Prevent an O_NDELAY writer from blocking when a tty write is blocked by the tty atomi...
[linux-2.6/linux-2.6-openrd.git] / drivers / char / tty_io.c
bloba37e6330db8acf2682c834dad7744ced495a0d39
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
123 EXPORT_SYMBOL(tty_std_termios);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
144 static void initialize_tty_struct(struct tty_struct *tty);
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 static int tty_release(struct inode *, struct file *);
152 int tty_ioctl(struct inode * inode, struct file * file,
153 unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
156 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file * filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
166 * alloc_tty_struct - allocate a tty object
168 * Return a new empty tty structure. The data fields have not
169 * been initialized in any way but has been zeroed
171 * Locking: none
174 static struct tty_struct *alloc_tty_struct(void)
176 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
179 static void tty_buffer_free_all(struct tty_struct *);
182 * free_tty_struct - free a disused tty
183 * @tty: tty struct to free
185 * Free the write buffers, tty queue and tty memory itself.
187 * Locking: none. Must be called after tty is definitely unused
190 static inline void free_tty_struct(struct tty_struct *tty)
192 kfree(tty->write_buf);
193 tty_buffer_free_all(tty);
194 kfree(tty);
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
200 * tty_name - return tty naming
201 * @tty: tty structure
202 * @buf: buffer for output
204 * Convert a tty structure into a name. The name reflects the kernel
205 * naming policy and if udev is in use may not reflect user space
207 * Locking: none
210 char *tty_name(struct tty_struct *tty, char *buf)
212 if (!tty) /* Hmm. NULL pointer. That's fun. */
213 strcpy(buf, "NULL tty");
214 else
215 strcpy(buf, tty->name);
216 return buf;
219 EXPORT_SYMBOL(tty_name);
221 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
222 const char *routine)
224 #ifdef TTY_PARANOIA_CHECK
225 if (!tty) {
226 printk(KERN_WARNING
227 "null TTY for (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
231 if (tty->magic != TTY_MAGIC) {
232 printk(KERN_WARNING
233 "bad magic number for tty struct (%d:%d) in %s\n",
234 imajor(inode), iminor(inode), routine);
235 return 1;
237 #endif
238 return 0;
241 static int check_tty_count(struct tty_struct *tty, const char *routine)
243 #ifdef CHECK_TTY_COUNT
244 struct list_head *p;
245 int count = 0;
247 file_list_lock();
248 list_for_each(p, &tty->tty_files) {
249 count++;
251 file_list_unlock();
252 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
253 tty->driver->subtype == PTY_TYPE_SLAVE &&
254 tty->link && tty->link->count)
255 count++;
256 if (tty->count != count) {
257 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
258 "!= #fd's(%d) in %s\n",
259 tty->name, tty->count, count, routine);
260 return count;
262 #endif
263 return 0;
267 * Tty buffer allocation management
271 * tty_buffer_free_all - free buffers used by a tty
272 * @tty: tty to free from
274 * Remove all the buffers pending on a tty whether queued with data
275 * or in the free ring. Must be called when the tty is no longer in use
277 * Locking: none
280 static void tty_buffer_free_all(struct tty_struct *tty)
282 struct tty_buffer *thead;
283 while((thead = tty->buf.head) != NULL) {
284 tty->buf.head = thead->next;
285 kfree(thead);
287 while((thead = tty->buf.free) != NULL) {
288 tty->buf.free = thead->next;
289 kfree(thead);
291 tty->buf.tail = NULL;
292 tty->buf.memory_used = 0;
296 * tty_buffer_init - prepare a tty buffer structure
297 * @tty: tty to initialise
299 * Set up the initial state of the buffer management for a tty device.
300 * Must be called before the other tty buffer functions are used.
302 * Locking: none
305 static void tty_buffer_init(struct tty_struct *tty)
307 spin_lock_init(&tty->buf.lock);
308 tty->buf.head = NULL;
309 tty->buf.tail = NULL;
310 tty->buf.free = NULL;
311 tty->buf.memory_used = 0;
315 * tty_buffer_alloc - allocate a tty buffer
316 * @tty: tty device
317 * @size: desired size (characters)
319 * Allocate a new tty buffer to hold the desired number of characters.
320 * Return NULL if out of memory or the allocation would exceed the
321 * per device queue
323 * Locking: Caller must hold tty->buf.lock
326 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
328 struct tty_buffer *p;
330 if (tty->buf.memory_used + size > 65536)
331 return NULL;
332 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
333 if(p == NULL)
334 return NULL;
335 p->used = 0;
336 p->size = size;
337 p->next = NULL;
338 p->commit = 0;
339 p->read = 0;
340 p->char_buf_ptr = (char *)(p->data);
341 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
342 tty->buf.memory_used += size;
343 return p;
347 * tty_buffer_free - free a tty buffer
348 * @tty: tty owning the buffer
349 * @b: the buffer to free
351 * Free a tty buffer, or add it to the free list according to our
352 * internal strategy
354 * Locking: Caller must hold tty->buf.lock
357 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
359 /* Dumb strategy for now - should keep some stats */
360 tty->buf.memory_used -= b->size;
361 WARN_ON(tty->buf.memory_used < 0);
363 if(b->size >= 512)
364 kfree(b);
365 else {
366 b->next = tty->buf.free;
367 tty->buf.free = b;
372 * tty_buffer_flush - flush full tty buffers
373 * @tty: tty to flush
375 * flush all the buffers containing receive data
377 * Locking: none
380 static void tty_buffer_flush(struct tty_struct *tty)
382 struct tty_buffer *thead;
383 unsigned long flags;
385 spin_lock_irqsave(&tty->buf.lock, flags);
386 while((thead = tty->buf.head) != NULL) {
387 tty->buf.head = thead->next;
388 tty_buffer_free(tty, thead);
390 tty->buf.tail = NULL;
391 spin_unlock_irqrestore(&tty->buf.lock, flags);
395 * tty_buffer_find - find a free tty buffer
396 * @tty: tty owning the buffer
397 * @size: characters wanted
399 * Locate an existing suitable tty buffer or if we are lacking one then
400 * allocate a new one. We round our buffers off in 256 character chunks
401 * to get better allocation behaviour.
403 * Locking: Caller must hold tty->buf.lock
406 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
408 struct tty_buffer **tbh = &tty->buf.free;
409 while((*tbh) != NULL) {
410 struct tty_buffer *t = *tbh;
411 if(t->size >= size) {
412 *tbh = t->next;
413 t->next = NULL;
414 t->used = 0;
415 t->commit = 0;
416 t->read = 0;
417 tty->buf.memory_used += t->size;
418 return t;
420 tbh = &((*tbh)->next);
422 /* Round the buffer size out */
423 size = (size + 0xFF) & ~ 0xFF;
424 return tty_buffer_alloc(tty, size);
425 /* Should possibly check if this fails for the largest buffer we
426 have queued and recycle that ? */
430 * tty_buffer_request_room - grow tty buffer if needed
431 * @tty: tty structure
432 * @size: size desired
434 * Make at least size bytes of linear space available for the tty
435 * buffer. If we fail return the size we managed to find.
437 * Locking: Takes tty->buf.lock
439 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
441 struct tty_buffer *b, *n;
442 int left;
443 unsigned long flags;
445 spin_lock_irqsave(&tty->buf.lock, flags);
447 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
448 remove this conditional if its worth it. This would be invisible
449 to the callers */
450 if ((b = tty->buf.tail) != NULL)
451 left = b->size - b->used;
452 else
453 left = 0;
455 if (left < size) {
456 /* This is the slow path - looking for new buffers to use */
457 if ((n = tty_buffer_find(tty, size)) != NULL) {
458 if (b != NULL) {
459 b->next = n;
460 b->commit = b->used;
461 } else
462 tty->buf.head = n;
463 tty->buf.tail = n;
464 } else
465 size = left;
468 spin_unlock_irqrestore(&tty->buf.lock, flags);
469 return size;
471 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
474 * tty_insert_flip_string - Add characters to the tty buffer
475 * @tty: tty structure
476 * @chars: characters
477 * @size: size
479 * Queue a series of bytes to the tty buffering. All the characters
480 * passed are marked as without error. Returns the number added.
482 * Locking: Called functions may take tty->buf.lock
485 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
486 size_t size)
488 int copied = 0;
489 do {
490 int space = tty_buffer_request_room(tty, size - copied);
491 struct tty_buffer *tb = tty->buf.tail;
492 /* If there is no space then tb may be NULL */
493 if(unlikely(space == 0))
494 break;
495 memcpy(tb->char_buf_ptr + tb->used, chars, space);
496 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
497 tb->used += space;
498 copied += space;
499 chars += space;
500 /* There is a small chance that we need to split the data over
501 several buffers. If this is the case we must loop */
502 } while (unlikely(size > copied));
503 return copied;
505 EXPORT_SYMBOL(tty_insert_flip_string);
508 * tty_insert_flip_string_flags - Add characters to the tty buffer
509 * @tty: tty structure
510 * @chars: characters
511 * @flags: flag bytes
512 * @size: size
514 * Queue a series of bytes to the tty buffering. For each character
515 * the flags array indicates the status of the character. Returns the
516 * number added.
518 * Locking: Called functions may take tty->buf.lock
521 int tty_insert_flip_string_flags(struct tty_struct *tty,
522 const unsigned char *chars, const char *flags, size_t size)
524 int copied = 0;
525 do {
526 int space = tty_buffer_request_room(tty, size - copied);
527 struct tty_buffer *tb = tty->buf.tail;
528 /* If there is no space then tb may be NULL */
529 if(unlikely(space == 0))
530 break;
531 memcpy(tb->char_buf_ptr + tb->used, chars, space);
532 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
533 tb->used += space;
534 copied += space;
535 chars += space;
536 flags += space;
537 /* There is a small chance that we need to split the data over
538 several buffers. If this is the case we must loop */
539 } while (unlikely(size > copied));
540 return copied;
542 EXPORT_SYMBOL(tty_insert_flip_string_flags);
545 * tty_schedule_flip - push characters to ldisc
546 * @tty: tty to push from
548 * Takes any pending buffers and transfers their ownership to the
549 * ldisc side of the queue. It then schedules those characters for
550 * processing by the line discipline.
552 * Locking: Takes tty->buf.lock
555 void tty_schedule_flip(struct tty_struct *tty)
557 unsigned long flags;
558 spin_lock_irqsave(&tty->buf.lock, flags);
559 if (tty->buf.tail != NULL)
560 tty->buf.tail->commit = tty->buf.tail->used;
561 spin_unlock_irqrestore(&tty->buf.lock, flags);
562 schedule_delayed_work(&tty->buf.work, 1);
564 EXPORT_SYMBOL(tty_schedule_flip);
567 * tty_prepare_flip_string - make room for characters
568 * @tty: tty
569 * @chars: return pointer for character write area
570 * @size: desired size
572 * Prepare a block of space in the buffer for data. Returns the length
573 * available and buffer pointer to the space which is now allocated and
574 * accounted for as ready for normal characters. This is used for drivers
575 * that need their own block copy routines into the buffer. There is no
576 * guarantee the buffer is a DMA target!
578 * Locking: May call functions taking tty->buf.lock
581 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
583 int space = tty_buffer_request_room(tty, size);
584 if (likely(space)) {
585 struct tty_buffer *tb = tty->buf.tail;
586 *chars = tb->char_buf_ptr + tb->used;
587 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
588 tb->used += space;
590 return space;
593 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
596 * tty_prepare_flip_string_flags - make room for characters
597 * @tty: tty
598 * @chars: return pointer for character write area
599 * @flags: return pointer for status flag write area
600 * @size: desired size
602 * Prepare a block of space in the buffer for data. Returns the length
603 * available and buffer pointer to the space which is now allocated and
604 * accounted for as ready for characters. This is used for drivers
605 * that need their own block copy routines into the buffer. There is no
606 * guarantee the buffer is a DMA target!
608 * Locking: May call functions taking tty->buf.lock
611 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
613 int space = tty_buffer_request_room(tty, size);
614 if (likely(space)) {
615 struct tty_buffer *tb = tty->buf.tail;
616 *chars = tb->char_buf_ptr + tb->used;
617 *flags = tb->flag_buf_ptr + tb->used;
618 tb->used += space;
620 return space;
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
628 * tty_set_termios_ldisc - set ldisc field
629 * @tty: tty structure
630 * @num: line discipline number
632 * This is probably overkill for real world processors but
633 * they are not on hot paths so a little discipline won't do
634 * any harm.
636 * Locking: takes termios_mutex
639 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
641 mutex_lock(&tty->termios_mutex);
642 tty->termios->c_line = num;
643 mutex_unlock(&tty->termios_mutex);
647 * This guards the refcounted line discipline lists. The lock
648 * must be taken with irqs off because there are hangup path
649 * callers who will do ldisc lookups and cannot sleep.
652 static DEFINE_SPINLOCK(tty_ldisc_lock);
653 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
654 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
657 * tty_register_ldisc - install a line discipline
658 * @disc: ldisc number
659 * @new_ldisc: pointer to the ldisc object
661 * Installs a new line discipline into the kernel. The discipline
662 * is set up as unreferenced and then made available to the kernel
663 * from this point onwards.
665 * Locking:
666 * takes tty_ldisc_lock to guard against ldisc races
669 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
671 unsigned long flags;
672 int ret = 0;
674 if (disc < N_TTY || disc >= NR_LDISCS)
675 return -EINVAL;
677 spin_lock_irqsave(&tty_ldisc_lock, flags);
678 tty_ldiscs[disc] = *new_ldisc;
679 tty_ldiscs[disc].num = disc;
680 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
681 tty_ldiscs[disc].refcount = 0;
682 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
684 return ret;
686 EXPORT_SYMBOL(tty_register_ldisc);
689 * tty_unregister_ldisc - unload a line discipline
690 * @disc: ldisc number
691 * @new_ldisc: pointer to the ldisc object
693 * Remove a line discipline from the kernel providing it is not
694 * currently in use.
696 * Locking:
697 * takes tty_ldisc_lock to guard against ldisc races
700 int tty_unregister_ldisc(int disc)
702 unsigned long flags;
703 int ret = 0;
705 if (disc < N_TTY || disc >= NR_LDISCS)
706 return -EINVAL;
708 spin_lock_irqsave(&tty_ldisc_lock, flags);
709 if (tty_ldiscs[disc].refcount)
710 ret = -EBUSY;
711 else
712 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
713 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
715 return ret;
717 EXPORT_SYMBOL(tty_unregister_ldisc);
720 * tty_ldisc_get - take a reference to an ldisc
721 * @disc: ldisc number
723 * Takes a reference to a line discipline. Deals with refcounts and
724 * module locking counts. Returns NULL if the discipline is not available.
725 * Returns a pointer to the discipline and bumps the ref count if it is
726 * available
728 * Locking:
729 * takes tty_ldisc_lock to guard against ldisc races
732 struct tty_ldisc *tty_ldisc_get(int disc)
734 unsigned long flags;
735 struct tty_ldisc *ld;
737 if (disc < N_TTY || disc >= NR_LDISCS)
738 return NULL;
740 spin_lock_irqsave(&tty_ldisc_lock, flags);
742 ld = &tty_ldiscs[disc];
743 /* Check the entry is defined */
744 if(ld->flags & LDISC_FLAG_DEFINED)
746 /* If the module is being unloaded we can't use it */
747 if (!try_module_get(ld->owner))
748 ld = NULL;
749 else /* lock it */
750 ld->refcount++;
752 else
753 ld = NULL;
754 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
755 return ld;
758 EXPORT_SYMBOL_GPL(tty_ldisc_get);
761 * tty_ldisc_put - drop ldisc reference
762 * @disc: ldisc number
764 * Drop a reference to a line discipline. Manage refcounts and
765 * module usage counts
767 * Locking:
768 * takes tty_ldisc_lock to guard against ldisc races
771 void tty_ldisc_put(int disc)
773 struct tty_ldisc *ld;
774 unsigned long flags;
776 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
778 spin_lock_irqsave(&tty_ldisc_lock, flags);
779 ld = &tty_ldiscs[disc];
780 BUG_ON(ld->refcount == 0);
781 ld->refcount--;
782 module_put(ld->owner);
783 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
786 EXPORT_SYMBOL_GPL(tty_ldisc_put);
789 * tty_ldisc_assign - set ldisc on a tty
790 * @tty: tty to assign
791 * @ld: line discipline
793 * Install an instance of a line discipline into a tty structure. The
794 * ldisc must have a reference count above zero to ensure it remains/
795 * The tty instance refcount starts at zero.
797 * Locking:
798 * Caller must hold references
801 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
803 tty->ldisc = *ld;
804 tty->ldisc.refcount = 0;
808 * tty_ldisc_try - internal helper
809 * @tty: the tty
811 * Make a single attempt to grab and bump the refcount on
812 * the tty ldisc. Return 0 on failure or 1 on success. This is
813 * used to implement both the waiting and non waiting versions
814 * of tty_ldisc_ref
816 * Locking: takes tty_ldisc_lock
819 static int tty_ldisc_try(struct tty_struct *tty)
821 unsigned long flags;
822 struct tty_ldisc *ld;
823 int ret = 0;
825 spin_lock_irqsave(&tty_ldisc_lock, flags);
826 ld = &tty->ldisc;
827 if(test_bit(TTY_LDISC, &tty->flags))
829 ld->refcount++;
830 ret = 1;
832 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
833 return ret;
837 * tty_ldisc_ref_wait - wait for the tty ldisc
838 * @tty: tty device
840 * Dereference the line discipline for the terminal and take a
841 * reference to it. If the line discipline is in flux then
842 * wait patiently until it changes.
844 * Note: Must not be called from an IRQ/timer context. The caller
845 * must also be careful not to hold other locks that will deadlock
846 * against a discipline change, such as an existing ldisc reference
847 * (which we check for)
849 * Locking: call functions take tty_ldisc_lock
852 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
854 /* wait_event is a macro */
855 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
856 if(tty->ldisc.refcount == 0)
857 printk(KERN_ERR "tty_ldisc_ref_wait\n");
858 return &tty->ldisc;
861 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
864 * tty_ldisc_ref - get the tty ldisc
865 * @tty: tty device
867 * Dereference the line discipline for the terminal and take a
868 * reference to it. If the line discipline is in flux then
869 * return NULL. Can be called from IRQ and timer functions.
871 * Locking: called functions take tty_ldisc_lock
874 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
876 if(tty_ldisc_try(tty))
877 return &tty->ldisc;
878 return NULL;
881 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
884 * tty_ldisc_deref - free a tty ldisc reference
885 * @ld: reference to free up
887 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
888 * be called in IRQ context.
890 * Locking: takes tty_ldisc_lock
893 void tty_ldisc_deref(struct tty_ldisc *ld)
895 unsigned long flags;
897 BUG_ON(ld == NULL);
899 spin_lock_irqsave(&tty_ldisc_lock, flags);
900 if(ld->refcount == 0)
901 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
902 else
903 ld->refcount--;
904 if(ld->refcount == 0)
905 wake_up(&tty_ldisc_wait);
906 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
909 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
912 * tty_ldisc_enable - allow ldisc use
913 * @tty: terminal to activate ldisc on
915 * Set the TTY_LDISC flag when the line discipline can be called
916 * again. Do neccessary wakeups for existing sleepers.
918 * Note: nobody should set this bit except via this function. Clearing
919 * directly is allowed.
922 static void tty_ldisc_enable(struct tty_struct *tty)
924 set_bit(TTY_LDISC, &tty->flags);
925 wake_up(&tty_ldisc_wait);
929 * tty_set_ldisc - set line discipline
930 * @tty: the terminal to set
931 * @ldisc: the line discipline
933 * Set the discipline of a tty line. Must be called from a process
934 * context.
936 * Locking: takes tty_ldisc_lock.
937 * called functions take termios_mutex
940 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
942 int retval = 0;
943 struct tty_ldisc o_ldisc;
944 char buf[64];
945 int work;
946 unsigned long flags;
947 struct tty_ldisc *ld;
948 struct tty_struct *o_tty;
950 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
951 return -EINVAL;
953 restart:
955 ld = tty_ldisc_get(ldisc);
956 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
957 /* Cyrus Durgin <cider@speakeasy.org> */
958 if (ld == NULL) {
959 request_module("tty-ldisc-%d", ldisc);
960 ld = tty_ldisc_get(ldisc);
962 if (ld == NULL)
963 return -EINVAL;
966 * Problem: What do we do if this blocks ?
969 tty_wait_until_sent(tty, 0);
971 if (tty->ldisc.num == ldisc) {
972 tty_ldisc_put(ldisc);
973 return 0;
977 * No more input please, we are switching. The new ldisc
978 * will update this value in the ldisc open function
981 tty->receive_room = 0;
983 o_ldisc = tty->ldisc;
984 o_tty = tty->link;
987 * Make sure we don't change while someone holds a
988 * reference to the line discipline. The TTY_LDISC bit
989 * prevents anyone taking a reference once it is clear.
990 * We need the lock to avoid racing reference takers.
993 spin_lock_irqsave(&tty_ldisc_lock, flags);
994 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
995 if(tty->ldisc.refcount) {
996 /* Free the new ldisc we grabbed. Must drop the lock
997 first. */
998 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
999 tty_ldisc_put(ldisc);
1001 * There are several reasons we may be busy, including
1002 * random momentary I/O traffic. We must therefore
1003 * retry. We could distinguish between blocking ops
1004 * and retries if we made tty_ldisc_wait() smarter. That
1005 * is up for discussion.
1007 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1008 return -ERESTARTSYS;
1009 goto restart;
1011 if(o_tty && o_tty->ldisc.refcount) {
1012 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1013 tty_ldisc_put(ldisc);
1014 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1015 return -ERESTARTSYS;
1016 goto restart;
1020 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1022 if (!test_bit(TTY_LDISC, &tty->flags)) {
1023 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1024 tty_ldisc_put(ldisc);
1025 ld = tty_ldisc_ref_wait(tty);
1026 tty_ldisc_deref(ld);
1027 goto restart;
1030 clear_bit(TTY_LDISC, &tty->flags);
1031 if (o_tty)
1032 clear_bit(TTY_LDISC, &o_tty->flags);
1033 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1036 * From this point on we know nobody has an ldisc
1037 * usage reference, nor can they obtain one until
1038 * we say so later on.
1041 work = cancel_delayed_work(&tty->buf.work);
1043 * Wait for ->hangup_work and ->buf.work handlers to terminate
1046 flush_scheduled_work();
1047 /* Shutdown the current discipline. */
1048 if (tty->ldisc.close)
1049 (tty->ldisc.close)(tty);
1051 /* Now set up the new line discipline. */
1052 tty_ldisc_assign(tty, ld);
1053 tty_set_termios_ldisc(tty, ldisc);
1054 if (tty->ldisc.open)
1055 retval = (tty->ldisc.open)(tty);
1056 if (retval < 0) {
1057 tty_ldisc_put(ldisc);
1058 /* There is an outstanding reference here so this is safe */
1059 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1060 tty_set_termios_ldisc(tty, tty->ldisc.num);
1061 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1062 tty_ldisc_put(o_ldisc.num);
1063 /* This driver is always present */
1064 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1065 tty_set_termios_ldisc(tty, N_TTY);
1066 if (tty->ldisc.open) {
1067 int r = tty->ldisc.open(tty);
1069 if (r < 0)
1070 panic("Couldn't open N_TTY ldisc for "
1071 "%s --- error %d.",
1072 tty_name(tty, buf), r);
1076 /* At this point we hold a reference to the new ldisc and a
1077 a reference to the old ldisc. If we ended up flipping back
1078 to the existing ldisc we have two references to it */
1080 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1081 tty->driver->set_ldisc(tty);
1083 tty_ldisc_put(o_ldisc.num);
1086 * Allow ldisc referencing to occur as soon as the driver
1087 * ldisc callback completes.
1090 tty_ldisc_enable(tty);
1091 if (o_tty)
1092 tty_ldisc_enable(o_tty);
1094 /* Restart it in case no characters kick it off. Safe if
1095 already running */
1096 if (work)
1097 schedule_delayed_work(&tty->buf.work, 1);
1098 return retval;
1102 * get_tty_driver - find device of a tty
1103 * @dev_t: device identifier
1104 * @index: returns the index of the tty
1106 * This routine returns a tty driver structure, given a device number
1107 * and also passes back the index number.
1109 * Locking: caller must hold tty_mutex
1112 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1114 struct tty_driver *p;
1116 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1117 dev_t base = MKDEV(p->major, p->minor_start);
1118 if (device < base || device >= base + p->num)
1119 continue;
1120 *index = device - base;
1121 return p;
1123 return NULL;
1127 * tty_check_change - check for POSIX terminal changes
1128 * @tty: tty to check
1130 * If we try to write to, or set the state of, a terminal and we're
1131 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1132 * ignored, go ahead and perform the operation. (POSIX 7.2)
1134 * Locking: none
1137 int tty_check_change(struct tty_struct * tty)
1139 if (current->signal->tty != tty)
1140 return 0;
1141 if (!tty->pgrp) {
1142 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1143 return 0;
1145 if (task_pgrp(current) == tty->pgrp)
1146 return 0;
1147 if (is_ignored(SIGTTOU))
1148 return 0;
1149 if (is_current_pgrp_orphaned())
1150 return -EIO;
1151 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1152 set_thread_flag(TIF_SIGPENDING);
1153 return -ERESTARTSYS;
1156 EXPORT_SYMBOL(tty_check_change);
1158 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1159 size_t count, loff_t *ppos)
1161 return 0;
1164 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1165 size_t count, loff_t *ppos)
1167 return -EIO;
1170 /* No kernel lock held - none needed ;) */
1171 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1173 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1176 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1177 unsigned int cmd, unsigned long arg)
1179 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1182 static long hung_up_tty_compat_ioctl(struct file * file,
1183 unsigned int cmd, unsigned long arg)
1185 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1188 static const struct file_operations tty_fops = {
1189 .llseek = no_llseek,
1190 .read = tty_read,
1191 .write = tty_write,
1192 .poll = tty_poll,
1193 .ioctl = tty_ioctl,
1194 .compat_ioctl = tty_compat_ioctl,
1195 .open = tty_open,
1196 .release = tty_release,
1197 .fasync = tty_fasync,
1200 #ifdef CONFIG_UNIX98_PTYS
1201 static const struct file_operations ptmx_fops = {
1202 .llseek = no_llseek,
1203 .read = tty_read,
1204 .write = tty_write,
1205 .poll = tty_poll,
1206 .ioctl = tty_ioctl,
1207 .compat_ioctl = tty_compat_ioctl,
1208 .open = ptmx_open,
1209 .release = tty_release,
1210 .fasync = tty_fasync,
1212 #endif
1214 static const struct file_operations console_fops = {
1215 .llseek = no_llseek,
1216 .read = tty_read,
1217 .write = redirected_tty_write,
1218 .poll = tty_poll,
1219 .ioctl = tty_ioctl,
1220 .compat_ioctl = tty_compat_ioctl,
1221 .open = tty_open,
1222 .release = tty_release,
1223 .fasync = tty_fasync,
1226 static const struct file_operations hung_up_tty_fops = {
1227 .llseek = no_llseek,
1228 .read = hung_up_tty_read,
1229 .write = hung_up_tty_write,
1230 .poll = hung_up_tty_poll,
1231 .ioctl = hung_up_tty_ioctl,
1232 .compat_ioctl = hung_up_tty_compat_ioctl,
1233 .release = tty_release,
1236 static DEFINE_SPINLOCK(redirect_lock);
1237 static struct file *redirect;
1240 * tty_wakeup - request more data
1241 * @tty: terminal
1243 * Internal and external helper for wakeups of tty. This function
1244 * informs the line discipline if present that the driver is ready
1245 * to receive more output data.
1248 void tty_wakeup(struct tty_struct *tty)
1250 struct tty_ldisc *ld;
1252 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1253 ld = tty_ldisc_ref(tty);
1254 if(ld) {
1255 if(ld->write_wakeup)
1256 ld->write_wakeup(tty);
1257 tty_ldisc_deref(ld);
1260 wake_up_interruptible(&tty->write_wait);
1263 EXPORT_SYMBOL_GPL(tty_wakeup);
1266 * tty_ldisc_flush - flush line discipline queue
1267 * @tty: tty
1269 * Flush the line discipline queue (if any) for this tty. If there
1270 * is no line discipline active this is a no-op.
1273 void tty_ldisc_flush(struct tty_struct *tty)
1275 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1276 if(ld) {
1277 if(ld->flush_buffer)
1278 ld->flush_buffer(tty);
1279 tty_ldisc_deref(ld);
1281 tty_buffer_flush(tty);
1284 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1287 * tty_reset_termios - reset terminal state
1288 * @tty: tty to reset
1290 * Restore a terminal to the driver default state
1293 static void tty_reset_termios(struct tty_struct *tty)
1295 mutex_lock(&tty->termios_mutex);
1296 *tty->termios = tty->driver->init_termios;
1297 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1298 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1299 mutex_unlock(&tty->termios_mutex);
1303 * do_tty_hangup - actual handler for hangup events
1304 * @work: tty device
1306 * This can be called by the "eventd" kernel thread. That is process
1307 * synchronous but doesn't hold any locks, so we need to make sure we
1308 * have the appropriate locks for what we're doing.
1310 * The hangup event clears any pending redirections onto the hung up
1311 * device. It ensures future writes will error and it does the needed
1312 * line discipline hangup and signal delivery. The tty object itself
1313 * remains intact.
1315 * Locking:
1316 * BKL
1317 * redirect lock for undoing redirection
1318 * file list lock for manipulating list of ttys
1319 * tty_ldisc_lock from called functions
1320 * termios_mutex resetting termios data
1321 * tasklist_lock to walk task list for hangup event
1322 * ->siglock to protect ->signal/->sighand
1324 static void do_tty_hangup(struct work_struct *work)
1326 struct tty_struct *tty =
1327 container_of(work, struct tty_struct, hangup_work);
1328 struct file * cons_filp = NULL;
1329 struct file *filp, *f = NULL;
1330 struct task_struct *p;
1331 struct tty_ldisc *ld;
1332 int closecount = 0, n;
1334 if (!tty)
1335 return;
1337 /* inuse_filps is protected by the single kernel lock */
1338 lock_kernel();
1340 spin_lock(&redirect_lock);
1341 if (redirect && redirect->private_data == tty) {
1342 f = redirect;
1343 redirect = NULL;
1345 spin_unlock(&redirect_lock);
1347 check_tty_count(tty, "do_tty_hangup");
1348 file_list_lock();
1349 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1350 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1351 if (filp->f_op->write == redirected_tty_write)
1352 cons_filp = filp;
1353 if (filp->f_op->write != tty_write)
1354 continue;
1355 closecount++;
1356 tty_fasync(-1, filp, 0); /* can't block */
1357 filp->f_op = &hung_up_tty_fops;
1359 file_list_unlock();
1361 /* FIXME! What are the locking issues here? This may me overdoing things..
1362 * this question is especially important now that we've removed the irqlock. */
1364 ld = tty_ldisc_ref(tty);
1365 if(ld != NULL) /* We may have no line discipline at this point */
1367 if (ld->flush_buffer)
1368 ld->flush_buffer(tty);
1369 if (tty->driver->flush_buffer)
1370 tty->driver->flush_buffer(tty);
1371 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1372 ld->write_wakeup)
1373 ld->write_wakeup(tty);
1374 if (ld->hangup)
1375 ld->hangup(tty);
1378 /* FIXME: Once we trust the LDISC code better we can wait here for
1379 ldisc completion and fix the driver call race */
1381 wake_up_interruptible(&tty->write_wait);
1382 wake_up_interruptible(&tty->read_wait);
1385 * Shutdown the current line discipline, and reset it to
1386 * N_TTY.
1388 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1389 tty_reset_termios(tty);
1391 /* Defer ldisc switch */
1392 /* tty_deferred_ldisc_switch(N_TTY);
1394 This should get done automatically when the port closes and
1395 tty_release is called */
1397 read_lock(&tasklist_lock);
1398 if (tty->session) {
1399 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1400 spin_lock_irq(&p->sighand->siglock);
1401 if (p->signal->tty == tty)
1402 p->signal->tty = NULL;
1403 if (!p->signal->leader) {
1404 spin_unlock_irq(&p->sighand->siglock);
1405 continue;
1407 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1408 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1409 put_pid(p->signal->tty_old_pgrp); /* A noop */
1410 if (tty->pgrp)
1411 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1412 spin_unlock_irq(&p->sighand->siglock);
1413 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1415 read_unlock(&tasklist_lock);
1417 tty->flags = 0;
1418 put_pid(tty->session);
1419 put_pid(tty->pgrp);
1420 tty->session = NULL;
1421 tty->pgrp = NULL;
1422 tty->ctrl_status = 0;
1424 * If one of the devices matches a console pointer, we
1425 * cannot just call hangup() because that will cause
1426 * tty->count and state->count to go out of sync.
1427 * So we just call close() the right number of times.
1429 if (cons_filp) {
1430 if (tty->driver->close)
1431 for (n = 0; n < closecount; n++)
1432 tty->driver->close(tty, cons_filp);
1433 } else if (tty->driver->hangup)
1434 (tty->driver->hangup)(tty);
1436 /* We don't want to have driver/ldisc interactions beyond
1437 the ones we did here. The driver layer expects no
1438 calls after ->hangup() from the ldisc side. However we
1439 can't yet guarantee all that */
1441 set_bit(TTY_HUPPED, &tty->flags);
1442 if (ld) {
1443 tty_ldisc_enable(tty);
1444 tty_ldisc_deref(ld);
1446 unlock_kernel();
1447 if (f)
1448 fput(f);
1452 * tty_hangup - trigger a hangup event
1453 * @tty: tty to hangup
1455 * A carrier loss (virtual or otherwise) has occurred on this like
1456 * schedule a hangup sequence to run after this event.
1459 void tty_hangup(struct tty_struct * tty)
1461 #ifdef TTY_DEBUG_HANGUP
1462 char buf[64];
1464 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1465 #endif
1466 schedule_work(&tty->hangup_work);
1469 EXPORT_SYMBOL(tty_hangup);
1472 * tty_vhangup - process vhangup
1473 * @tty: tty to hangup
1475 * The user has asked via system call for the terminal to be hung up.
1476 * We do this synchronously so that when the syscall returns the process
1477 * is complete. That guarantee is neccessary for security reasons.
1480 void tty_vhangup(struct tty_struct * tty)
1482 #ifdef TTY_DEBUG_HANGUP
1483 char buf[64];
1485 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1486 #endif
1487 do_tty_hangup(&tty->hangup_work);
1489 EXPORT_SYMBOL(tty_vhangup);
1492 * tty_hung_up_p - was tty hung up
1493 * @filp: file pointer of tty
1495 * Return true if the tty has been subject to a vhangup or a carrier
1496 * loss
1499 int tty_hung_up_p(struct file * filp)
1501 return (filp->f_op == &hung_up_tty_fops);
1504 EXPORT_SYMBOL(tty_hung_up_p);
1506 static void session_clear_tty(struct pid *session)
1508 struct task_struct *p;
1509 do_each_pid_task(session, PIDTYPE_SID, p) {
1510 proc_clear_tty(p);
1511 } while_each_pid_task(session, PIDTYPE_SID, p);
1515 * disassociate_ctty - disconnect controlling tty
1516 * @on_exit: true if exiting so need to "hang up" the session
1518 * This function is typically called only by the session leader, when
1519 * it wants to disassociate itself from its controlling tty.
1521 * It performs the following functions:
1522 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1523 * (2) Clears the tty from being controlling the session
1524 * (3) Clears the controlling tty for all processes in the
1525 * session group.
1527 * The argument on_exit is set to 1 if called when a process is
1528 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1530 * Locking:
1531 * BKL is taken for hysterical raisins
1532 * tty_mutex is taken to protect tty
1533 * ->siglock is taken to protect ->signal/->sighand
1534 * tasklist_lock is taken to walk process list for sessions
1535 * ->siglock is taken to protect ->signal/->sighand
1538 void disassociate_ctty(int on_exit)
1540 struct tty_struct *tty;
1541 struct pid *tty_pgrp = NULL;
1543 lock_kernel();
1545 mutex_lock(&tty_mutex);
1546 tty = get_current_tty();
1547 if (tty) {
1548 tty_pgrp = get_pid(tty->pgrp);
1549 mutex_unlock(&tty_mutex);
1550 /* XXX: here we race, there is nothing protecting tty */
1551 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1552 tty_vhangup(tty);
1553 } else if (on_exit) {
1554 struct pid *old_pgrp;
1555 spin_lock_irq(&current->sighand->siglock);
1556 old_pgrp = current->signal->tty_old_pgrp;
1557 current->signal->tty_old_pgrp = NULL;
1558 spin_unlock_irq(&current->sighand->siglock);
1559 if (old_pgrp) {
1560 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1561 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1562 put_pid(old_pgrp);
1564 mutex_unlock(&tty_mutex);
1565 unlock_kernel();
1566 return;
1568 if (tty_pgrp) {
1569 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1570 if (!on_exit)
1571 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1572 put_pid(tty_pgrp);
1575 spin_lock_irq(&current->sighand->siglock);
1576 put_pid(current->signal->tty_old_pgrp);
1577 current->signal->tty_old_pgrp = NULL;
1578 spin_unlock_irq(&current->sighand->siglock);
1580 mutex_lock(&tty_mutex);
1581 /* It is possible that do_tty_hangup has free'd this tty */
1582 tty = get_current_tty();
1583 if (tty) {
1584 put_pid(tty->session);
1585 put_pid(tty->pgrp);
1586 tty->session = NULL;
1587 tty->pgrp = NULL;
1588 } else {
1589 #ifdef TTY_DEBUG_HANGUP
1590 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1591 " = NULL", tty);
1592 #endif
1594 mutex_unlock(&tty_mutex);
1596 /* Now clear signal->tty under the lock */
1597 read_lock(&tasklist_lock);
1598 session_clear_tty(task_session(current));
1599 read_unlock(&tasklist_lock);
1600 unlock_kernel();
1605 * no_tty - Ensure the current process does not have a controlling tty
1607 void no_tty(void)
1609 struct task_struct *tsk = current;
1610 if (tsk->signal->leader)
1611 disassociate_ctty(0);
1612 proc_clear_tty(tsk);
1617 * stop_tty - propagate flow control
1618 * @tty: tty to stop
1620 * Perform flow control to the driver. For PTY/TTY pairs we
1621 * must also propagate the TIOCKPKT status. May be called
1622 * on an already stopped device and will not re-call the driver
1623 * method.
1625 * This functionality is used by both the line disciplines for
1626 * halting incoming flow and by the driver. It may therefore be
1627 * called from any context, may be under the tty atomic_write_lock
1628 * but not always.
1630 * Locking:
1631 * Broken. Relies on BKL which is unsafe here.
1634 void stop_tty(struct tty_struct *tty)
1636 if (tty->stopped)
1637 return;
1638 tty->stopped = 1;
1639 if (tty->link && tty->link->packet) {
1640 tty->ctrl_status &= ~TIOCPKT_START;
1641 tty->ctrl_status |= TIOCPKT_STOP;
1642 wake_up_interruptible(&tty->link->read_wait);
1644 if (tty->driver->stop)
1645 (tty->driver->stop)(tty);
1648 EXPORT_SYMBOL(stop_tty);
1651 * start_tty - propagate flow control
1652 * @tty: tty to start
1654 * Start a tty that has been stopped if at all possible. Perform
1655 * any neccessary wakeups and propagate the TIOCPKT status. If this
1656 * is the tty was previous stopped and is being started then the
1657 * driver start method is invoked and the line discipline woken.
1659 * Locking:
1660 * Broken. Relies on BKL which is unsafe here.
1663 void start_tty(struct tty_struct *tty)
1665 if (!tty->stopped || tty->flow_stopped)
1666 return;
1667 tty->stopped = 0;
1668 if (tty->link && tty->link->packet) {
1669 tty->ctrl_status &= ~TIOCPKT_STOP;
1670 tty->ctrl_status |= TIOCPKT_START;
1671 wake_up_interruptible(&tty->link->read_wait);
1673 if (tty->driver->start)
1674 (tty->driver->start)(tty);
1676 /* If we have a running line discipline it may need kicking */
1677 tty_wakeup(tty);
1680 EXPORT_SYMBOL(start_tty);
1683 * tty_read - read method for tty device files
1684 * @file: pointer to tty file
1685 * @buf: user buffer
1686 * @count: size of user buffer
1687 * @ppos: unused
1689 * Perform the read system call function on this terminal device. Checks
1690 * for hung up devices before calling the line discipline method.
1692 * Locking:
1693 * Locks the line discipline internally while needed
1694 * For historical reasons the line discipline read method is
1695 * invoked under the BKL. This will go away in time so do not rely on it
1696 * in new code. Multiple read calls may be outstanding in parallel.
1699 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1700 loff_t *ppos)
1702 int i;
1703 struct tty_struct * tty;
1704 struct inode *inode;
1705 struct tty_ldisc *ld;
1707 tty = (struct tty_struct *)file->private_data;
1708 inode = file->f_path.dentry->d_inode;
1709 if (tty_paranoia_check(tty, inode, "tty_read"))
1710 return -EIO;
1711 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1712 return -EIO;
1714 /* We want to wait for the line discipline to sort out in this
1715 situation */
1716 ld = tty_ldisc_ref_wait(tty);
1717 lock_kernel();
1718 if (ld->read)
1719 i = (ld->read)(tty,file,buf,count);
1720 else
1721 i = -EIO;
1722 tty_ldisc_deref(ld);
1723 unlock_kernel();
1724 if (i > 0)
1725 inode->i_atime = current_fs_time(inode->i_sb);
1726 return i;
1729 void tty_write_unlock(struct tty_struct *tty)
1731 mutex_unlock(&tty->atomic_write_lock);
1732 wake_up_interruptible(&tty->write_wait);
1735 int tty_write_lock(struct tty_struct *tty, int ndelay)
1737 if (!mutex_trylock(&tty->atomic_write_lock)) {
1738 if (ndelay)
1739 return -EAGAIN;
1740 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1741 return -ERESTARTSYS;
1743 return 0;
1747 * Split writes up in sane blocksizes to avoid
1748 * denial-of-service type attacks
1750 static inline ssize_t do_tty_write(
1751 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1752 struct tty_struct *tty,
1753 struct file *file,
1754 const char __user *buf,
1755 size_t count)
1757 ssize_t ret, written = 0;
1758 unsigned int chunk;
1760 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1761 if (ret < 0)
1762 return ret;
1765 * We chunk up writes into a temporary buffer. This
1766 * simplifies low-level drivers immensely, since they
1767 * don't have locking issues and user mode accesses.
1769 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1770 * big chunk-size..
1772 * The default chunk-size is 2kB, because the NTTY
1773 * layer has problems with bigger chunks. It will
1774 * claim to be able to handle more characters than
1775 * it actually does.
1777 * FIXME: This can probably go away now except that 64K chunks
1778 * are too likely to fail unless switched to vmalloc...
1780 chunk = 2048;
1781 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1782 chunk = 65536;
1783 if (count < chunk)
1784 chunk = count;
1786 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1787 if (tty->write_cnt < chunk) {
1788 unsigned char *buf;
1790 if (chunk < 1024)
1791 chunk = 1024;
1793 buf = kmalloc(chunk, GFP_KERNEL);
1794 if (!buf) {
1795 ret = -ENOMEM;
1796 goto out;
1798 kfree(tty->write_buf);
1799 tty->write_cnt = chunk;
1800 tty->write_buf = buf;
1803 /* Do the write .. */
1804 for (;;) {
1805 size_t size = count;
1806 if (size > chunk)
1807 size = chunk;
1808 ret = -EFAULT;
1809 if (copy_from_user(tty->write_buf, buf, size))
1810 break;
1811 lock_kernel();
1812 ret = write(tty, file, tty->write_buf, size);
1813 unlock_kernel();
1814 if (ret <= 0)
1815 break;
1816 written += ret;
1817 buf += ret;
1818 count -= ret;
1819 if (!count)
1820 break;
1821 ret = -ERESTARTSYS;
1822 if (signal_pending(current))
1823 break;
1824 cond_resched();
1826 if (written) {
1827 struct inode *inode = file->f_path.dentry->d_inode;
1828 inode->i_mtime = current_fs_time(inode->i_sb);
1829 ret = written;
1831 out:
1832 tty_write_unlock(tty);
1833 return ret;
1838 * tty_write - write method for tty device file
1839 * @file: tty file pointer
1840 * @buf: user data to write
1841 * @count: bytes to write
1842 * @ppos: unused
1844 * Write data to a tty device via the line discipline.
1846 * Locking:
1847 * Locks the line discipline as required
1848 * Writes to the tty driver are serialized by the atomic_write_lock
1849 * and are then processed in chunks to the device. The line discipline
1850 * write method will not be involked in parallel for each device
1851 * The line discipline write method is called under the big
1852 * kernel lock for historical reasons. New code should not rely on this.
1855 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1856 loff_t *ppos)
1858 struct tty_struct * tty;
1859 struct inode *inode = file->f_path.dentry->d_inode;
1860 ssize_t ret;
1861 struct tty_ldisc *ld;
1863 tty = (struct tty_struct *)file->private_data;
1864 if (tty_paranoia_check(tty, inode, "tty_write"))
1865 return -EIO;
1866 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1867 return -EIO;
1869 ld = tty_ldisc_ref_wait(tty);
1870 if (!ld->write)
1871 ret = -EIO;
1872 else
1873 ret = do_tty_write(ld->write, tty, file, buf, count);
1874 tty_ldisc_deref(ld);
1875 return ret;
1878 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1879 loff_t *ppos)
1881 struct file *p = NULL;
1883 spin_lock(&redirect_lock);
1884 if (redirect) {
1885 get_file(redirect);
1886 p = redirect;
1888 spin_unlock(&redirect_lock);
1890 if (p) {
1891 ssize_t res;
1892 res = vfs_write(p, buf, count, &p->f_pos);
1893 fput(p);
1894 return res;
1897 return tty_write(file, buf, count, ppos);
1900 static char ptychar[] = "pqrstuvwxyzabcde";
1903 * pty_line_name - generate name for a pty
1904 * @driver: the tty driver in use
1905 * @index: the minor number
1906 * @p: output buffer of at least 6 bytes
1908 * Generate a name from a driver reference and write it to the output
1909 * buffer.
1911 * Locking: None
1913 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1915 int i = index + driver->name_base;
1916 /* ->name is initialized to "ttyp", but "tty" is expected */
1917 sprintf(p, "%s%c%x",
1918 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1919 ptychar[i >> 4 & 0xf], i & 0xf);
1923 * pty_line_name - generate name for a tty
1924 * @driver: the tty driver in use
1925 * @index: the minor number
1926 * @p: output buffer of at least 7 bytes
1928 * Generate a name from a driver reference and write it to the output
1929 * buffer.
1931 * Locking: None
1933 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1935 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1939 * init_dev - initialise a tty device
1940 * @driver: tty driver we are opening a device on
1941 * @idx: device index
1942 * @tty: returned tty structure
1944 * Prepare a tty device. This may not be a "new" clean device but
1945 * could also be an active device. The pty drivers require special
1946 * handling because of this.
1948 * Locking:
1949 * The function is called under the tty_mutex, which
1950 * protects us from the tty struct or driver itself going away.
1952 * On exit the tty device has the line discipline attached and
1953 * a reference count of 1. If a pair was created for pty/tty use
1954 * and the other was a pty master then it too has a reference count of 1.
1956 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1957 * failed open. The new code protects the open with a mutex, so it's
1958 * really quite straightforward. The mutex locking can probably be
1959 * relaxed for the (most common) case of reopening a tty.
1962 static int init_dev(struct tty_driver *driver, int idx,
1963 struct tty_struct **ret_tty)
1965 struct tty_struct *tty, *o_tty;
1966 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1967 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1968 int retval = 0;
1970 /* check whether we're reopening an existing tty */
1971 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1972 tty = devpts_get_tty(idx);
1974 * If we don't have a tty here on a slave open, it's because
1975 * the master already started the close process and there's
1976 * no relation between devpts file and tty anymore.
1978 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1979 retval = -EIO;
1980 goto end_init;
1983 * It's safe from now on because init_dev() is called with
1984 * tty_mutex held and release_dev() won't change tty->count
1985 * or tty->flags without having to grab tty_mutex
1987 if (tty && driver->subtype == PTY_TYPE_MASTER)
1988 tty = tty->link;
1989 } else {
1990 tty = driver->ttys[idx];
1992 if (tty) goto fast_track;
1995 * First time open is complex, especially for PTY devices.
1996 * This code guarantees that either everything succeeds and the
1997 * TTY is ready for operation, or else the table slots are vacated
1998 * and the allocated memory released. (Except that the termios
1999 * and locked termios may be retained.)
2002 if (!try_module_get(driver->owner)) {
2003 retval = -ENODEV;
2004 goto end_init;
2007 o_tty = NULL;
2008 tp = o_tp = NULL;
2009 ltp = o_ltp = NULL;
2011 tty = alloc_tty_struct();
2012 if(!tty)
2013 goto fail_no_mem;
2014 initialize_tty_struct(tty);
2015 tty->driver = driver;
2016 tty->index = idx;
2017 tty_line_name(driver, idx, tty->name);
2019 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2020 tp_loc = &tty->termios;
2021 ltp_loc = &tty->termios_locked;
2022 } else {
2023 tp_loc = &driver->termios[idx];
2024 ltp_loc = &driver->termios_locked[idx];
2027 if (!*tp_loc) {
2028 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
2029 GFP_KERNEL);
2030 if (!tp)
2031 goto free_mem_out;
2032 *tp = driver->init_termios;
2035 if (!*ltp_loc) {
2036 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
2037 GFP_KERNEL);
2038 if (!ltp)
2039 goto free_mem_out;
2040 memset(ltp, 0, sizeof(struct ktermios));
2043 if (driver->type == TTY_DRIVER_TYPE_PTY) {
2044 o_tty = alloc_tty_struct();
2045 if (!o_tty)
2046 goto free_mem_out;
2047 initialize_tty_struct(o_tty);
2048 o_tty->driver = driver->other;
2049 o_tty->index = idx;
2050 tty_line_name(driver->other, idx, o_tty->name);
2052 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2053 o_tp_loc = &o_tty->termios;
2054 o_ltp_loc = &o_tty->termios_locked;
2055 } else {
2056 o_tp_loc = &driver->other->termios[idx];
2057 o_ltp_loc = &driver->other->termios_locked[idx];
2060 if (!*o_tp_loc) {
2061 o_tp = (struct ktermios *)
2062 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2063 if (!o_tp)
2064 goto free_mem_out;
2065 *o_tp = driver->other->init_termios;
2068 if (!*o_ltp_loc) {
2069 o_ltp = (struct ktermios *)
2070 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2071 if (!o_ltp)
2072 goto free_mem_out;
2073 memset(o_ltp, 0, sizeof(struct ktermios));
2077 * Everything allocated ... set up the o_tty structure.
2079 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2080 driver->other->ttys[idx] = o_tty;
2082 if (!*o_tp_loc)
2083 *o_tp_loc = o_tp;
2084 if (!*o_ltp_loc)
2085 *o_ltp_loc = o_ltp;
2086 o_tty->termios = *o_tp_loc;
2087 o_tty->termios_locked = *o_ltp_loc;
2088 driver->other->refcount++;
2089 if (driver->subtype == PTY_TYPE_MASTER)
2090 o_tty->count++;
2092 /* Establish the links in both directions */
2093 tty->link = o_tty;
2094 o_tty->link = tty;
2098 * All structures have been allocated, so now we install them.
2099 * Failures after this point use release_tty to clean up, so
2100 * there's no need to null out the local pointers.
2102 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2103 driver->ttys[idx] = tty;
2106 if (!*tp_loc)
2107 *tp_loc = tp;
2108 if (!*ltp_loc)
2109 *ltp_loc = ltp;
2110 tty->termios = *tp_loc;
2111 tty->termios_locked = *ltp_loc;
2112 /* Compatibility until drivers always set this */
2113 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2114 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2115 driver->refcount++;
2116 tty->count++;
2119 * Structures all installed ... call the ldisc open routines.
2120 * If we fail here just call release_tty to clean up. No need
2121 * to decrement the use counts, as release_tty doesn't care.
2124 if (tty->ldisc.open) {
2125 retval = (tty->ldisc.open)(tty);
2126 if (retval)
2127 goto release_mem_out;
2129 if (o_tty && o_tty->ldisc.open) {
2130 retval = (o_tty->ldisc.open)(o_tty);
2131 if (retval) {
2132 if (tty->ldisc.close)
2133 (tty->ldisc.close)(tty);
2134 goto release_mem_out;
2136 tty_ldisc_enable(o_tty);
2138 tty_ldisc_enable(tty);
2139 goto success;
2142 * This fast open can be used if the tty is already open.
2143 * No memory is allocated, and the only failures are from
2144 * attempting to open a closing tty or attempting multiple
2145 * opens on a pty master.
2147 fast_track:
2148 if (test_bit(TTY_CLOSING, &tty->flags)) {
2149 retval = -EIO;
2150 goto end_init;
2152 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2153 driver->subtype == PTY_TYPE_MASTER) {
2155 * special case for PTY masters: only one open permitted,
2156 * and the slave side open count is incremented as well.
2158 if (tty->count) {
2159 retval = -EIO;
2160 goto end_init;
2162 tty->link->count++;
2164 tty->count++;
2165 tty->driver = driver; /* N.B. why do this every time?? */
2167 /* FIXME */
2168 if(!test_bit(TTY_LDISC, &tty->flags))
2169 printk(KERN_ERR "init_dev but no ldisc\n");
2170 success:
2171 *ret_tty = tty;
2173 /* All paths come through here to release the mutex */
2174 end_init:
2175 return retval;
2177 /* Release locally allocated memory ... nothing placed in slots */
2178 free_mem_out:
2179 kfree(o_tp);
2180 if (o_tty)
2181 free_tty_struct(o_tty);
2182 kfree(ltp);
2183 kfree(tp);
2184 free_tty_struct(tty);
2186 fail_no_mem:
2187 module_put(driver->owner);
2188 retval = -ENOMEM;
2189 goto end_init;
2191 /* call the tty release_tty routine to clean out this slot */
2192 release_mem_out:
2193 if (printk_ratelimit())
2194 printk(KERN_INFO "init_dev: ldisc open failed, "
2195 "clearing slot %d\n", idx);
2196 release_tty(tty, idx);
2197 goto end_init;
2201 * release_one_tty - release tty structure memory
2203 * Releases memory associated with a tty structure, and clears out the
2204 * driver table slots. This function is called when a device is no longer
2205 * in use. It also gets called when setup of a device fails.
2207 * Locking:
2208 * tty_mutex - sometimes only
2209 * takes the file list lock internally when working on the list
2210 * of ttys that the driver keeps.
2211 * FIXME: should we require tty_mutex is held here ??
2213 static void release_one_tty(struct tty_struct *tty, int idx)
2215 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2216 struct ktermios *tp;
2218 if (!devpts)
2219 tty->driver->ttys[idx] = NULL;
2221 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2222 tp = tty->termios;
2223 if (!devpts)
2224 tty->driver->termios[idx] = NULL;
2225 kfree(tp);
2227 tp = tty->termios_locked;
2228 if (!devpts)
2229 tty->driver->termios_locked[idx] = NULL;
2230 kfree(tp);
2234 tty->magic = 0;
2235 tty->driver->refcount--;
2237 file_list_lock();
2238 list_del_init(&tty->tty_files);
2239 file_list_unlock();
2241 free_tty_struct(tty);
2245 * release_tty - release tty structure memory
2247 * Release both @tty and a possible linked partner (think pty pair),
2248 * and decrement the refcount of the backing module.
2250 * Locking:
2251 * tty_mutex - sometimes only
2252 * takes the file list lock internally when working on the list
2253 * of ttys that the driver keeps.
2254 * FIXME: should we require tty_mutex is held here ??
2256 static void release_tty(struct tty_struct *tty, int idx)
2258 struct tty_driver *driver = tty->driver;
2260 if (tty->link)
2261 release_one_tty(tty->link, idx);
2262 release_one_tty(tty, idx);
2263 module_put(driver->owner);
2267 * Even releasing the tty structures is a tricky business.. We have
2268 * to be very careful that the structures are all released at the
2269 * same time, as interrupts might otherwise get the wrong pointers.
2271 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2272 * lead to double frees or releasing memory still in use.
2274 static void release_dev(struct file * filp)
2276 struct tty_struct *tty, *o_tty;
2277 int pty_master, tty_closing, o_tty_closing, do_sleep;
2278 int devpts;
2279 int idx;
2280 char buf[64];
2281 unsigned long flags;
2283 tty = (struct tty_struct *)filp->private_data;
2284 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2285 return;
2287 check_tty_count(tty, "release_dev");
2289 tty_fasync(-1, filp, 0);
2291 idx = tty->index;
2292 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2293 tty->driver->subtype == PTY_TYPE_MASTER);
2294 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2295 o_tty = tty->link;
2297 #ifdef TTY_PARANOIA_CHECK
2298 if (idx < 0 || idx >= tty->driver->num) {
2299 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2300 "free (%s)\n", tty->name);
2301 return;
2303 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2304 if (tty != tty->driver->ttys[idx]) {
2305 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2306 "for (%s)\n", idx, tty->name);
2307 return;
2309 if (tty->termios != tty->driver->termios[idx]) {
2310 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2311 "for (%s)\n",
2312 idx, tty->name);
2313 return;
2315 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2316 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2317 "termios_locked for (%s)\n",
2318 idx, tty->name);
2319 return;
2322 #endif
2324 #ifdef TTY_DEBUG_HANGUP
2325 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2326 tty_name(tty, buf), tty->count);
2327 #endif
2329 #ifdef TTY_PARANOIA_CHECK
2330 if (tty->driver->other &&
2331 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2332 if (o_tty != tty->driver->other->ttys[idx]) {
2333 printk(KERN_DEBUG "release_dev: other->table[%d] "
2334 "not o_tty for (%s)\n",
2335 idx, tty->name);
2336 return;
2338 if (o_tty->termios != tty->driver->other->termios[idx]) {
2339 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2340 "not o_termios for (%s)\n",
2341 idx, tty->name);
2342 return;
2344 if (o_tty->termios_locked !=
2345 tty->driver->other->termios_locked[idx]) {
2346 printk(KERN_DEBUG "release_dev: other->termios_locked["
2347 "%d] not o_termios_locked for (%s)\n",
2348 idx, tty->name);
2349 return;
2351 if (o_tty->link != tty) {
2352 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2353 return;
2356 #endif
2357 if (tty->driver->close)
2358 tty->driver->close(tty, filp);
2361 * Sanity check: if tty->count is going to zero, there shouldn't be
2362 * any waiters on tty->read_wait or tty->write_wait. We test the
2363 * wait queues and kick everyone out _before_ actually starting to
2364 * close. This ensures that we won't block while releasing the tty
2365 * structure.
2367 * The test for the o_tty closing is necessary, since the master and
2368 * slave sides may close in any order. If the slave side closes out
2369 * first, its count will be one, since the master side holds an open.
2370 * Thus this test wouldn't be triggered at the time the slave closes,
2371 * so we do it now.
2373 * Note that it's possible for the tty to be opened again while we're
2374 * flushing out waiters. By recalculating the closing flags before
2375 * each iteration we avoid any problems.
2377 while (1) {
2378 /* Guard against races with tty->count changes elsewhere and
2379 opens on /dev/tty */
2381 mutex_lock(&tty_mutex);
2382 tty_closing = tty->count <= 1;
2383 o_tty_closing = o_tty &&
2384 (o_tty->count <= (pty_master ? 1 : 0));
2385 do_sleep = 0;
2387 if (tty_closing) {
2388 if (waitqueue_active(&tty->read_wait)) {
2389 wake_up(&tty->read_wait);
2390 do_sleep++;
2392 if (waitqueue_active(&tty->write_wait)) {
2393 wake_up(&tty->write_wait);
2394 do_sleep++;
2397 if (o_tty_closing) {
2398 if (waitqueue_active(&o_tty->read_wait)) {
2399 wake_up(&o_tty->read_wait);
2400 do_sleep++;
2402 if (waitqueue_active(&o_tty->write_wait)) {
2403 wake_up(&o_tty->write_wait);
2404 do_sleep++;
2407 if (!do_sleep)
2408 break;
2410 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2411 "active!\n", tty_name(tty, buf));
2412 mutex_unlock(&tty_mutex);
2413 schedule();
2417 * The closing flags are now consistent with the open counts on
2418 * both sides, and we've completed the last operation that could
2419 * block, so it's safe to proceed with closing.
2421 if (pty_master) {
2422 if (--o_tty->count < 0) {
2423 printk(KERN_WARNING "release_dev: bad pty slave count "
2424 "(%d) for %s\n",
2425 o_tty->count, tty_name(o_tty, buf));
2426 o_tty->count = 0;
2429 if (--tty->count < 0) {
2430 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2431 tty->count, tty_name(tty, buf));
2432 tty->count = 0;
2436 * We've decremented tty->count, so we need to remove this file
2437 * descriptor off the tty->tty_files list; this serves two
2438 * purposes:
2439 * - check_tty_count sees the correct number of file descriptors
2440 * associated with this tty.
2441 * - do_tty_hangup no longer sees this file descriptor as
2442 * something that needs to be handled for hangups.
2444 file_kill(filp);
2445 filp->private_data = NULL;
2448 * Perform some housekeeping before deciding whether to return.
2450 * Set the TTY_CLOSING flag if this was the last open. In the
2451 * case of a pty we may have to wait around for the other side
2452 * to close, and TTY_CLOSING makes sure we can't be reopened.
2454 if(tty_closing)
2455 set_bit(TTY_CLOSING, &tty->flags);
2456 if(o_tty_closing)
2457 set_bit(TTY_CLOSING, &o_tty->flags);
2460 * If _either_ side is closing, make sure there aren't any
2461 * processes that still think tty or o_tty is their controlling
2462 * tty.
2464 if (tty_closing || o_tty_closing) {
2465 read_lock(&tasklist_lock);
2466 session_clear_tty(tty->session);
2467 if (o_tty)
2468 session_clear_tty(o_tty->session);
2469 read_unlock(&tasklist_lock);
2472 mutex_unlock(&tty_mutex);
2474 /* check whether both sides are closing ... */
2475 if (!tty_closing || (o_tty && !o_tty_closing))
2476 return;
2478 #ifdef TTY_DEBUG_HANGUP
2479 printk(KERN_DEBUG "freeing tty structure...");
2480 #endif
2482 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2483 * kill any delayed work. As this is the final close it does not
2484 * race with the set_ldisc code path.
2486 clear_bit(TTY_LDISC, &tty->flags);
2487 cancel_delayed_work(&tty->buf.work);
2490 * Wait for ->hangup_work and ->buf.work handlers to terminate
2493 flush_scheduled_work();
2496 * Wait for any short term users (we know they are just driver
2497 * side waiters as the file is closing so user count on the file
2498 * side is zero.
2500 spin_lock_irqsave(&tty_ldisc_lock, flags);
2501 while(tty->ldisc.refcount)
2503 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2504 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2505 spin_lock_irqsave(&tty_ldisc_lock, flags);
2507 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2509 * Shutdown the current line discipline, and reset it to N_TTY.
2510 * N.B. why reset ldisc when we're releasing the memory??
2512 * FIXME: this MUST get fixed for the new reflocking
2514 if (tty->ldisc.close)
2515 (tty->ldisc.close)(tty);
2516 tty_ldisc_put(tty->ldisc.num);
2519 * Switch the line discipline back
2521 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2522 tty_set_termios_ldisc(tty,N_TTY);
2523 if (o_tty) {
2524 /* FIXME: could o_tty be in setldisc here ? */
2525 clear_bit(TTY_LDISC, &o_tty->flags);
2526 if (o_tty->ldisc.close)
2527 (o_tty->ldisc.close)(o_tty);
2528 tty_ldisc_put(o_tty->ldisc.num);
2529 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2530 tty_set_termios_ldisc(o_tty,N_TTY);
2533 * The release_tty function takes care of the details of clearing
2534 * the slots and preserving the termios structure.
2536 release_tty(tty, idx);
2538 #ifdef CONFIG_UNIX98_PTYS
2539 /* Make this pty number available for reallocation */
2540 if (devpts) {
2541 down(&allocated_ptys_lock);
2542 idr_remove(&allocated_ptys, idx);
2543 up(&allocated_ptys_lock);
2545 #endif
2550 * tty_open - open a tty device
2551 * @inode: inode of device file
2552 * @filp: file pointer to tty
2554 * tty_open and tty_release keep up the tty count that contains the
2555 * number of opens done on a tty. We cannot use the inode-count, as
2556 * different inodes might point to the same tty.
2558 * Open-counting is needed for pty masters, as well as for keeping
2559 * track of serial lines: DTR is dropped when the last close happens.
2560 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2562 * The termios state of a pty is reset on first open so that
2563 * settings don't persist across reuse.
2565 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2566 * tty->count should protect the rest.
2567 * ->siglock protects ->signal/->sighand
2570 static int tty_open(struct inode * inode, struct file * filp)
2572 struct tty_struct *tty;
2573 int noctty, retval;
2574 struct tty_driver *driver;
2575 int index;
2576 dev_t device = inode->i_rdev;
2577 unsigned short saved_flags = filp->f_flags;
2579 nonseekable_open(inode, filp);
2581 retry_open:
2582 noctty = filp->f_flags & O_NOCTTY;
2583 index = -1;
2584 retval = 0;
2586 mutex_lock(&tty_mutex);
2588 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2589 tty = get_current_tty();
2590 if (!tty) {
2591 mutex_unlock(&tty_mutex);
2592 return -ENXIO;
2594 driver = tty->driver;
2595 index = tty->index;
2596 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2597 /* noctty = 1; */
2598 goto got_driver;
2600 #ifdef CONFIG_VT
2601 if (device == MKDEV(TTY_MAJOR,0)) {
2602 extern struct tty_driver *console_driver;
2603 driver = console_driver;
2604 index = fg_console;
2605 noctty = 1;
2606 goto got_driver;
2608 #endif
2609 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2610 driver = console_device(&index);
2611 if (driver) {
2612 /* Don't let /dev/console block */
2613 filp->f_flags |= O_NONBLOCK;
2614 noctty = 1;
2615 goto got_driver;
2617 mutex_unlock(&tty_mutex);
2618 return -ENODEV;
2621 driver = get_tty_driver(device, &index);
2622 if (!driver) {
2623 mutex_unlock(&tty_mutex);
2624 return -ENODEV;
2626 got_driver:
2627 retval = init_dev(driver, index, &tty);
2628 mutex_unlock(&tty_mutex);
2629 if (retval)
2630 return retval;
2632 filp->private_data = tty;
2633 file_move(filp, &tty->tty_files);
2634 check_tty_count(tty, "tty_open");
2635 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2636 tty->driver->subtype == PTY_TYPE_MASTER)
2637 noctty = 1;
2638 #ifdef TTY_DEBUG_HANGUP
2639 printk(KERN_DEBUG "opening %s...", tty->name);
2640 #endif
2641 if (!retval) {
2642 if (tty->driver->open)
2643 retval = tty->driver->open(tty, filp);
2644 else
2645 retval = -ENODEV;
2647 filp->f_flags = saved_flags;
2649 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2650 retval = -EBUSY;
2652 if (retval) {
2653 #ifdef TTY_DEBUG_HANGUP
2654 printk(KERN_DEBUG "error %d in opening %s...", retval,
2655 tty->name);
2656 #endif
2657 release_dev(filp);
2658 if (retval != -ERESTARTSYS)
2659 return retval;
2660 if (signal_pending(current))
2661 return retval;
2662 schedule();
2664 * Need to reset f_op in case a hangup happened.
2666 if (filp->f_op == &hung_up_tty_fops)
2667 filp->f_op = &tty_fops;
2668 goto retry_open;
2671 mutex_lock(&tty_mutex);
2672 spin_lock_irq(&current->sighand->siglock);
2673 if (!noctty &&
2674 current->signal->leader &&
2675 !current->signal->tty &&
2676 tty->session == NULL)
2677 __proc_set_tty(current, tty);
2678 spin_unlock_irq(&current->sighand->siglock);
2679 mutex_unlock(&tty_mutex);
2680 return 0;
2683 #ifdef CONFIG_UNIX98_PTYS
2685 * ptmx_open - open a unix 98 pty master
2686 * @inode: inode of device file
2687 * @filp: file pointer to tty
2689 * Allocate a unix98 pty master device from the ptmx driver.
2691 * Locking: tty_mutex protects theinit_dev work. tty->count should
2692 protect the rest.
2693 * allocated_ptys_lock handles the list of free pty numbers
2696 static int ptmx_open(struct inode * inode, struct file * filp)
2698 struct tty_struct *tty;
2699 int retval;
2700 int index;
2701 int idr_ret;
2703 nonseekable_open(inode, filp);
2705 /* find a device that is not in use. */
2706 down(&allocated_ptys_lock);
2707 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2708 up(&allocated_ptys_lock);
2709 return -ENOMEM;
2711 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2712 if (idr_ret < 0) {
2713 up(&allocated_ptys_lock);
2714 if (idr_ret == -EAGAIN)
2715 return -ENOMEM;
2716 return -EIO;
2718 if (index >= pty_limit) {
2719 idr_remove(&allocated_ptys, index);
2720 up(&allocated_ptys_lock);
2721 return -EIO;
2723 up(&allocated_ptys_lock);
2725 mutex_lock(&tty_mutex);
2726 retval = init_dev(ptm_driver, index, &tty);
2727 mutex_unlock(&tty_mutex);
2729 if (retval)
2730 goto out;
2732 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2733 filp->private_data = tty;
2734 file_move(filp, &tty->tty_files);
2736 retval = -ENOMEM;
2737 if (devpts_pty_new(tty->link))
2738 goto out1;
2740 check_tty_count(tty, "tty_open");
2741 retval = ptm_driver->open(tty, filp);
2742 if (!retval)
2743 return 0;
2744 out1:
2745 release_dev(filp);
2746 return retval;
2747 out:
2748 down(&allocated_ptys_lock);
2749 idr_remove(&allocated_ptys, index);
2750 up(&allocated_ptys_lock);
2751 return retval;
2753 #endif
2756 * tty_release - vfs callback for close
2757 * @inode: inode of tty
2758 * @filp: file pointer for handle to tty
2760 * Called the last time each file handle is closed that references
2761 * this tty. There may however be several such references.
2763 * Locking:
2764 * Takes bkl. See release_dev
2767 static int tty_release(struct inode * inode, struct file * filp)
2769 lock_kernel();
2770 release_dev(filp);
2771 unlock_kernel();
2772 return 0;
2776 * tty_poll - check tty status
2777 * @filp: file being polled
2778 * @wait: poll wait structures to update
2780 * Call the line discipline polling method to obtain the poll
2781 * status of the device.
2783 * Locking: locks called line discipline but ldisc poll method
2784 * may be re-entered freely by other callers.
2787 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2789 struct tty_struct * tty;
2790 struct tty_ldisc *ld;
2791 int ret = 0;
2793 tty = (struct tty_struct *)filp->private_data;
2794 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2795 return 0;
2797 ld = tty_ldisc_ref_wait(tty);
2798 if (ld->poll)
2799 ret = (ld->poll)(tty, filp, wait);
2800 tty_ldisc_deref(ld);
2801 return ret;
2804 static int tty_fasync(int fd, struct file * filp, int on)
2806 struct tty_struct * tty;
2807 int retval;
2809 tty = (struct tty_struct *)filp->private_data;
2810 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2811 return 0;
2813 retval = fasync_helper(fd, filp, on, &tty->fasync);
2814 if (retval <= 0)
2815 return retval;
2817 if (on) {
2818 enum pid_type type;
2819 struct pid *pid;
2820 if (!waitqueue_active(&tty->read_wait))
2821 tty->minimum_to_wake = 1;
2822 if (tty->pgrp) {
2823 pid = tty->pgrp;
2824 type = PIDTYPE_PGID;
2825 } else {
2826 pid = task_pid(current);
2827 type = PIDTYPE_PID;
2829 retval = __f_setown(filp, pid, type, 0);
2830 if (retval)
2831 return retval;
2832 } else {
2833 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2834 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2836 return 0;
2840 * tiocsti - fake input character
2841 * @tty: tty to fake input into
2842 * @p: pointer to character
2844 * Fake input to a tty device. Does the neccessary locking and
2845 * input management.
2847 * FIXME: does not honour flow control ??
2849 * Locking:
2850 * Called functions take tty_ldisc_lock
2851 * current->signal->tty check is safe without locks
2853 * FIXME: may race normal receive processing
2856 static int tiocsti(struct tty_struct *tty, char __user *p)
2858 char ch, mbz = 0;
2859 struct tty_ldisc *ld;
2861 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2862 return -EPERM;
2863 if (get_user(ch, p))
2864 return -EFAULT;
2865 ld = tty_ldisc_ref_wait(tty);
2866 ld->receive_buf(tty, &ch, &mbz, 1);
2867 tty_ldisc_deref(ld);
2868 return 0;
2872 * tiocgwinsz - implement window query ioctl
2873 * @tty; tty
2874 * @arg: user buffer for result
2876 * Copies the kernel idea of the window size into the user buffer.
2878 * Locking: tty->termios_mutex is taken to ensure the winsize data
2879 * is consistent.
2882 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2884 int err;
2886 mutex_lock(&tty->termios_mutex);
2887 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2888 mutex_unlock(&tty->termios_mutex);
2890 return err ? -EFAULT: 0;
2894 * tiocswinsz - implement window size set ioctl
2895 * @tty; tty
2896 * @arg: user buffer for result
2898 * Copies the user idea of the window size to the kernel. Traditionally
2899 * this is just advisory information but for the Linux console it
2900 * actually has driver level meaning and triggers a VC resize.
2902 * Locking:
2903 * Called function use the console_sem is used to ensure we do
2904 * not try and resize the console twice at once.
2905 * The tty->termios_mutex is used to ensure we don't double
2906 * resize and get confused. Lock order - tty->termios_mutex before
2907 * console sem
2910 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2911 struct winsize __user * arg)
2913 struct winsize tmp_ws;
2915 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2916 return -EFAULT;
2918 mutex_lock(&tty->termios_mutex);
2919 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2920 goto done;
2922 #ifdef CONFIG_VT
2923 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2924 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2925 tmp_ws.ws_row)) {
2926 mutex_unlock(&tty->termios_mutex);
2927 return -ENXIO;
2930 #endif
2931 if (tty->pgrp)
2932 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2933 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2934 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2935 tty->winsize = tmp_ws;
2936 real_tty->winsize = tmp_ws;
2937 done:
2938 mutex_unlock(&tty->termios_mutex);
2939 return 0;
2943 * tioccons - allow admin to move logical console
2944 * @file: the file to become console
2946 * Allow the adminstrator to move the redirected console device
2948 * Locking: uses redirect_lock to guard the redirect information
2951 static int tioccons(struct file *file)
2953 if (!capable(CAP_SYS_ADMIN))
2954 return -EPERM;
2955 if (file->f_op->write == redirected_tty_write) {
2956 struct file *f;
2957 spin_lock(&redirect_lock);
2958 f = redirect;
2959 redirect = NULL;
2960 spin_unlock(&redirect_lock);
2961 if (f)
2962 fput(f);
2963 return 0;
2965 spin_lock(&redirect_lock);
2966 if (redirect) {
2967 spin_unlock(&redirect_lock);
2968 return -EBUSY;
2970 get_file(file);
2971 redirect = file;
2972 spin_unlock(&redirect_lock);
2973 return 0;
2977 * fionbio - non blocking ioctl
2978 * @file: file to set blocking value
2979 * @p: user parameter
2981 * Historical tty interfaces had a blocking control ioctl before
2982 * the generic functionality existed. This piece of history is preserved
2983 * in the expected tty API of posix OS's.
2985 * Locking: none, the open fle handle ensures it won't go away.
2988 static int fionbio(struct file *file, int __user *p)
2990 int nonblock;
2992 if (get_user(nonblock, p))
2993 return -EFAULT;
2995 if (nonblock)
2996 file->f_flags |= O_NONBLOCK;
2997 else
2998 file->f_flags &= ~O_NONBLOCK;
2999 return 0;
3003 * tiocsctty - set controlling tty
3004 * @tty: tty structure
3005 * @arg: user argument
3007 * This ioctl is used to manage job control. It permits a session
3008 * leader to set this tty as the controlling tty for the session.
3010 * Locking:
3011 * Takes tty_mutex() to protect tty instance
3012 * Takes tasklist_lock internally to walk sessions
3013 * Takes ->siglock() when updating signal->tty
3016 static int tiocsctty(struct tty_struct *tty, int arg)
3018 int ret = 0;
3019 if (current->signal->leader && (task_session(current) == tty->session))
3020 return ret;
3022 mutex_lock(&tty_mutex);
3024 * The process must be a session leader and
3025 * not have a controlling tty already.
3027 if (!current->signal->leader || current->signal->tty) {
3028 ret = -EPERM;
3029 goto unlock;
3032 if (tty->session) {
3034 * This tty is already the controlling
3035 * tty for another session group!
3037 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
3039 * Steal it away
3041 read_lock(&tasklist_lock);
3042 session_clear_tty(tty->session);
3043 read_unlock(&tasklist_lock);
3044 } else {
3045 ret = -EPERM;
3046 goto unlock;
3049 proc_set_tty(current, tty);
3050 unlock:
3051 mutex_unlock(&tty_mutex);
3052 return ret;
3056 * tiocgpgrp - get process group
3057 * @tty: tty passed by user
3058 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3059 * @p: returned pid
3061 * Obtain the process group of the tty. If there is no process group
3062 * return an error.
3064 * Locking: none. Reference to current->signal->tty is safe.
3067 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3070 * (tty == real_tty) is a cheap way of
3071 * testing if the tty is NOT a master pty.
3073 if (tty == real_tty && current->signal->tty != real_tty)
3074 return -ENOTTY;
3075 return put_user(pid_nr(real_tty->pgrp), p);
3079 * tiocspgrp - attempt to set process group
3080 * @tty: tty passed by user
3081 * @real_tty: tty side device matching tty passed by user
3082 * @p: pid pointer
3084 * Set the process group of the tty to the session passed. Only
3085 * permitted where the tty session is our session.
3087 * Locking: None
3090 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3092 struct pid *pgrp;
3093 pid_t pgrp_nr;
3094 int retval = tty_check_change(real_tty);
3096 if (retval == -EIO)
3097 return -ENOTTY;
3098 if (retval)
3099 return retval;
3100 if (!current->signal->tty ||
3101 (current->signal->tty != real_tty) ||
3102 (real_tty->session != task_session(current)))
3103 return -ENOTTY;
3104 if (get_user(pgrp_nr, p))
3105 return -EFAULT;
3106 if (pgrp_nr < 0)
3107 return -EINVAL;
3108 rcu_read_lock();
3109 pgrp = find_pid(pgrp_nr);
3110 retval = -ESRCH;
3111 if (!pgrp)
3112 goto out_unlock;
3113 retval = -EPERM;
3114 if (session_of_pgrp(pgrp) != task_session(current))
3115 goto out_unlock;
3116 retval = 0;
3117 put_pid(real_tty->pgrp);
3118 real_tty->pgrp = get_pid(pgrp);
3119 out_unlock:
3120 rcu_read_unlock();
3121 return retval;
3125 * tiocgsid - get session id
3126 * @tty: tty passed by user
3127 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3128 * @p: pointer to returned session id
3130 * Obtain the session id of the tty. If there is no session
3131 * return an error.
3133 * Locking: none. Reference to current->signal->tty is safe.
3136 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3139 * (tty == real_tty) is a cheap way of
3140 * testing if the tty is NOT a master pty.
3142 if (tty == real_tty && current->signal->tty != real_tty)
3143 return -ENOTTY;
3144 if (!real_tty->session)
3145 return -ENOTTY;
3146 return put_user(pid_nr(real_tty->session), p);
3150 * tiocsetd - set line discipline
3151 * @tty: tty device
3152 * @p: pointer to user data
3154 * Set the line discipline according to user request.
3156 * Locking: see tty_set_ldisc, this function is just a helper
3159 static int tiocsetd(struct tty_struct *tty, int __user *p)
3161 int ldisc;
3163 if (get_user(ldisc, p))
3164 return -EFAULT;
3165 return tty_set_ldisc(tty, ldisc);
3169 * send_break - performed time break
3170 * @tty: device to break on
3171 * @duration: timeout in mS
3173 * Perform a timed break on hardware that lacks its own driver level
3174 * timed break functionality.
3176 * Locking:
3177 * atomic_write_lock serializes
3181 static int send_break(struct tty_struct *tty, unsigned int duration)
3183 if (tty_write_lock(tty, 0) < 0)
3184 return -EINTR;
3185 tty->driver->break_ctl(tty, -1);
3186 if (!signal_pending(current))
3187 msleep_interruptible(duration);
3188 tty->driver->break_ctl(tty, 0);
3189 tty_write_unlock(tty);
3190 if (signal_pending(current))
3191 return -EINTR;
3192 return 0;
3196 * tiocmget - get modem status
3197 * @tty: tty device
3198 * @file: user file pointer
3199 * @p: pointer to result
3201 * Obtain the modem status bits from the tty driver if the feature
3202 * is supported. Return -EINVAL if it is not available.
3204 * Locking: none (up to the driver)
3207 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3209 int retval = -EINVAL;
3211 if (tty->driver->tiocmget) {
3212 retval = tty->driver->tiocmget(tty, file);
3214 if (retval >= 0)
3215 retval = put_user(retval, p);
3217 return retval;
3221 * tiocmset - set modem status
3222 * @tty: tty device
3223 * @file: user file pointer
3224 * @cmd: command - clear bits, set bits or set all
3225 * @p: pointer to desired bits
3227 * Set the modem status bits from the tty driver if the feature
3228 * is supported. Return -EINVAL if it is not available.
3230 * Locking: none (up to the driver)
3233 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3234 unsigned __user *p)
3236 int retval = -EINVAL;
3238 if (tty->driver->tiocmset) {
3239 unsigned int set, clear, val;
3241 retval = get_user(val, p);
3242 if (retval)
3243 return retval;
3245 set = clear = 0;
3246 switch (cmd) {
3247 case TIOCMBIS:
3248 set = val;
3249 break;
3250 case TIOCMBIC:
3251 clear = val;
3252 break;
3253 case TIOCMSET:
3254 set = val;
3255 clear = ~val;
3256 break;
3259 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3260 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3262 retval = tty->driver->tiocmset(tty, file, set, clear);
3264 return retval;
3268 * Split this up, as gcc can choke on it otherwise..
3270 int tty_ioctl(struct inode * inode, struct file * file,
3271 unsigned int cmd, unsigned long arg)
3273 struct tty_struct *tty, *real_tty;
3274 void __user *p = (void __user *)arg;
3275 int retval;
3276 struct tty_ldisc *ld;
3278 tty = (struct tty_struct *)file->private_data;
3279 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3280 return -EINVAL;
3282 /* CHECKME: is this safe as one end closes ? */
3284 real_tty = tty;
3285 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3286 tty->driver->subtype == PTY_TYPE_MASTER)
3287 real_tty = tty->link;
3290 * Break handling by driver
3292 if (!tty->driver->break_ctl) {
3293 switch(cmd) {
3294 case TIOCSBRK:
3295 case TIOCCBRK:
3296 if (tty->driver->ioctl)
3297 return tty->driver->ioctl(tty, file, cmd, arg);
3298 return -EINVAL;
3300 /* These two ioctl's always return success; even if */
3301 /* the driver doesn't support them. */
3302 case TCSBRK:
3303 case TCSBRKP:
3304 if (!tty->driver->ioctl)
3305 return 0;
3306 retval = tty->driver->ioctl(tty, file, cmd, arg);
3307 if (retval == -ENOIOCTLCMD)
3308 retval = 0;
3309 return retval;
3314 * Factor out some common prep work
3316 switch (cmd) {
3317 case TIOCSETD:
3318 case TIOCSBRK:
3319 case TIOCCBRK:
3320 case TCSBRK:
3321 case TCSBRKP:
3322 retval = tty_check_change(tty);
3323 if (retval)
3324 return retval;
3325 if (cmd != TIOCCBRK) {
3326 tty_wait_until_sent(tty, 0);
3327 if (signal_pending(current))
3328 return -EINTR;
3330 break;
3333 switch (cmd) {
3334 case TIOCSTI:
3335 return tiocsti(tty, p);
3336 case TIOCGWINSZ:
3337 return tiocgwinsz(tty, p);
3338 case TIOCSWINSZ:
3339 return tiocswinsz(tty, real_tty, p);
3340 case TIOCCONS:
3341 return real_tty!=tty ? -EINVAL : tioccons(file);
3342 case FIONBIO:
3343 return fionbio(file, p);
3344 case TIOCEXCL:
3345 set_bit(TTY_EXCLUSIVE, &tty->flags);
3346 return 0;
3347 case TIOCNXCL:
3348 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3349 return 0;
3350 case TIOCNOTTY:
3351 if (current->signal->tty != tty)
3352 return -ENOTTY;
3353 no_tty();
3354 return 0;
3355 case TIOCSCTTY:
3356 return tiocsctty(tty, arg);
3357 case TIOCGPGRP:
3358 return tiocgpgrp(tty, real_tty, p);
3359 case TIOCSPGRP:
3360 return tiocspgrp(tty, real_tty, p);
3361 case TIOCGSID:
3362 return tiocgsid(tty, real_tty, p);
3363 case TIOCGETD:
3364 /* FIXME: check this is ok */
3365 return put_user(tty->ldisc.num, (int __user *)p);
3366 case TIOCSETD:
3367 return tiocsetd(tty, p);
3368 #ifdef CONFIG_VT
3369 case TIOCLINUX:
3370 return tioclinux(tty, arg);
3371 #endif
3373 * Break handling
3375 case TIOCSBRK: /* Turn break on, unconditionally */
3376 tty->driver->break_ctl(tty, -1);
3377 return 0;
3379 case TIOCCBRK: /* Turn break off, unconditionally */
3380 tty->driver->break_ctl(tty, 0);
3381 return 0;
3382 case TCSBRK: /* SVID version: non-zero arg --> no break */
3383 /* non-zero arg means wait for all output data
3384 * to be sent (performed above) but don't send break.
3385 * This is used by the tcdrain() termios function.
3387 if (!arg)
3388 return send_break(tty, 250);
3389 return 0;
3390 case TCSBRKP: /* support for POSIX tcsendbreak() */
3391 return send_break(tty, arg ? arg*100 : 250);
3393 case TIOCMGET:
3394 return tty_tiocmget(tty, file, p);
3396 case TIOCMSET:
3397 case TIOCMBIC:
3398 case TIOCMBIS:
3399 return tty_tiocmset(tty, file, cmd, p);
3400 case TCFLSH:
3401 switch (arg) {
3402 case TCIFLUSH:
3403 case TCIOFLUSH:
3404 /* flush tty buffer and allow ldisc to process ioctl */
3405 tty_buffer_flush(tty);
3406 break;
3408 break;
3410 if (tty->driver->ioctl) {
3411 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3412 if (retval != -ENOIOCTLCMD)
3413 return retval;
3415 ld = tty_ldisc_ref_wait(tty);
3416 retval = -EINVAL;
3417 if (ld->ioctl) {
3418 retval = ld->ioctl(tty, file, cmd, arg);
3419 if (retval == -ENOIOCTLCMD)
3420 retval = -EINVAL;
3422 tty_ldisc_deref(ld);
3423 return retval;
3426 #ifdef CONFIG_COMPAT
3427 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
3428 unsigned long arg)
3430 struct inode *inode = file->f_dentry->d_inode;
3431 struct tty_struct *tty = file->private_data;
3432 struct tty_ldisc *ld;
3433 int retval = -ENOIOCTLCMD;
3435 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3436 return -EINVAL;
3438 if (tty->driver->compat_ioctl) {
3439 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3440 if (retval != -ENOIOCTLCMD)
3441 return retval;
3444 ld = tty_ldisc_ref_wait(tty);
3445 if (ld->compat_ioctl)
3446 retval = ld->compat_ioctl(tty, file, cmd, arg);
3447 tty_ldisc_deref(ld);
3449 return retval;
3451 #endif
3454 * This implements the "Secure Attention Key" --- the idea is to
3455 * prevent trojan horses by killing all processes associated with this
3456 * tty when the user hits the "Secure Attention Key". Required for
3457 * super-paranoid applications --- see the Orange Book for more details.
3459 * This code could be nicer; ideally it should send a HUP, wait a few
3460 * seconds, then send a INT, and then a KILL signal. But you then
3461 * have to coordinate with the init process, since all processes associated
3462 * with the current tty must be dead before the new getty is allowed
3463 * to spawn.
3465 * Now, if it would be correct ;-/ The current code has a nasty hole -
3466 * it doesn't catch files in flight. We may send the descriptor to ourselves
3467 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3469 * Nasty bug: do_SAK is being called in interrupt context. This can
3470 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3472 void __do_SAK(struct tty_struct *tty)
3474 #ifdef TTY_SOFT_SAK
3475 tty_hangup(tty);
3476 #else
3477 struct task_struct *g, *p;
3478 struct pid *session;
3479 int i;
3480 struct file *filp;
3481 struct fdtable *fdt;
3483 if (!tty)
3484 return;
3485 session = tty->session;
3487 tty_ldisc_flush(tty);
3489 if (tty->driver->flush_buffer)
3490 tty->driver->flush_buffer(tty);
3492 read_lock(&tasklist_lock);
3493 /* Kill the entire session */
3494 do_each_pid_task(session, PIDTYPE_SID, p) {
3495 printk(KERN_NOTICE "SAK: killed process %d"
3496 " (%s): process_session(p)==tty->session\n",
3497 p->pid, p->comm);
3498 send_sig(SIGKILL, p, 1);
3499 } while_each_pid_task(session, PIDTYPE_SID, p);
3500 /* Now kill any processes that happen to have the
3501 * tty open.
3503 do_each_thread(g, p) {
3504 if (p->signal->tty == tty) {
3505 printk(KERN_NOTICE "SAK: killed process %d"
3506 " (%s): process_session(p)==tty->session\n",
3507 p->pid, p->comm);
3508 send_sig(SIGKILL, p, 1);
3509 continue;
3511 task_lock(p);
3512 if (p->files) {
3514 * We don't take a ref to the file, so we must
3515 * hold ->file_lock instead.
3517 spin_lock(&p->files->file_lock);
3518 fdt = files_fdtable(p->files);
3519 for (i=0; i < fdt->max_fds; i++) {
3520 filp = fcheck_files(p->files, i);
3521 if (!filp)
3522 continue;
3523 if (filp->f_op->read == tty_read &&
3524 filp->private_data == tty) {
3525 printk(KERN_NOTICE "SAK: killed process %d"
3526 " (%s): fd#%d opened to the tty\n",
3527 p->pid, p->comm, i);
3528 force_sig(SIGKILL, p);
3529 break;
3532 spin_unlock(&p->files->file_lock);
3534 task_unlock(p);
3535 } while_each_thread(g, p);
3536 read_unlock(&tasklist_lock);
3537 #endif
3540 static void do_SAK_work(struct work_struct *work)
3542 struct tty_struct *tty =
3543 container_of(work, struct tty_struct, SAK_work);
3544 __do_SAK(tty);
3548 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3549 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3550 * the values which we write to it will be identical to the values which it
3551 * already has. --akpm
3553 void do_SAK(struct tty_struct *tty)
3555 if (!tty)
3556 return;
3557 schedule_work(&tty->SAK_work);
3560 EXPORT_SYMBOL(do_SAK);
3563 * flush_to_ldisc
3564 * @work: tty structure passed from work queue.
3566 * This routine is called out of the software interrupt to flush data
3567 * from the buffer chain to the line discipline.
3569 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3570 * while invoking the line discipline receive_buf method. The
3571 * receive_buf method is single threaded for each tty instance.
3574 static void flush_to_ldisc(struct work_struct *work)
3576 struct tty_struct *tty =
3577 container_of(work, struct tty_struct, buf.work.work);
3578 unsigned long flags;
3579 struct tty_ldisc *disc;
3580 struct tty_buffer *tbuf, *head;
3581 char *char_buf;
3582 unsigned char *flag_buf;
3584 disc = tty_ldisc_ref(tty);
3585 if (disc == NULL) /* !TTY_LDISC */
3586 return;
3588 spin_lock_irqsave(&tty->buf.lock, flags);
3589 head = tty->buf.head;
3590 if (head != NULL) {
3591 tty->buf.head = NULL;
3592 for (;;) {
3593 int count = head->commit - head->read;
3594 if (!count) {
3595 if (head->next == NULL)
3596 break;
3597 tbuf = head;
3598 head = head->next;
3599 tty_buffer_free(tty, tbuf);
3600 continue;
3602 if (!tty->receive_room) {
3603 schedule_delayed_work(&tty->buf.work, 1);
3604 break;
3606 if (count > tty->receive_room)
3607 count = tty->receive_room;
3608 char_buf = head->char_buf_ptr + head->read;
3609 flag_buf = head->flag_buf_ptr + head->read;
3610 head->read += count;
3611 spin_unlock_irqrestore(&tty->buf.lock, flags);
3612 disc->receive_buf(tty, char_buf, flag_buf, count);
3613 spin_lock_irqsave(&tty->buf.lock, flags);
3615 tty->buf.head = head;
3617 spin_unlock_irqrestore(&tty->buf.lock, flags);
3619 tty_ldisc_deref(disc);
3623 * tty_flip_buffer_push - terminal
3624 * @tty: tty to push
3626 * Queue a push of the terminal flip buffers to the line discipline. This
3627 * function must not be called from IRQ context if tty->low_latency is set.
3629 * In the event of the queue being busy for flipping the work will be
3630 * held off and retried later.
3632 * Locking: tty buffer lock. Driver locks in low latency mode.
3635 void tty_flip_buffer_push(struct tty_struct *tty)
3637 unsigned long flags;
3638 spin_lock_irqsave(&tty->buf.lock, flags);
3639 if (tty->buf.tail != NULL)
3640 tty->buf.tail->commit = tty->buf.tail->used;
3641 spin_unlock_irqrestore(&tty->buf.lock, flags);
3643 if (tty->low_latency)
3644 flush_to_ldisc(&tty->buf.work.work);
3645 else
3646 schedule_delayed_work(&tty->buf.work, 1);
3649 EXPORT_SYMBOL(tty_flip_buffer_push);
3653 * initialize_tty_struct
3654 * @tty: tty to initialize
3656 * This subroutine initializes a tty structure that has been newly
3657 * allocated.
3659 * Locking: none - tty in question must not be exposed at this point
3662 static void initialize_tty_struct(struct tty_struct *tty)
3664 memset(tty, 0, sizeof(struct tty_struct));
3665 tty->magic = TTY_MAGIC;
3666 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3667 tty->session = NULL;
3668 tty->pgrp = NULL;
3669 tty->overrun_time = jiffies;
3670 tty->buf.head = tty->buf.tail = NULL;
3671 tty_buffer_init(tty);
3672 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3673 init_MUTEX(&tty->buf.pty_sem);
3674 mutex_init(&tty->termios_mutex);
3675 init_waitqueue_head(&tty->write_wait);
3676 init_waitqueue_head(&tty->read_wait);
3677 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3678 mutex_init(&tty->atomic_read_lock);
3679 mutex_init(&tty->atomic_write_lock);
3680 spin_lock_init(&tty->read_lock);
3681 INIT_LIST_HEAD(&tty->tty_files);
3682 INIT_WORK(&tty->SAK_work, do_SAK_work);
3686 * The default put_char routine if the driver did not define one.
3689 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3691 tty->driver->write(tty, &ch, 1);
3694 static struct class *tty_class;
3697 * tty_register_device - register a tty device
3698 * @driver: the tty driver that describes the tty device
3699 * @index: the index in the tty driver for this tty device
3700 * @device: a struct device that is associated with this tty device.
3701 * This field is optional, if there is no known struct device
3702 * for this tty device it can be set to NULL safely.
3704 * Returns a pointer to the struct device for this tty device
3705 * (or ERR_PTR(-EFOO) on error).
3707 * This call is required to be made to register an individual tty device
3708 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3709 * that bit is not set, this function should not be called by a tty
3710 * driver.
3712 * Locking: ??
3715 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3716 struct device *device)
3718 char name[64];
3719 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3721 if (index >= driver->num) {
3722 printk(KERN_ERR "Attempt to register invalid tty line number "
3723 " (%d).\n", index);
3724 return ERR_PTR(-EINVAL);
3727 if (driver->type == TTY_DRIVER_TYPE_PTY)
3728 pty_line_name(driver, index, name);
3729 else
3730 tty_line_name(driver, index, name);
3732 return device_create(tty_class, device, dev, name);
3736 * tty_unregister_device - unregister a tty device
3737 * @driver: the tty driver that describes the tty device
3738 * @index: the index in the tty driver for this tty device
3740 * If a tty device is registered with a call to tty_register_device() then
3741 * this function must be called when the tty device is gone.
3743 * Locking: ??
3746 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3748 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3751 EXPORT_SYMBOL(tty_register_device);
3752 EXPORT_SYMBOL(tty_unregister_device);
3754 struct tty_driver *alloc_tty_driver(int lines)
3756 struct tty_driver *driver;
3758 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3759 if (driver) {
3760 memset(driver, 0, sizeof(struct tty_driver));
3761 driver->magic = TTY_DRIVER_MAGIC;
3762 driver->num = lines;
3763 /* later we'll move allocation of tables here */
3765 return driver;
3768 void put_tty_driver(struct tty_driver *driver)
3770 kfree(driver);
3773 void tty_set_operations(struct tty_driver *driver,
3774 const struct tty_operations *op)
3776 driver->open = op->open;
3777 driver->close = op->close;
3778 driver->write = op->write;
3779 driver->put_char = op->put_char;
3780 driver->flush_chars = op->flush_chars;
3781 driver->write_room = op->write_room;
3782 driver->chars_in_buffer = op->chars_in_buffer;
3783 driver->ioctl = op->ioctl;
3784 driver->compat_ioctl = op->compat_ioctl;
3785 driver->set_termios = op->set_termios;
3786 driver->throttle = op->throttle;
3787 driver->unthrottle = op->unthrottle;
3788 driver->stop = op->stop;
3789 driver->start = op->start;
3790 driver->hangup = op->hangup;
3791 driver->break_ctl = op->break_ctl;
3792 driver->flush_buffer = op->flush_buffer;
3793 driver->set_ldisc = op->set_ldisc;
3794 driver->wait_until_sent = op->wait_until_sent;
3795 driver->send_xchar = op->send_xchar;
3796 driver->read_proc = op->read_proc;
3797 driver->write_proc = op->write_proc;
3798 driver->tiocmget = op->tiocmget;
3799 driver->tiocmset = op->tiocmset;
3803 EXPORT_SYMBOL(alloc_tty_driver);
3804 EXPORT_SYMBOL(put_tty_driver);
3805 EXPORT_SYMBOL(tty_set_operations);
3808 * Called by a tty driver to register itself.
3810 int tty_register_driver(struct tty_driver *driver)
3812 int error;
3813 int i;
3814 dev_t dev;
3815 void **p = NULL;
3817 if (driver->flags & TTY_DRIVER_INSTALLED)
3818 return 0;
3820 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3821 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3822 if (!p)
3823 return -ENOMEM;
3826 if (!driver->major) {
3827 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3828 driver->name);
3829 if (!error) {
3830 driver->major = MAJOR(dev);
3831 driver->minor_start = MINOR(dev);
3833 } else {
3834 dev = MKDEV(driver->major, driver->minor_start);
3835 error = register_chrdev_region(dev, driver->num, driver->name);
3837 if (error < 0) {
3838 kfree(p);
3839 return error;
3842 if (p) {
3843 driver->ttys = (struct tty_struct **)p;
3844 driver->termios = (struct ktermios **)(p + driver->num);
3845 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3846 } else {
3847 driver->ttys = NULL;
3848 driver->termios = NULL;
3849 driver->termios_locked = NULL;
3852 cdev_init(&driver->cdev, &tty_fops);
3853 driver->cdev.owner = driver->owner;
3854 error = cdev_add(&driver->cdev, dev, driver->num);
3855 if (error) {
3856 unregister_chrdev_region(dev, driver->num);
3857 driver->ttys = NULL;
3858 driver->termios = driver->termios_locked = NULL;
3859 kfree(p);
3860 return error;
3863 if (!driver->put_char)
3864 driver->put_char = tty_default_put_char;
3866 mutex_lock(&tty_mutex);
3867 list_add(&driver->tty_drivers, &tty_drivers);
3868 mutex_unlock(&tty_mutex);
3870 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3871 for(i = 0; i < driver->num; i++)
3872 tty_register_device(driver, i, NULL);
3874 proc_tty_register_driver(driver);
3875 return 0;
3878 EXPORT_SYMBOL(tty_register_driver);
3881 * Called by a tty driver to unregister itself.
3883 int tty_unregister_driver(struct tty_driver *driver)
3885 int i;
3886 struct ktermios *tp;
3887 void *p;
3889 if (driver->refcount)
3890 return -EBUSY;
3892 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3893 driver->num);
3894 mutex_lock(&tty_mutex);
3895 list_del(&driver->tty_drivers);
3896 mutex_unlock(&tty_mutex);
3899 * Free the termios and termios_locked structures because
3900 * we don't want to get memory leaks when modular tty
3901 * drivers are removed from the kernel.
3903 for (i = 0; i < driver->num; i++) {
3904 tp = driver->termios[i];
3905 if (tp) {
3906 driver->termios[i] = NULL;
3907 kfree(tp);
3909 tp = driver->termios_locked[i];
3910 if (tp) {
3911 driver->termios_locked[i] = NULL;
3912 kfree(tp);
3914 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3915 tty_unregister_device(driver, i);
3917 p = driver->ttys;
3918 proc_tty_unregister_driver(driver);
3919 driver->ttys = NULL;
3920 driver->termios = driver->termios_locked = NULL;
3921 kfree(p);
3922 cdev_del(&driver->cdev);
3923 return 0;
3925 EXPORT_SYMBOL(tty_unregister_driver);
3927 dev_t tty_devnum(struct tty_struct *tty)
3929 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3931 EXPORT_SYMBOL(tty_devnum);
3933 void proc_clear_tty(struct task_struct *p)
3935 spin_lock_irq(&p->sighand->siglock);
3936 p->signal->tty = NULL;
3937 spin_unlock_irq(&p->sighand->siglock);
3939 EXPORT_SYMBOL(proc_clear_tty);
3941 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3943 if (tty) {
3944 /* We should not have a session or pgrp to here but.... */
3945 put_pid(tty->session);
3946 put_pid(tty->pgrp);
3947 tty->session = get_pid(task_session(tsk));
3948 tty->pgrp = get_pid(task_pgrp(tsk));
3950 put_pid(tsk->signal->tty_old_pgrp);
3951 tsk->signal->tty = tty;
3952 tsk->signal->tty_old_pgrp = NULL;
3955 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3957 spin_lock_irq(&tsk->sighand->siglock);
3958 __proc_set_tty(tsk, tty);
3959 spin_unlock_irq(&tsk->sighand->siglock);
3962 struct tty_struct *get_current_tty(void)
3964 struct tty_struct *tty;
3965 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3966 tty = current->signal->tty;
3968 * session->tty can be changed/cleared from under us, make sure we
3969 * issue the load. The obtained pointer, when not NULL, is valid as
3970 * long as we hold tty_mutex.
3972 barrier();
3973 return tty;
3975 EXPORT_SYMBOL_GPL(get_current_tty);
3978 * Initialize the console device. This is called *early*, so
3979 * we can't necessarily depend on lots of kernel help here.
3980 * Just do some early initializations, and do the complex setup
3981 * later.
3983 void __init console_init(void)
3985 initcall_t *call;
3987 /* Setup the default TTY line discipline. */
3988 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3991 * set up the console device so that later boot sequences can
3992 * inform about problems etc..
3994 call = __con_initcall_start;
3995 while (call < __con_initcall_end) {
3996 (*call)();
3997 call++;
4001 #ifdef CONFIG_VT
4002 extern int vty_init(void);
4003 #endif
4005 static int __init tty_class_init(void)
4007 tty_class = class_create(THIS_MODULE, "tty");
4008 if (IS_ERR(tty_class))
4009 return PTR_ERR(tty_class);
4010 return 0;
4013 postcore_initcall(tty_class_init);
4015 /* 3/2004 jmc: why do these devices exist? */
4017 static struct cdev tty_cdev, console_cdev;
4018 #ifdef CONFIG_UNIX98_PTYS
4019 static struct cdev ptmx_cdev;
4020 #endif
4021 #ifdef CONFIG_VT
4022 static struct cdev vc0_cdev;
4023 #endif
4026 * Ok, now we can initialize the rest of the tty devices and can count
4027 * on memory allocations, interrupts etc..
4029 static int __init tty_init(void)
4031 cdev_init(&tty_cdev, &tty_fops);
4032 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4033 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4034 panic("Couldn't register /dev/tty driver\n");
4035 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4037 cdev_init(&console_cdev, &console_fops);
4038 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4039 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4040 panic("Couldn't register /dev/console driver\n");
4041 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4043 #ifdef CONFIG_UNIX98_PTYS
4044 cdev_init(&ptmx_cdev, &ptmx_fops);
4045 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4046 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4047 panic("Couldn't register /dev/ptmx driver\n");
4048 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4049 #endif
4051 #ifdef CONFIG_VT
4052 cdev_init(&vc0_cdev, &console_fops);
4053 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4054 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4055 panic("Couldn't register /dev/tty0 driver\n");
4056 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4058 vty_init();
4059 #endif
4060 return 0;
4062 module_init(tty_init);