sh: include ax88796 in the defconfig for r7785rp
[linux-2.6/linux-2.6-openrd.git] / fs / exec.c
blob4ccaaa4b13b229ec17456789ead9aad76c8078bf
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static LIST_HEAD(formats);
70 static DEFINE_RWLOCK(binfmt_lock);
72 int register_binfmt(struct linux_binfmt * fmt)
74 if (!fmt)
75 return -EINVAL;
76 write_lock(&binfmt_lock);
77 list_add(&fmt->lh, &formats);
78 write_unlock(&binfmt_lock);
79 return 0;
82 EXPORT_SYMBOL(register_binfmt);
84 void unregister_binfmt(struct linux_binfmt * fmt)
86 write_lock(&binfmt_lock);
87 list_del(&fmt->lh);
88 write_unlock(&binfmt_lock);
91 EXPORT_SYMBOL(unregister_binfmt);
93 static inline void put_binfmt(struct linux_binfmt * fmt)
95 module_put(fmt->module);
99 * Note that a shared library must be both readable and executable due to
100 * security reasons.
102 * Also note that we take the address to load from from the file itself.
104 asmlinkage long sys_uselib(const char __user * library)
106 struct file * file;
107 struct nameidata nd;
108 int error;
110 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
111 if (error)
112 goto out;
114 error = -EINVAL;
115 if (!S_ISREG(nd.dentry->d_inode->i_mode))
116 goto exit;
118 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
119 if (error)
120 goto exit;
122 file = nameidata_to_filp(&nd, O_RDONLY);
123 error = PTR_ERR(file);
124 if (IS_ERR(file))
125 goto out;
127 error = -ENOEXEC;
128 if(file->f_op) {
129 struct linux_binfmt * fmt;
131 read_lock(&binfmt_lock);
132 list_for_each_entry(fmt, &formats, lh) {
133 if (!fmt->load_shlib)
134 continue;
135 if (!try_module_get(fmt->module))
136 continue;
137 read_unlock(&binfmt_lock);
138 error = fmt->load_shlib(file);
139 read_lock(&binfmt_lock);
140 put_binfmt(fmt);
141 if (error != -ENOEXEC)
142 break;
144 read_unlock(&binfmt_lock);
146 fput(file);
147 out:
148 return error;
149 exit:
150 release_open_intent(&nd);
151 path_release(&nd);
152 goto out;
155 #ifdef CONFIG_MMU
157 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
158 int write)
160 struct page *page;
161 int ret;
163 #ifdef CONFIG_STACK_GROWSUP
164 if (write) {
165 ret = expand_stack_downwards(bprm->vma, pos);
166 if (ret < 0)
167 return NULL;
169 #endif
170 ret = get_user_pages(current, bprm->mm, pos,
171 1, write, 1, &page, NULL);
172 if (ret <= 0)
173 return NULL;
175 if (write) {
176 struct rlimit *rlim = current->signal->rlim;
177 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 * Limit to 1/4-th the stack size for the argv+env strings.
181 * This ensures that:
182 * - the remaining binfmt code will not run out of stack space,
183 * - the program will have a reasonable amount of stack left
184 * to work from.
186 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
187 put_page(page);
188 return NULL;
192 return page;
195 static void put_arg_page(struct page *page)
197 put_page(page);
200 static void free_arg_page(struct linux_binprm *bprm, int i)
204 static void free_arg_pages(struct linux_binprm *bprm)
208 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
209 struct page *page)
211 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
214 static int __bprm_mm_init(struct linux_binprm *bprm)
216 int err = -ENOMEM;
217 struct vm_area_struct *vma = NULL;
218 struct mm_struct *mm = bprm->mm;
220 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
221 if (!vma)
222 goto err;
224 down_write(&mm->mmap_sem);
225 vma->vm_mm = mm;
228 * Place the stack at the largest stack address the architecture
229 * supports. Later, we'll move this to an appropriate place. We don't
230 * use STACK_TOP because that can depend on attributes which aren't
231 * configured yet.
233 vma->vm_end = STACK_TOP_MAX;
234 vma->vm_start = vma->vm_end - PAGE_SIZE;
236 vma->vm_flags = VM_STACK_FLAGS;
237 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
238 err = insert_vm_struct(mm, vma);
239 if (err) {
240 up_write(&mm->mmap_sem);
241 goto err;
244 mm->stack_vm = mm->total_vm = 1;
245 up_write(&mm->mmap_sem);
247 bprm->p = vma->vm_end - sizeof(void *);
249 return 0;
251 err:
252 if (vma) {
253 bprm->vma = NULL;
254 kmem_cache_free(vm_area_cachep, vma);
257 return err;
260 static bool valid_arg_len(struct linux_binprm *bprm, long len)
262 return len <= MAX_ARG_STRLEN;
265 #else
267 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
268 int write)
270 struct page *page;
272 page = bprm->page[pos / PAGE_SIZE];
273 if (!page && write) {
274 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
275 if (!page)
276 return NULL;
277 bprm->page[pos / PAGE_SIZE] = page;
280 return page;
283 static void put_arg_page(struct page *page)
287 static void free_arg_page(struct linux_binprm *bprm, int i)
289 if (bprm->page[i]) {
290 __free_page(bprm->page[i]);
291 bprm->page[i] = NULL;
295 static void free_arg_pages(struct linux_binprm *bprm)
297 int i;
299 for (i = 0; i < MAX_ARG_PAGES; i++)
300 free_arg_page(bprm, i);
303 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 struct page *page)
308 static int __bprm_mm_init(struct linux_binprm *bprm)
310 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
311 return 0;
314 static bool valid_arg_len(struct linux_binprm *bprm, long len)
316 return len <= bprm->p;
319 #endif /* CONFIG_MMU */
322 * Create a new mm_struct and populate it with a temporary stack
323 * vm_area_struct. We don't have enough context at this point to set the stack
324 * flags, permissions, and offset, so we use temporary values. We'll update
325 * them later in setup_arg_pages().
327 int bprm_mm_init(struct linux_binprm *bprm)
329 int err;
330 struct mm_struct *mm = NULL;
332 bprm->mm = mm = mm_alloc();
333 err = -ENOMEM;
334 if (!mm)
335 goto err;
337 err = init_new_context(current, mm);
338 if (err)
339 goto err;
341 err = __bprm_mm_init(bprm);
342 if (err)
343 goto err;
345 return 0;
347 err:
348 if (mm) {
349 bprm->mm = NULL;
350 mmdrop(mm);
353 return err;
357 * count() counts the number of strings in array ARGV.
359 static int count(char __user * __user * argv, int max)
361 int i = 0;
363 if (argv != NULL) {
364 for (;;) {
365 char __user * p;
367 if (get_user(p, argv))
368 return -EFAULT;
369 if (!p)
370 break;
371 argv++;
372 if(++i > max)
373 return -E2BIG;
374 cond_resched();
377 return i;
381 * 'copy_strings()' copies argument/environment strings from the old
382 * processes's memory to the new process's stack. The call to get_user_pages()
383 * ensures the destination page is created and not swapped out.
385 static int copy_strings(int argc, char __user * __user * argv,
386 struct linux_binprm *bprm)
388 struct page *kmapped_page = NULL;
389 char *kaddr = NULL;
390 unsigned long kpos = 0;
391 int ret;
393 while (argc-- > 0) {
394 char __user *str;
395 int len;
396 unsigned long pos;
398 if (get_user(str, argv+argc) ||
399 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
400 ret = -EFAULT;
401 goto out;
404 if (!valid_arg_len(bprm, len)) {
405 ret = -E2BIG;
406 goto out;
409 /* We're going to work our way backwords. */
410 pos = bprm->p;
411 str += len;
412 bprm->p -= len;
414 while (len > 0) {
415 int offset, bytes_to_copy;
417 offset = pos % PAGE_SIZE;
418 if (offset == 0)
419 offset = PAGE_SIZE;
421 bytes_to_copy = offset;
422 if (bytes_to_copy > len)
423 bytes_to_copy = len;
425 offset -= bytes_to_copy;
426 pos -= bytes_to_copy;
427 str -= bytes_to_copy;
428 len -= bytes_to_copy;
430 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
431 struct page *page;
433 page = get_arg_page(bprm, pos, 1);
434 if (!page) {
435 ret = -E2BIG;
436 goto out;
439 if (kmapped_page) {
440 flush_kernel_dcache_page(kmapped_page);
441 kunmap(kmapped_page);
442 put_arg_page(kmapped_page);
444 kmapped_page = page;
445 kaddr = kmap(kmapped_page);
446 kpos = pos & PAGE_MASK;
447 flush_arg_page(bprm, kpos, kmapped_page);
449 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
450 ret = -EFAULT;
451 goto out;
455 ret = 0;
456 out:
457 if (kmapped_page) {
458 flush_kernel_dcache_page(kmapped_page);
459 kunmap(kmapped_page);
460 put_arg_page(kmapped_page);
462 return ret;
466 * Like copy_strings, but get argv and its values from kernel memory.
468 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
470 int r;
471 mm_segment_t oldfs = get_fs();
472 set_fs(KERNEL_DS);
473 r = copy_strings(argc, (char __user * __user *)argv, bprm);
474 set_fs(oldfs);
475 return r;
477 EXPORT_SYMBOL(copy_strings_kernel);
479 #ifdef CONFIG_MMU
482 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
483 * the binfmt code determines where the new stack should reside, we shift it to
484 * its final location. The process proceeds as follows:
486 * 1) Use shift to calculate the new vma endpoints.
487 * 2) Extend vma to cover both the old and new ranges. This ensures the
488 * arguments passed to subsequent functions are consistent.
489 * 3) Move vma's page tables to the new range.
490 * 4) Free up any cleared pgd range.
491 * 5) Shrink the vma to cover only the new range.
493 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
495 struct mm_struct *mm = vma->vm_mm;
496 unsigned long old_start = vma->vm_start;
497 unsigned long old_end = vma->vm_end;
498 unsigned long length = old_end - old_start;
499 unsigned long new_start = old_start - shift;
500 unsigned long new_end = old_end - shift;
501 struct mmu_gather *tlb;
503 BUG_ON(new_start > new_end);
506 * ensure there are no vmas between where we want to go
507 * and where we are
509 if (vma != find_vma(mm, new_start))
510 return -EFAULT;
513 * cover the whole range: [new_start, old_end)
515 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
518 * move the page tables downwards, on failure we rely on
519 * process cleanup to remove whatever mess we made.
521 if (length != move_page_tables(vma, old_start,
522 vma, new_start, length))
523 return -ENOMEM;
525 lru_add_drain();
526 tlb = tlb_gather_mmu(mm, 0);
527 if (new_end > old_start) {
529 * when the old and new regions overlap clear from new_end.
531 free_pgd_range(&tlb, new_end, old_end, new_end,
532 vma->vm_next ? vma->vm_next->vm_start : 0);
533 } else {
535 * otherwise, clean from old_start; this is done to not touch
536 * the address space in [new_end, old_start) some architectures
537 * have constraints on va-space that make this illegal (IA64) -
538 * for the others its just a little faster.
540 free_pgd_range(&tlb, old_start, old_end, new_end,
541 vma->vm_next ? vma->vm_next->vm_start : 0);
543 tlb_finish_mmu(tlb, new_end, old_end);
546 * shrink the vma to just the new range.
548 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
550 return 0;
553 #define EXTRA_STACK_VM_PAGES 20 /* random */
556 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
557 * the stack is optionally relocated, and some extra space is added.
559 int setup_arg_pages(struct linux_binprm *bprm,
560 unsigned long stack_top,
561 int executable_stack)
563 unsigned long ret;
564 unsigned long stack_shift;
565 struct mm_struct *mm = current->mm;
566 struct vm_area_struct *vma = bprm->vma;
567 struct vm_area_struct *prev = NULL;
568 unsigned long vm_flags;
569 unsigned long stack_base;
571 #ifdef CONFIG_STACK_GROWSUP
572 /* Limit stack size to 1GB */
573 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
574 if (stack_base > (1 << 30))
575 stack_base = 1 << 30;
577 /* Make sure we didn't let the argument array grow too large. */
578 if (vma->vm_end - vma->vm_start > stack_base)
579 return -ENOMEM;
581 stack_base = PAGE_ALIGN(stack_top - stack_base);
583 stack_shift = vma->vm_start - stack_base;
584 mm->arg_start = bprm->p - stack_shift;
585 bprm->p = vma->vm_end - stack_shift;
586 #else
587 stack_top = arch_align_stack(stack_top);
588 stack_top = PAGE_ALIGN(stack_top);
589 stack_shift = vma->vm_end - stack_top;
591 bprm->p -= stack_shift;
592 mm->arg_start = bprm->p;
593 #endif
595 if (bprm->loader)
596 bprm->loader -= stack_shift;
597 bprm->exec -= stack_shift;
599 down_write(&mm->mmap_sem);
600 vm_flags = vma->vm_flags;
603 * Adjust stack execute permissions; explicitly enable for
604 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
605 * (arch default) otherwise.
607 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
608 vm_flags |= VM_EXEC;
609 else if (executable_stack == EXSTACK_DISABLE_X)
610 vm_flags &= ~VM_EXEC;
611 vm_flags |= mm->def_flags;
613 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
614 vm_flags);
615 if (ret)
616 goto out_unlock;
617 BUG_ON(prev != vma);
619 /* Move stack pages down in memory. */
620 if (stack_shift) {
621 ret = shift_arg_pages(vma, stack_shift);
622 if (ret) {
623 up_write(&mm->mmap_sem);
624 return ret;
628 #ifdef CONFIG_STACK_GROWSUP
629 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
630 #else
631 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
632 #endif
633 ret = expand_stack(vma, stack_base);
634 if (ret)
635 ret = -EFAULT;
637 out_unlock:
638 up_write(&mm->mmap_sem);
639 return 0;
641 EXPORT_SYMBOL(setup_arg_pages);
643 #endif /* CONFIG_MMU */
645 struct file *open_exec(const char *name)
647 struct nameidata nd;
648 int err;
649 struct file *file;
651 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
652 file = ERR_PTR(err);
654 if (!err) {
655 struct inode *inode = nd.dentry->d_inode;
656 file = ERR_PTR(-EACCES);
657 if (S_ISREG(inode->i_mode)) {
658 int err = vfs_permission(&nd, MAY_EXEC);
659 file = ERR_PTR(err);
660 if (!err) {
661 file = nameidata_to_filp(&nd, O_RDONLY);
662 if (!IS_ERR(file)) {
663 err = deny_write_access(file);
664 if (err) {
665 fput(file);
666 file = ERR_PTR(err);
669 out:
670 return file;
673 release_open_intent(&nd);
674 path_release(&nd);
676 goto out;
679 EXPORT_SYMBOL(open_exec);
681 int kernel_read(struct file *file, unsigned long offset,
682 char *addr, unsigned long count)
684 mm_segment_t old_fs;
685 loff_t pos = offset;
686 int result;
688 old_fs = get_fs();
689 set_fs(get_ds());
690 /* The cast to a user pointer is valid due to the set_fs() */
691 result = vfs_read(file, (void __user *)addr, count, &pos);
692 set_fs(old_fs);
693 return result;
696 EXPORT_SYMBOL(kernel_read);
698 static int exec_mmap(struct mm_struct *mm)
700 struct task_struct *tsk;
701 struct mm_struct * old_mm, *active_mm;
703 /* Notify parent that we're no longer interested in the old VM */
704 tsk = current;
705 old_mm = current->mm;
706 mm_release(tsk, old_mm);
708 if (old_mm) {
710 * Make sure that if there is a core dump in progress
711 * for the old mm, we get out and die instead of going
712 * through with the exec. We must hold mmap_sem around
713 * checking core_waiters and changing tsk->mm. The
714 * core-inducing thread will increment core_waiters for
715 * each thread whose ->mm == old_mm.
717 down_read(&old_mm->mmap_sem);
718 if (unlikely(old_mm->core_waiters)) {
719 up_read(&old_mm->mmap_sem);
720 return -EINTR;
723 task_lock(tsk);
724 active_mm = tsk->active_mm;
725 tsk->mm = mm;
726 tsk->active_mm = mm;
727 activate_mm(active_mm, mm);
728 task_unlock(tsk);
729 arch_pick_mmap_layout(mm);
730 if (old_mm) {
731 up_read(&old_mm->mmap_sem);
732 BUG_ON(active_mm != old_mm);
733 mmput(old_mm);
734 return 0;
736 mmdrop(active_mm);
737 return 0;
741 * This function makes sure the current process has its own signal table,
742 * so that flush_signal_handlers can later reset the handlers without
743 * disturbing other processes. (Other processes might share the signal
744 * table via the CLONE_SIGHAND option to clone().)
746 static int de_thread(struct task_struct *tsk)
748 struct signal_struct *sig = tsk->signal;
749 struct sighand_struct *oldsighand = tsk->sighand;
750 spinlock_t *lock = &oldsighand->siglock;
751 struct task_struct *leader = NULL;
752 int count;
754 if (thread_group_empty(tsk))
755 goto no_thread_group;
758 * Kill all other threads in the thread group.
759 * We must hold tasklist_lock to call zap_other_threads.
761 read_lock(&tasklist_lock);
762 spin_lock_irq(lock);
763 if (sig->flags & SIGNAL_GROUP_EXIT) {
765 * Another group action in progress, just
766 * return so that the signal is processed.
768 spin_unlock_irq(lock);
769 read_unlock(&tasklist_lock);
770 return -EAGAIN;
774 * child_reaper ignores SIGKILL, change it now.
775 * Reparenting needs write_lock on tasklist_lock,
776 * so it is safe to do it under read_lock.
778 if (unlikely(tsk->group_leader == task_child_reaper(tsk)))
779 task_active_pid_ns(tsk)->child_reaper = tsk;
781 zap_other_threads(tsk);
782 read_unlock(&tasklist_lock);
785 * Account for the thread group leader hanging around:
787 count = 1;
788 if (!thread_group_leader(tsk)) {
789 count = 2;
791 * The SIGALRM timer survives the exec, but needs to point
792 * at us as the new group leader now. We have a race with
793 * a timer firing now getting the old leader, so we need to
794 * synchronize with any firing (by calling del_timer_sync)
795 * before we can safely let the old group leader die.
797 sig->tsk = tsk;
798 spin_unlock_irq(lock);
799 if (hrtimer_cancel(&sig->real_timer))
800 hrtimer_restart(&sig->real_timer);
801 spin_lock_irq(lock);
804 sig->notify_count = count;
805 sig->group_exit_task = tsk;
806 while (atomic_read(&sig->count) > count) {
807 __set_current_state(TASK_UNINTERRUPTIBLE);
808 spin_unlock_irq(lock);
809 schedule();
810 spin_lock_irq(lock);
812 spin_unlock_irq(lock);
815 * At this point all other threads have exited, all we have to
816 * do is to wait for the thread group leader to become inactive,
817 * and to assume its PID:
819 if (!thread_group_leader(tsk)) {
820 leader = tsk->group_leader;
822 sig->notify_count = -1;
823 for (;;) {
824 write_lock_irq(&tasklist_lock);
825 if (likely(leader->exit_state))
826 break;
827 __set_current_state(TASK_UNINTERRUPTIBLE);
828 write_unlock_irq(&tasklist_lock);
829 schedule();
833 * The only record we have of the real-time age of a
834 * process, regardless of execs it's done, is start_time.
835 * All the past CPU time is accumulated in signal_struct
836 * from sister threads now dead. But in this non-leader
837 * exec, nothing survives from the original leader thread,
838 * whose birth marks the true age of this process now.
839 * When we take on its identity by switching to its PID, we
840 * also take its birthdate (always earlier than our own).
842 tsk->start_time = leader->start_time;
844 BUG_ON(!same_thread_group(leader, tsk));
845 BUG_ON(has_group_leader_pid(tsk));
847 * An exec() starts a new thread group with the
848 * TGID of the previous thread group. Rehash the
849 * two threads with a switched PID, and release
850 * the former thread group leader:
853 /* Become a process group leader with the old leader's pid.
854 * The old leader becomes a thread of the this thread group.
855 * Note: The old leader also uses this pid until release_task
856 * is called. Odd but simple and correct.
858 detach_pid(tsk, PIDTYPE_PID);
859 tsk->pid = leader->pid;
860 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
861 transfer_pid(leader, tsk, PIDTYPE_PGID);
862 transfer_pid(leader, tsk, PIDTYPE_SID);
863 list_replace_rcu(&leader->tasks, &tsk->tasks);
865 tsk->group_leader = tsk;
866 leader->group_leader = tsk;
868 tsk->exit_signal = SIGCHLD;
870 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
871 leader->exit_state = EXIT_DEAD;
873 write_unlock_irq(&tasklist_lock);
876 sig->group_exit_task = NULL;
877 sig->notify_count = 0;
879 * There may be one thread left which is just exiting,
880 * but it's safe to stop telling the group to kill themselves.
882 sig->flags = 0;
884 no_thread_group:
885 exit_itimers(sig);
886 if (leader)
887 release_task(leader);
889 if (atomic_read(&oldsighand->count) != 1) {
890 struct sighand_struct *newsighand;
892 * This ->sighand is shared with the CLONE_SIGHAND
893 * but not CLONE_THREAD task, switch to the new one.
895 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
896 if (!newsighand)
897 return -ENOMEM;
899 atomic_set(&newsighand->count, 1);
900 memcpy(newsighand->action, oldsighand->action,
901 sizeof(newsighand->action));
903 write_lock_irq(&tasklist_lock);
904 spin_lock(&oldsighand->siglock);
905 rcu_assign_pointer(tsk->sighand, newsighand);
906 spin_unlock(&oldsighand->siglock);
907 write_unlock_irq(&tasklist_lock);
909 __cleanup_sighand(oldsighand);
912 BUG_ON(!thread_group_leader(tsk));
913 return 0;
917 * These functions flushes out all traces of the currently running executable
918 * so that a new one can be started
920 static void flush_old_files(struct files_struct * files)
922 long j = -1;
923 struct fdtable *fdt;
925 spin_lock(&files->file_lock);
926 for (;;) {
927 unsigned long set, i;
929 j++;
930 i = j * __NFDBITS;
931 fdt = files_fdtable(files);
932 if (i >= fdt->max_fds)
933 break;
934 set = fdt->close_on_exec->fds_bits[j];
935 if (!set)
936 continue;
937 fdt->close_on_exec->fds_bits[j] = 0;
938 spin_unlock(&files->file_lock);
939 for ( ; set ; i++,set >>= 1) {
940 if (set & 1) {
941 sys_close(i);
944 spin_lock(&files->file_lock);
947 spin_unlock(&files->file_lock);
950 void get_task_comm(char *buf, struct task_struct *tsk)
952 /* buf must be at least sizeof(tsk->comm) in size */
953 task_lock(tsk);
954 strncpy(buf, tsk->comm, sizeof(tsk->comm));
955 task_unlock(tsk);
958 void set_task_comm(struct task_struct *tsk, char *buf)
960 task_lock(tsk);
961 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
962 task_unlock(tsk);
965 int flush_old_exec(struct linux_binprm * bprm)
967 char * name;
968 int i, ch, retval;
969 struct files_struct *files;
970 char tcomm[sizeof(current->comm)];
973 * Make sure we have a private signal table and that
974 * we are unassociated from the previous thread group.
976 retval = de_thread(current);
977 if (retval)
978 goto out;
981 * Make sure we have private file handles. Ask the
982 * fork helper to do the work for us and the exit
983 * helper to do the cleanup of the old one.
985 files = current->files; /* refcounted so safe to hold */
986 retval = unshare_files();
987 if (retval)
988 goto out;
990 * Release all of the old mmap stuff
992 retval = exec_mmap(bprm->mm);
993 if (retval)
994 goto mmap_failed;
996 bprm->mm = NULL; /* We're using it now */
998 /* This is the point of no return */
999 put_files_struct(files);
1001 current->sas_ss_sp = current->sas_ss_size = 0;
1003 if (current->euid == current->uid && current->egid == current->gid)
1004 set_dumpable(current->mm, 1);
1005 else
1006 set_dumpable(current->mm, suid_dumpable);
1008 name = bprm->filename;
1010 /* Copies the binary name from after last slash */
1011 for (i=0; (ch = *(name++)) != '\0';) {
1012 if (ch == '/')
1013 i = 0; /* overwrite what we wrote */
1014 else
1015 if (i < (sizeof(tcomm) - 1))
1016 tcomm[i++] = ch;
1018 tcomm[i] = '\0';
1019 set_task_comm(current, tcomm);
1021 current->flags &= ~PF_RANDOMIZE;
1022 flush_thread();
1024 /* Set the new mm task size. We have to do that late because it may
1025 * depend on TIF_32BIT which is only updated in flush_thread() on
1026 * some architectures like powerpc
1028 current->mm->task_size = TASK_SIZE;
1030 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1031 suid_keys(current);
1032 set_dumpable(current->mm, suid_dumpable);
1033 current->pdeath_signal = 0;
1034 } else if (file_permission(bprm->file, MAY_READ) ||
1035 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1036 suid_keys(current);
1037 set_dumpable(current->mm, suid_dumpable);
1040 /* An exec changes our domain. We are no longer part of the thread
1041 group */
1043 current->self_exec_id++;
1045 flush_signal_handlers(current, 0);
1046 flush_old_files(current->files);
1048 return 0;
1050 mmap_failed:
1051 reset_files_struct(current, files);
1052 out:
1053 return retval;
1056 EXPORT_SYMBOL(flush_old_exec);
1059 * Fill the binprm structure from the inode.
1060 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1062 int prepare_binprm(struct linux_binprm *bprm)
1064 int mode;
1065 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1066 int retval;
1068 mode = inode->i_mode;
1069 if (bprm->file->f_op == NULL)
1070 return -EACCES;
1072 bprm->e_uid = current->euid;
1073 bprm->e_gid = current->egid;
1075 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1076 /* Set-uid? */
1077 if (mode & S_ISUID) {
1078 current->personality &= ~PER_CLEAR_ON_SETID;
1079 bprm->e_uid = inode->i_uid;
1082 /* Set-gid? */
1084 * If setgid is set but no group execute bit then this
1085 * is a candidate for mandatory locking, not a setgid
1086 * executable.
1088 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1089 current->personality &= ~PER_CLEAR_ON_SETID;
1090 bprm->e_gid = inode->i_gid;
1094 /* fill in binprm security blob */
1095 retval = security_bprm_set(bprm);
1096 if (retval)
1097 return retval;
1099 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1100 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1103 EXPORT_SYMBOL(prepare_binprm);
1105 static int unsafe_exec(struct task_struct *p)
1107 int unsafe = 0;
1108 if (p->ptrace & PT_PTRACED) {
1109 if (p->ptrace & PT_PTRACE_CAP)
1110 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1111 else
1112 unsafe |= LSM_UNSAFE_PTRACE;
1114 if (atomic_read(&p->fs->count) > 1 ||
1115 atomic_read(&p->files->count) > 1 ||
1116 atomic_read(&p->sighand->count) > 1)
1117 unsafe |= LSM_UNSAFE_SHARE;
1119 return unsafe;
1122 void compute_creds(struct linux_binprm *bprm)
1124 int unsafe;
1126 if (bprm->e_uid != current->uid) {
1127 suid_keys(current);
1128 current->pdeath_signal = 0;
1130 exec_keys(current);
1132 task_lock(current);
1133 unsafe = unsafe_exec(current);
1134 security_bprm_apply_creds(bprm, unsafe);
1135 task_unlock(current);
1136 security_bprm_post_apply_creds(bprm);
1138 EXPORT_SYMBOL(compute_creds);
1141 * Arguments are '\0' separated strings found at the location bprm->p
1142 * points to; chop off the first by relocating brpm->p to right after
1143 * the first '\0' encountered.
1145 int remove_arg_zero(struct linux_binprm *bprm)
1147 int ret = 0;
1148 unsigned long offset;
1149 char *kaddr;
1150 struct page *page;
1152 if (!bprm->argc)
1153 return 0;
1155 do {
1156 offset = bprm->p & ~PAGE_MASK;
1157 page = get_arg_page(bprm, bprm->p, 0);
1158 if (!page) {
1159 ret = -EFAULT;
1160 goto out;
1162 kaddr = kmap_atomic(page, KM_USER0);
1164 for (; offset < PAGE_SIZE && kaddr[offset];
1165 offset++, bprm->p++)
1168 kunmap_atomic(kaddr, KM_USER0);
1169 put_arg_page(page);
1171 if (offset == PAGE_SIZE)
1172 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1173 } while (offset == PAGE_SIZE);
1175 bprm->p++;
1176 bprm->argc--;
1177 ret = 0;
1179 out:
1180 return ret;
1182 EXPORT_SYMBOL(remove_arg_zero);
1185 * cycle the list of binary formats handler, until one recognizes the image
1187 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1189 int try,retval;
1190 struct linux_binfmt *fmt;
1191 #ifdef __alpha__
1192 /* handle /sbin/loader.. */
1194 struct exec * eh = (struct exec *) bprm->buf;
1196 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1197 (eh->fh.f_flags & 0x3000) == 0x3000)
1199 struct file * file;
1200 unsigned long loader;
1202 allow_write_access(bprm->file);
1203 fput(bprm->file);
1204 bprm->file = NULL;
1206 loader = bprm->vma->vm_end - sizeof(void *);
1208 file = open_exec("/sbin/loader");
1209 retval = PTR_ERR(file);
1210 if (IS_ERR(file))
1211 return retval;
1213 /* Remember if the application is TASO. */
1214 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1216 bprm->file = file;
1217 bprm->loader = loader;
1218 retval = prepare_binprm(bprm);
1219 if (retval<0)
1220 return retval;
1221 /* should call search_binary_handler recursively here,
1222 but it does not matter */
1225 #endif
1226 retval = security_bprm_check(bprm);
1227 if (retval)
1228 return retval;
1230 /* kernel module loader fixup */
1231 /* so we don't try to load run modprobe in kernel space. */
1232 set_fs(USER_DS);
1234 retval = audit_bprm(bprm);
1235 if (retval)
1236 return retval;
1238 retval = -ENOENT;
1239 for (try=0; try<2; try++) {
1240 read_lock(&binfmt_lock);
1241 list_for_each_entry(fmt, &formats, lh) {
1242 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1243 if (!fn)
1244 continue;
1245 if (!try_module_get(fmt->module))
1246 continue;
1247 read_unlock(&binfmt_lock);
1248 retval = fn(bprm, regs);
1249 if (retval >= 0) {
1250 put_binfmt(fmt);
1251 allow_write_access(bprm->file);
1252 if (bprm->file)
1253 fput(bprm->file);
1254 bprm->file = NULL;
1255 current->did_exec = 1;
1256 proc_exec_connector(current);
1257 return retval;
1259 read_lock(&binfmt_lock);
1260 put_binfmt(fmt);
1261 if (retval != -ENOEXEC || bprm->mm == NULL)
1262 break;
1263 if (!bprm->file) {
1264 read_unlock(&binfmt_lock);
1265 return retval;
1268 read_unlock(&binfmt_lock);
1269 if (retval != -ENOEXEC || bprm->mm == NULL) {
1270 break;
1271 #ifdef CONFIG_KMOD
1272 }else{
1273 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1274 if (printable(bprm->buf[0]) &&
1275 printable(bprm->buf[1]) &&
1276 printable(bprm->buf[2]) &&
1277 printable(bprm->buf[3]))
1278 break; /* -ENOEXEC */
1279 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1280 #endif
1283 return retval;
1286 EXPORT_SYMBOL(search_binary_handler);
1289 * sys_execve() executes a new program.
1291 int do_execve(char * filename,
1292 char __user *__user *argv,
1293 char __user *__user *envp,
1294 struct pt_regs * regs)
1296 struct linux_binprm *bprm;
1297 struct file *file;
1298 unsigned long env_p;
1299 int retval;
1301 retval = -ENOMEM;
1302 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1303 if (!bprm)
1304 goto out_ret;
1306 file = open_exec(filename);
1307 retval = PTR_ERR(file);
1308 if (IS_ERR(file))
1309 goto out_kfree;
1311 sched_exec();
1313 bprm->file = file;
1314 bprm->filename = filename;
1315 bprm->interp = filename;
1317 retval = bprm_mm_init(bprm);
1318 if (retval)
1319 goto out_file;
1321 bprm->argc = count(argv, MAX_ARG_STRINGS);
1322 if ((retval = bprm->argc) < 0)
1323 goto out_mm;
1325 bprm->envc = count(envp, MAX_ARG_STRINGS);
1326 if ((retval = bprm->envc) < 0)
1327 goto out_mm;
1329 retval = security_bprm_alloc(bprm);
1330 if (retval)
1331 goto out;
1333 retval = prepare_binprm(bprm);
1334 if (retval < 0)
1335 goto out;
1337 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1338 if (retval < 0)
1339 goto out;
1341 bprm->exec = bprm->p;
1342 retval = copy_strings(bprm->envc, envp, bprm);
1343 if (retval < 0)
1344 goto out;
1346 env_p = bprm->p;
1347 retval = copy_strings(bprm->argc, argv, bprm);
1348 if (retval < 0)
1349 goto out;
1350 bprm->argv_len = env_p - bprm->p;
1352 retval = search_binary_handler(bprm,regs);
1353 if (retval >= 0) {
1354 /* execve success */
1355 free_arg_pages(bprm);
1356 security_bprm_free(bprm);
1357 acct_update_integrals(current);
1358 kfree(bprm);
1359 return retval;
1362 out:
1363 free_arg_pages(bprm);
1364 if (bprm->security)
1365 security_bprm_free(bprm);
1367 out_mm:
1368 if (bprm->mm)
1369 mmput (bprm->mm);
1371 out_file:
1372 if (bprm->file) {
1373 allow_write_access(bprm->file);
1374 fput(bprm->file);
1376 out_kfree:
1377 kfree(bprm);
1379 out_ret:
1380 return retval;
1383 int set_binfmt(struct linux_binfmt *new)
1385 struct linux_binfmt *old = current->binfmt;
1387 if (new) {
1388 if (!try_module_get(new->module))
1389 return -1;
1391 current->binfmt = new;
1392 if (old)
1393 module_put(old->module);
1394 return 0;
1397 EXPORT_SYMBOL(set_binfmt);
1399 /* format_corename will inspect the pattern parameter, and output a
1400 * name into corename, which must have space for at least
1401 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1403 static int format_corename(char *corename, const char *pattern, long signr)
1405 const char *pat_ptr = pattern;
1406 char *out_ptr = corename;
1407 char *const out_end = corename + CORENAME_MAX_SIZE;
1408 int rc;
1409 int pid_in_pattern = 0;
1410 int ispipe = 0;
1412 if (*pattern == '|')
1413 ispipe = 1;
1415 /* Repeat as long as we have more pattern to process and more output
1416 space */
1417 while (*pat_ptr) {
1418 if (*pat_ptr != '%') {
1419 if (out_ptr == out_end)
1420 goto out;
1421 *out_ptr++ = *pat_ptr++;
1422 } else {
1423 switch (*++pat_ptr) {
1424 case 0:
1425 goto out;
1426 /* Double percent, output one percent */
1427 case '%':
1428 if (out_ptr == out_end)
1429 goto out;
1430 *out_ptr++ = '%';
1431 break;
1432 /* pid */
1433 case 'p':
1434 pid_in_pattern = 1;
1435 rc = snprintf(out_ptr, out_end - out_ptr,
1436 "%d", task_tgid_vnr(current));
1437 if (rc > out_end - out_ptr)
1438 goto out;
1439 out_ptr += rc;
1440 break;
1441 /* uid */
1442 case 'u':
1443 rc = snprintf(out_ptr, out_end - out_ptr,
1444 "%d", current->uid);
1445 if (rc > out_end - out_ptr)
1446 goto out;
1447 out_ptr += rc;
1448 break;
1449 /* gid */
1450 case 'g':
1451 rc = snprintf(out_ptr, out_end - out_ptr,
1452 "%d", current->gid);
1453 if (rc > out_end - out_ptr)
1454 goto out;
1455 out_ptr += rc;
1456 break;
1457 /* signal that caused the coredump */
1458 case 's':
1459 rc = snprintf(out_ptr, out_end - out_ptr,
1460 "%ld", signr);
1461 if (rc > out_end - out_ptr)
1462 goto out;
1463 out_ptr += rc;
1464 break;
1465 /* UNIX time of coredump */
1466 case 't': {
1467 struct timeval tv;
1468 do_gettimeofday(&tv);
1469 rc = snprintf(out_ptr, out_end - out_ptr,
1470 "%lu", tv.tv_sec);
1471 if (rc > out_end - out_ptr)
1472 goto out;
1473 out_ptr += rc;
1474 break;
1476 /* hostname */
1477 case 'h':
1478 down_read(&uts_sem);
1479 rc = snprintf(out_ptr, out_end - out_ptr,
1480 "%s", utsname()->nodename);
1481 up_read(&uts_sem);
1482 if (rc > out_end - out_ptr)
1483 goto out;
1484 out_ptr += rc;
1485 break;
1486 /* executable */
1487 case 'e':
1488 rc = snprintf(out_ptr, out_end - out_ptr,
1489 "%s", current->comm);
1490 if (rc > out_end - out_ptr)
1491 goto out;
1492 out_ptr += rc;
1493 break;
1494 /* core limit size */
1495 case 'c':
1496 rc = snprintf(out_ptr, out_end - out_ptr,
1497 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1498 if (rc > out_end - out_ptr)
1499 goto out;
1500 out_ptr += rc;
1501 break;
1502 default:
1503 break;
1505 ++pat_ptr;
1508 /* Backward compatibility with core_uses_pid:
1510 * If core_pattern does not include a %p (as is the default)
1511 * and core_uses_pid is set, then .%pid will be appended to
1512 * the filename. Do not do this for piped commands. */
1513 if (!ispipe && !pid_in_pattern
1514 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1515 rc = snprintf(out_ptr, out_end - out_ptr,
1516 ".%d", task_tgid_vnr(current));
1517 if (rc > out_end - out_ptr)
1518 goto out;
1519 out_ptr += rc;
1521 out:
1522 *out_ptr = 0;
1523 return ispipe;
1526 static void zap_process(struct task_struct *start)
1528 struct task_struct *t;
1530 start->signal->flags = SIGNAL_GROUP_EXIT;
1531 start->signal->group_stop_count = 0;
1533 t = start;
1534 do {
1535 if (t != current && t->mm) {
1536 t->mm->core_waiters++;
1537 sigaddset(&t->pending.signal, SIGKILL);
1538 signal_wake_up(t, 1);
1540 } while ((t = next_thread(t)) != start);
1543 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1544 int exit_code)
1546 struct task_struct *g, *p;
1547 unsigned long flags;
1548 int err = -EAGAIN;
1550 spin_lock_irq(&tsk->sighand->siglock);
1551 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1552 tsk->signal->group_exit_code = exit_code;
1553 zap_process(tsk);
1554 err = 0;
1556 spin_unlock_irq(&tsk->sighand->siglock);
1557 if (err)
1558 return err;
1560 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1561 goto done;
1563 rcu_read_lock();
1564 for_each_process(g) {
1565 if (g == tsk->group_leader)
1566 continue;
1568 p = g;
1569 do {
1570 if (p->mm) {
1571 if (p->mm == mm) {
1573 * p->sighand can't disappear, but
1574 * may be changed by de_thread()
1576 lock_task_sighand(p, &flags);
1577 zap_process(p);
1578 unlock_task_sighand(p, &flags);
1580 break;
1582 } while ((p = next_thread(p)) != g);
1584 rcu_read_unlock();
1585 done:
1586 return mm->core_waiters;
1589 static int coredump_wait(int exit_code)
1591 struct task_struct *tsk = current;
1592 struct mm_struct *mm = tsk->mm;
1593 struct completion startup_done;
1594 struct completion *vfork_done;
1595 int core_waiters;
1597 init_completion(&mm->core_done);
1598 init_completion(&startup_done);
1599 mm->core_startup_done = &startup_done;
1601 core_waiters = zap_threads(tsk, mm, exit_code);
1602 up_write(&mm->mmap_sem);
1604 if (unlikely(core_waiters < 0))
1605 goto fail;
1608 * Make sure nobody is waiting for us to release the VM,
1609 * otherwise we can deadlock when we wait on each other
1611 vfork_done = tsk->vfork_done;
1612 if (vfork_done) {
1613 tsk->vfork_done = NULL;
1614 complete(vfork_done);
1617 if (core_waiters)
1618 wait_for_completion(&startup_done);
1619 fail:
1620 BUG_ON(mm->core_waiters);
1621 return core_waiters;
1625 * set_dumpable converts traditional three-value dumpable to two flags and
1626 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1627 * these bits are not changed atomically. So get_dumpable can observe the
1628 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1629 * return either old dumpable or new one by paying attention to the order of
1630 * modifying the bits.
1632 * dumpable | mm->flags (binary)
1633 * old new | initial interim final
1634 * ---------+-----------------------
1635 * 0 1 | 00 01 01
1636 * 0 2 | 00 10(*) 11
1637 * 1 0 | 01 00 00
1638 * 1 2 | 01 11 11
1639 * 2 0 | 11 10(*) 00
1640 * 2 1 | 11 11 01
1642 * (*) get_dumpable regards interim value of 10 as 11.
1644 void set_dumpable(struct mm_struct *mm, int value)
1646 switch (value) {
1647 case 0:
1648 clear_bit(MMF_DUMPABLE, &mm->flags);
1649 smp_wmb();
1650 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1651 break;
1652 case 1:
1653 set_bit(MMF_DUMPABLE, &mm->flags);
1654 smp_wmb();
1655 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1656 break;
1657 case 2:
1658 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1659 smp_wmb();
1660 set_bit(MMF_DUMPABLE, &mm->flags);
1661 break;
1665 int get_dumpable(struct mm_struct *mm)
1667 int ret;
1669 ret = mm->flags & 0x3;
1670 return (ret >= 2) ? 2 : ret;
1673 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1675 char corename[CORENAME_MAX_SIZE + 1];
1676 struct mm_struct *mm = current->mm;
1677 struct linux_binfmt * binfmt;
1678 struct inode * inode;
1679 struct file * file;
1680 int retval = 0;
1681 int fsuid = current->fsuid;
1682 int flag = 0;
1683 int ispipe = 0;
1684 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1685 char **helper_argv = NULL;
1686 int helper_argc = 0;
1687 char *delimit;
1689 audit_core_dumps(signr);
1691 binfmt = current->binfmt;
1692 if (!binfmt || !binfmt->core_dump)
1693 goto fail;
1694 down_write(&mm->mmap_sem);
1696 * If another thread got here first, or we are not dumpable, bail out.
1698 if (mm->core_waiters || !get_dumpable(mm)) {
1699 up_write(&mm->mmap_sem);
1700 goto fail;
1704 * We cannot trust fsuid as being the "true" uid of the
1705 * process nor do we know its entire history. We only know it
1706 * was tainted so we dump it as root in mode 2.
1708 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1709 flag = O_EXCL; /* Stop rewrite attacks */
1710 current->fsuid = 0; /* Dump root private */
1713 retval = coredump_wait(exit_code);
1714 if (retval < 0)
1715 goto fail;
1718 * Clear any false indication of pending signals that might
1719 * be seen by the filesystem code called to write the core file.
1721 clear_thread_flag(TIF_SIGPENDING);
1724 * lock_kernel() because format_corename() is controlled by sysctl, which
1725 * uses lock_kernel()
1727 lock_kernel();
1728 ispipe = format_corename(corename, core_pattern, signr);
1729 unlock_kernel();
1731 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1732 * to a pipe. Since we're not writing directly to the filesystem
1733 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1734 * created unless the pipe reader choses to write out the core file
1735 * at which point file size limits and permissions will be imposed
1736 * as it does with any other process
1738 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1739 goto fail_unlock;
1741 if (ispipe) {
1742 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1743 /* Terminate the string before the first option */
1744 delimit = strchr(corename, ' ');
1745 if (delimit)
1746 *delimit = '\0';
1747 delimit = strrchr(helper_argv[0], '/');
1748 if (delimit)
1749 delimit++;
1750 else
1751 delimit = helper_argv[0];
1752 if (!strcmp(delimit, current->comm)) {
1753 printk(KERN_NOTICE "Recursive core dump detected, "
1754 "aborting\n");
1755 goto fail_unlock;
1758 core_limit = RLIM_INFINITY;
1760 /* SIGPIPE can happen, but it's just never processed */
1761 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1762 &file)) {
1763 printk(KERN_INFO "Core dump to %s pipe failed\n",
1764 corename);
1765 goto fail_unlock;
1767 } else
1768 file = filp_open(corename,
1769 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1770 0600);
1771 if (IS_ERR(file))
1772 goto fail_unlock;
1773 inode = file->f_path.dentry->d_inode;
1774 if (inode->i_nlink > 1)
1775 goto close_fail; /* multiple links - don't dump */
1776 if (!ispipe && d_unhashed(file->f_path.dentry))
1777 goto close_fail;
1779 /* AK: actually i see no reason to not allow this for named pipes etc.,
1780 but keep the previous behaviour for now. */
1781 if (!ispipe && !S_ISREG(inode->i_mode))
1782 goto close_fail;
1783 if (!file->f_op)
1784 goto close_fail;
1785 if (!file->f_op->write)
1786 goto close_fail;
1787 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1788 goto close_fail;
1790 retval = binfmt->core_dump(signr, regs, file, core_limit);
1792 if (retval)
1793 current->signal->group_exit_code |= 0x80;
1794 close_fail:
1795 filp_close(file, NULL);
1796 fail_unlock:
1797 if (helper_argv)
1798 argv_free(helper_argv);
1800 current->fsuid = fsuid;
1801 complete_all(&mm->core_done);
1802 fail:
1803 return retval;