gru: allow users to specify gru chiplet 3
[linux-2.6/linux-2.6-openrd.git] / drivers / misc / sgi-gru / grufault.c
blob9470303a9cb92a2588e41e46d1de11f7b530ac06
1 /*
2 * SN Platform GRU Driver
4 * FAULT HANDLER FOR GRU DETECTED TLB MISSES
6 * This file contains code that handles TLB misses within the GRU.
7 * These misses are reported either via interrupts or user polling of
8 * the user CB.
10 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/spinlock.h>
30 #include <linux/mm.h>
31 #include <linux/hugetlb.h>
32 #include <linux/device.h>
33 #include <linux/io.h>
34 #include <linux/uaccess.h>
35 #include <linux/security.h>
36 #include <asm/pgtable.h>
37 #include "gru.h"
38 #include "grutables.h"
39 #include "grulib.h"
40 #include "gru_instructions.h"
41 #include <asm/uv/uv_hub.h>
44 * Test if a physical address is a valid GRU GSEG address
46 static inline int is_gru_paddr(unsigned long paddr)
48 return paddr >= gru_start_paddr && paddr < gru_end_paddr;
52 * Find the vma of a GRU segment. Caller must hold mmap_sem.
54 struct vm_area_struct *gru_find_vma(unsigned long vaddr)
56 struct vm_area_struct *vma;
58 vma = find_vma(current->mm, vaddr);
59 if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
60 return vma;
61 return NULL;
65 * Find and lock the gts that contains the specified user vaddr.
67 * Returns:
68 * - *gts with the mmap_sem locked for read and the GTS locked.
69 * - NULL if vaddr invalid OR is not a valid GSEG vaddr.
72 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
74 struct mm_struct *mm = current->mm;
75 struct vm_area_struct *vma;
76 struct gru_thread_state *gts = NULL;
78 down_read(&mm->mmap_sem);
79 vma = gru_find_vma(vaddr);
80 if (vma)
81 gts = gru_find_thread_state(vma, TSID(vaddr, vma));
82 if (gts)
83 mutex_lock(&gts->ts_ctxlock);
84 else
85 up_read(&mm->mmap_sem);
86 return gts;
89 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
91 struct mm_struct *mm = current->mm;
92 struct vm_area_struct *vma;
93 struct gru_thread_state *gts = NULL;
95 down_write(&mm->mmap_sem);
96 vma = gru_find_vma(vaddr);
97 if (vma)
98 gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
99 if (gts) {
100 mutex_lock(&gts->ts_ctxlock);
101 downgrade_write(&mm->mmap_sem);
102 } else {
103 up_write(&mm->mmap_sem);
106 return gts;
110 * Unlock a GTS that was previously locked with gru_find_lock_gts().
112 static void gru_unlock_gts(struct gru_thread_state *gts)
114 mutex_unlock(&gts->ts_ctxlock);
115 up_read(&current->mm->mmap_sem);
119 * Set a CB.istatus to active using a user virtual address. This must be done
120 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
121 * If the line is evicted, the status may be lost. The in-cache update
122 * is necessary to prevent the user from seeing a stale cb.istatus that will
123 * change as soon as the TFH restart is complete. Races may cause an
124 * occasional failure to clear the cb.istatus, but that is ok.
126 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
128 if (cbk) {
129 cbk->istatus = CBS_ACTIVE;
134 * Convert a interrupt IRQ to a pointer to the GRU GTS that caused the
135 * interrupt. Interrupts are always sent to a cpu on the blade that contains the
136 * GRU (except for headless blades which are not currently supported). A blade
137 * has N grus; a block of N consecutive IRQs is assigned to the GRUs. The IRQ
138 * number uniquely identifies the GRU chiplet on the local blade that caused the
139 * interrupt. Always called in interrupt context.
141 static inline struct gru_state *irq_to_gru(int irq)
143 return &gru_base[uv_numa_blade_id()]->bs_grus[irq - IRQ_GRU];
147 * Read & clear a TFM
149 * The GRU has an array of fault maps. A map is private to a cpu
150 * Only one cpu will be accessing a cpu's fault map.
152 * This function scans the cpu-private fault map & clears all bits that
153 * are set. The function returns a bitmap that indicates the bits that
154 * were cleared. Note that sense the maps may be updated asynchronously by
155 * the GRU, atomic operations must be used to clear bits.
157 static void get_clear_fault_map(struct gru_state *gru,
158 struct gru_tlb_fault_map *imap,
159 struct gru_tlb_fault_map *dmap)
161 unsigned long i, k;
162 struct gru_tlb_fault_map *tfm;
164 tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
165 prefetchw(tfm); /* Helps on hardware, required for emulator */
166 for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
167 k = tfm->fault_bits[i];
168 if (k)
169 k = xchg(&tfm->fault_bits[i], 0UL);
170 imap->fault_bits[i] = k;
171 k = tfm->done_bits[i];
172 if (k)
173 k = xchg(&tfm->done_bits[i], 0UL);
174 dmap->fault_bits[i] = k;
178 * Not functionally required but helps performance. (Required
179 * on emulator)
181 gru_flush_cache(tfm);
185 * Atomic (interrupt context) & non-atomic (user context) functions to
186 * convert a vaddr into a physical address. The size of the page
187 * is returned in pageshift.
188 * returns:
189 * 0 - successful
190 * < 0 - error code
191 * 1 - (atomic only) try again in non-atomic context
193 static int non_atomic_pte_lookup(struct vm_area_struct *vma,
194 unsigned long vaddr, int write,
195 unsigned long *paddr, int *pageshift)
197 struct page *page;
199 /* ZZZ Need to handle HUGE pages */
200 if (is_vm_hugetlb_page(vma))
201 return -EFAULT;
202 *pageshift = PAGE_SHIFT;
203 if (get_user_pages
204 (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0)
205 return -EFAULT;
206 *paddr = page_to_phys(page);
207 put_page(page);
208 return 0;
212 * atomic_pte_lookup
214 * Convert a user virtual address to a physical address
215 * Only supports Intel large pages (2MB only) on x86_64.
216 * ZZZ - hugepage support is incomplete
218 * NOTE: mmap_sem is already held on entry to this function. This
219 * guarantees existence of the page tables.
221 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
222 int write, unsigned long *paddr, int *pageshift)
224 pgd_t *pgdp;
225 pmd_t *pmdp;
226 pud_t *pudp;
227 pte_t pte;
229 pgdp = pgd_offset(vma->vm_mm, vaddr);
230 if (unlikely(pgd_none(*pgdp)))
231 goto err;
233 pudp = pud_offset(pgdp, vaddr);
234 if (unlikely(pud_none(*pudp)))
235 goto err;
237 pmdp = pmd_offset(pudp, vaddr);
238 if (unlikely(pmd_none(*pmdp)))
239 goto err;
240 #ifdef CONFIG_X86_64
241 if (unlikely(pmd_large(*pmdp)))
242 pte = *(pte_t *) pmdp;
243 else
244 #endif
245 pte = *pte_offset_kernel(pmdp, vaddr);
247 if (unlikely(!pte_present(pte) ||
248 (write && (!pte_write(pte) || !pte_dirty(pte)))))
249 return 1;
251 *paddr = pte_pfn(pte) << PAGE_SHIFT;
252 #ifdef CONFIG_HUGETLB_PAGE
253 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
254 #else
255 *pageshift = PAGE_SHIFT;
256 #endif
257 return 0;
259 err:
260 local_irq_enable();
261 return 1;
264 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
265 int write, int atomic, unsigned long *gpa, int *pageshift)
267 struct mm_struct *mm = gts->ts_mm;
268 struct vm_area_struct *vma;
269 unsigned long paddr;
270 int ret, ps;
272 vma = find_vma(mm, vaddr);
273 if (!vma)
274 goto inval;
277 * Atomic lookup is faster & usually works even if called in non-atomic
278 * context.
280 rmb(); /* Must/check ms_range_active before loading PTEs */
281 ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
282 if (ret) {
283 if (atomic)
284 goto upm;
285 if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
286 goto inval;
288 if (is_gru_paddr(paddr))
289 goto inval;
290 paddr = paddr & ~((1UL << ps) - 1);
291 *gpa = uv_soc_phys_ram_to_gpa(paddr);
292 *pageshift = ps;
293 return 0;
295 inval:
296 return -1;
297 upm:
298 return -2;
303 * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
304 * Input:
305 * cb Address of user CBR. Null if not running in user context
306 * Return:
307 * 0 = dropin, exception, or switch to UPM successful
308 * 1 = range invalidate active
309 * < 0 = error code
312 static int gru_try_dropin(struct gru_thread_state *gts,
313 struct gru_tlb_fault_handle *tfh,
314 struct gru_instruction_bits *cbk)
316 int pageshift = 0, asid, write, ret, atomic = !cbk;
317 unsigned long gpa = 0, vaddr = 0;
320 * NOTE: The GRU contains magic hardware that eliminates races between
321 * TLB invalidates and TLB dropins. If an invalidate occurs
322 * in the window between reading the TFH and the subsequent TLB dropin,
323 * the dropin is ignored. This eliminates the need for additional locks.
327 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
328 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
329 * is a transient state.
331 if (tfh->status != TFHSTATUS_EXCEPTION) {
332 gru_flush_cache(tfh);
333 if (tfh->status != TFHSTATUS_EXCEPTION)
334 goto failnoexception;
335 STAT(tfh_stale_on_fault);
337 if (tfh->state == TFHSTATE_IDLE)
338 goto failidle;
339 if (tfh->state == TFHSTATE_MISS_FMM && cbk)
340 goto failfmm;
342 write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
343 vaddr = tfh->missvaddr;
344 asid = tfh->missasid;
345 if (asid == 0)
346 goto failnoasid;
348 rmb(); /* TFH must be cache resident before reading ms_range_active */
351 * TFH is cache resident - at least briefly. Fail the dropin
352 * if a range invalidate is active.
354 if (atomic_read(&gts->ts_gms->ms_range_active))
355 goto failactive;
357 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
358 if (ret == -1)
359 goto failinval;
360 if (ret == -2)
361 goto failupm;
363 if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
364 gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
365 if (atomic || !gru_update_cch(gts)) {
366 gts->ts_force_cch_reload = 1;
367 goto failupm;
370 gru_cb_set_istatus_active(cbk);
371 tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
372 GRU_PAGESIZE(pageshift));
373 STAT(tlb_dropin);
374 gru_dbg(grudev,
375 "%s: tfh 0x%p, vaddr 0x%lx, asid 0x%x, ps %d, gpa 0x%lx\n",
376 ret ? "non-atomic" : "atomic", tfh, vaddr, asid,
377 pageshift, gpa);
378 return 0;
380 failnoasid:
381 /* No asid (delayed unload). */
382 STAT(tlb_dropin_fail_no_asid);
383 gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
384 if (!cbk)
385 tfh_user_polling_mode(tfh);
386 else
387 gru_flush_cache(tfh);
388 return -EAGAIN;
390 failupm:
391 /* Atomic failure switch CBR to UPM */
392 tfh_user_polling_mode(tfh);
393 STAT(tlb_dropin_fail_upm);
394 gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
395 return 1;
397 failfmm:
398 /* FMM state on UPM call */
399 gru_flush_cache(tfh);
400 STAT(tlb_dropin_fail_fmm);
401 gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
402 return 0;
404 failnoexception:
405 /* TFH status did not show exception pending */
406 gru_flush_cache(tfh);
407 if (cbk)
408 gru_flush_cache(cbk);
409 STAT(tlb_dropin_fail_no_exception);
410 gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
411 tfh, tfh->status, tfh->state);
412 return 0;
414 failidle:
415 /* TFH state was idle - no miss pending */
416 gru_flush_cache(tfh);
417 if (cbk)
418 gru_flush_cache(cbk);
419 STAT(tlb_dropin_fail_idle);
420 gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
421 return 0;
423 failinval:
424 /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
425 tfh_exception(tfh);
426 STAT(tlb_dropin_fail_invalid);
427 gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
428 return -EFAULT;
430 failactive:
431 /* Range invalidate active. Switch to UPM iff atomic */
432 if (!cbk)
433 tfh_user_polling_mode(tfh);
434 else
435 gru_flush_cache(tfh);
436 STAT(tlb_dropin_fail_range_active);
437 gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
438 tfh, vaddr);
439 return 1;
443 * Process an external interrupt from the GRU. This interrupt is
444 * caused by a TLB miss.
445 * Note that this is the interrupt handler that is registered with linux
446 * interrupt handlers.
448 irqreturn_t gru_intr(int irq, void *dev_id)
450 struct gru_state *gru;
451 struct gru_tlb_fault_map imap, dmap;
452 struct gru_thread_state *gts;
453 struct gru_tlb_fault_handle *tfh = NULL;
454 int cbrnum, ctxnum;
456 STAT(intr);
458 gru = irq_to_gru(irq);
459 if (!gru) {
460 dev_err(grudev, "GRU: invalid interrupt: cpu %d, irq %d\n",
461 raw_smp_processor_id(), irq);
462 return IRQ_NONE;
464 get_clear_fault_map(gru, &imap, &dmap);
466 for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
467 complete(gru->gs_blade->bs_async_wq);
468 gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
469 gru->gs_gid, cbrnum, gru->gs_blade->bs_async_wq->done);
472 for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
473 tfh = get_tfh_by_index(gru, cbrnum);
474 prefetchw(tfh); /* Helps on hdw, required for emulator */
477 * When hardware sets a bit in the faultmap, it implicitly
478 * locks the GRU context so that it cannot be unloaded.
479 * The gts cannot change until a TFH start/writestart command
480 * is issued.
482 ctxnum = tfh->ctxnum;
483 gts = gru->gs_gts[ctxnum];
486 * This is running in interrupt context. Trylock the mmap_sem.
487 * If it fails, retry the fault in user context.
489 if (!gts->ts_force_cch_reload &&
490 down_read_trylock(&gts->ts_mm->mmap_sem)) {
491 gts->ustats.fmm_tlbdropin++;
492 gru_try_dropin(gts, tfh, NULL);
493 up_read(&gts->ts_mm->mmap_sem);
494 } else {
495 tfh_user_polling_mode(tfh);
496 STAT(intr_mm_lock_failed);
499 return IRQ_HANDLED;
503 static int gru_user_dropin(struct gru_thread_state *gts,
504 struct gru_tlb_fault_handle *tfh,
505 void *cb)
507 struct gru_mm_struct *gms = gts->ts_gms;
508 int ret;
510 gts->ustats.upm_tlbdropin++;
511 while (1) {
512 wait_event(gms->ms_wait_queue,
513 atomic_read(&gms->ms_range_active) == 0);
514 prefetchw(tfh); /* Helps on hdw, required for emulator */
515 ret = gru_try_dropin(gts, tfh, cb);
516 if (ret <= 0)
517 return ret;
518 STAT(call_os_wait_queue);
523 * This interface is called as a result of a user detecting a "call OS" bit
524 * in a user CB. Normally means that a TLB fault has occurred.
525 * cb - user virtual address of the CB
527 int gru_handle_user_call_os(unsigned long cb)
529 struct gru_tlb_fault_handle *tfh;
530 struct gru_thread_state *gts;
531 void *cbk;
532 int ucbnum, cbrnum, ret = -EINVAL;
534 STAT(call_os);
535 gru_dbg(grudev, "address 0x%lx\n", cb);
537 /* sanity check the cb pointer */
538 ucbnum = get_cb_number((void *)cb);
539 if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
540 return -EINVAL;
542 gts = gru_find_lock_gts(cb);
543 if (!gts)
544 return -EINVAL;
546 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
547 goto exit;
549 gru_check_context_placement(gts);
552 * CCH may contain stale data if ts_force_cch_reload is set.
554 if (gts->ts_gru && gts->ts_force_cch_reload) {
555 gts->ts_force_cch_reload = 0;
556 gru_update_cch(gts);
559 ret = -EAGAIN;
560 cbrnum = thread_cbr_number(gts, ucbnum);
561 if (gts->ts_gru) {
562 tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
563 cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
564 gts->ts_ctxnum, ucbnum);
565 ret = gru_user_dropin(gts, tfh, cbk);
567 exit:
568 gru_unlock_gts(gts);
569 return ret;
573 * Fetch the exception detail information for a CB that terminated with
574 * an exception.
576 int gru_get_exception_detail(unsigned long arg)
578 struct control_block_extended_exc_detail excdet;
579 struct gru_control_block_extended *cbe;
580 struct gru_thread_state *gts;
581 int ucbnum, cbrnum, ret;
583 STAT(user_exception);
584 if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
585 return -EFAULT;
587 gru_dbg(grudev, "address 0x%lx\n", excdet.cb);
588 gts = gru_find_lock_gts(excdet.cb);
589 if (!gts)
590 return -EINVAL;
592 ucbnum = get_cb_number((void *)excdet.cb);
593 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
594 ret = -EINVAL;
595 } else if (gts->ts_gru) {
596 cbrnum = thread_cbr_number(gts, ucbnum);
597 cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
598 gru_flush_cache(cbe); /* CBE not coherent */
599 excdet.opc = cbe->opccpy;
600 excdet.exopc = cbe->exopccpy;
601 excdet.ecause = cbe->ecause;
602 excdet.exceptdet0 = cbe->idef1upd;
603 excdet.exceptdet1 = cbe->idef3upd;
604 excdet.cbrstate = cbe->cbrstate;
605 excdet.cbrexecstatus = cbe->cbrexecstatus;
606 gru_flush_cache(cbe);
607 ret = 0;
608 } else {
609 ret = -EAGAIN;
611 gru_unlock_gts(gts);
613 gru_dbg(grudev,
614 "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
615 "exdet0 0x%lx, exdet1 0x%x\n",
616 excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
617 excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
618 if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
619 ret = -EFAULT;
620 return ret;
624 * User request to unload a context. Content is saved for possible reload.
626 static int gru_unload_all_contexts(void)
628 struct gru_thread_state *gts;
629 struct gru_state *gru;
630 int gid, ctxnum;
632 if (!capable(CAP_SYS_ADMIN))
633 return -EPERM;
634 foreach_gid(gid) {
635 gru = GID_TO_GRU(gid);
636 spin_lock(&gru->gs_lock);
637 for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
638 gts = gru->gs_gts[ctxnum];
639 if (gts && mutex_trylock(&gts->ts_ctxlock)) {
640 spin_unlock(&gru->gs_lock);
641 gru_unload_context(gts, 1);
642 mutex_unlock(&gts->ts_ctxlock);
643 spin_lock(&gru->gs_lock);
646 spin_unlock(&gru->gs_lock);
648 return 0;
651 int gru_user_unload_context(unsigned long arg)
653 struct gru_thread_state *gts;
654 struct gru_unload_context_req req;
656 STAT(user_unload_context);
657 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
658 return -EFAULT;
660 gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
662 if (!req.gseg)
663 return gru_unload_all_contexts();
665 gts = gru_find_lock_gts(req.gseg);
666 if (!gts)
667 return -EINVAL;
669 if (gts->ts_gru)
670 gru_unload_context(gts, 1);
671 gru_unlock_gts(gts);
673 return 0;
677 * User request to flush a range of virtual addresses from the GRU TLB
678 * (Mainly for testing).
680 int gru_user_flush_tlb(unsigned long arg)
682 struct gru_thread_state *gts;
683 struct gru_flush_tlb_req req;
684 struct gru_mm_struct *gms;
686 STAT(user_flush_tlb);
687 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
688 return -EFAULT;
690 gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
691 req.vaddr, req.len);
693 gts = gru_find_lock_gts(req.gseg);
694 if (!gts)
695 return -EINVAL;
697 gms = gts->ts_gms;
698 gru_unlock_gts(gts);
699 gru_flush_tlb_range(gms, req.vaddr, req.len);
701 return 0;
705 * Fetch GSEG statisticss
707 long gru_get_gseg_statistics(unsigned long arg)
709 struct gru_thread_state *gts;
710 struct gru_get_gseg_statistics_req req;
712 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
713 return -EFAULT;
716 * The library creates arrays of contexts for threaded programs.
717 * If no gts exists in the array, the context has never been used & all
718 * statistics are implicitly 0.
720 gts = gru_find_lock_gts(req.gseg);
721 if (gts) {
722 memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
723 gru_unlock_gts(gts);
724 } else {
725 memset(&req.stats, 0, sizeof(gts->ustats));
728 if (copy_to_user((void __user *)arg, &req, sizeof(req)))
729 return -EFAULT;
731 return 0;
735 * Register the current task as the user of the GSEG slice.
736 * Needed for TLB fault interrupt targeting.
738 int gru_set_context_option(unsigned long arg)
740 struct gru_thread_state *gts;
741 struct gru_set_context_option_req req;
742 int ret = 0;
744 STAT(set_context_option);
745 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
746 return -EFAULT;
747 gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
749 gts = gru_alloc_locked_gts(req.gseg);
750 if (!gts)
751 return -EINVAL;
753 switch (req.op) {
754 case sco_blade_chiplet:
755 /* Select blade/chiplet for GRU context */
756 if (req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || !gru_base[req.val1] ||
757 req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB) {
758 ret = -EINVAL;
759 } else {
760 gts->ts_user_blade_id = req.val1;
761 gts->ts_user_chiplet_id = req.val0;
762 gru_check_context_placement(gts);
764 break;
765 case sco_gseg_owner:
766 /* Register the current task as the GSEG owner */
767 gts->ts_tgid_owner = current->tgid;
768 break;
769 case sco_cch_req_slice:
770 /* Set the CCH slice option */
771 gts->ts_cch_req_slice = req.val1 & 3;
772 break;
773 default:
774 ret = -EINVAL;
776 gru_unlock_gts(gts);
778 return ret;