced_clock)
3042 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3043 reduced_clock.m2;
3046 if (!IS_IRONLAKE(dev))
3047 dpll = DPLL_VGA_MODE_DIS;
3049 if (IS_I9XX(dev)) {
3050 if (is_lvds)
3051 dpll |= DPLLB_MODE_LVDS;
3052 else
3053 dpll |= DPLLB_MODE_DAC_SERIAL;
3054 if (is_sdvo) {
3055 dpll |= DPLL_DVO_HIGH_SPEED;
3056 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3057 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3058 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3059 else if (IS_IRONLAKE(dev))
3060 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3062 if (is_dp)
3063 dpll |= DPLL_DVO_HIGH_SPEED;
3065 /* compute bitmask from p1 value */
3066 if (IS_PINEVIEW(dev))
3067 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3068 else {
3069 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3070 /* also FPA1 */
3071 if (IS_IRONLAKE(dev))
3072 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3073 if (IS_G4X(dev) && has_reduced_clock)
3074 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3076 switch (clock.p2) {
3077 case 5:
3078 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3079 break;
3080 case 7:
3081 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3082 break;
3083 case 10:
3084 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3085 break;
3086 case 14:
3087 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3088 break;
3090 if (IS_I965G(dev) && !IS_IRONLAKE(dev))
3091 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3092 } else {
3093 if (is_lvds) {
3094 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3095 } else {
3096 if (clock.p1 == 2)
3097 dpll |= PLL_P1_DIVIDE_BY_TWO;
3098 else
3099 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3100 if (clock.p2 == 4)
3101 dpll |= PLL_P2_DIVIDE_BY_4;
3105 if (is_sdvo && is_tv)
3106 dpll |= PLL_REF_INPUT_TVCLKINBC;
3107 else if (is_tv)
3108 /* XXX: just matching BIOS for now */
3109 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3110 dpll |= 3;
3111 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
3112 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3113 else
3114 dpll |= PLL_REF_INPUT_DREFCLK;
3116 /* setup pipeconf */
3117 pipeconf = I915_READ(pipeconf_reg);
3119 /* Set up the display plane register */
3120 dspcntr = DISPPLANE_GAMMA_ENABLE;
3122 /* Ironlake's plane is forced to pipe, bit 24 is to
3123 enable color space conversion */
3124 if (!IS_IRONLAKE(dev)) {
3125 if (pipe == 0)
3126 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3127 else
3128 dspcntr |= DISPPLANE_SEL_PIPE_B;
3131 if (pipe == 0 && !IS_I965G(dev)) {
3132 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3133 * core speed.
3135 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3136 * pipe == 0 check?
3138 if (mode->clock >
3139 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3140 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3141 else
3142 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3145 dspcntr |= DISPLAY_PLANE_ENABLE;
3146 pipeconf |= PIPEACONF_ENABLE;
3147 dpll |= DPLL_VCO_ENABLE;
3150 /* Disable the panel fitter if it was on our pipe */
3151 if (!IS_IRONLAKE(dev) && intel_panel_fitter_pipe(dev) == pipe)
3152 I915_WRITE(PFIT_CONTROL, 0);
3154 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3155 drm_mode_debug_printmodeline(mode);
3157 /* assign to Ironlake registers */
3158 if (IS_IRONLAKE(dev)) {
3159 fp_reg = pch_fp_reg;
3160 dpll_reg = pch_dpll_reg;
3163 if (is_edp) {
3164 ironlake_disable_pll_edp(crtc);
3165 } else if ((dpll & DPLL_VCO_ENABLE)) {
3166 I915_WRITE(fp_reg, fp);
3167 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3168 I915_READ(dpll_reg);
3169 udelay(150);
3172 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3173 * This is an exception to the general rule that mode_set doesn't turn
3174 * things on.
3176 if (is_lvds) {
3177 u32 lvds;
3179 if (IS_IRONLAKE(dev))
3180 lvds_reg = PCH_LVDS;
3182 lvds = I915_READ(lvds_reg);
3183 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3184 /* set the corresponsding LVDS_BORDER bit */
3185 lvds |= dev_priv->lvds_border_bits;
3186 /* Set the B0-B3 data pairs corresponding to whether we're going to
3187 * set the DPLLs for dual-channel mode or not.
3189 if (clock.p2 == 7)
3190 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3191 else
3192 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3194 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3195 * appropriately here, but we need to look more thoroughly into how
3196 * panels behave in the two modes.
3199 I915_WRITE(lvds_reg, lvds);
3200 I915_READ(lvds_reg);
3202 if (is_dp)
3203 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3205 if (!is_edp) {
3206 I915_WRITE(fp_reg, fp);
3207 I915_WRITE(dpll_reg, dpll);
3208 I915_READ(dpll_reg);
3209 /* Wait for the clocks to stabilize. */
3210 udelay(150);
3212 if (IS_I965G(dev) && !IS_IRONLAKE(dev)) {
3213 if (is_sdvo) {
3214 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3215 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3216 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3217 } else
3218 I915_WRITE(dpll_md_reg, 0);
3219 } else {
3220 /* write it again -- the BIOS does, after all */
3221 I915_WRITE(dpll_reg, dpll);
3223 I915_READ(dpll_reg);
3224 /* Wait for the clocks to stabilize. */
3225 udelay(150);
3228 if (is_lvds && has_reduced_clock && i915_powersave) {
3229 I915_WRITE(fp_reg + 4, fp2);
3230 intel_crtc->lowfreq_avail = true;
3231 if (HAS_PIPE_CXSR(dev)) {
3232 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3233 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3235 } else {
3236 I915_WRITE(fp_reg + 4, fp);
3237 intel_crtc->lowfreq_avail = false;
3238 if (HAS_PIPE_CXSR(dev)) {
3239 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3240 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3244 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3245 ((adjusted_mode->crtc_htotal - 1) << 16));
3246 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3247 ((adjusted_mode->crtc_hblank_end - 1) << 16));
3248 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3249 ((adjusted_mode->crtc_hsync_end - 1) << 16));
3250 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3251 ((adjusted_mode->crtc_vtotal - 1) << 16));
3252 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3253 ((adjusted_mode->crtc_vblank_end - 1) << 16));
3254 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3255 ((adjusted_mode->crtc_vsync_end - 1) << 16));
3256 /* pipesrc and dspsize control the size that is scaled from, which should
3257 * always be the user's requested size.
3259 if (!IS_IRONLAKE(dev)) {
3260 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3261 (mode->hdisplay - 1));
3262 I915_WRITE(dsppos_reg, 0);
3264 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3266 if (IS_IRONLAKE(dev)) {
3267 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3268 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3269 I915_WRITE(link_m1_reg, m_n.link_m);
3270 I915_WRITE(link_n1_reg, m_n.link_n);
3272 if (is_edp) {
3273 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3274 } else {
3275 /* enable FDI RX PLL too */
3276 temp = I915_READ(fdi_rx_reg);
3277 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3278 udelay(200);
3282 I915_WRITE(pipeconf_reg, pipeconf);
3283 I915_READ(pipeconf_reg);
3285 intel_wait_for_vblank(dev);
3287 if (IS_IRONLAKE(dev)) {
3288 /* enable address swizzle for tiling buffer */
3289 temp = I915_READ(DISP_ARB_CTL);
3290 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3293 I915_WRITE(dspcntr_reg, dspcntr);
3295 /* Flush the plane changes */
3296 ret = intel_pipe_set_base(crtc, x, y, old_fb);
3298 if ((IS_I965G(dev) || plane == 0))
3299 intel_update_fbc(crtc, &crtc->mode);
3301 intel_update_watermarks(dev);
3303 drm_vblank_post_modeset(dev, pipe);
3305 return ret;
3308 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3309 void intel_crtc_load_lut(struct drm_crtc *crtc)
3311 struct drm_device *dev = crtc->dev;
3312 struct drm_i915_private *dev_priv = dev->dev_private;
3313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3314 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3315 int i;
3317 /* The clocks have to be on to load the palette. */
3318 if (!crtc->enabled)
3319 return;
3321 /* use legacy palette for Ironlake */
3322 if (IS_IRONLAKE(dev))
3323 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3324 LGC_PALETTE_B;
3326 for (i = 0; i < 256; i++) {
3327 I915_WRITE(palreg + 4 * i,
3328 (intel_crtc->lut_r[i] << 16) |
3329 (intel_crtc->lut_g[i] << 8) |
3330 intel_crtc->lut_b[i]);
3334 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3335 struct drm_file *file_priv,
3336 uint32_t handle,
3337 uint32_t width, uint32_t height)
3339 struct drm_device *dev = crtc->dev;
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3342 struct drm_gem_object *bo;
3343 struct drm_i915_gem_object *obj_priv;
3344 int pipe = intel_crtc->pipe;
3345 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3346 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3347 uint32_t temp = I915_READ(control);
3348 size_t addr;
3349 int ret;
3351 DRM_DEBUG_KMS("\n");
3353 /* if we want to turn off the cursor ignore width and height */
3354 if (!handle) {
3355 DRM_DEBUG_KMS("cursor off\n");
3356 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3357 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3358 temp |= CURSOR_MODE_DISABLE;
3359 } else {
3360 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3362 addr = 0;
3363 bo = NULL;
3364 mutex_lock(&dev->struct_mutex);
3365 goto finish;
3368 /* Currently we only support 64x64 cursors */
3369 if (width != 64 || height != 64) {
3370 DRM_ERROR("we currently only support 64x64 cursors\n");
3371 return -EINVAL;
3374 bo = drm_gem_object_lookup(dev, file_priv, handle);
3375 if (!bo)
3376 return -ENOENT;
3378 obj_priv = bo->driver_private;
3380 if (bo->size < width * height * 4) {
3381 DRM_ERROR("buffer is to small\n");
3382 ret = -ENOMEM;
3383 goto fail;
3386 /* we only need to pin inside GTT if cursor is non-phy */
3387 mutex_lock(&dev->struct_mutex);
3388 if (!dev_priv->info->cursor_needs_physical) {
3389 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3390 if (ret) {
3391 DRM_ERROR("failed to pin cursor bo\n");
3392 goto fail_locked;
3394 addr = obj_priv->gtt_offset;
3395 } else {
3396 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3397 if (ret) {
3398 DRM_ERROR("failed to attach phys object\n");
3399 goto fail_locked;
3401 addr = obj_priv->phys_obj->handle->busaddr;
3404 if (!IS_I9XX(dev))
3405 I915_WRITE(CURSIZE, (height << 12) | width);
3407 /* Hooray for CUR*CNTR differences */
3408 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3409 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3410 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3411 temp |= (pipe << 28); /* Connect to correct pipe */
3412 } else {
3413 temp &= ~(CURSOR_FORMAT_MASK);
3414 temp |= CURSOR_ENABLE;
3415 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3418 finish:
3419 I915_WRITE(control, temp);
3420 I915_WRITE(base, addr);
3422 if (intel_crtc->cursor_bo) {
3423 if (dev_priv->info->cursor_needs_physical) {
3424 if (intel_crtc->cursor_bo != bo)
3425 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3426 } else
3427 i915_gem_object_unpin(intel_crtc->cursor_bo);
3428 drm_gem_object_unreference(intel_crtc->cursor_bo);
3431 mutex_unlock(&dev->struct_mutex);
3433 intel_crtc->cursor_addr = addr;
3434 intel_crtc->cursor_bo = bo;
3436 return 0;
3437 fail:
3438 mutex_lock(&dev->struct_mutex);
3439 fail_locked:
3440 drm_gem_object_unreference(bo);
3441 mutex_unlock(&dev->struct_mutex);
3442 return ret;
3445 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3447 struct drm_device *dev = crtc->dev;
3448 struct drm_i915_private *dev_priv = dev->dev_private;
3449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3450 struct intel_framebuffer *intel_fb;
3451 int pipe = intel_crtc->pipe;
3452 uint32_t temp = 0;
3453 uint32_t adder;
3455 if (crtc->fb) {
3456 intel_fb = to_intel_framebuffer(crtc->fb);
3457 intel_mark_busy(dev, intel_fb->obj);
3460 if (x < 0) {
3461 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3462 x = -x;
3464 if (y < 0) {
3465 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3466 y = -y;
3469 temp |= x << CURSOR_X_SHIFT;
3470 temp |= y << CURSOR_Y_SHIFT;
3472 adder = intel_crtc->cursor_addr;
3473 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3474 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3476 return 0;
3479 /** Sets the color ramps on behalf of RandR */
3480 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3481 u16 blue, int regno)
3483 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3485 intel_crtc->lut_r[regno] = red >> 8;
3486 intel_crtc->lut_g[regno] = green >> 8;
3487 intel_crtc->lut_b[regno] = blue >> 8;
3490 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3491 u16 *blue, int regno)
3493 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3495 *red = intel_crtc->lut_r[regno] << 8;
3496 *green = intel_crtc->lut_g[regno] << 8;
3497 *blue = intel_crtc->lut_b[regno] << 8;
3500 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3501 u16 *blue, uint32_t size)
3503 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3504 int i;
3506 if (size != 256)
3507 return;
3509 for (i = 0; i < 256; i++) {
3510 intel_crtc->lut_r[i] = red[i] >> 8;
3511 intel_crtc->lut_g[i] = green[i] >> 8;
3512 intel_crtc->lut_b[i] = blue[i] >> 8;
3515 intel_crtc_load_lut(crtc);
3519 * Get a pipe with a simple mode set on it for doing load-based monitor
3520 * detection.
3522 * It will be up to the load-detect code to adjust the pipe as appropriate for
3523 * its requirements. The pipe will be connected to no other outputs.
3525 * Currently this code will only succeed if there is a pipe with no outputs
3526 * configured for it. In the future, it could choose to temporarily disable
3527 * some outputs to free up a pipe for its use.
3529 * \return crtc, or NULL if no pipes are available.
3532 /* VESA 640x480x72Hz mode to set on the pipe */
3533 static struct drm_display_mode load_detect_mode = {
3534 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3535 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3538 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3539 struct drm_display_mode *mode,
3540 int *dpms_mode)
3542 struct intel_crtc *intel_crtc;
3543 struct drm_crtc *possible_crtc;
3544 struct drm_crtc *supported_crtc =NULL;
3545 struct drm_encoder *encoder = &intel_output->enc;
3546 struct drm_crtc *crtc = NULL;
3547 struct drm_device *dev = encoder->dev;
3548 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3549 struct drm_crtc_helper_funcs *crtc_funcs;
3550 int i = -1;
3553 * Algorithm gets a little messy:
3554 * - if the connector already has an assigned crtc, use it (but make
3555 * sure it's on first)
3556 * - try to find the first unused crtc that can drive this connector,
3557 * and use that if we find one
3558 * - if there are no unused crtcs available, try to use the first
3559 * one we found that supports the connector
3562 /* See if we already have a CRTC for this connector */
3563 if (encoder->crtc) {
3564 crtc = encoder->crtc;
3565 /* Make sure the crtc and connector are running */
3566 intel_crtc = to_intel_crtc(crtc);
3567 *dpms_mode = intel_crtc->dpms_mode;
3568 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3569 crtc_funcs = crtc->helper_private;
3570 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3571 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3573 return crtc;
3576 /* Find an unused one (if possible) */
3577 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3578 i++;
3579 if (!(encoder->possible_crtcs & (1 << i)))
3580 continue;
3581 if (!possible_crtc->enabled) {
3582 crtc = possible_crtc;
3583 break;
3585 if (!supported_crtc)
3586 supported_crtc = possible_crtc;
3590 * If we didn't find an unused CRTC, don't use any.
3592 if (!crtc) {
3593 return NULL;
3596 encoder->crtc = crtc;
3597 intel_output->base.encoder = encoder;
3598 intel_output->load_detect_temp = true;
3600 intel_crtc = to_intel_crtc(crtc);
3601 *dpms_mode = intel_crtc->dpms_mode;
3603 if (!crtc->enabled) {
3604 if (!mode)
3605 mode = &load_detect_mode;
3606 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3607 } else {
3608 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3609 crtc_funcs = crtc->helper_private;
3610 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3613 /* Add this connector to the crtc */
3614 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3615 encoder_funcs->commit(encoder);
3617 /* let the connector get through one full cycle before testing */
3618 intel_wait_for_vblank(dev);
3620 return crtc;
3623 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3625 struct drm_encoder *encoder = &intel_output->enc;
3626 struct drm_device *dev = encoder->dev;
3627 struct drm_crtc *crtc = encoder->crtc;
3628 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3629 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3631 if (intel_output->load_detect_temp) {
3632 encoder->crtc = NULL;
3633 intel_output->base.encoder = NULL;
3634 intel_output->load_detect_temp = false;
3635 crtc->enabled = drm_helper_crtc_in_use(crtc);
3636 drm_helper_disable_unused_functions(dev);
3639 /* Switch crtc and output back off if necessary */
3640 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3641 if (encoder->crtc == crtc)
3642 encoder_funcs->dpms(encoder, dpms_mode);
3643 crtc_funcs->dpms(crtc, dpms_mode);
3647 /* Returns the clock of the currently programmed mode of the given pipe. */
3648 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3650 struct drm_i915_private *dev_priv = dev->dev_private;
3651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3652 int pipe = intel_crtc->pipe;
3653 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3654 u32 fp;
3655 intel_clock_t clock;
3657 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3658 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3659 else
3660 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3662 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3663 if (IS_PINEVIEW(dev)) {
3664 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3665 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
3666 } else {
3667 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3668 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3671 if (IS_I9XX(dev)) {
3672 if (IS_PINEVIEW(dev))
3673 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
3674 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
3675 else
3676 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3677 DPLL_FPA01_P1_POST_DIV_SHIFT);
3679 switch (dpll & DPLL_MODE_MASK) {
3680 case DPLLB_MODE_DAC_SERIAL:
3681 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3682 5 : 10;
3683 break;
3684 case DPLLB_MODE_LVDS:
3685 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3686 7 : 14;
3687 break;
3688 default:
3689 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3690 "mode\n", (int)(dpll & DPLL_MODE_MASK));
3691 return 0;
3694 /* XXX: Handle the 100Mhz refclk */
3695 intel_clock(dev, 96000, &clock);
3696 } else {
3697 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3699 if (is_lvds) {
3700 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3701 DPLL_FPA01_P1_POST_DIV_SHIFT);
3702 clock.p2 = 14;
3704 if ((dpll & PLL_REF_INPUT_MASK) ==
3705 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3706 /* XXX: might not be 66MHz */
3707 intel_clock(dev, 66000, &clock);
3708 } else
3709 intel_clock(dev, 48000, &clock);
3710 } else {
3711 if (dpll & PLL_P1_DIVIDE_BY_TWO)
3712 clock.p1 = 2;
3713 else {
3714 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3715 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3717 if (dpll & PLL_P2_DIVIDE_BY_4)
3718 clock.p2 = 4;
3719 else
3720 clock.p2 = 2;
3722 intel_clock(dev, 48000, &clock);
3726 /* XXX: It would be nice to validate the clocks, but we can't reuse
3727 * i830PllIsValid() because it relies on the xf86_config connector
3728 * configuration being accurate, which it isn't necessarily.
3731 return clock.dot;
3734 /** Returns the currently programmed mode of the given pipe. */
3735 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3736 struct drm_crtc *crtc)
3738 struct drm_i915_private *dev_priv = dev->dev_private;
3739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3740 int pipe = intel_crtc->pipe;
3741 struct drm_display_mode *mode;
3742 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3743 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3744 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3745 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3747 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3748 if (!mode)
3749 return NULL;
3751 mode->clock = intel_crtc_clock_get(dev, crtc);
3752 mode->hdisplay = (htot & 0xffff) + 1;
3753 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3754 mode->hsync_start = (hsync & 0xffff) + 1;
3755 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3756 mode->vdisplay = (vtot & 0xffff) + 1;
3757 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3758 mode->vsync_start = (vsync & 0xffff) + 1;
3759 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3761 drm_mode_set_name(mode);
3762 drm_mode_set_crtcinfo(mode, 0);
3764 return mode;
3767 #define GPU_IDLE_TIMEOUT 500 /* ms */
3769 /* When this timer fires, we've been idle for awhile */
3770 static void intel_gpu_idle_timer(unsigned long arg)
3772 struct drm_device *dev = (struct drm_device *)arg;
3773 drm_i915_private_t *dev_priv = dev->dev_private;
3775 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3777 dev_priv->busy = false;
3779 queue_work(dev_priv->wq, &dev_priv->idle_work);
3782 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3784 static void intel_crtc_idle_timer(unsigned long arg)
3786 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3787 struct drm_crtc *crtc = &intel_crtc->base;
3788 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3790 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3792 intel_crtc->busy = false;
3794 queue_work(dev_priv->wq, &dev_priv->idle_work);
3797 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3799 struct drm_device *dev = crtc->dev;
3800 drm_i915_private_t *dev_priv = dev->dev_private;
3801 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3802 int pipe = intel_crtc->pipe;
3803 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3804 int dpll = I915_READ(dpll_reg);
3806 if (IS_IRONLAKE(dev))
3807 return;
3809 if (!dev_priv->lvds_downclock_avail)
3810 return;
3812 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3813 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3815 /* Unlock panel regs */
3816 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3818 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3819 I915_WRITE(dpll_reg, dpll);
3820 dpll = I915_READ(dpll_reg);
3821 intel_wait_for_vblank(dev);
3822 dpll = I915_READ(dpll_reg);
3823 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3824 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3826 /* ...and lock them again */
3827 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3830 /* Schedule downclock */
3831 if (schedule)
3832 mod_timer(&intel_crtc->idle_timer, jiffies +
3833 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3836 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3838 struct drm_device *dev = crtc->dev;
3839 drm_i915_private_t *dev_priv = dev->dev_private;
3840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3841 int pipe = intel_crtc->pipe;
3842 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3843 int dpll = I915_READ(dpll_reg);
3845 if (IS_IRONLAKE(dev))
3846 return;
3848 if (!dev_priv->lvds_downclock_avail)
3849 return;
3852 * Since this is called by a timer, we should never get here in
3853 * the manual case.
3855 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3856 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3858 /* Unlock panel regs */
3859 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3861 dpll |= DISPLAY_RATE_SELECT_FPA1;
3862 I915_WRITE(dpll_reg, dpll);
3863 dpll = I915_READ(dpll_reg);
3864 intel_wait_for_vblank(dev);
3865 dpll = I915_READ(dpll_reg);
3866 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3867 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
3869 /* ...and lock them again */
3870 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3876 * intel_idle_update - adjust clocks for idleness
3877 * @work: work struct
3879 * Either the GPU or display (or both) went idle. Check the busy status
3880 * here and adjust the CRTC and GPU clocks as necessary.
3882 static void intel_idle_update(struct work_struct *work)
3884 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3885 idle_work);
3886 struct drm_device *dev = dev_priv->dev;
3887 struct drm_crtc *crtc;
3888 struct intel_crtc *intel_crtc;
3890 if (!i915_powersave)
3891 return;
3893 mutex_lock(&dev->struct_mutex);
3895 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3896 /* Skip inactive CRTCs */
3897 if (!crtc->fb)
3898 continue;
3900 intel_crtc = to_intel_crtc(crtc);
3901 if (!intel_crtc->busy)
3902 intel_decrease_pllclock(crtc);
3905 mutex_unlock(&dev->struct_mutex);
3909 * intel_mark_busy - mark the GPU and possibly the display busy
3910 * @dev: drm device
3911 * @obj: object we're operating on
3913 * Callers can use this function to indicate that the GPU is busy processing
3914 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
3915 * buffer), we'll also mark the display as busy, so we know to increase its
3916 * clock frequency.
3918 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3920 drm_i915_private_t *dev_priv = dev->dev_private;
3921 struct drm_crtc *crtc = NULL;
3922 struct intel_framebuffer *intel_fb;
3923 struct intel_crtc *intel_crtc;
3925 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3926 return;
3928 if (!dev_priv->busy)
3929 dev_priv->busy = true;
3930 else
3931 mod_timer(&dev_priv->idle_timer, jiffies +
3932 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3934 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3935 if (!crtc->fb)
3936 continue;
3938 intel_crtc = to_intel_crtc(crtc);
3939 intel_fb = to_intel_framebuffer(crtc->fb);
3940 if (intel_fb->obj == obj) {
3941 if (!intel_crtc->busy) {
3942 /* Non-busy -> busy, upclock */
3943 intel_increase_pllclock(crtc, true);
3944 intel_crtc->busy = true;
3945 } else {
3946 /* Busy -> busy, put off timer */
3947 mod_timer(&intel_crtc->idle_timer, jiffies +
3948 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3954 static void intel_crtc_destroy(struct drm_crtc *crtc)
3956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3958 drm_crtc_cleanup(crtc);
3959 kfree(intel_crtc);
3962 struct intel_unpin_work {
3963 struct work_struct work;
3964 struct drm_device *dev;
3965 struct drm_gem_object *obj;
3966 struct drm_pending_vblank_event *event;
3967 int pending;
3970 static void intel_unpin_work_fn(struct work_struct *__work)
3972 struct intel_unpin_work *work =
3973 container_of(__work, struct intel_unpin_work, work);
3975 mutex_lock(&work->dev->struct_mutex);
3976 i915_gem_object_unpin(work->obj);
3977 drm_gem_object_unreference(work->obj);
3978 mutex_unlock(&work->dev->struct_mutex);
3979 kfree(work);
3982 void intel_finish_page_flip(struct drm_device *dev, int pipe)
3984 drm_i915_private_t *dev_priv = dev->dev_private;
3985 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
3986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3987 struct intel_unpin_work *work;
3988 struct drm_i915_gem_object *obj_priv;
3989 struct drm_pending_vblank_event *e;
3990 struct timeval now;
3991 unsigned long flags;
3993 /* Ignore early vblank irqs */
3994 if (intel_crtc == NULL)
3995 return;
3997 spin_lock_irqsave(&dev->event_lock, flags);
3998 work = intel_crtc->unpin_work;
3999 if (work == NULL || !work->pending) {
4000 spin_unlock_irqrestore(&dev->event_lock, flags);
4001 return;
4004 intel_crtc->unpin_work = NULL;
4005 drm_vblank_put(dev, intel_crtc->pipe);
4007 if (work->event) {
4008 e = work->event;
4009 do_gettimeofday(&now);
4010 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4011 e->event.tv_sec = now.tv_sec;
4012 e->event.tv_usec = now.tv_usec;
4013 list_add_tail(&e->base.link,
4014 &e->base.file_priv->event_list);
4015 wake_up_interruptible(&e->base.file_priv->event_wait);
4018 spin_unlock_irqrestore(&dev->event_lock, flags);
4020 obj_priv = work->obj->driver_private;
4021 if (atomic_dec_and_test(&obj_priv->pending_flip))
4022 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4023 schedule_work(&work->work);
4026 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4028 drm_i915_private_t *dev_priv = dev->dev_private;
4029 struct intel_crtc *intel_crtc =
4030 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4031 unsigned long flags;
4033 spin_lock_irqsave(&dev->event_lock, flags);
4034 if (intel_crtc->unpin_work)
4035 intel_crtc->unpin_work->pending = 1;
4036 spin_unlock_irqrestore(&dev->event_lock, flags);
4039 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4040 struct drm_framebuffer *fb,
4041 struct drm_pending_vblank_event *event)
4043 struct drm_device *dev = crtc->dev;
4044 struct drm_i915_private *dev_priv = dev->dev_private;
4045 struct intel_framebuffer *intel_fb;
4046 struct drm_i915_gem_object *obj_priv;
4047 struct drm_gem_object *obj;
4048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4049 struct intel_unpin_work *work;
4050 unsigned long flags;
4051 int ret;
4052 RING_LOCALS;
4054 work = kzalloc(sizeof *work, GFP_KERNEL);
4055 if (work == NULL)
4056 return -ENOMEM;
4058 mutex_lock(&dev->struct_mutex);
4060 work->event = event;
4061 work->dev = crtc->dev;
4062 intel_fb = to_intel_framebuffer(crtc->fb);
4063 work->obj = intel_fb->obj;
4064 INIT_WORK(&work->work, intel_unpin_work_fn);
4066 /* We borrow the event spin lock for protecting unpin_work */
4067 spin_lock_irqsave(&dev->event_lock, flags);
4068 if (intel_crtc->unpin_work) {
4069 spin_unlock_irqrestore(&dev->event_lock, flags);
4070 kfree(work);
4071 mutex_unlock(&dev->struct_mutex);
4072 return -EBUSY;
4074 intel_crtc->unpin_work = work;
4075 spin_unlock_irqrestore(&dev->event_lock, flags);
4077 intel_fb = to_intel_framebuffer(fb);
4078 obj = intel_fb->obj;
4080 ret = intel_pin_and_fence_fb_obj(dev, obj);
4081 if (ret != 0) {
4082 kfree(work);
4083 mutex_unlock(&dev->struct_mutex);
4084 return ret;
4087 /* Reference the old fb object for the scheduled work. */
4088 drm_gem_object_reference(work->obj);
4090 crtc->fb = fb;
4091 i915_gem_object_flush_write_domain(obj);
4092 drm_vblank_get(dev, intel_crtc->pipe);
4093 obj_priv = obj->driver_private;
4094 atomic_inc(&obj_priv->pending_flip);
4096 BEGIN_LP_RING(4);
4097 OUT_RING(MI_DISPLAY_FLIP |
4098 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4099 OUT_RING(fb->pitch);
4100 if (IS_I965G(dev)) {
4101 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4102 OUT_RING((fb->width << 16) | fb->height);
4103 } else {
4104 OUT_RING(obj_priv->gtt_offset);
4105 OUT_RING(MI_NOOP);
4107 ADVANCE_LP_RING();
4109 mutex_unlock(&dev->struct_mutex);
4111 return 0;
4114 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4115 .dpms = intel_crtc_dpms,
4116 .mode_fixup = intel_crtc_mode_fixup,
4117 .mode_set = intel_crtc_mode_set,
4118 .mode_set_base = intel_pipe_set_base,
4119 .prepare = intel_crtc_prepare,
4120 .commit = intel_crtc_commit,
4121 .load_lut = intel_crtc_load_lut,
4124 static const struct drm_crtc_funcs intel_crtc_funcs = {
4125 .cursor_set = intel_crtc_cursor_set,
4126 .cursor_move = intel_crtc_cursor_move,
4127 .gamma_set = intel_crtc_gamma_set,
4128 .set_config = drm_crtc_helper_set_config,
4129 .destroy = intel_crtc_destroy,
4130 .page_flip = intel_crtc_page_flip,
4134 static void intel_crtc_init(struct drm_device *dev, int pipe)
4136 drm_i915_private_t *dev_priv = dev->dev_private;
4137 struct intel_crtc *intel_crtc;
4138 int i;
4140 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4141 if (intel_crtc == NULL)
4142 return;
4144 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4146 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4147 intel_crtc->pipe = pipe;
4148 intel_crtc->plane = pipe;
4149 for (i = 0; i < 256; i++) {
4150 intel_crtc->lut_r[i] = i;
4151 intel_crtc->lut_g[i] = i;
4152 intel_crtc->lut_b[i] = i;
4155 /* Swap pipes & planes for FBC on pre-965 */
4156 intel_crtc->pipe = pipe;
4157 intel_crtc->plane = pipe;
4158 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4159 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4160 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4163 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4164 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4165 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4166 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4168 intel_crtc->cursor_addr = 0;
4169 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4170 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4172 intel_crtc->busy = false;
4174 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4175 (unsigned long)intel_crtc);
4178 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4179 struct drm_file *file_priv)
4181 drm_i915_private_t *dev_priv = dev->dev_private;
4182 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4183 struct drm_mode_object *drmmode_obj;
4184 struct intel_crtc *crtc;
4186 if (!dev_priv) {
4187 DRM_ERROR("called with no initialization\n");
4188 return -EINVAL;
4191 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4192 DRM_MODE_OBJECT_CRTC);
4194 if (!drmmode_obj) {
4195 DRM_ERROR("no such CRTC id\n");
4196 return -EINVAL;
4199 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4200 pipe_from_crtc_id->pipe = crtc->pipe;
4202 return 0;
4205 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4207 struct drm_crtc *crtc = NULL;
4209 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4211 if (intel_crtc->pipe == pipe)
4212 break;
4214 return crtc;
4217 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4219 int index_mask = 0;
4220 struct drm_connector *connector;
4221 int entry = 0;
4223 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4224 struct intel_output *intel_output = to_intel_output(connector);
4225 if (type_mask & intel_output->clone_mask)
4226 index_mask |= (1 << entry);
4227 entry++;
4229 return index_mask;
4233 static void intel_setup_outputs(struct drm_device *dev)
4235 struct drm_i915_private *dev_priv = dev->dev_private;
4236 struct drm_connector *connector;
4238 intel_crt_init(dev);
4240 /* Set up integrated LVDS */
4241 if (IS_MOBILE(dev) && !IS_I830(dev))
4242 intel_lvds_init(dev);
4244 if (IS_IRONLAKE(dev)) {
4245 int found;
4247 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4248 intel_dp_init(dev, DP_A);
4250 if (I915_READ(HDMIB) & PORT_DETECTED) {
4251 /* check SDVOB */
4252 /* found = intel_sdvo_init(dev, HDMIB); */
4253 found = 0;
4254 if (!found)
4255 intel_hdmi_init(dev, HDMIB);
4256 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4257 intel_dp_init(dev, PCH_DP_B);
4260 if (I915_READ(HDMIC) & PORT_DETECTED)
4261 intel_hdmi_init(dev, HDMIC);
4263 if (I915_READ(HDMID) & PORT_DETECTED)
4264 intel_hdmi_init(dev, HDMID);
4266 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4267 intel_dp_init(dev, PCH_DP_C);
4269 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4270 intel_dp_init(dev, PCH_DP_D);
4272 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4273 bool found = false;
4275 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4276 DRM_DEBUG_KMS("probing SDVOB\n");
4277 found = intel_sdvo_init(dev, SDVOB);
4278 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4279 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4280 intel_hdmi_init(dev, SDVOB);
4283 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4284 DRM_DEBUG_KMS("probing DP_B\n");
4285 intel_dp_init(dev, DP_B);
4289 /* Before G4X SDVOC doesn't have its own detect register */
4291 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4292 DRM_DEBUG_KMS("probing SDVOC\n");
4293 found = intel_sdvo_init(dev, SDVOC);
4296 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4298 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4299 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4300 intel_hdmi_init(dev, SDVOC);
4302 if (SUPPORTS_INTEGRATED_DP(dev)) {
4303 DRM_DEBUG_KMS("probing DP_C\n");
4304 intel_dp_init(dev, DP_C);
4308 if (SUPPORTS_INTEGRATED_DP(dev) &&
4309 (I915_READ(DP_D) & DP_DETECTED)) {
4310 DRM_DEBUG_KMS("probing DP_D\n");
4311 intel_dp_init(dev, DP_D);
4313 } else if (IS_I8XX(dev))
4314 intel_dvo_init(dev);
4316 if (SUPPORTS_TV(dev))
4317 intel_tv_init(dev);
4319 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4320 struct intel_output *intel_output = to_intel_output(connector);
4321 struct drm_encoder *encoder = &intel_output->enc;
4323 encoder->possible_crtcs = intel_output->crtc_mask;
4324 encoder->possible_clones = intel_connector_clones(dev,
4325 intel_output->clone_mask);
4329 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4331 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4332 struct drm_device *dev = fb->dev;
4334 if (fb->fbdev)
4335 intelfb_remove(dev, fb);
4337 drm_framebuffer_cleanup(fb);
4338 mutex_lock(&dev->struct_mutex);
4339 drm_gem_object_unreference(intel_fb->obj);
4340 mutex_unlock(&dev->struct_mutex);
4342 kfree(intel_fb);
4345 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4346 struct drm_file *file_priv,
4347 unsigned int *handle)
4349 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4350 struct drm_gem_object *object = intel_fb->obj;
4352 return drm_gem_handle_create(file_priv, object, handle);
4355 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4356 .destroy = intel_user_framebuffer_destroy,
4357 .create_handle = intel_user_framebuffer_create_handle,
4360 int intel_framebuffer_create(struct drm_device *dev,
4361 struct drm_mode_fb_cmd *mode_cmd,
4362 struct drm_framebuffer **fb,
4363 struct drm_gem_object *obj)
4365 struct intel_framebuffer *intel_fb;
4366 int ret;
4368 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4369 if (!intel_fb)
4370 return -ENOMEM;
4372 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4373 if (ret) {
4374 DRM_ERROR("framebuffer init failed %d\n", ret);
4375 return ret;
4378 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4380 intel_fb->obj = obj;
4382 *fb = &intel_fb->base;
4384 return 0;
4388 static struct drm_framebuffer *
4389 intel_user_framebuffer_create(struct drm_device *dev,
4390 struct drm_file *filp,
4391 struct drm_mode_fb_cmd *mode_cmd)
4393 struct drm_gem_object *obj;
4394 struct drm_framebuffer *fb;
4395 int ret;
4397 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4398 if (!obj)
4399 return NULL;
4401 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4402 if (ret) {
4403 mutex_lock(&dev->struct_mutex);
4404 drm_gem_object_unreference(obj);
4405 mutex_unlock(&dev->struct_mutex);
4406 return NULL;
4409 return fb;
4412 static const struct drm_mode_config_funcs intel_mode_funcs = {
4413 .fb_create = intel_user_framebuffer_create,
4414 .fb_changed = intelfb_probe,
4417 static struct drm_gem_object *
4418 intel_alloc_power_context(struct drm_device *dev)
4420 struct drm_gem_object *pwrctx;
4421 int ret;
4423 pwrctx = drm_gem_object_alloc(dev, 4096);
4424 if (!pwrctx) {
4425 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4426 return NULL;
4429 mutex_lock(&dev->struct_mutex);
4430 ret = i915_gem_object_pin(pwrctx, 4096);
4431 if (ret) {
4432 DRM_ERROR("failed to pin power context: %d\n", ret);
4433 goto err_unref;
4436 ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4437 if (ret) {
4438 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
4439 goto err_unpin;
4441 mutex_unlock(&dev->struct_mutex);
4443 return pwrctx;
4445 err_unpin:
4446 i915_gem_object_unpin(pwrctx);
4447 err_unref:
4448 drm_gem_object_unreference(pwrctx);
4449 mutex_unlock(&dev->struct_mutex);
4450 return NULL;
4453 void intel_init_clock_gating(struct drm_device *dev)
4455 struct drm_i915_private *dev_priv = dev->dev_private;
4458 * Disable clock gating reported to work incorrectly according to the
4459 * specs, but enable as much else as we can.
4461 if (IS_IRONLAKE(dev)) {
4462 return;
4463 } else if (IS_G4X(dev)) {
4464 uint32_t dspclk_gate;
4465 I915_WRITE(RENCLK_GATE_D1, 0);
4466 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4467 GS_UNIT_CLOCK_GATE_DISABLE |
4468 CL_UNIT_CLOCK_GATE_DISABLE);
4469 I915_WRITE(RAMCLK_GATE_D, 0);
4470 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4471 OVRUNIT_CLOCK_GATE_DISABLE |
4472 OVCUNIT_CLOCK_GATE_DISABLE;
4473 if (IS_GM45(dev))
4474 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4475 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4476 } else if (IS_I965GM(dev)) {
4477 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4478 I915_WRITE(RENCLK_GATE_D2, 0);
4479 I915_WRITE(DSPCLK_GATE_D, 0);
4480 I915_WRITE(RAMCLK_GATE_D, 0);
4481 I915_WRITE16(DEUC, 0);
4482 } else if (IS_I965G(dev)) {
4483 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4484 I965_RCC_CLOCK_GATE_DISABLE |
4485 I965_RCPB_CLOCK_GATE_DISABLE |
4486 I965_ISC_CLOCK_GATE_DISABLE |
4487 I965_FBC_CLOCK_GATE_DISABLE);
4488 I915_WRITE(RENCLK_GATE_D2, 0);
4489 } else if (IS_I9XX(dev)) {
4490 u32 dstate = I915_READ(D_STATE);
4492 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4493 DSTATE_DOT_CLOCK_GATING;
4494 I915_WRITE(D_STATE, dstate);
4495 } else if (IS_I85X(dev) || IS_I865G(dev)) {
4496 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4497 } else if (IS_I830(dev)) {
4498 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4502 * GPU can automatically power down the render unit if given a page
4503 * to save state.
4505 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
4506 struct drm_i915_gem_object *obj_priv = NULL;
4508 if (dev_priv->pwrctx) {
4509 obj_priv = dev_priv->pwrctx->driver_private;
4510 } else {
4511 struct drm_gem_object *pwrctx;
4513 pwrctx = intel_alloc_power_context(dev);
4514 if (pwrctx) {
4515 dev_priv->pwrctx = pwrctx;
4516 obj_priv = pwrctx->driver_private;
4520 if (obj_priv) {
4521 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
4522 I915_WRITE(MCHBAR_RENDER_STANDBY,
4523 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
4528 /* Set up chip specific display functions */
4529 static void intel_init_display(struct drm_device *dev)
4531 struct drm_i915_private *dev_priv = dev->dev_private;
4533 /* We always want a DPMS function */
4534 if (IS_IRONLAKE(dev))
4535 dev_priv->display.dpms = ironlake_crtc_dpms;
4536 else
4537 dev_priv->display.dpms = i9xx_crtc_dpms;
4539 /* Only mobile has FBC, leave pointers NULL for other chips */
4540 if (IS_MOBILE(dev)) {
4541 if (IS_GM45(dev)) {
4542 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4543 dev_priv->display.enable_fbc = g4x_enable_fbc;
4544 dev_priv->display.disable_fbc = g4x_disable_fbc;
4545 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4546 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4547 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4548 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4550 /* 855GM needs testing */
4553 /* Returns the core display clock speed */
4554 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
4555 dev_priv->display.get_display_clock_speed =
4556 i945_get_display_clock_speed;
4557 else if (IS_I915G(dev))
4558 dev_priv->display.get_display_clock_speed =
4559 i915_get_display_clock_speed;
4560 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
4561 dev_priv->display.get_display_clock_speed =
4562 i9xx_misc_get_display_clock_speed;
4563 else if (IS_I915GM(dev))
4564 dev_priv->display.get_display_clock_speed =
4565 i915gm_get_display_clock_speed;
4566 else if (IS_I865G(dev))
4567 dev_priv->display.get_display_clock_speed =
4568 i865_get_display_clock_speed;
4569 else if (IS_I85X(dev))
4570 dev_priv->display.get_display_clock_speed =
4571 i855_get_display_clock_speed;
4572 else /* 852, 830 */
4573 dev_priv->display.get_display_clock_speed =
4574 i830_get_display_clock_speed;
4576 /* For FIFO watermark updates */
4577 if (IS_IRONLAKE(dev))
4578 dev_priv->display.update_wm = NULL;
4579 else if (IS_G4X(dev))
4580 dev_priv->display.update_wm = g4x_update_wm;
4581 else if (IS_I965G(dev))
4582 dev_priv->display.update_wm = i965_update_wm;
4583 else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4584 dev_priv->display.update_wm = i9xx_update_wm;
4585 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4586 } else {
4587 if (IS_I85X(dev))
4588 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4589 else if (IS_845G(dev))
4590 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4591 else
4592 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4593 dev_priv->display.update_wm = i830_update_wm;
4597 void intel_modeset_init(struct drm_device *dev)
4599 struct drm_i915_private *dev_priv = dev->dev_private;
4600 int num_pipe;
4601 int i;
4603 drm_mode_config_init(dev);
4605 dev->mode_config.min_width = 0;
4606 dev->mode_config.min_height = 0;
4608 dev->mode_config.funcs = (void *)&intel_mode_funcs;
4610 intel_init_display(dev);
4612 if (IS_I965G(dev)) {
4613 dev->mode_config.max_width = 8192;
4614 dev->mode_config.max_height = 8192;
4615 } else if (IS_I9XX(dev)) {
4616 dev->mode_config.max_width = 4096;
4617 dev->mode_config.max_height = 4096;
4618 } else {
4619 dev->mode_config.max_width = 2048;
4620 dev->mode_config.max_height = 2048;
4623 /* set memory base */
4624 if (IS_I9XX(dev))
4625 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4626 else
4627 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4629 if (IS_MOBILE(dev) || IS_I9XX(dev))
4630 num_pipe = 2;
4631 else
4632 num_pipe = 1;
4633 DRM_DEBUG_KMS("%d display pipe%s available.\n",
4634 num_pipe, num_pipe > 1 ? "s" : "");
4636 if (IS_I85X(dev))
4637 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4638 else if (IS_I9XX(dev) || IS_G4X(dev))
4639 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4641 for (i = 0; i < num_pipe; i++) {
4642 intel_crtc_init(dev, i);
4645 intel_setup_outputs(dev);
4647 intel_init_clock_gating(dev);
4649 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4650 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4651 (unsigned long)dev);
4653 intel_setup_overlay(dev);
4655 if (IS_PINEVIEW(dev) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4656 dev_priv->fsb_freq,
4657 dev_priv->mem_freq))
4658 DRM_INFO("failed to find known CxSR latency "
4659 "(found fsb freq %d, mem freq %d), disabling CxSR\n",
4660 dev_priv->fsb_freq, dev_priv->mem_freq);
4663 void intel_modeset_cleanup(struct drm_device *dev)
4665 struct drm_i915_private *dev_priv = dev->dev_private;
4666 struct drm_crtc *crtc;
4667 struct intel_crtc *intel_crtc;
4669 mutex_lock(&dev->struct_mutex);
4671 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4672 /* Skip inactive CRTCs */
4673 if (!crtc->fb)
4674 continue;
4676 intel_crtc = to_intel_crtc(crtc);
4677 intel_increase_pllclock(crtc, false);
4678 del_timer_sync(&intel_crtc->idle_timer);
4681 del_timer_sync(&dev_priv->idle_timer);
4683 if (dev_priv->display.disable_fbc)
4684 dev_priv->display.disable_fbc(dev);
4686 if (dev_priv->pwrctx) {
4687 struct drm_i915_gem_object *obj_priv;
4689 obj_priv = dev_priv->pwrctx->driver_private;
4690 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
4691 I915_READ(PWRCTXA);
4692 i915_gem_object_unpin(dev_priv->pwrctx);
4693 drm_gem_object_unreference(dev_priv->pwrctx);
4696 mutex_unlock(&dev->struct_mutex);
4698 drm_mode_config_cleanup(dev);
4702 /* current intel driver doesn't take advantage of encoders
4703 always give back the encoder for the connector
4705 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4707 struct intel_output *intel_output = to_intel_output(connector);
4709 return &intel_output->enc;
4713 * set vga decode state - true == enable VGA decode
4715 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4717 struct drm_i915_private *dev_priv = dev->dev_private;
4718 u16 gmch_ctrl;
4720 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4721 if (state)
4722 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4723 else
4724 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4725 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4726 return 0;