mmc: Move queue functions to mmc_block
[linux-2.6/linux-2.6-openrd.git] / drivers / mmc / au1xmmc.c
blobb7156a4555b594b5cb036f3f68f987a24d1824e2
1 /*
2 * linux/drivers/mmc/au1xmmc.c - AU1XX0 MMC driver
4 * Copyright (c) 2005, Advanced Micro Devices, Inc.
6 * Developed with help from the 2.4.30 MMC AU1XXX controller including
7 * the following copyright notices:
8 * Copyright (c) 2003-2004 Embedded Edge, LLC.
9 * Portions Copyright (C) 2002 Embedix, Inc
10 * Copyright 2002 Hewlett-Packard Company
12 * 2.6 version of this driver inspired by:
13 * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
14 * All Rights Reserved.
15 * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
16 * All Rights Reserved.
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License version 2 as
21 * published by the Free Software Foundation.
24 /* Why is a timer used to detect insert events?
26 * From the AU1100 MMC application guide:
27 * If the Au1100-based design is intended to support both MultiMediaCards
28 * and 1- or 4-data bit SecureDigital cards, then the solution is to
29 * connect a weak (560KOhm) pull-up resistor to connector pin 1.
30 * In doing so, a MMC card never enters SPI-mode communications,
31 * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
32 * (the low to high transition will not occur).
34 * So we use the timer to check the status manually.
37 #include <linux/module.h>
38 #include <linux/init.h>
39 #include <linux/platform_device.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/dma-mapping.h>
44 #include <linux/mmc/host.h>
45 #include <asm/io.h>
46 #include <asm/mach-au1x00/au1000.h>
47 #include <asm/mach-au1x00/au1xxx_dbdma.h>
48 #include <asm/mach-au1x00/au1100_mmc.h>
49 #include <asm/scatterlist.h>
51 #include <au1xxx.h>
52 #include "au1xmmc.h"
54 #define DRIVER_NAME "au1xxx-mmc"
56 /* Set this to enable special debugging macros */
58 #ifdef DEBUG
59 #define DBG(fmt, idx, args...) printk("au1xx(%d): DEBUG: " fmt, idx, ##args)
60 #else
61 #define DBG(fmt, idx, args...)
62 #endif
64 const struct {
65 u32 iobase;
66 u32 tx_devid, rx_devid;
67 u16 bcsrpwr;
68 u16 bcsrstatus;
69 u16 wpstatus;
70 } au1xmmc_card_table[] = {
71 { SD0_BASE, DSCR_CMD0_SDMS_TX0, DSCR_CMD0_SDMS_RX0,
72 BCSR_BOARD_SD0PWR, BCSR_INT_SD0INSERT, BCSR_STATUS_SD0WP },
73 #ifndef CONFIG_MIPS_DB1200
74 { SD1_BASE, DSCR_CMD0_SDMS_TX1, DSCR_CMD0_SDMS_RX1,
75 BCSR_BOARD_DS1PWR, BCSR_INT_SD1INSERT, BCSR_STATUS_SD1WP }
76 #endif
79 #define AU1XMMC_CONTROLLER_COUNT \
80 (sizeof(au1xmmc_card_table) / sizeof(au1xmmc_card_table[0]))
82 /* This array stores pointers for the hosts (used by the IRQ handler) */
83 struct au1xmmc_host *au1xmmc_hosts[AU1XMMC_CONTROLLER_COUNT];
84 static int dma = 1;
86 #ifdef MODULE
87 module_param(dma, bool, 0);
88 MODULE_PARM_DESC(dma, "Use DMA engine for data transfers (0 = disabled)");
89 #endif
91 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
93 u32 val = au_readl(HOST_CONFIG(host));
94 val |= mask;
95 au_writel(val, HOST_CONFIG(host));
96 au_sync();
99 static inline void FLUSH_FIFO(struct au1xmmc_host *host)
101 u32 val = au_readl(HOST_CONFIG2(host));
103 au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
104 au_sync_delay(1);
106 /* SEND_STOP will turn off clock control - this re-enables it */
107 val &= ~SD_CONFIG2_DF;
109 au_writel(val, HOST_CONFIG2(host));
110 au_sync();
113 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
115 u32 val = au_readl(HOST_CONFIG(host));
116 val &= ~mask;
117 au_writel(val, HOST_CONFIG(host));
118 au_sync();
121 static inline void SEND_STOP(struct au1xmmc_host *host)
124 /* We know the value of CONFIG2, so avoid a read we don't need */
125 u32 mask = SD_CONFIG2_EN;
127 WARN_ON(host->status != HOST_S_DATA);
128 host->status = HOST_S_STOP;
130 au_writel(mask | SD_CONFIG2_DF, HOST_CONFIG2(host));
131 au_sync();
133 /* Send the stop commmand */
134 au_writel(STOP_CMD, HOST_CMD(host));
137 static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
140 u32 val = au1xmmc_card_table[host->id].bcsrpwr;
142 bcsr->board &= ~val;
143 if (state) bcsr->board |= val;
145 au_sync_delay(1);
148 static inline int au1xmmc_card_inserted(struct au1xmmc_host *host)
150 return (bcsr->sig_status & au1xmmc_card_table[host->id].bcsrstatus)
151 ? 1 : 0;
154 static int au1xmmc_card_readonly(struct mmc_host *mmc)
156 struct au1xmmc_host *host = mmc_priv(mmc);
157 return (bcsr->status & au1xmmc_card_table[host->id].wpstatus)
158 ? 1 : 0;
161 static void au1xmmc_finish_request(struct au1xmmc_host *host)
164 struct mmc_request *mrq = host->mrq;
166 host->mrq = NULL;
167 host->flags &= HOST_F_ACTIVE;
169 host->dma.len = 0;
170 host->dma.dir = 0;
172 host->pio.index = 0;
173 host->pio.offset = 0;
174 host->pio.len = 0;
176 host->status = HOST_S_IDLE;
178 bcsr->disk_leds |= (1 << 8);
180 mmc_request_done(host->mmc, mrq);
183 static void au1xmmc_tasklet_finish(unsigned long param)
185 struct au1xmmc_host *host = (struct au1xmmc_host *) param;
186 au1xmmc_finish_request(host);
189 static int au1xmmc_send_command(struct au1xmmc_host *host, int wait,
190 struct mmc_command *cmd)
193 u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
195 switch (mmc_resp_type(cmd)) {
196 case MMC_RSP_NONE:
197 break;
198 case MMC_RSP_R1:
199 mmccmd |= SD_CMD_RT_1;
200 break;
201 case MMC_RSP_R1B:
202 mmccmd |= SD_CMD_RT_1B;
203 break;
204 case MMC_RSP_R2:
205 mmccmd |= SD_CMD_RT_2;
206 break;
207 case MMC_RSP_R3:
208 mmccmd |= SD_CMD_RT_3;
209 break;
210 default:
211 printk(KERN_INFO "au1xmmc: unhandled response type %02x\n",
212 mmc_resp_type(cmd));
213 return MMC_ERR_INVALID;
216 switch(cmd->opcode) {
217 case MMC_READ_SINGLE_BLOCK:
218 case SD_APP_SEND_SCR:
219 mmccmd |= SD_CMD_CT_2;
220 break;
221 case MMC_READ_MULTIPLE_BLOCK:
222 mmccmd |= SD_CMD_CT_4;
223 break;
224 case MMC_WRITE_BLOCK:
225 mmccmd |= SD_CMD_CT_1;
226 break;
228 case MMC_WRITE_MULTIPLE_BLOCK:
229 mmccmd |= SD_CMD_CT_3;
230 break;
231 case MMC_STOP_TRANSMISSION:
232 mmccmd |= SD_CMD_CT_7;
233 break;
236 au_writel(cmd->arg, HOST_CMDARG(host));
237 au_sync();
239 if (wait)
240 IRQ_OFF(host, SD_CONFIG_CR);
242 au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
243 au_sync();
245 /* Wait for the command to go on the line */
247 while(1) {
248 if (!(au_readl(HOST_CMD(host)) & SD_CMD_GO))
249 break;
252 /* Wait for the command to come back */
254 if (wait) {
255 u32 status = au_readl(HOST_STATUS(host));
257 while(!(status & SD_STATUS_CR))
258 status = au_readl(HOST_STATUS(host));
260 /* Clear the CR status */
261 au_writel(SD_STATUS_CR, HOST_STATUS(host));
263 IRQ_ON(host, SD_CONFIG_CR);
266 return MMC_ERR_NONE;
269 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
272 struct mmc_request *mrq = host->mrq;
273 struct mmc_data *data;
274 u32 crc;
276 WARN_ON(host->status != HOST_S_DATA && host->status != HOST_S_STOP);
278 if (host->mrq == NULL)
279 return;
281 data = mrq->cmd->data;
283 if (status == 0)
284 status = au_readl(HOST_STATUS(host));
286 /* The transaction is really over when the SD_STATUS_DB bit is clear */
288 while((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
289 status = au_readl(HOST_STATUS(host));
291 data->error = MMC_ERR_NONE;
292 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
294 /* Process any errors */
296 crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
297 if (host->flags & HOST_F_XMIT)
298 crc |= ((status & 0x07) == 0x02) ? 0 : 1;
300 if (crc)
301 data->error = MMC_ERR_BADCRC;
303 /* Clear the CRC bits */
304 au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
306 data->bytes_xfered = 0;
308 if (data->error == MMC_ERR_NONE) {
309 if (host->flags & HOST_F_DMA) {
310 u32 chan = DMA_CHANNEL(host);
312 chan_tab_t *c = *((chan_tab_t **) chan);
313 au1x_dma_chan_t *cp = c->chan_ptr;
314 data->bytes_xfered = cp->ddma_bytecnt;
316 else
317 data->bytes_xfered =
318 (data->blocks * data->blksz) -
319 host->pio.len;
322 au1xmmc_finish_request(host);
325 static void au1xmmc_tasklet_data(unsigned long param)
327 struct au1xmmc_host *host = (struct au1xmmc_host *) param;
329 u32 status = au_readl(HOST_STATUS(host));
330 au1xmmc_data_complete(host, status);
333 #define AU1XMMC_MAX_TRANSFER 8
335 static void au1xmmc_send_pio(struct au1xmmc_host *host)
338 struct mmc_data *data = 0;
339 int sg_len, max, count = 0;
340 unsigned char *sg_ptr;
341 u32 status = 0;
342 struct scatterlist *sg;
344 data = host->mrq->data;
346 if (!(host->flags & HOST_F_XMIT))
347 return;
349 /* This is the pointer to the data buffer */
350 sg = &data->sg[host->pio.index];
351 sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
353 /* This is the space left inside the buffer */
354 sg_len = data->sg[host->pio.index].length - host->pio.offset;
356 /* Check to if we need less then the size of the sg_buffer */
358 max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
359 if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER;
361 for(count = 0; count < max; count++ ) {
362 unsigned char val;
364 status = au_readl(HOST_STATUS(host));
366 if (!(status & SD_STATUS_TH))
367 break;
369 val = *sg_ptr++;
371 au_writel((unsigned long) val, HOST_TXPORT(host));
372 au_sync();
375 host->pio.len -= count;
376 host->pio.offset += count;
378 if (count == sg_len) {
379 host->pio.index++;
380 host->pio.offset = 0;
383 if (host->pio.len == 0) {
384 IRQ_OFF(host, SD_CONFIG_TH);
386 if (host->flags & HOST_F_STOP)
387 SEND_STOP(host);
389 tasklet_schedule(&host->data_task);
393 static void au1xmmc_receive_pio(struct au1xmmc_host *host)
396 struct mmc_data *data = 0;
397 int sg_len = 0, max = 0, count = 0;
398 unsigned char *sg_ptr = 0;
399 u32 status = 0;
400 struct scatterlist *sg;
402 data = host->mrq->data;
404 if (!(host->flags & HOST_F_RECV))
405 return;
407 max = host->pio.len;
409 if (host->pio.index < host->dma.len) {
410 sg = &data->sg[host->pio.index];
411 sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
413 /* This is the space left inside the buffer */
414 sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
416 /* Check to if we need less then the size of the sg_buffer */
417 if (sg_len < max) max = sg_len;
420 if (max > AU1XMMC_MAX_TRANSFER)
421 max = AU1XMMC_MAX_TRANSFER;
423 for(count = 0; count < max; count++ ) {
424 u32 val;
425 status = au_readl(HOST_STATUS(host));
427 if (!(status & SD_STATUS_NE))
428 break;
430 if (status & SD_STATUS_RC) {
431 DBG("RX CRC Error [%d + %d].\n", host->id,
432 host->pio.len, count);
433 break;
436 if (status & SD_STATUS_RO) {
437 DBG("RX Overrun [%d + %d]\n", host->id,
438 host->pio.len, count);
439 break;
441 else if (status & SD_STATUS_RU) {
442 DBG("RX Underrun [%d + %d]\n", host->id,
443 host->pio.len, count);
444 break;
447 val = au_readl(HOST_RXPORT(host));
449 if (sg_ptr)
450 *sg_ptr++ = (unsigned char) (val & 0xFF);
453 host->pio.len -= count;
454 host->pio.offset += count;
456 if (sg_len && count == sg_len) {
457 host->pio.index++;
458 host->pio.offset = 0;
461 if (host->pio.len == 0) {
462 //IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF);
463 IRQ_OFF(host, SD_CONFIG_NE);
465 if (host->flags & HOST_F_STOP)
466 SEND_STOP(host);
468 tasklet_schedule(&host->data_task);
472 /* static void au1xmmc_cmd_complete
473 This is called when a command has been completed - grab the response
474 and check for errors. Then start the data transfer if it is indicated.
477 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
480 struct mmc_request *mrq = host->mrq;
481 struct mmc_command *cmd;
482 int trans;
484 if (!host->mrq)
485 return;
487 cmd = mrq->cmd;
488 cmd->error = MMC_ERR_NONE;
490 if (cmd->flags & MMC_RSP_PRESENT) {
491 if (cmd->flags & MMC_RSP_136) {
492 u32 r[4];
493 int i;
495 r[0] = au_readl(host->iobase + SD_RESP3);
496 r[1] = au_readl(host->iobase + SD_RESP2);
497 r[2] = au_readl(host->iobase + SD_RESP1);
498 r[3] = au_readl(host->iobase + SD_RESP0);
500 /* The CRC is omitted from the response, so really
501 * we only got 120 bytes, but the engine expects
502 * 128 bits, so we have to shift things up
505 for(i = 0; i < 4; i++) {
506 cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
507 if (i != 3)
508 cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
510 } else {
511 /* Techincally, we should be getting all 48 bits of
512 * the response (SD_RESP1 + SD_RESP2), but because
513 * our response omits the CRC, our data ends up
514 * being shifted 8 bits to the right. In this case,
515 * that means that the OSR data starts at bit 31,
516 * so we can just read RESP0 and return that
518 cmd->resp[0] = au_readl(host->iobase + SD_RESP0);
522 /* Figure out errors */
524 if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
525 cmd->error = MMC_ERR_BADCRC;
527 trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
529 if (!trans || cmd->error != MMC_ERR_NONE) {
531 IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA|SD_CONFIG_RF);
532 tasklet_schedule(&host->finish_task);
533 return;
536 host->status = HOST_S_DATA;
538 if (host->flags & HOST_F_DMA) {
539 u32 channel = DMA_CHANNEL(host);
541 /* Start the DMA as soon as the buffer gets something in it */
543 if (host->flags & HOST_F_RECV) {
544 u32 mask = SD_STATUS_DB | SD_STATUS_NE;
546 while((status & mask) != mask)
547 status = au_readl(HOST_STATUS(host));
550 au1xxx_dbdma_start(channel);
554 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
557 unsigned int pbus = get_au1x00_speed();
558 unsigned int divisor;
559 u32 config;
561 /* From databook:
562 divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1
565 pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2);
566 pbus /= 2;
568 divisor = ((pbus / rate) / 2) - 1;
570 config = au_readl(HOST_CONFIG(host));
572 config &= ~(SD_CONFIG_DIV);
573 config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
575 au_writel(config, HOST_CONFIG(host));
576 au_sync();
579 static int
580 au1xmmc_prepare_data(struct au1xmmc_host *host, struct mmc_data *data)
583 int datalen = data->blocks * data->blksz;
585 if (dma != 0)
586 host->flags |= HOST_F_DMA;
588 if (data->flags & MMC_DATA_READ)
589 host->flags |= HOST_F_RECV;
590 else
591 host->flags |= HOST_F_XMIT;
593 if (host->mrq->stop)
594 host->flags |= HOST_F_STOP;
596 host->dma.dir = DMA_BIDIRECTIONAL;
598 host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
599 data->sg_len, host->dma.dir);
601 if (host->dma.len == 0)
602 return MMC_ERR_TIMEOUT;
604 au_writel(data->blksz - 1, HOST_BLKSIZE(host));
606 if (host->flags & HOST_F_DMA) {
607 int i;
608 u32 channel = DMA_CHANNEL(host);
610 au1xxx_dbdma_stop(channel);
612 for(i = 0; i < host->dma.len; i++) {
613 u32 ret = 0, flags = DDMA_FLAGS_NOIE;
614 struct scatterlist *sg = &data->sg[i];
615 int sg_len = sg->length;
617 int len = (datalen > sg_len) ? sg_len : datalen;
619 if (i == host->dma.len - 1)
620 flags = DDMA_FLAGS_IE;
622 if (host->flags & HOST_F_XMIT){
623 ret = au1xxx_dbdma_put_source_flags(channel,
624 (void *) (page_address(sg->page) +
625 sg->offset),
626 len, flags);
628 else {
629 ret = au1xxx_dbdma_put_dest_flags(channel,
630 (void *) (page_address(sg->page) +
631 sg->offset),
632 len, flags);
635 if (!ret)
636 goto dataerr;
638 datalen -= len;
641 else {
642 host->pio.index = 0;
643 host->pio.offset = 0;
644 host->pio.len = datalen;
646 if (host->flags & HOST_F_XMIT)
647 IRQ_ON(host, SD_CONFIG_TH);
648 else
649 IRQ_ON(host, SD_CONFIG_NE);
650 //IRQ_ON(host, SD_CONFIG_RA|SD_CONFIG_RF);
653 return MMC_ERR_NONE;
655 dataerr:
656 dma_unmap_sg(mmc_dev(host->mmc),data->sg,data->sg_len,host->dma.dir);
657 return MMC_ERR_TIMEOUT;
660 /* static void au1xmmc_request
661 This actually starts a command or data transaction
664 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
667 struct au1xmmc_host *host = mmc_priv(mmc);
668 int ret = MMC_ERR_NONE;
670 WARN_ON(irqs_disabled());
671 WARN_ON(host->status != HOST_S_IDLE);
673 host->mrq = mrq;
674 host->status = HOST_S_CMD;
676 bcsr->disk_leds &= ~(1 << 8);
678 if (mrq->data) {
679 FLUSH_FIFO(host);
680 ret = au1xmmc_prepare_data(host, mrq->data);
683 if (ret == MMC_ERR_NONE)
684 ret = au1xmmc_send_command(host, 0, mrq->cmd);
686 if (ret != MMC_ERR_NONE) {
687 mrq->cmd->error = ret;
688 au1xmmc_finish_request(host);
692 static void au1xmmc_reset_controller(struct au1xmmc_host *host)
695 /* Apply the clock */
696 au_writel(SD_ENABLE_CE, HOST_ENABLE(host));
697 au_sync_delay(1);
699 au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
700 au_sync_delay(5);
702 au_writel(~0, HOST_STATUS(host));
703 au_sync();
705 au_writel(0, HOST_BLKSIZE(host));
706 au_writel(0x001fffff, HOST_TIMEOUT(host));
707 au_sync();
709 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
710 au_sync();
712 au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
713 au_sync_delay(1);
715 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
716 au_sync();
718 /* Configure interrupts */
719 au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
720 au_sync();
724 static void au1xmmc_set_ios(struct mmc_host* mmc, struct mmc_ios* ios)
726 struct au1xmmc_host *host = mmc_priv(mmc);
728 if (ios->power_mode == MMC_POWER_OFF)
729 au1xmmc_set_power(host, 0);
730 else if (ios->power_mode == MMC_POWER_ON) {
731 au1xmmc_set_power(host, 1);
734 if (ios->clock && ios->clock != host->clock) {
735 au1xmmc_set_clock(host, ios->clock);
736 host->clock = ios->clock;
740 static void au1xmmc_dma_callback(int irq, void *dev_id)
742 struct au1xmmc_host *host = (struct au1xmmc_host *) dev_id;
744 /* Avoid spurious interrupts */
746 if (!host->mrq)
747 return;
749 if (host->flags & HOST_F_STOP)
750 SEND_STOP(host);
752 tasklet_schedule(&host->data_task);
755 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
756 #define STATUS_DATA_IN (SD_STATUS_NE)
757 #define STATUS_DATA_OUT (SD_STATUS_TH)
759 static irqreturn_t au1xmmc_irq(int irq, void *dev_id)
762 u32 status;
763 int i, ret = 0;
765 disable_irq(AU1100_SD_IRQ);
767 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
768 struct au1xmmc_host * host = au1xmmc_hosts[i];
769 u32 handled = 1;
771 status = au_readl(HOST_STATUS(host));
773 if (host->mrq && (status & STATUS_TIMEOUT)) {
774 if (status & SD_STATUS_RAT)
775 host->mrq->cmd->error = MMC_ERR_TIMEOUT;
777 else if (status & SD_STATUS_DT)
778 host->mrq->data->error = MMC_ERR_TIMEOUT;
780 /* In PIO mode, interrupts might still be enabled */
781 IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
783 //IRQ_OFF(host, SD_CONFIG_TH|SD_CONFIG_RA|SD_CONFIG_RF);
784 tasklet_schedule(&host->finish_task);
786 #if 0
787 else if (status & SD_STATUS_DD) {
789 /* Sometimes we get a DD before a NE in PIO mode */
791 if (!(host->flags & HOST_F_DMA) &&
792 (status & SD_STATUS_NE))
793 au1xmmc_receive_pio(host);
794 else {
795 au1xmmc_data_complete(host, status);
796 //tasklet_schedule(&host->data_task);
799 #endif
800 else if (status & (SD_STATUS_CR)) {
801 if (host->status == HOST_S_CMD)
802 au1xmmc_cmd_complete(host,status);
804 else if (!(host->flags & HOST_F_DMA)) {
805 if ((host->flags & HOST_F_XMIT) &&
806 (status & STATUS_DATA_OUT))
807 au1xmmc_send_pio(host);
808 else if ((host->flags & HOST_F_RECV) &&
809 (status & STATUS_DATA_IN))
810 au1xmmc_receive_pio(host);
812 else if (status & 0x203FBC70) {
813 DBG("Unhandled status %8.8x\n", host->id, status);
814 handled = 0;
817 au_writel(status, HOST_STATUS(host));
818 au_sync();
820 ret |= handled;
823 enable_irq(AU1100_SD_IRQ);
824 return ret;
827 static void au1xmmc_poll_event(unsigned long arg)
829 struct au1xmmc_host *host = (struct au1xmmc_host *) arg;
831 int card = au1xmmc_card_inserted(host);
832 int controller = (host->flags & HOST_F_ACTIVE) ? 1 : 0;
834 if (card != controller) {
835 host->flags &= ~HOST_F_ACTIVE;
836 if (card) host->flags |= HOST_F_ACTIVE;
837 mmc_detect_change(host->mmc, 0);
840 if (host->mrq != NULL) {
841 u32 status = au_readl(HOST_STATUS(host));
842 DBG("PENDING - %8.8x\n", host->id, status);
845 mod_timer(&host->timer, jiffies + AU1XMMC_DETECT_TIMEOUT);
848 static dbdev_tab_t au1xmmc_mem_dbdev =
850 DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 8, 0x00000000, 0, 0
853 static void au1xmmc_init_dma(struct au1xmmc_host *host)
856 u32 rxchan, txchan;
858 int txid = au1xmmc_card_table[host->id].tx_devid;
859 int rxid = au1xmmc_card_table[host->id].rx_devid;
861 /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
862 of 8 bits. And since devices are shared, we need to create
863 our own to avoid freaking out other devices
866 int memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
868 txchan = au1xxx_dbdma_chan_alloc(memid, txid,
869 au1xmmc_dma_callback, (void *) host);
871 rxchan = au1xxx_dbdma_chan_alloc(rxid, memid,
872 au1xmmc_dma_callback, (void *) host);
874 au1xxx_dbdma_set_devwidth(txchan, 8);
875 au1xxx_dbdma_set_devwidth(rxchan, 8);
877 au1xxx_dbdma_ring_alloc(txchan, AU1XMMC_DESCRIPTOR_COUNT);
878 au1xxx_dbdma_ring_alloc(rxchan, AU1XMMC_DESCRIPTOR_COUNT);
880 host->tx_chan = txchan;
881 host->rx_chan = rxchan;
884 static const struct mmc_host_ops au1xmmc_ops = {
885 .request = au1xmmc_request,
886 .set_ios = au1xmmc_set_ios,
887 .get_ro = au1xmmc_card_readonly,
890 static int __devinit au1xmmc_probe(struct platform_device *pdev)
893 int i, ret = 0;
895 /* THe interrupt is shared among all controllers */
896 ret = request_irq(AU1100_SD_IRQ, au1xmmc_irq, IRQF_DISABLED, "MMC", 0);
898 if (ret) {
899 printk(DRIVER_NAME "ERROR: Couldn't get int %d: %d\n",
900 AU1100_SD_IRQ, ret);
901 return -ENXIO;
904 disable_irq(AU1100_SD_IRQ);
906 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
907 struct mmc_host *mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
908 struct au1xmmc_host *host = 0;
910 if (!mmc) {
911 printk(DRIVER_NAME "ERROR: no mem for host %d\n", i);
912 au1xmmc_hosts[i] = 0;
913 continue;
916 mmc->ops = &au1xmmc_ops;
918 mmc->f_min = 450000;
919 mmc->f_max = 24000000;
921 mmc->max_seg_size = AU1XMMC_DESCRIPTOR_SIZE;
922 mmc->max_phys_segs = AU1XMMC_DESCRIPTOR_COUNT;
924 mmc->max_blk_size = 2048;
925 mmc->max_blk_count = 512;
927 mmc->ocr_avail = AU1XMMC_OCR;
929 host = mmc_priv(mmc);
930 host->mmc = mmc;
932 host->id = i;
933 host->iobase = au1xmmc_card_table[host->id].iobase;
934 host->clock = 0;
935 host->power_mode = MMC_POWER_OFF;
937 host->flags = au1xmmc_card_inserted(host) ? HOST_F_ACTIVE : 0;
938 host->status = HOST_S_IDLE;
940 init_timer(&host->timer);
942 host->timer.function = au1xmmc_poll_event;
943 host->timer.data = (unsigned long) host;
944 host->timer.expires = jiffies + AU1XMMC_DETECT_TIMEOUT;
946 tasklet_init(&host->data_task, au1xmmc_tasklet_data,
947 (unsigned long) host);
949 tasklet_init(&host->finish_task, au1xmmc_tasklet_finish,
950 (unsigned long) host);
952 spin_lock_init(&host->lock);
954 if (dma != 0)
955 au1xmmc_init_dma(host);
957 au1xmmc_reset_controller(host);
959 mmc_add_host(mmc);
960 au1xmmc_hosts[i] = host;
962 add_timer(&host->timer);
964 printk(KERN_INFO DRIVER_NAME ": MMC Controller %d set up at %8.8X (mode=%s)\n",
965 host->id, host->iobase, dma ? "dma" : "pio");
968 enable_irq(AU1100_SD_IRQ);
970 return 0;
973 static int __devexit au1xmmc_remove(struct platform_device *pdev)
976 int i;
978 disable_irq(AU1100_SD_IRQ);
980 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
981 struct au1xmmc_host *host = au1xmmc_hosts[i];
982 if (!host) continue;
984 tasklet_kill(&host->data_task);
985 tasklet_kill(&host->finish_task);
987 del_timer_sync(&host->timer);
988 au1xmmc_set_power(host, 0);
990 mmc_remove_host(host->mmc);
992 au1xxx_dbdma_chan_free(host->tx_chan);
993 au1xxx_dbdma_chan_free(host->rx_chan);
995 au_writel(0x0, HOST_ENABLE(host));
996 au_sync();
999 free_irq(AU1100_SD_IRQ, 0);
1000 return 0;
1003 static struct platform_driver au1xmmc_driver = {
1004 .probe = au1xmmc_probe,
1005 .remove = au1xmmc_remove,
1006 .suspend = NULL,
1007 .resume = NULL,
1008 .driver = {
1009 .name = DRIVER_NAME,
1013 static int __init au1xmmc_init(void)
1015 return platform_driver_register(&au1xmmc_driver);
1018 static void __exit au1xmmc_exit(void)
1020 platform_driver_unregister(&au1xmmc_driver);
1023 module_init(au1xmmc_init);
1024 module_exit(au1xmmc_exit);
1026 #ifdef MODULE
1027 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1028 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1029 MODULE_LICENSE("GPL");
1030 #endif