Merge branch 'sh/for-2.6.33' of git://git.kernel.org/pub/scm/linux/kernel/git/lethal...
[linux-2.6/linux-2.6-openrd.git] / fs / ext4 / inode.c
blobc818972c830231fe6ae3ec47b09f6c23b35481b9
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74 * Work out how many blocks we need to proceed with the next chunk of a
75 * truncate transaction.
77 static unsigned long blocks_for_truncate(struct inode *inode)
79 ext4_lblk_t needed;
81 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
83 /* Give ourselves just enough room to cope with inodes in which
84 * i_blocks is corrupt: we've seen disk corruptions in the past
85 * which resulted in random data in an inode which looked enough
86 * like a regular file for ext4 to try to delete it. Things
87 * will go a bit crazy if that happens, but at least we should
88 * try not to panic the whole kernel. */
89 if (needed < 2)
90 needed = 2;
92 /* But we need to bound the transaction so we don't overflow the
93 * journal. */
94 if (needed > EXT4_MAX_TRANS_DATA)
95 needed = EXT4_MAX_TRANS_DATA;
97 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
101 * Truncate transactions can be complex and absolutely huge. So we need to
102 * be able to restart the transaction at a conventient checkpoint to make
103 * sure we don't overflow the journal.
105 * start_transaction gets us a new handle for a truncate transaction,
106 * and extend_transaction tries to extend the existing one a bit. If
107 * extend fails, we need to propagate the failure up and restart the
108 * transaction in the top-level truncate loop. --sct
110 static handle_t *start_transaction(struct inode *inode)
112 handle_t *result;
114 result = ext4_journal_start(inode, blocks_for_truncate(inode));
115 if (!IS_ERR(result))
116 return result;
118 ext4_std_error(inode->i_sb, PTR_ERR(result));
119 return result;
123 * Try to extend this transaction for the purposes of truncation.
125 * Returns 0 if we managed to create more room. If we can't create more
126 * room, and the transaction must be restarted we return 1.
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
130 if (!ext4_handle_valid(handle))
131 return 0;
132 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133 return 0;
134 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135 return 0;
136 return 1;
140 * Restart the transaction associated with *handle. This does a commit,
141 * so before we call here everything must be consistently dirtied against
142 * this transaction.
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145 int nblocks)
147 int ret;
150 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 * moment, get_block can be called only for blocks inside i_size since
152 * page cache has been already dropped and writes are blocked by
153 * i_mutex. So we can safely drop the i_data_sem here.
155 BUG_ON(EXT4_JOURNAL(inode) == NULL);
156 jbd_debug(2, "restarting handle %p\n", handle);
157 up_write(&EXT4_I(inode)->i_data_sem);
158 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 down_write(&EXT4_I(inode)->i_data_sem);
160 ext4_discard_preallocations(inode);
162 return ret;
166 * Called at the last iput() if i_nlink is zero.
168 void ext4_delete_inode(struct inode *inode)
170 handle_t *handle;
171 int err;
173 if (ext4_should_order_data(inode))
174 ext4_begin_ordered_truncate(inode, 0);
175 truncate_inode_pages(&inode->i_data, 0);
177 if (is_bad_inode(inode))
178 goto no_delete;
180 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181 if (IS_ERR(handle)) {
182 ext4_std_error(inode->i_sb, PTR_ERR(handle));
184 * If we're going to skip the normal cleanup, we still need to
185 * make sure that the in-core orphan linked list is properly
186 * cleaned up.
188 ext4_orphan_del(NULL, inode);
189 goto no_delete;
192 if (IS_SYNC(inode))
193 ext4_handle_sync(handle);
194 inode->i_size = 0;
195 err = ext4_mark_inode_dirty(handle, inode);
196 if (err) {
197 ext4_warning(inode->i_sb, __func__,
198 "couldn't mark inode dirty (err %d)", err);
199 goto stop_handle;
201 if (inode->i_blocks)
202 ext4_truncate(inode);
205 * ext4_ext_truncate() doesn't reserve any slop when it
206 * restarts journal transactions; therefore there may not be
207 * enough credits left in the handle to remove the inode from
208 * the orphan list and set the dtime field.
210 if (!ext4_handle_has_enough_credits(handle, 3)) {
211 err = ext4_journal_extend(handle, 3);
212 if (err > 0)
213 err = ext4_journal_restart(handle, 3);
214 if (err != 0) {
215 ext4_warning(inode->i_sb, __func__,
216 "couldn't extend journal (err %d)", err);
217 stop_handle:
218 ext4_journal_stop(handle);
219 goto no_delete;
224 * Kill off the orphan record which ext4_truncate created.
225 * AKPM: I think this can be inside the above `if'.
226 * Note that ext4_orphan_del() has to be able to cope with the
227 * deletion of a non-existent orphan - this is because we don't
228 * know if ext4_truncate() actually created an orphan record.
229 * (Well, we could do this if we need to, but heck - it works)
231 ext4_orphan_del(handle, inode);
232 EXT4_I(inode)->i_dtime = get_seconds();
235 * One subtle ordering requirement: if anything has gone wrong
236 * (transaction abort, IO errors, whatever), then we can still
237 * do these next steps (the fs will already have been marked as
238 * having errors), but we can't free the inode if the mark_dirty
239 * fails.
241 if (ext4_mark_inode_dirty(handle, inode))
242 /* If that failed, just do the required in-core inode clear. */
243 clear_inode(inode);
244 else
245 ext4_free_inode(handle, inode);
246 ext4_journal_stop(handle);
247 return;
248 no_delete:
249 clear_inode(inode); /* We must guarantee clearing of inode... */
252 typedef struct {
253 __le32 *p;
254 __le32 key;
255 struct buffer_head *bh;
256 } Indirect;
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
260 p->key = *(p->p = v);
261 p->bh = bh;
265 * ext4_block_to_path - parse the block number into array of offsets
266 * @inode: inode in question (we are only interested in its superblock)
267 * @i_block: block number to be parsed
268 * @offsets: array to store the offsets in
269 * @boundary: set this non-zero if the referred-to block is likely to be
270 * followed (on disk) by an indirect block.
272 * To store the locations of file's data ext4 uses a data structure common
273 * for UNIX filesystems - tree of pointers anchored in the inode, with
274 * data blocks at leaves and indirect blocks in intermediate nodes.
275 * This function translates the block number into path in that tree -
276 * return value is the path length and @offsets[n] is the offset of
277 * pointer to (n+1)th node in the nth one. If @block is out of range
278 * (negative or too large) warning is printed and zero returned.
280 * Note: function doesn't find node addresses, so no IO is needed. All
281 * we need to know is the capacity of indirect blocks (taken from the
282 * inode->i_sb).
286 * Portability note: the last comparison (check that we fit into triple
287 * indirect block) is spelled differently, because otherwise on an
288 * architecture with 32-bit longs and 8Kb pages we might get into trouble
289 * if our filesystem had 8Kb blocks. We might use long long, but that would
290 * kill us on x86. Oh, well, at least the sign propagation does not matter -
291 * i_block would have to be negative in the very beginning, so we would not
292 * get there at all.
295 static int ext4_block_to_path(struct inode *inode,
296 ext4_lblk_t i_block,
297 ext4_lblk_t offsets[4], int *boundary)
299 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 const long direct_blocks = EXT4_NDIR_BLOCKS,
302 indirect_blocks = ptrs,
303 double_blocks = (1 << (ptrs_bits * 2));
304 int n = 0;
305 int final = 0;
307 if (i_block < direct_blocks) {
308 offsets[n++] = i_block;
309 final = direct_blocks;
310 } else if ((i_block -= direct_blocks) < indirect_blocks) {
311 offsets[n++] = EXT4_IND_BLOCK;
312 offsets[n++] = i_block;
313 final = ptrs;
314 } else if ((i_block -= indirect_blocks) < double_blocks) {
315 offsets[n++] = EXT4_DIND_BLOCK;
316 offsets[n++] = i_block >> ptrs_bits;
317 offsets[n++] = i_block & (ptrs - 1);
318 final = ptrs;
319 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320 offsets[n++] = EXT4_TIND_BLOCK;
321 offsets[n++] = i_block >> (ptrs_bits * 2);
322 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 offsets[n++] = i_block & (ptrs - 1);
324 final = ptrs;
325 } else {
326 ext4_warning(inode->i_sb, "ext4_block_to_path",
327 "block %lu > max in inode %lu",
328 i_block + direct_blocks +
329 indirect_blocks + double_blocks, inode->i_ino);
331 if (boundary)
332 *boundary = final - 1 - (i_block & (ptrs - 1));
333 return n;
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337 __le32 *p, unsigned int max)
339 __le32 *bref = p;
340 unsigned int blk;
342 while (bref < p+max) {
343 blk = le32_to_cpu(*bref++);
344 if (blk &&
345 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346 blk, 1))) {
347 ext4_error(inode->i_sb, function,
348 "invalid block reference %u "
349 "in inode #%lu", blk, inode->i_ino);
350 return -EIO;
353 return 0;
357 #define ext4_check_indirect_blockref(inode, bh) \
358 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
359 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
361 #define ext4_check_inode_blockref(inode) \
362 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
363 EXT4_NDIR_BLOCKS)
366 * ext4_get_branch - read the chain of indirect blocks leading to data
367 * @inode: inode in question
368 * @depth: depth of the chain (1 - direct pointer, etc.)
369 * @offsets: offsets of pointers in inode/indirect blocks
370 * @chain: place to store the result
371 * @err: here we store the error value
373 * Function fills the array of triples <key, p, bh> and returns %NULL
374 * if everything went OK or the pointer to the last filled triple
375 * (incomplete one) otherwise. Upon the return chain[i].key contains
376 * the number of (i+1)-th block in the chain (as it is stored in memory,
377 * i.e. little-endian 32-bit), chain[i].p contains the address of that
378 * number (it points into struct inode for i==0 and into the bh->b_data
379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380 * block for i>0 and NULL for i==0. In other words, it holds the block
381 * numbers of the chain, addresses they were taken from (and where we can
382 * verify that chain did not change) and buffer_heads hosting these
383 * numbers.
385 * Function stops when it stumbles upon zero pointer (absent block)
386 * (pointer to last triple returned, *@err == 0)
387 * or when it gets an IO error reading an indirect block
388 * (ditto, *@err == -EIO)
389 * or when it reads all @depth-1 indirect blocks successfully and finds
390 * the whole chain, all way to the data (returns %NULL, *err == 0).
392 * Need to be called with
393 * down_read(&EXT4_I(inode)->i_data_sem)
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 ext4_lblk_t *offsets,
397 Indirect chain[4], int *err)
399 struct super_block *sb = inode->i_sb;
400 Indirect *p = chain;
401 struct buffer_head *bh;
403 *err = 0;
404 /* i_data is not going away, no lock needed */
405 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 if (!p->key)
407 goto no_block;
408 while (--depth) {
409 bh = sb_getblk(sb, le32_to_cpu(p->key));
410 if (unlikely(!bh))
411 goto failure;
413 if (!bh_uptodate_or_lock(bh)) {
414 if (bh_submit_read(bh) < 0) {
415 put_bh(bh);
416 goto failure;
418 /* validate block references */
419 if (ext4_check_indirect_blockref(inode, bh)) {
420 put_bh(bh);
421 goto failure;
425 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 /* Reader: end */
427 if (!p->key)
428 goto no_block;
430 return NULL;
432 failure:
433 *err = -EIO;
434 no_block:
435 return p;
439 * ext4_find_near - find a place for allocation with sufficient locality
440 * @inode: owner
441 * @ind: descriptor of indirect block.
443 * This function returns the preferred place for block allocation.
444 * It is used when heuristic for sequential allocation fails.
445 * Rules are:
446 * + if there is a block to the left of our position - allocate near it.
447 * + if pointer will live in indirect block - allocate near that block.
448 * + if pointer will live in inode - allocate in the same
449 * cylinder group.
451 * In the latter case we colour the starting block by the callers PID to
452 * prevent it from clashing with concurrent allocations for a different inode
453 * in the same block group. The PID is used here so that functionally related
454 * files will be close-by on-disk.
456 * Caller must make sure that @ind is valid and will stay that way.
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
460 struct ext4_inode_info *ei = EXT4_I(inode);
461 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462 __le32 *p;
463 ext4_fsblk_t bg_start;
464 ext4_fsblk_t last_block;
465 ext4_grpblk_t colour;
466 ext4_group_t block_group;
467 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
469 /* Try to find previous block */
470 for (p = ind->p - 1; p >= start; p--) {
471 if (*p)
472 return le32_to_cpu(*p);
475 /* No such thing, so let's try location of indirect block */
476 if (ind->bh)
477 return ind->bh->b_blocknr;
480 * It is going to be referred to from the inode itself? OK, just put it
481 * into the same cylinder group then.
483 block_group = ei->i_block_group;
484 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 block_group &= ~(flex_size-1);
486 if (S_ISREG(inode->i_mode))
487 block_group++;
489 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
493 * If we are doing delayed allocation, we don't need take
494 * colour into account.
496 if (test_opt(inode->i_sb, DELALLOC))
497 return bg_start;
499 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 colour = (current->pid % 16) *
501 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 else
503 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 return bg_start + colour;
508 * ext4_find_goal - find a preferred place for allocation.
509 * @inode: owner
510 * @block: block we want
511 * @partial: pointer to the last triple within a chain
513 * Normally this function find the preferred place for block allocation,
514 * returns it.
515 * Because this is only used for non-extent files, we limit the block nr
516 * to 32 bits.
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519 Indirect *partial)
521 ext4_fsblk_t goal;
524 * XXX need to get goal block from mballoc's data structures
527 goal = ext4_find_near(inode, partial);
528 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 return goal;
533 * ext4_blks_to_allocate: Look up the block map and count the number
534 * of direct blocks need to be allocated for the given branch.
536 * @branch: chain of indirect blocks
537 * @k: number of blocks need for indirect blocks
538 * @blks: number of data blocks to be mapped.
539 * @blocks_to_boundary: the offset in the indirect block
541 * return the total number of blocks to be allocate, including the
542 * direct and indirect blocks.
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545 int blocks_to_boundary)
547 unsigned int count = 0;
550 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 * then it's clear blocks on that path have not allocated
553 if (k > 0) {
554 /* right now we don't handle cross boundary allocation */
555 if (blks < blocks_to_boundary + 1)
556 count += blks;
557 else
558 count += blocks_to_boundary + 1;
559 return count;
562 count++;
563 while (count < blks && count <= blocks_to_boundary &&
564 le32_to_cpu(*(branch[0].p + count)) == 0) {
565 count++;
567 return count;
571 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
572 * @indirect_blks: the number of blocks need to allocate for indirect
573 * blocks
575 * @new_blocks: on return it will store the new block numbers for
576 * the indirect blocks(if needed) and the first direct block,
577 * @blks: on return it will store the total number of allocated
578 * direct blocks
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 ext4_lblk_t iblock, ext4_fsblk_t goal,
582 int indirect_blks, int blks,
583 ext4_fsblk_t new_blocks[4], int *err)
585 struct ext4_allocation_request ar;
586 int target, i;
587 unsigned long count = 0, blk_allocated = 0;
588 int index = 0;
589 ext4_fsblk_t current_block = 0;
590 int ret = 0;
593 * Here we try to allocate the requested multiple blocks at once,
594 * on a best-effort basis.
595 * To build a branch, we should allocate blocks for
596 * the indirect blocks(if not allocated yet), and at least
597 * the first direct block of this branch. That's the
598 * minimum number of blocks need to allocate(required)
600 /* first we try to allocate the indirect blocks */
601 target = indirect_blks;
602 while (target > 0) {
603 count = target;
604 /* allocating blocks for indirect blocks and direct blocks */
605 current_block = ext4_new_meta_blocks(handle, inode,
606 goal, &count, err);
607 if (*err)
608 goto failed_out;
610 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
612 target -= count;
613 /* allocate blocks for indirect blocks */
614 while (index < indirect_blks && count) {
615 new_blocks[index++] = current_block++;
616 count--;
618 if (count > 0) {
620 * save the new block number
621 * for the first direct block
623 new_blocks[index] = current_block;
624 printk(KERN_INFO "%s returned more blocks than "
625 "requested\n", __func__);
626 WARN_ON(1);
627 break;
631 target = blks - count ;
632 blk_allocated = count;
633 if (!target)
634 goto allocated;
635 /* Now allocate data blocks */
636 memset(&ar, 0, sizeof(ar));
637 ar.inode = inode;
638 ar.goal = goal;
639 ar.len = target;
640 ar.logical = iblock;
641 if (S_ISREG(inode->i_mode))
642 /* enable in-core preallocation only for regular files */
643 ar.flags = EXT4_MB_HINT_DATA;
645 current_block = ext4_mb_new_blocks(handle, &ar, err);
646 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
648 if (*err && (target == blks)) {
650 * if the allocation failed and we didn't allocate
651 * any blocks before
653 goto failed_out;
655 if (!*err) {
656 if (target == blks) {
658 * save the new block number
659 * for the first direct block
661 new_blocks[index] = current_block;
663 blk_allocated += ar.len;
665 allocated:
666 /* total number of blocks allocated for direct blocks */
667 ret = blk_allocated;
668 *err = 0;
669 return ret;
670 failed_out:
671 for (i = 0; i < index; i++)
672 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673 return ret;
677 * ext4_alloc_branch - allocate and set up a chain of blocks.
678 * @inode: owner
679 * @indirect_blks: number of allocated indirect blocks
680 * @blks: number of allocated direct blocks
681 * @offsets: offsets (in the blocks) to store the pointers to next.
682 * @branch: place to store the chain in.
684 * This function allocates blocks, zeroes out all but the last one,
685 * links them into chain and (if we are synchronous) writes them to disk.
686 * In other words, it prepares a branch that can be spliced onto the
687 * inode. It stores the information about that chain in the branch[], in
688 * the same format as ext4_get_branch() would do. We are calling it after
689 * we had read the existing part of chain and partial points to the last
690 * triple of that (one with zero ->key). Upon the exit we have the same
691 * picture as after the successful ext4_get_block(), except that in one
692 * place chain is disconnected - *branch->p is still zero (we did not
693 * set the last link), but branch->key contains the number that should
694 * be placed into *branch->p to fill that gap.
696 * If allocation fails we free all blocks we've allocated (and forget
697 * their buffer_heads) and return the error value the from failed
698 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699 * as described above and return 0.
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702 ext4_lblk_t iblock, int indirect_blks,
703 int *blks, ext4_fsblk_t goal,
704 ext4_lblk_t *offsets, Indirect *branch)
706 int blocksize = inode->i_sb->s_blocksize;
707 int i, n = 0;
708 int err = 0;
709 struct buffer_head *bh;
710 int num;
711 ext4_fsblk_t new_blocks[4];
712 ext4_fsblk_t current_block;
714 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715 *blks, new_blocks, &err);
716 if (err)
717 return err;
719 branch[0].key = cpu_to_le32(new_blocks[0]);
721 * metadata blocks and data blocks are allocated.
723 for (n = 1; n <= indirect_blks; n++) {
725 * Get buffer_head for parent block, zero it out
726 * and set the pointer to new one, then send
727 * parent to disk.
729 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730 branch[n].bh = bh;
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
733 err = ext4_journal_get_create_access(handle, bh);
734 if (err) {
735 /* Don't brelse(bh) here; it's done in
736 * ext4_journal_forget() below */
737 unlock_buffer(bh);
738 goto failed;
741 memset(bh->b_data, 0, blocksize);
742 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743 branch[n].key = cpu_to_le32(new_blocks[n]);
744 *branch[n].p = branch[n].key;
745 if (n == indirect_blks) {
746 current_block = new_blocks[n];
748 * End of chain, update the last new metablock of
749 * the chain to point to the new allocated
750 * data blocks numbers
752 for (i = 1; i < num; i++)
753 *(branch[n].p + i) = cpu_to_le32(++current_block);
755 BUFFER_TRACE(bh, "marking uptodate");
756 set_buffer_uptodate(bh);
757 unlock_buffer(bh);
759 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760 err = ext4_handle_dirty_metadata(handle, inode, bh);
761 if (err)
762 goto failed;
764 *blks = num;
765 return err;
766 failed:
767 /* Allocation failed, free what we already allocated */
768 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769 for (i = 1; i <= n ; i++) {
771 * branch[i].bh is newly allocated, so there is no
772 * need to revoke the block, which is why we don't
773 * need to set EXT4_FREE_BLOCKS_METADATA.
775 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776 EXT4_FREE_BLOCKS_FORGET);
778 for (i = n+1; i < indirect_blks; i++)
779 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
781 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
783 return err;
787 * ext4_splice_branch - splice the allocated branch onto inode.
788 * @inode: owner
789 * @block: (logical) number of block we are adding
790 * @chain: chain of indirect blocks (with a missing link - see
791 * ext4_alloc_branch)
792 * @where: location of missing link
793 * @num: number of indirect blocks we are adding
794 * @blks: number of direct blocks we are adding
796 * This function fills the missing link and does all housekeeping needed in
797 * inode (->i_blocks, etc.). In case of success we end up with the full
798 * chain to new block and return 0.
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 ext4_lblk_t block, Indirect *where, int num,
802 int blks)
804 int i;
805 int err = 0;
806 ext4_fsblk_t current_block;
809 * If we're splicing into a [td]indirect block (as opposed to the
810 * inode) then we need to get write access to the [td]indirect block
811 * before the splice.
813 if (where->bh) {
814 BUFFER_TRACE(where->bh, "get_write_access");
815 err = ext4_journal_get_write_access(handle, where->bh);
816 if (err)
817 goto err_out;
819 /* That's it */
821 *where->p = where->key;
824 * Update the host buffer_head or inode to point to more just allocated
825 * direct blocks blocks
827 if (num == 0 && blks > 1) {
828 current_block = le32_to_cpu(where->key) + 1;
829 for (i = 1; i < blks; i++)
830 *(where->p + i) = cpu_to_le32(current_block++);
833 /* We are done with atomic stuff, now do the rest of housekeeping */
834 /* had we spliced it onto indirect block? */
835 if (where->bh) {
837 * If we spliced it onto an indirect block, we haven't
838 * altered the inode. Note however that if it is being spliced
839 * onto an indirect block at the very end of the file (the
840 * file is growing) then we *will* alter the inode to reflect
841 * the new i_size. But that is not done here - it is done in
842 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
844 jbd_debug(5, "splicing indirect only\n");
845 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 if (err)
848 goto err_out;
849 } else {
851 * OK, we spliced it into the inode itself on a direct block.
853 ext4_mark_inode_dirty(handle, inode);
854 jbd_debug(5, "splicing direct\n");
856 return err;
858 err_out:
859 for (i = 1; i <= num; i++) {
861 * branch[i].bh is newly allocated, so there is no
862 * need to revoke the block, which is why we don't
863 * need to set EXT4_FREE_BLOCKS_METADATA.
865 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866 EXT4_FREE_BLOCKS_FORGET);
868 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869 blks, 0);
871 return err;
875 * The ext4_ind_get_blocks() function handles non-extents inodes
876 * (i.e., using the traditional indirect/double-indirect i_blocks
877 * scheme) for ext4_get_blocks().
879 * Allocation strategy is simple: if we have to allocate something, we will
880 * have to go the whole way to leaf. So let's do it before attaching anything
881 * to tree, set linkage between the newborn blocks, write them if sync is
882 * required, recheck the path, free and repeat if check fails, otherwise
883 * set the last missing link (that will protect us from any truncate-generated
884 * removals - all blocks on the path are immune now) and possibly force the
885 * write on the parent block.
886 * That has a nice additional property: no special recovery from the failed
887 * allocations is needed - we simply release blocks and do not touch anything
888 * reachable from inode.
890 * `handle' can be NULL if create == 0.
892 * return > 0, # of blocks mapped or allocated.
893 * return = 0, if plain lookup failed.
894 * return < 0, error case.
896 * The ext4_ind_get_blocks() function should be called with
897 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900 * blocks.
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903 ext4_lblk_t iblock, unsigned int maxblocks,
904 struct buffer_head *bh_result,
905 int flags)
907 int err = -EIO;
908 ext4_lblk_t offsets[4];
909 Indirect chain[4];
910 Indirect *partial;
911 ext4_fsblk_t goal;
912 int indirect_blks;
913 int blocks_to_boundary = 0;
914 int depth;
915 int count = 0;
916 ext4_fsblk_t first_block = 0;
918 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920 depth = ext4_block_to_path(inode, iblock, offsets,
921 &blocks_to_boundary);
923 if (depth == 0)
924 goto out;
926 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
928 /* Simplest case - block found, no allocation needed */
929 if (!partial) {
930 first_block = le32_to_cpu(chain[depth - 1].key);
931 clear_buffer_new(bh_result);
932 count++;
933 /*map more blocks*/
934 while (count < maxblocks && count <= blocks_to_boundary) {
935 ext4_fsblk_t blk;
937 blk = le32_to_cpu(*(chain[depth-1].p + count));
939 if (blk == first_block + count)
940 count++;
941 else
942 break;
944 goto got_it;
947 /* Next simple case - plain lookup or failed read of indirect block */
948 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949 goto cleanup;
952 * Okay, we need to do block allocation.
954 goal = ext4_find_goal(inode, iblock, partial);
956 /* the number of blocks need to allocate for [d,t]indirect blocks */
957 indirect_blks = (chain + depth) - partial - 1;
960 * Next look up the indirect map to count the totoal number of
961 * direct blocks to allocate for this branch.
963 count = ext4_blks_to_allocate(partial, indirect_blks,
964 maxblocks, blocks_to_boundary);
966 * Block out ext4_truncate while we alter the tree
968 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969 &count, goal,
970 offsets + (partial - chain), partial);
973 * The ext4_splice_branch call will free and forget any buffers
974 * on the new chain if there is a failure, but that risks using
975 * up transaction credits, especially for bitmaps where the
976 * credits cannot be returned. Can we handle this somehow? We
977 * may need to return -EAGAIN upwards in the worst case. --sct
979 if (!err)
980 err = ext4_splice_branch(handle, inode, iblock,
981 partial, indirect_blks, count);
982 if (err)
983 goto cleanup;
985 set_buffer_new(bh_result);
987 ext4_update_inode_fsync_trans(handle, inode, 1);
988 got_it:
989 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
990 if (count > blocks_to_boundary)
991 set_buffer_boundary(bh_result);
992 err = count;
993 /* Clean up and exit */
994 partial = chain + depth - 1; /* the whole chain */
995 cleanup:
996 while (partial > chain) {
997 BUFFER_TRACE(partial->bh, "call brelse");
998 brelse(partial->bh);
999 partial--;
1001 BUFFER_TRACE(bh_result, "returned");
1002 out:
1003 return err;
1006 #ifdef CONFIG_QUOTA
1007 qsize_t *ext4_get_reserved_space(struct inode *inode)
1009 return &EXT4_I(inode)->i_reserved_quota;
1011 #endif
1014 * Calculate the number of metadata blocks need to reserve
1015 * to allocate a new block at @lblocks for non extent file based file
1017 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1018 sector_t lblock)
1020 struct ext4_inode_info *ei = EXT4_I(inode);
1021 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1022 int blk_bits;
1024 if (lblock < EXT4_NDIR_BLOCKS)
1025 return 0;
1027 lblock -= EXT4_NDIR_BLOCKS;
1029 if (ei->i_da_metadata_calc_len &&
1030 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1031 ei->i_da_metadata_calc_len++;
1032 return 0;
1034 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1035 ei->i_da_metadata_calc_len = 1;
1036 blk_bits = roundup_pow_of_two(lblock + 1);
1037 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1041 * Calculate the number of metadata blocks need to reserve
1042 * to allocate a block located at @lblock
1044 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1046 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1047 return ext4_ext_calc_metadata_amount(inode, lblock);
1049 return ext4_indirect_calc_metadata_amount(inode, lblock);
1053 * Called with i_data_sem down, which is important since we can call
1054 * ext4_discard_preallocations() from here.
1056 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1058 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1059 struct ext4_inode_info *ei = EXT4_I(inode);
1060 int mdb_free = 0;
1062 spin_lock(&ei->i_block_reservation_lock);
1063 if (unlikely(used > ei->i_reserved_data_blocks)) {
1064 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1065 "with only %d reserved data blocks\n",
1066 __func__, inode->i_ino, used,
1067 ei->i_reserved_data_blocks);
1068 WARN_ON(1);
1069 used = ei->i_reserved_data_blocks;
1072 /* Update per-inode reservations */
1073 ei->i_reserved_data_blocks -= used;
1074 used += ei->i_allocated_meta_blocks;
1075 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1076 ei->i_allocated_meta_blocks = 0;
1077 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1079 if (ei->i_reserved_data_blocks == 0) {
1081 * We can release all of the reserved metadata blocks
1082 * only when we have written all of the delayed
1083 * allocation blocks.
1085 mdb_free = ei->i_reserved_meta_blocks;
1086 ei->i_reserved_meta_blocks = 0;
1087 ei->i_da_metadata_calc_len = 0;
1088 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1090 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1092 /* Update quota subsystem */
1093 vfs_dq_claim_block(inode, used);
1094 if (mdb_free)
1095 vfs_dq_release_reservation_block(inode, mdb_free);
1098 * If we have done all the pending block allocations and if
1099 * there aren't any writers on the inode, we can discard the
1100 * inode's preallocations.
1102 if ((ei->i_reserved_data_blocks == 0) &&
1103 (atomic_read(&inode->i_writecount) == 0))
1104 ext4_discard_preallocations(inode);
1107 static int check_block_validity(struct inode *inode, const char *msg,
1108 sector_t logical, sector_t phys, int len)
1110 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1111 ext4_error(inode->i_sb, msg,
1112 "inode #%lu logical block %llu mapped to %llu "
1113 "(size %d)", inode->i_ino,
1114 (unsigned long long) logical,
1115 (unsigned long long) phys, len);
1116 return -EIO;
1118 return 0;
1122 * Return the number of contiguous dirty pages in a given inode
1123 * starting at page frame idx.
1125 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1126 unsigned int max_pages)
1128 struct address_space *mapping = inode->i_mapping;
1129 pgoff_t index;
1130 struct pagevec pvec;
1131 pgoff_t num = 0;
1132 int i, nr_pages, done = 0;
1134 if (max_pages == 0)
1135 return 0;
1136 pagevec_init(&pvec, 0);
1137 while (!done) {
1138 index = idx;
1139 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1140 PAGECACHE_TAG_DIRTY,
1141 (pgoff_t)PAGEVEC_SIZE);
1142 if (nr_pages == 0)
1143 break;
1144 for (i = 0; i < nr_pages; i++) {
1145 struct page *page = pvec.pages[i];
1146 struct buffer_head *bh, *head;
1148 lock_page(page);
1149 if (unlikely(page->mapping != mapping) ||
1150 !PageDirty(page) ||
1151 PageWriteback(page) ||
1152 page->index != idx) {
1153 done = 1;
1154 unlock_page(page);
1155 break;
1157 if (page_has_buffers(page)) {
1158 bh = head = page_buffers(page);
1159 do {
1160 if (!buffer_delay(bh) &&
1161 !buffer_unwritten(bh))
1162 done = 1;
1163 bh = bh->b_this_page;
1164 } while (!done && (bh != head));
1166 unlock_page(page);
1167 if (done)
1168 break;
1169 idx++;
1170 num++;
1171 if (num >= max_pages)
1172 break;
1174 pagevec_release(&pvec);
1176 return num;
1180 * The ext4_get_blocks() function tries to look up the requested blocks,
1181 * and returns if the blocks are already mapped.
1183 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1184 * and store the allocated blocks in the result buffer head and mark it
1185 * mapped.
1187 * If file type is extents based, it will call ext4_ext_get_blocks(),
1188 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1189 * based files
1191 * On success, it returns the number of blocks being mapped or allocate.
1192 * if create==0 and the blocks are pre-allocated and uninitialized block,
1193 * the result buffer head is unmapped. If the create ==1, it will make sure
1194 * the buffer head is mapped.
1196 * It returns 0 if plain look up failed (blocks have not been allocated), in
1197 * that casem, buffer head is unmapped
1199 * It returns the error in case of allocation failure.
1201 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1202 unsigned int max_blocks, struct buffer_head *bh,
1203 int flags)
1205 int retval;
1207 clear_buffer_mapped(bh);
1208 clear_buffer_unwritten(bh);
1210 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1211 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1212 (unsigned long)block);
1214 * Try to see if we can get the block without requesting a new
1215 * file system block.
1217 down_read((&EXT4_I(inode)->i_data_sem));
1218 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1219 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1220 bh, 0);
1221 } else {
1222 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1223 bh, 0);
1225 up_read((&EXT4_I(inode)->i_data_sem));
1227 if (retval > 0 && buffer_mapped(bh)) {
1228 int ret = check_block_validity(inode, "file system corruption",
1229 block, bh->b_blocknr, retval);
1230 if (ret != 0)
1231 return ret;
1234 /* If it is only a block(s) look up */
1235 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1236 return retval;
1239 * Returns if the blocks have already allocated
1241 * Note that if blocks have been preallocated
1242 * ext4_ext_get_block() returns th create = 0
1243 * with buffer head unmapped.
1245 if (retval > 0 && buffer_mapped(bh))
1246 return retval;
1249 * When we call get_blocks without the create flag, the
1250 * BH_Unwritten flag could have gotten set if the blocks
1251 * requested were part of a uninitialized extent. We need to
1252 * clear this flag now that we are committed to convert all or
1253 * part of the uninitialized extent to be an initialized
1254 * extent. This is because we need to avoid the combination
1255 * of BH_Unwritten and BH_Mapped flags being simultaneously
1256 * set on the buffer_head.
1258 clear_buffer_unwritten(bh);
1261 * New blocks allocate and/or writing to uninitialized extent
1262 * will possibly result in updating i_data, so we take
1263 * the write lock of i_data_sem, and call get_blocks()
1264 * with create == 1 flag.
1266 down_write((&EXT4_I(inode)->i_data_sem));
1269 * if the caller is from delayed allocation writeout path
1270 * we have already reserved fs blocks for allocation
1271 * let the underlying get_block() function know to
1272 * avoid double accounting
1274 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1275 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1277 * We need to check for EXT4 here because migrate
1278 * could have changed the inode type in between
1280 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1281 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1282 bh, flags);
1283 } else {
1284 retval = ext4_ind_get_blocks(handle, inode, block,
1285 max_blocks, bh, flags);
1287 if (retval > 0 && buffer_new(bh)) {
1289 * We allocated new blocks which will result in
1290 * i_data's format changing. Force the migrate
1291 * to fail by clearing migrate flags
1293 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1297 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1298 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1301 * Update reserved blocks/metadata blocks after successful
1302 * block allocation which had been deferred till now.
1304 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1305 ext4_da_update_reserve_space(inode, retval);
1307 up_write((&EXT4_I(inode)->i_data_sem));
1308 if (retval > 0 && buffer_mapped(bh)) {
1309 int ret = check_block_validity(inode, "file system "
1310 "corruption after allocation",
1311 block, bh->b_blocknr, retval);
1312 if (ret != 0)
1313 return ret;
1315 return retval;
1318 /* Maximum number of blocks we map for direct IO at once. */
1319 #define DIO_MAX_BLOCKS 4096
1321 int ext4_get_block(struct inode *inode, sector_t iblock,
1322 struct buffer_head *bh_result, int create)
1324 handle_t *handle = ext4_journal_current_handle();
1325 int ret = 0, started = 0;
1326 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1327 int dio_credits;
1329 if (create && !handle) {
1330 /* Direct IO write... */
1331 if (max_blocks > DIO_MAX_BLOCKS)
1332 max_blocks = DIO_MAX_BLOCKS;
1333 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1334 handle = ext4_journal_start(inode, dio_credits);
1335 if (IS_ERR(handle)) {
1336 ret = PTR_ERR(handle);
1337 goto out;
1339 started = 1;
1342 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1343 create ? EXT4_GET_BLOCKS_CREATE : 0);
1344 if (ret > 0) {
1345 bh_result->b_size = (ret << inode->i_blkbits);
1346 ret = 0;
1348 if (started)
1349 ext4_journal_stop(handle);
1350 out:
1351 return ret;
1355 * `handle' can be NULL if create is zero
1357 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1358 ext4_lblk_t block, int create, int *errp)
1360 struct buffer_head dummy;
1361 int fatal = 0, err;
1362 int flags = 0;
1364 J_ASSERT(handle != NULL || create == 0);
1366 dummy.b_state = 0;
1367 dummy.b_blocknr = -1000;
1368 buffer_trace_init(&dummy.b_history);
1369 if (create)
1370 flags |= EXT4_GET_BLOCKS_CREATE;
1371 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1373 * ext4_get_blocks() returns number of blocks mapped. 0 in
1374 * case of a HOLE.
1376 if (err > 0) {
1377 if (err > 1)
1378 WARN_ON(1);
1379 err = 0;
1381 *errp = err;
1382 if (!err && buffer_mapped(&dummy)) {
1383 struct buffer_head *bh;
1384 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1385 if (!bh) {
1386 *errp = -EIO;
1387 goto err;
1389 if (buffer_new(&dummy)) {
1390 J_ASSERT(create != 0);
1391 J_ASSERT(handle != NULL);
1394 * Now that we do not always journal data, we should
1395 * keep in mind whether this should always journal the
1396 * new buffer as metadata. For now, regular file
1397 * writes use ext4_get_block instead, so it's not a
1398 * problem.
1400 lock_buffer(bh);
1401 BUFFER_TRACE(bh, "call get_create_access");
1402 fatal = ext4_journal_get_create_access(handle, bh);
1403 if (!fatal && !buffer_uptodate(bh)) {
1404 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1405 set_buffer_uptodate(bh);
1407 unlock_buffer(bh);
1408 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1409 err = ext4_handle_dirty_metadata(handle, inode, bh);
1410 if (!fatal)
1411 fatal = err;
1412 } else {
1413 BUFFER_TRACE(bh, "not a new buffer");
1415 if (fatal) {
1416 *errp = fatal;
1417 brelse(bh);
1418 bh = NULL;
1420 return bh;
1422 err:
1423 return NULL;
1426 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1427 ext4_lblk_t block, int create, int *err)
1429 struct buffer_head *bh;
1431 bh = ext4_getblk(handle, inode, block, create, err);
1432 if (!bh)
1433 return bh;
1434 if (buffer_uptodate(bh))
1435 return bh;
1436 ll_rw_block(READ_META, 1, &bh);
1437 wait_on_buffer(bh);
1438 if (buffer_uptodate(bh))
1439 return bh;
1440 put_bh(bh);
1441 *err = -EIO;
1442 return NULL;
1445 static int walk_page_buffers(handle_t *handle,
1446 struct buffer_head *head,
1447 unsigned from,
1448 unsigned to,
1449 int *partial,
1450 int (*fn)(handle_t *handle,
1451 struct buffer_head *bh))
1453 struct buffer_head *bh;
1454 unsigned block_start, block_end;
1455 unsigned blocksize = head->b_size;
1456 int err, ret = 0;
1457 struct buffer_head *next;
1459 for (bh = head, block_start = 0;
1460 ret == 0 && (bh != head || !block_start);
1461 block_start = block_end, bh = next) {
1462 next = bh->b_this_page;
1463 block_end = block_start + blocksize;
1464 if (block_end <= from || block_start >= to) {
1465 if (partial && !buffer_uptodate(bh))
1466 *partial = 1;
1467 continue;
1469 err = (*fn)(handle, bh);
1470 if (!ret)
1471 ret = err;
1473 return ret;
1477 * To preserve ordering, it is essential that the hole instantiation and
1478 * the data write be encapsulated in a single transaction. We cannot
1479 * close off a transaction and start a new one between the ext4_get_block()
1480 * and the commit_write(). So doing the jbd2_journal_start at the start of
1481 * prepare_write() is the right place.
1483 * Also, this function can nest inside ext4_writepage() ->
1484 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1485 * has generated enough buffer credits to do the whole page. So we won't
1486 * block on the journal in that case, which is good, because the caller may
1487 * be PF_MEMALLOC.
1489 * By accident, ext4 can be reentered when a transaction is open via
1490 * quota file writes. If we were to commit the transaction while thus
1491 * reentered, there can be a deadlock - we would be holding a quota
1492 * lock, and the commit would never complete if another thread had a
1493 * transaction open and was blocking on the quota lock - a ranking
1494 * violation.
1496 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1497 * will _not_ run commit under these circumstances because handle->h_ref
1498 * is elevated. We'll still have enough credits for the tiny quotafile
1499 * write.
1501 static int do_journal_get_write_access(handle_t *handle,
1502 struct buffer_head *bh)
1504 if (!buffer_mapped(bh) || buffer_freed(bh))
1505 return 0;
1506 return ext4_journal_get_write_access(handle, bh);
1510 * Truncate blocks that were not used by write. We have to truncate the
1511 * pagecache as well so that corresponding buffers get properly unmapped.
1513 static void ext4_truncate_failed_write(struct inode *inode)
1515 truncate_inode_pages(inode->i_mapping, inode->i_size);
1516 ext4_truncate(inode);
1519 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1520 loff_t pos, unsigned len, unsigned flags,
1521 struct page **pagep, void **fsdata)
1523 struct inode *inode = mapping->host;
1524 int ret, needed_blocks;
1525 handle_t *handle;
1526 int retries = 0;
1527 struct page *page;
1528 pgoff_t index;
1529 unsigned from, to;
1531 trace_ext4_write_begin(inode, pos, len, flags);
1533 * Reserve one block more for addition to orphan list in case
1534 * we allocate blocks but write fails for some reason
1536 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1537 index = pos >> PAGE_CACHE_SHIFT;
1538 from = pos & (PAGE_CACHE_SIZE - 1);
1539 to = from + len;
1541 retry:
1542 handle = ext4_journal_start(inode, needed_blocks);
1543 if (IS_ERR(handle)) {
1544 ret = PTR_ERR(handle);
1545 goto out;
1548 /* We cannot recurse into the filesystem as the transaction is already
1549 * started */
1550 flags |= AOP_FLAG_NOFS;
1552 page = grab_cache_page_write_begin(mapping, index, flags);
1553 if (!page) {
1554 ext4_journal_stop(handle);
1555 ret = -ENOMEM;
1556 goto out;
1558 *pagep = page;
1560 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1561 ext4_get_block);
1563 if (!ret && ext4_should_journal_data(inode)) {
1564 ret = walk_page_buffers(handle, page_buffers(page),
1565 from, to, NULL, do_journal_get_write_access);
1568 if (ret) {
1569 unlock_page(page);
1570 page_cache_release(page);
1572 * block_write_begin may have instantiated a few blocks
1573 * outside i_size. Trim these off again. Don't need
1574 * i_size_read because we hold i_mutex.
1576 * Add inode to orphan list in case we crash before
1577 * truncate finishes
1579 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1580 ext4_orphan_add(handle, inode);
1582 ext4_journal_stop(handle);
1583 if (pos + len > inode->i_size) {
1584 ext4_truncate_failed_write(inode);
1586 * If truncate failed early the inode might
1587 * still be on the orphan list; we need to
1588 * make sure the inode is removed from the
1589 * orphan list in that case.
1591 if (inode->i_nlink)
1592 ext4_orphan_del(NULL, inode);
1596 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1597 goto retry;
1598 out:
1599 return ret;
1602 /* For write_end() in data=journal mode */
1603 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1605 if (!buffer_mapped(bh) || buffer_freed(bh))
1606 return 0;
1607 set_buffer_uptodate(bh);
1608 return ext4_handle_dirty_metadata(handle, NULL, bh);
1611 static int ext4_generic_write_end(struct file *file,
1612 struct address_space *mapping,
1613 loff_t pos, unsigned len, unsigned copied,
1614 struct page *page, void *fsdata)
1616 int i_size_changed = 0;
1617 struct inode *inode = mapping->host;
1618 handle_t *handle = ext4_journal_current_handle();
1620 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1623 * No need to use i_size_read() here, the i_size
1624 * cannot change under us because we hold i_mutex.
1626 * But it's important to update i_size while still holding page lock:
1627 * page writeout could otherwise come in and zero beyond i_size.
1629 if (pos + copied > inode->i_size) {
1630 i_size_write(inode, pos + copied);
1631 i_size_changed = 1;
1634 if (pos + copied > EXT4_I(inode)->i_disksize) {
1635 /* We need to mark inode dirty even if
1636 * new_i_size is less that inode->i_size
1637 * bu greater than i_disksize.(hint delalloc)
1639 ext4_update_i_disksize(inode, (pos + copied));
1640 i_size_changed = 1;
1642 unlock_page(page);
1643 page_cache_release(page);
1646 * Don't mark the inode dirty under page lock. First, it unnecessarily
1647 * makes the holding time of page lock longer. Second, it forces lock
1648 * ordering of page lock and transaction start for journaling
1649 * filesystems.
1651 if (i_size_changed)
1652 ext4_mark_inode_dirty(handle, inode);
1654 return copied;
1658 * We need to pick up the new inode size which generic_commit_write gave us
1659 * `file' can be NULL - eg, when called from page_symlink().
1661 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1662 * buffers are managed internally.
1664 static int ext4_ordered_write_end(struct file *file,
1665 struct address_space *mapping,
1666 loff_t pos, unsigned len, unsigned copied,
1667 struct page *page, void *fsdata)
1669 handle_t *handle = ext4_journal_current_handle();
1670 struct inode *inode = mapping->host;
1671 int ret = 0, ret2;
1673 trace_ext4_ordered_write_end(inode, pos, len, copied);
1674 ret = ext4_jbd2_file_inode(handle, inode);
1676 if (ret == 0) {
1677 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1678 page, fsdata);
1679 copied = ret2;
1680 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1681 /* if we have allocated more blocks and copied
1682 * less. We will have blocks allocated outside
1683 * inode->i_size. So truncate them
1685 ext4_orphan_add(handle, inode);
1686 if (ret2 < 0)
1687 ret = ret2;
1689 ret2 = ext4_journal_stop(handle);
1690 if (!ret)
1691 ret = ret2;
1693 if (pos + len > inode->i_size) {
1694 ext4_truncate_failed_write(inode);
1696 * If truncate failed early the inode might still be
1697 * on the orphan list; we need to make sure the inode
1698 * is removed from the orphan list in that case.
1700 if (inode->i_nlink)
1701 ext4_orphan_del(NULL, inode);
1705 return ret ? ret : copied;
1708 static int ext4_writeback_write_end(struct file *file,
1709 struct address_space *mapping,
1710 loff_t pos, unsigned len, unsigned copied,
1711 struct page *page, void *fsdata)
1713 handle_t *handle = ext4_journal_current_handle();
1714 struct inode *inode = mapping->host;
1715 int ret = 0, ret2;
1717 trace_ext4_writeback_write_end(inode, pos, len, copied);
1718 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1719 page, fsdata);
1720 copied = ret2;
1721 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1722 /* if we have allocated more blocks and copied
1723 * less. We will have blocks allocated outside
1724 * inode->i_size. So truncate them
1726 ext4_orphan_add(handle, inode);
1728 if (ret2 < 0)
1729 ret = ret2;
1731 ret2 = ext4_journal_stop(handle);
1732 if (!ret)
1733 ret = ret2;
1735 if (pos + len > inode->i_size) {
1736 ext4_truncate_failed_write(inode);
1738 * If truncate failed early the inode might still be
1739 * on the orphan list; we need to make sure the inode
1740 * is removed from the orphan list in that case.
1742 if (inode->i_nlink)
1743 ext4_orphan_del(NULL, inode);
1746 return ret ? ret : copied;
1749 static int ext4_journalled_write_end(struct file *file,
1750 struct address_space *mapping,
1751 loff_t pos, unsigned len, unsigned copied,
1752 struct page *page, void *fsdata)
1754 handle_t *handle = ext4_journal_current_handle();
1755 struct inode *inode = mapping->host;
1756 int ret = 0, ret2;
1757 int partial = 0;
1758 unsigned from, to;
1759 loff_t new_i_size;
1761 trace_ext4_journalled_write_end(inode, pos, len, copied);
1762 from = pos & (PAGE_CACHE_SIZE - 1);
1763 to = from + len;
1765 if (copied < len) {
1766 if (!PageUptodate(page))
1767 copied = 0;
1768 page_zero_new_buffers(page, from+copied, to);
1771 ret = walk_page_buffers(handle, page_buffers(page), from,
1772 to, &partial, write_end_fn);
1773 if (!partial)
1774 SetPageUptodate(page);
1775 new_i_size = pos + copied;
1776 if (new_i_size > inode->i_size)
1777 i_size_write(inode, pos+copied);
1778 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1779 if (new_i_size > EXT4_I(inode)->i_disksize) {
1780 ext4_update_i_disksize(inode, new_i_size);
1781 ret2 = ext4_mark_inode_dirty(handle, inode);
1782 if (!ret)
1783 ret = ret2;
1786 unlock_page(page);
1787 page_cache_release(page);
1788 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1789 /* if we have allocated more blocks and copied
1790 * less. We will have blocks allocated outside
1791 * inode->i_size. So truncate them
1793 ext4_orphan_add(handle, inode);
1795 ret2 = ext4_journal_stop(handle);
1796 if (!ret)
1797 ret = ret2;
1798 if (pos + len > inode->i_size) {
1799 ext4_truncate_failed_write(inode);
1801 * If truncate failed early the inode might still be
1802 * on the orphan list; we need to make sure the inode
1803 * is removed from the orphan list in that case.
1805 if (inode->i_nlink)
1806 ext4_orphan_del(NULL, inode);
1809 return ret ? ret : copied;
1813 * Reserve a single block located at lblock
1815 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1817 int retries = 0;
1818 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1819 struct ext4_inode_info *ei = EXT4_I(inode);
1820 unsigned long md_needed, md_reserved;
1823 * recalculate the amount of metadata blocks to reserve
1824 * in order to allocate nrblocks
1825 * worse case is one extent per block
1827 repeat:
1828 spin_lock(&ei->i_block_reservation_lock);
1829 md_reserved = ei->i_reserved_meta_blocks;
1830 md_needed = ext4_calc_metadata_amount(inode, lblock);
1831 spin_unlock(&ei->i_block_reservation_lock);
1834 * Make quota reservation here to prevent quota overflow
1835 * later. Real quota accounting is done at pages writeout
1836 * time.
1838 if (vfs_dq_reserve_block(inode, md_needed + 1)) {
1840 * We tend to badly over-estimate the amount of
1841 * metadata blocks which are needed, so if we have
1842 * reserved any metadata blocks, try to force out the
1843 * inode and see if we have any better luck.
1845 if (md_reserved && retries++ <= 3)
1846 goto retry;
1847 return -EDQUOT;
1850 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1851 vfs_dq_release_reservation_block(inode, md_needed + 1);
1852 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1853 retry:
1854 if (md_reserved)
1855 write_inode_now(inode, (retries == 3));
1856 yield();
1857 goto repeat;
1859 return -ENOSPC;
1861 spin_lock(&ei->i_block_reservation_lock);
1862 ei->i_reserved_data_blocks++;
1863 ei->i_reserved_meta_blocks += md_needed;
1864 spin_unlock(&ei->i_block_reservation_lock);
1866 return 0; /* success */
1869 static void ext4_da_release_space(struct inode *inode, int to_free)
1871 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1872 struct ext4_inode_info *ei = EXT4_I(inode);
1874 if (!to_free)
1875 return; /* Nothing to release, exit */
1877 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1879 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1881 * if there aren't enough reserved blocks, then the
1882 * counter is messed up somewhere. Since this
1883 * function is called from invalidate page, it's
1884 * harmless to return without any action.
1886 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1887 "ino %lu, to_free %d with only %d reserved "
1888 "data blocks\n", inode->i_ino, to_free,
1889 ei->i_reserved_data_blocks);
1890 WARN_ON(1);
1891 to_free = ei->i_reserved_data_blocks;
1893 ei->i_reserved_data_blocks -= to_free;
1895 if (ei->i_reserved_data_blocks == 0) {
1897 * We can release all of the reserved metadata blocks
1898 * only when we have written all of the delayed
1899 * allocation blocks.
1901 to_free += ei->i_reserved_meta_blocks;
1902 ei->i_reserved_meta_blocks = 0;
1903 ei->i_da_metadata_calc_len = 0;
1906 /* update fs dirty blocks counter */
1907 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1909 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1911 vfs_dq_release_reservation_block(inode, to_free);
1914 static void ext4_da_page_release_reservation(struct page *page,
1915 unsigned long offset)
1917 int to_release = 0;
1918 struct buffer_head *head, *bh;
1919 unsigned int curr_off = 0;
1921 head = page_buffers(page);
1922 bh = head;
1923 do {
1924 unsigned int next_off = curr_off + bh->b_size;
1926 if ((offset <= curr_off) && (buffer_delay(bh))) {
1927 to_release++;
1928 clear_buffer_delay(bh);
1930 curr_off = next_off;
1931 } while ((bh = bh->b_this_page) != head);
1932 ext4_da_release_space(page->mapping->host, to_release);
1936 * Delayed allocation stuff
1940 * mpage_da_submit_io - walks through extent of pages and try to write
1941 * them with writepage() call back
1943 * @mpd->inode: inode
1944 * @mpd->first_page: first page of the extent
1945 * @mpd->next_page: page after the last page of the extent
1947 * By the time mpage_da_submit_io() is called we expect all blocks
1948 * to be allocated. this may be wrong if allocation failed.
1950 * As pages are already locked by write_cache_pages(), we can't use it
1952 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1954 long pages_skipped;
1955 struct pagevec pvec;
1956 unsigned long index, end;
1957 int ret = 0, err, nr_pages, i;
1958 struct inode *inode = mpd->inode;
1959 struct address_space *mapping = inode->i_mapping;
1961 BUG_ON(mpd->next_page <= mpd->first_page);
1963 * We need to start from the first_page to the next_page - 1
1964 * to make sure we also write the mapped dirty buffer_heads.
1965 * If we look at mpd->b_blocknr we would only be looking
1966 * at the currently mapped buffer_heads.
1968 index = mpd->first_page;
1969 end = mpd->next_page - 1;
1971 pagevec_init(&pvec, 0);
1972 while (index <= end) {
1973 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1974 if (nr_pages == 0)
1975 break;
1976 for (i = 0; i < nr_pages; i++) {
1977 struct page *page = pvec.pages[i];
1979 index = page->index;
1980 if (index > end)
1981 break;
1982 index++;
1984 BUG_ON(!PageLocked(page));
1985 BUG_ON(PageWriteback(page));
1987 pages_skipped = mpd->wbc->pages_skipped;
1988 err = mapping->a_ops->writepage(page, mpd->wbc);
1989 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1991 * have successfully written the page
1992 * without skipping the same
1994 mpd->pages_written++;
1996 * In error case, we have to continue because
1997 * remaining pages are still locked
1998 * XXX: unlock and re-dirty them?
2000 if (ret == 0)
2001 ret = err;
2003 pagevec_release(&pvec);
2005 return ret;
2009 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2011 * @mpd->inode - inode to walk through
2012 * @exbh->b_blocknr - first block on a disk
2013 * @exbh->b_size - amount of space in bytes
2014 * @logical - first logical block to start assignment with
2016 * the function goes through all passed space and put actual disk
2017 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2019 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2020 struct buffer_head *exbh)
2022 struct inode *inode = mpd->inode;
2023 struct address_space *mapping = inode->i_mapping;
2024 int blocks = exbh->b_size >> inode->i_blkbits;
2025 sector_t pblock = exbh->b_blocknr, cur_logical;
2026 struct buffer_head *head, *bh;
2027 pgoff_t index, end;
2028 struct pagevec pvec;
2029 int nr_pages, i;
2031 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2032 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2033 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2035 pagevec_init(&pvec, 0);
2037 while (index <= end) {
2038 /* XXX: optimize tail */
2039 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2040 if (nr_pages == 0)
2041 break;
2042 for (i = 0; i < nr_pages; i++) {
2043 struct page *page = pvec.pages[i];
2045 index = page->index;
2046 if (index > end)
2047 break;
2048 index++;
2050 BUG_ON(!PageLocked(page));
2051 BUG_ON(PageWriteback(page));
2052 BUG_ON(!page_has_buffers(page));
2054 bh = page_buffers(page);
2055 head = bh;
2057 /* skip blocks out of the range */
2058 do {
2059 if (cur_logical >= logical)
2060 break;
2061 cur_logical++;
2062 } while ((bh = bh->b_this_page) != head);
2064 do {
2065 if (cur_logical >= logical + blocks)
2066 break;
2068 if (buffer_delay(bh) ||
2069 buffer_unwritten(bh)) {
2071 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2073 if (buffer_delay(bh)) {
2074 clear_buffer_delay(bh);
2075 bh->b_blocknr = pblock;
2076 } else {
2078 * unwritten already should have
2079 * blocknr assigned. Verify that
2081 clear_buffer_unwritten(bh);
2082 BUG_ON(bh->b_blocknr != pblock);
2085 } else if (buffer_mapped(bh))
2086 BUG_ON(bh->b_blocknr != pblock);
2088 cur_logical++;
2089 pblock++;
2090 } while ((bh = bh->b_this_page) != head);
2092 pagevec_release(&pvec);
2098 * __unmap_underlying_blocks - just a helper function to unmap
2099 * set of blocks described by @bh
2101 static inline void __unmap_underlying_blocks(struct inode *inode,
2102 struct buffer_head *bh)
2104 struct block_device *bdev = inode->i_sb->s_bdev;
2105 int blocks, i;
2107 blocks = bh->b_size >> inode->i_blkbits;
2108 for (i = 0; i < blocks; i++)
2109 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2112 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2113 sector_t logical, long blk_cnt)
2115 int nr_pages, i;
2116 pgoff_t index, end;
2117 struct pagevec pvec;
2118 struct inode *inode = mpd->inode;
2119 struct address_space *mapping = inode->i_mapping;
2121 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2122 end = (logical + blk_cnt - 1) >>
2123 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2124 while (index <= end) {
2125 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2126 if (nr_pages == 0)
2127 break;
2128 for (i = 0; i < nr_pages; i++) {
2129 struct page *page = pvec.pages[i];
2130 index = page->index;
2131 if (index > end)
2132 break;
2133 index++;
2135 BUG_ON(!PageLocked(page));
2136 BUG_ON(PageWriteback(page));
2137 block_invalidatepage(page, 0);
2138 ClearPageUptodate(page);
2139 unlock_page(page);
2142 return;
2145 static void ext4_print_free_blocks(struct inode *inode)
2147 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2148 printk(KERN_CRIT "Total free blocks count %lld\n",
2149 ext4_count_free_blocks(inode->i_sb));
2150 printk(KERN_CRIT "Free/Dirty block details\n");
2151 printk(KERN_CRIT "free_blocks=%lld\n",
2152 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2153 printk(KERN_CRIT "dirty_blocks=%lld\n",
2154 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2155 printk(KERN_CRIT "Block reservation details\n");
2156 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2157 EXT4_I(inode)->i_reserved_data_blocks);
2158 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2159 EXT4_I(inode)->i_reserved_meta_blocks);
2160 return;
2164 * mpage_da_map_blocks - go through given space
2166 * @mpd - bh describing space
2168 * The function skips space we know is already mapped to disk blocks.
2171 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2173 int err, blks, get_blocks_flags;
2174 struct buffer_head new;
2175 sector_t next = mpd->b_blocknr;
2176 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2177 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2178 handle_t *handle = NULL;
2181 * We consider only non-mapped and non-allocated blocks
2183 if ((mpd->b_state & (1 << BH_Mapped)) &&
2184 !(mpd->b_state & (1 << BH_Delay)) &&
2185 !(mpd->b_state & (1 << BH_Unwritten)))
2186 return 0;
2189 * If we didn't accumulate anything to write simply return
2191 if (!mpd->b_size)
2192 return 0;
2194 handle = ext4_journal_current_handle();
2195 BUG_ON(!handle);
2198 * Call ext4_get_blocks() to allocate any delayed allocation
2199 * blocks, or to convert an uninitialized extent to be
2200 * initialized (in the case where we have written into
2201 * one or more preallocated blocks).
2203 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2204 * indicate that we are on the delayed allocation path. This
2205 * affects functions in many different parts of the allocation
2206 * call path. This flag exists primarily because we don't
2207 * want to change *many* call functions, so ext4_get_blocks()
2208 * will set the magic i_delalloc_reserved_flag once the
2209 * inode's allocation semaphore is taken.
2211 * If the blocks in questions were delalloc blocks, set
2212 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2213 * variables are updated after the blocks have been allocated.
2215 new.b_state = 0;
2216 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2217 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2218 if (mpd->b_state & (1 << BH_Delay))
2219 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2220 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2221 &new, get_blocks_flags);
2222 if (blks < 0) {
2223 err = blks;
2225 * If get block returns with error we simply
2226 * return. Later writepage will redirty the page and
2227 * writepages will find the dirty page again
2229 if (err == -EAGAIN)
2230 return 0;
2232 if (err == -ENOSPC &&
2233 ext4_count_free_blocks(mpd->inode->i_sb)) {
2234 mpd->retval = err;
2235 return 0;
2239 * get block failure will cause us to loop in
2240 * writepages, because a_ops->writepage won't be able
2241 * to make progress. The page will be redirtied by
2242 * writepage and writepages will again try to write
2243 * the same.
2245 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2246 "delayed block allocation failed for inode %lu at "
2247 "logical offset %llu with max blocks %zd with "
2248 "error %d\n", mpd->inode->i_ino,
2249 (unsigned long long) next,
2250 mpd->b_size >> mpd->inode->i_blkbits, err);
2251 printk(KERN_CRIT "This should not happen!! "
2252 "Data will be lost\n");
2253 if (err == -ENOSPC) {
2254 ext4_print_free_blocks(mpd->inode);
2256 /* invalidate all the pages */
2257 ext4_da_block_invalidatepages(mpd, next,
2258 mpd->b_size >> mpd->inode->i_blkbits);
2259 return err;
2261 BUG_ON(blks == 0);
2263 new.b_size = (blks << mpd->inode->i_blkbits);
2265 if (buffer_new(&new))
2266 __unmap_underlying_blocks(mpd->inode, &new);
2269 * If blocks are delayed marked, we need to
2270 * put actual blocknr and drop delayed bit
2272 if ((mpd->b_state & (1 << BH_Delay)) ||
2273 (mpd->b_state & (1 << BH_Unwritten)))
2274 mpage_put_bnr_to_bhs(mpd, next, &new);
2276 if (ext4_should_order_data(mpd->inode)) {
2277 err = ext4_jbd2_file_inode(handle, mpd->inode);
2278 if (err)
2279 return err;
2283 * Update on-disk size along with block allocation.
2285 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2286 if (disksize > i_size_read(mpd->inode))
2287 disksize = i_size_read(mpd->inode);
2288 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2289 ext4_update_i_disksize(mpd->inode, disksize);
2290 return ext4_mark_inode_dirty(handle, mpd->inode);
2293 return 0;
2296 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2297 (1 << BH_Delay) | (1 << BH_Unwritten))
2300 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2302 * @mpd->lbh - extent of blocks
2303 * @logical - logical number of the block in the file
2304 * @bh - bh of the block (used to access block's state)
2306 * the function is used to collect contig. blocks in same state
2308 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2309 sector_t logical, size_t b_size,
2310 unsigned long b_state)
2312 sector_t next;
2313 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2315 /* check if thereserved journal credits might overflow */
2316 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2317 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2319 * With non-extent format we are limited by the journal
2320 * credit available. Total credit needed to insert
2321 * nrblocks contiguous blocks is dependent on the
2322 * nrblocks. So limit nrblocks.
2324 goto flush_it;
2325 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2326 EXT4_MAX_TRANS_DATA) {
2328 * Adding the new buffer_head would make it cross the
2329 * allowed limit for which we have journal credit
2330 * reserved. So limit the new bh->b_size
2332 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2333 mpd->inode->i_blkbits;
2334 /* we will do mpage_da_submit_io in the next loop */
2338 * First block in the extent
2340 if (mpd->b_size == 0) {
2341 mpd->b_blocknr = logical;
2342 mpd->b_size = b_size;
2343 mpd->b_state = b_state & BH_FLAGS;
2344 return;
2347 next = mpd->b_blocknr + nrblocks;
2349 * Can we merge the block to our big extent?
2351 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2352 mpd->b_size += b_size;
2353 return;
2356 flush_it:
2358 * We couldn't merge the block to our extent, so we
2359 * need to flush current extent and start new one
2361 if (mpage_da_map_blocks(mpd) == 0)
2362 mpage_da_submit_io(mpd);
2363 mpd->io_done = 1;
2364 return;
2367 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2369 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2373 * __mpage_da_writepage - finds extent of pages and blocks
2375 * @page: page to consider
2376 * @wbc: not used, we just follow rules
2377 * @data: context
2379 * The function finds extents of pages and scan them for all blocks.
2381 static int __mpage_da_writepage(struct page *page,
2382 struct writeback_control *wbc, void *data)
2384 struct mpage_da_data *mpd = data;
2385 struct inode *inode = mpd->inode;
2386 struct buffer_head *bh, *head;
2387 sector_t logical;
2389 if (mpd->io_done) {
2391 * Rest of the page in the page_vec
2392 * redirty then and skip then. We will
2393 * try to write them again after
2394 * starting a new transaction
2396 redirty_page_for_writepage(wbc, page);
2397 unlock_page(page);
2398 return MPAGE_DA_EXTENT_TAIL;
2401 * Can we merge this page to current extent?
2403 if (mpd->next_page != page->index) {
2405 * Nope, we can't. So, we map non-allocated blocks
2406 * and start IO on them using writepage()
2408 if (mpd->next_page != mpd->first_page) {
2409 if (mpage_da_map_blocks(mpd) == 0)
2410 mpage_da_submit_io(mpd);
2412 * skip rest of the page in the page_vec
2414 mpd->io_done = 1;
2415 redirty_page_for_writepage(wbc, page);
2416 unlock_page(page);
2417 return MPAGE_DA_EXTENT_TAIL;
2421 * Start next extent of pages ...
2423 mpd->first_page = page->index;
2426 * ... and blocks
2428 mpd->b_size = 0;
2429 mpd->b_state = 0;
2430 mpd->b_blocknr = 0;
2433 mpd->next_page = page->index + 1;
2434 logical = (sector_t) page->index <<
2435 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2437 if (!page_has_buffers(page)) {
2438 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2439 (1 << BH_Dirty) | (1 << BH_Uptodate));
2440 if (mpd->io_done)
2441 return MPAGE_DA_EXTENT_TAIL;
2442 } else {
2444 * Page with regular buffer heads, just add all dirty ones
2446 head = page_buffers(page);
2447 bh = head;
2448 do {
2449 BUG_ON(buffer_locked(bh));
2451 * We need to try to allocate
2452 * unmapped blocks in the same page.
2453 * Otherwise we won't make progress
2454 * with the page in ext4_writepage
2456 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2457 mpage_add_bh_to_extent(mpd, logical,
2458 bh->b_size,
2459 bh->b_state);
2460 if (mpd->io_done)
2461 return MPAGE_DA_EXTENT_TAIL;
2462 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2464 * mapped dirty buffer. We need to update
2465 * the b_state because we look at
2466 * b_state in mpage_da_map_blocks. We don't
2467 * update b_size because if we find an
2468 * unmapped buffer_head later we need to
2469 * use the b_state flag of that buffer_head.
2471 if (mpd->b_size == 0)
2472 mpd->b_state = bh->b_state & BH_FLAGS;
2474 logical++;
2475 } while ((bh = bh->b_this_page) != head);
2478 return 0;
2482 * This is a special get_blocks_t callback which is used by
2483 * ext4_da_write_begin(). It will either return mapped block or
2484 * reserve space for a single block.
2486 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2487 * We also have b_blocknr = -1 and b_bdev initialized properly
2489 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2490 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2491 * initialized properly.
2493 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2494 struct buffer_head *bh_result, int create)
2496 int ret = 0;
2497 sector_t invalid_block = ~((sector_t) 0xffff);
2499 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2500 invalid_block = ~0;
2502 BUG_ON(create == 0);
2503 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2506 * first, we need to know whether the block is allocated already
2507 * preallocated blocks are unmapped but should treated
2508 * the same as allocated blocks.
2510 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2511 if ((ret == 0) && !buffer_delay(bh_result)) {
2512 /* the block isn't (pre)allocated yet, let's reserve space */
2514 * XXX: __block_prepare_write() unmaps passed block,
2515 * is it OK?
2517 ret = ext4_da_reserve_space(inode, iblock);
2518 if (ret)
2519 /* not enough space to reserve */
2520 return ret;
2522 map_bh(bh_result, inode->i_sb, invalid_block);
2523 set_buffer_new(bh_result);
2524 set_buffer_delay(bh_result);
2525 } else if (ret > 0) {
2526 bh_result->b_size = (ret << inode->i_blkbits);
2527 if (buffer_unwritten(bh_result)) {
2528 /* A delayed write to unwritten bh should
2529 * be marked new and mapped. Mapped ensures
2530 * that we don't do get_block multiple times
2531 * when we write to the same offset and new
2532 * ensures that we do proper zero out for
2533 * partial write.
2535 set_buffer_new(bh_result);
2536 set_buffer_mapped(bh_result);
2538 ret = 0;
2541 return ret;
2545 * This function is used as a standard get_block_t calback function
2546 * when there is no desire to allocate any blocks. It is used as a
2547 * callback function for block_prepare_write(), nobh_writepage(), and
2548 * block_write_full_page(). These functions should only try to map a
2549 * single block at a time.
2551 * Since this function doesn't do block allocations even if the caller
2552 * requests it by passing in create=1, it is critically important that
2553 * any caller checks to make sure that any buffer heads are returned
2554 * by this function are either all already mapped or marked for
2555 * delayed allocation before calling nobh_writepage() or
2556 * block_write_full_page(). Otherwise, b_blocknr could be left
2557 * unitialized, and the page write functions will be taken by
2558 * surprise.
2560 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2561 struct buffer_head *bh_result, int create)
2563 int ret = 0;
2564 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2566 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2569 * we don't want to do block allocation in writepage
2570 * so call get_block_wrap with create = 0
2572 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2573 if (ret > 0) {
2574 bh_result->b_size = (ret << inode->i_blkbits);
2575 ret = 0;
2577 return ret;
2580 static int bget_one(handle_t *handle, struct buffer_head *bh)
2582 get_bh(bh);
2583 return 0;
2586 static int bput_one(handle_t *handle, struct buffer_head *bh)
2588 put_bh(bh);
2589 return 0;
2592 static int __ext4_journalled_writepage(struct page *page,
2593 unsigned int len)
2595 struct address_space *mapping = page->mapping;
2596 struct inode *inode = mapping->host;
2597 struct buffer_head *page_bufs;
2598 handle_t *handle = NULL;
2599 int ret = 0;
2600 int err;
2602 page_bufs = page_buffers(page);
2603 BUG_ON(!page_bufs);
2604 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2605 /* As soon as we unlock the page, it can go away, but we have
2606 * references to buffers so we are safe */
2607 unlock_page(page);
2609 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2610 if (IS_ERR(handle)) {
2611 ret = PTR_ERR(handle);
2612 goto out;
2615 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2616 do_journal_get_write_access);
2618 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2619 write_end_fn);
2620 if (ret == 0)
2621 ret = err;
2622 err = ext4_journal_stop(handle);
2623 if (!ret)
2624 ret = err;
2626 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2627 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2628 out:
2629 return ret;
2633 * Note that we don't need to start a transaction unless we're journaling data
2634 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2635 * need to file the inode to the transaction's list in ordered mode because if
2636 * we are writing back data added by write(), the inode is already there and if
2637 * we are writing back data modified via mmap(), noone guarantees in which
2638 * transaction the data will hit the disk. In case we are journaling data, we
2639 * cannot start transaction directly because transaction start ranks above page
2640 * lock so we have to do some magic.
2642 * This function can get called via...
2643 * - ext4_da_writepages after taking page lock (have journal handle)
2644 * - journal_submit_inode_data_buffers (no journal handle)
2645 * - shrink_page_list via pdflush (no journal handle)
2646 * - grab_page_cache when doing write_begin (have journal handle)
2648 * We don't do any block allocation in this function. If we have page with
2649 * multiple blocks we need to write those buffer_heads that are mapped. This
2650 * is important for mmaped based write. So if we do with blocksize 1K
2651 * truncate(f, 1024);
2652 * a = mmap(f, 0, 4096);
2653 * a[0] = 'a';
2654 * truncate(f, 4096);
2655 * we have in the page first buffer_head mapped via page_mkwrite call back
2656 * but other bufer_heads would be unmapped but dirty(dirty done via the
2657 * do_wp_page). So writepage should write the first block. If we modify
2658 * the mmap area beyond 1024 we will again get a page_fault and the
2659 * page_mkwrite callback will do the block allocation and mark the
2660 * buffer_heads mapped.
2662 * We redirty the page if we have any buffer_heads that is either delay or
2663 * unwritten in the page.
2665 * We can get recursively called as show below.
2667 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2668 * ext4_writepage()
2670 * But since we don't do any block allocation we should not deadlock.
2671 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2673 static int ext4_writepage(struct page *page,
2674 struct writeback_control *wbc)
2676 int ret = 0;
2677 loff_t size;
2678 unsigned int len;
2679 struct buffer_head *page_bufs;
2680 struct inode *inode = page->mapping->host;
2682 trace_ext4_writepage(inode, page);
2683 size = i_size_read(inode);
2684 if (page->index == size >> PAGE_CACHE_SHIFT)
2685 len = size & ~PAGE_CACHE_MASK;
2686 else
2687 len = PAGE_CACHE_SIZE;
2689 if (page_has_buffers(page)) {
2690 page_bufs = page_buffers(page);
2691 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2692 ext4_bh_delay_or_unwritten)) {
2694 * We don't want to do block allocation
2695 * So redirty the page and return
2696 * We may reach here when we do a journal commit
2697 * via journal_submit_inode_data_buffers.
2698 * If we don't have mapping block we just ignore
2699 * them. We can also reach here via shrink_page_list
2701 redirty_page_for_writepage(wbc, page);
2702 unlock_page(page);
2703 return 0;
2705 } else {
2707 * The test for page_has_buffers() is subtle:
2708 * We know the page is dirty but it lost buffers. That means
2709 * that at some moment in time after write_begin()/write_end()
2710 * has been called all buffers have been clean and thus they
2711 * must have been written at least once. So they are all
2712 * mapped and we can happily proceed with mapping them
2713 * and writing the page.
2715 * Try to initialize the buffer_heads and check whether
2716 * all are mapped and non delay. We don't want to
2717 * do block allocation here.
2719 ret = block_prepare_write(page, 0, len,
2720 noalloc_get_block_write);
2721 if (!ret) {
2722 page_bufs = page_buffers(page);
2723 /* check whether all are mapped and non delay */
2724 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2725 ext4_bh_delay_or_unwritten)) {
2726 redirty_page_for_writepage(wbc, page);
2727 unlock_page(page);
2728 return 0;
2730 } else {
2732 * We can't do block allocation here
2733 * so just redity the page and unlock
2734 * and return
2736 redirty_page_for_writepage(wbc, page);
2737 unlock_page(page);
2738 return 0;
2740 /* now mark the buffer_heads as dirty and uptodate */
2741 block_commit_write(page, 0, len);
2744 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2746 * It's mmapped pagecache. Add buffers and journal it. There
2747 * doesn't seem much point in redirtying the page here.
2749 ClearPageChecked(page);
2750 return __ext4_journalled_writepage(page, len);
2753 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2754 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2755 else
2756 ret = block_write_full_page(page, noalloc_get_block_write,
2757 wbc);
2759 return ret;
2763 * This is called via ext4_da_writepages() to
2764 * calulate the total number of credits to reserve to fit
2765 * a single extent allocation into a single transaction,
2766 * ext4_da_writpeages() will loop calling this before
2767 * the block allocation.
2770 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2772 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2775 * With non-extent format the journal credit needed to
2776 * insert nrblocks contiguous block is dependent on
2777 * number of contiguous block. So we will limit
2778 * number of contiguous block to a sane value
2780 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2781 (max_blocks > EXT4_MAX_TRANS_DATA))
2782 max_blocks = EXT4_MAX_TRANS_DATA;
2784 return ext4_chunk_trans_blocks(inode, max_blocks);
2787 static int ext4_da_writepages(struct address_space *mapping,
2788 struct writeback_control *wbc)
2790 pgoff_t index;
2791 int range_whole = 0;
2792 handle_t *handle = NULL;
2793 struct mpage_da_data mpd;
2794 struct inode *inode = mapping->host;
2795 int no_nrwrite_index_update;
2796 int pages_written = 0;
2797 long pages_skipped;
2798 unsigned int max_pages;
2799 int range_cyclic, cycled = 1, io_done = 0;
2800 int needed_blocks, ret = 0;
2801 long desired_nr_to_write, nr_to_writebump = 0;
2802 loff_t range_start = wbc->range_start;
2803 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2805 trace_ext4_da_writepages(inode, wbc);
2808 * No pages to write? This is mainly a kludge to avoid starting
2809 * a transaction for special inodes like journal inode on last iput()
2810 * because that could violate lock ordering on umount
2812 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2813 return 0;
2816 * If the filesystem has aborted, it is read-only, so return
2817 * right away instead of dumping stack traces later on that
2818 * will obscure the real source of the problem. We test
2819 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2820 * the latter could be true if the filesystem is mounted
2821 * read-only, and in that case, ext4_da_writepages should
2822 * *never* be called, so if that ever happens, we would want
2823 * the stack trace.
2825 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2826 return -EROFS;
2828 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2829 range_whole = 1;
2831 range_cyclic = wbc->range_cyclic;
2832 if (wbc->range_cyclic) {
2833 index = mapping->writeback_index;
2834 if (index)
2835 cycled = 0;
2836 wbc->range_start = index << PAGE_CACHE_SHIFT;
2837 wbc->range_end = LLONG_MAX;
2838 wbc->range_cyclic = 0;
2839 } else
2840 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2843 * This works around two forms of stupidity. The first is in
2844 * the writeback code, which caps the maximum number of pages
2845 * written to be 1024 pages. This is wrong on multiple
2846 * levels; different architectues have a different page size,
2847 * which changes the maximum amount of data which gets
2848 * written. Secondly, 4 megabytes is way too small. XFS
2849 * forces this value to be 16 megabytes by multiplying
2850 * nr_to_write parameter by four, and then relies on its
2851 * allocator to allocate larger extents to make them
2852 * contiguous. Unfortunately this brings us to the second
2853 * stupidity, which is that ext4's mballoc code only allocates
2854 * at most 2048 blocks. So we force contiguous writes up to
2855 * the number of dirty blocks in the inode, or
2856 * sbi->max_writeback_mb_bump whichever is smaller.
2858 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2859 if (!range_cyclic && range_whole)
2860 desired_nr_to_write = wbc->nr_to_write * 8;
2861 else
2862 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2863 max_pages);
2864 if (desired_nr_to_write > max_pages)
2865 desired_nr_to_write = max_pages;
2867 if (wbc->nr_to_write < desired_nr_to_write) {
2868 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2869 wbc->nr_to_write = desired_nr_to_write;
2872 mpd.wbc = wbc;
2873 mpd.inode = mapping->host;
2876 * we don't want write_cache_pages to update
2877 * nr_to_write and writeback_index
2879 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2880 wbc->no_nrwrite_index_update = 1;
2881 pages_skipped = wbc->pages_skipped;
2883 retry:
2884 while (!ret && wbc->nr_to_write > 0) {
2887 * we insert one extent at a time. So we need
2888 * credit needed for single extent allocation.
2889 * journalled mode is currently not supported
2890 * by delalloc
2892 BUG_ON(ext4_should_journal_data(inode));
2893 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2895 /* start a new transaction*/
2896 handle = ext4_journal_start(inode, needed_blocks);
2897 if (IS_ERR(handle)) {
2898 ret = PTR_ERR(handle);
2899 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2900 "%ld pages, ino %lu; err %d\n", __func__,
2901 wbc->nr_to_write, inode->i_ino, ret);
2902 goto out_writepages;
2906 * Now call __mpage_da_writepage to find the next
2907 * contiguous region of logical blocks that need
2908 * blocks to be allocated by ext4. We don't actually
2909 * submit the blocks for I/O here, even though
2910 * write_cache_pages thinks it will, and will set the
2911 * pages as clean for write before calling
2912 * __mpage_da_writepage().
2914 mpd.b_size = 0;
2915 mpd.b_state = 0;
2916 mpd.b_blocknr = 0;
2917 mpd.first_page = 0;
2918 mpd.next_page = 0;
2919 mpd.io_done = 0;
2920 mpd.pages_written = 0;
2921 mpd.retval = 0;
2922 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2923 &mpd);
2925 * If we have a contiguous extent of pages and we
2926 * haven't done the I/O yet, map the blocks and submit
2927 * them for I/O.
2929 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2930 if (mpage_da_map_blocks(&mpd) == 0)
2931 mpage_da_submit_io(&mpd);
2932 mpd.io_done = 1;
2933 ret = MPAGE_DA_EXTENT_TAIL;
2935 trace_ext4_da_write_pages(inode, &mpd);
2936 wbc->nr_to_write -= mpd.pages_written;
2938 ext4_journal_stop(handle);
2940 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2941 /* commit the transaction which would
2942 * free blocks released in the transaction
2943 * and try again
2945 jbd2_journal_force_commit_nested(sbi->s_journal);
2946 wbc->pages_skipped = pages_skipped;
2947 ret = 0;
2948 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2950 * got one extent now try with
2951 * rest of the pages
2953 pages_written += mpd.pages_written;
2954 wbc->pages_skipped = pages_skipped;
2955 ret = 0;
2956 io_done = 1;
2957 } else if (wbc->nr_to_write)
2959 * There is no more writeout needed
2960 * or we requested for a noblocking writeout
2961 * and we found the device congested
2963 break;
2965 if (!io_done && !cycled) {
2966 cycled = 1;
2967 index = 0;
2968 wbc->range_start = index << PAGE_CACHE_SHIFT;
2969 wbc->range_end = mapping->writeback_index - 1;
2970 goto retry;
2972 if (pages_skipped != wbc->pages_skipped)
2973 ext4_msg(inode->i_sb, KERN_CRIT,
2974 "This should not happen leaving %s "
2975 "with nr_to_write = %ld ret = %d\n",
2976 __func__, wbc->nr_to_write, ret);
2978 /* Update index */
2979 index += pages_written;
2980 wbc->range_cyclic = range_cyclic;
2981 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2983 * set the writeback_index so that range_cyclic
2984 * mode will write it back later
2986 mapping->writeback_index = index;
2988 out_writepages:
2989 if (!no_nrwrite_index_update)
2990 wbc->no_nrwrite_index_update = 0;
2991 wbc->nr_to_write -= nr_to_writebump;
2992 wbc->range_start = range_start;
2993 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2994 return ret;
2997 #define FALL_BACK_TO_NONDELALLOC 1
2998 static int ext4_nonda_switch(struct super_block *sb)
3000 s64 free_blocks, dirty_blocks;
3001 struct ext4_sb_info *sbi = EXT4_SB(sb);
3004 * switch to non delalloc mode if we are running low
3005 * on free block. The free block accounting via percpu
3006 * counters can get slightly wrong with percpu_counter_batch getting
3007 * accumulated on each CPU without updating global counters
3008 * Delalloc need an accurate free block accounting. So switch
3009 * to non delalloc when we are near to error range.
3011 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3012 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3013 if (2 * free_blocks < 3 * dirty_blocks ||
3014 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3016 * free block count is less than 150% of dirty blocks
3017 * or free blocks is less than watermark
3019 return 1;
3022 * Even if we don't switch but are nearing capacity,
3023 * start pushing delalloc when 1/2 of free blocks are dirty.
3025 if (free_blocks < 2 * dirty_blocks)
3026 writeback_inodes_sb_if_idle(sb);
3028 return 0;
3031 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3032 loff_t pos, unsigned len, unsigned flags,
3033 struct page **pagep, void **fsdata)
3035 int ret, retries = 0;
3036 struct page *page;
3037 pgoff_t index;
3038 unsigned from, to;
3039 struct inode *inode = mapping->host;
3040 handle_t *handle;
3042 index = pos >> PAGE_CACHE_SHIFT;
3043 from = pos & (PAGE_CACHE_SIZE - 1);
3044 to = from + len;
3046 if (ext4_nonda_switch(inode->i_sb)) {
3047 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3048 return ext4_write_begin(file, mapping, pos,
3049 len, flags, pagep, fsdata);
3051 *fsdata = (void *)0;
3052 trace_ext4_da_write_begin(inode, pos, len, flags);
3053 retry:
3055 * With delayed allocation, we don't log the i_disksize update
3056 * if there is delayed block allocation. But we still need
3057 * to journalling the i_disksize update if writes to the end
3058 * of file which has an already mapped buffer.
3060 handle = ext4_journal_start(inode, 1);
3061 if (IS_ERR(handle)) {
3062 ret = PTR_ERR(handle);
3063 goto out;
3065 /* We cannot recurse into the filesystem as the transaction is already
3066 * started */
3067 flags |= AOP_FLAG_NOFS;
3069 page = grab_cache_page_write_begin(mapping, index, flags);
3070 if (!page) {
3071 ext4_journal_stop(handle);
3072 ret = -ENOMEM;
3073 goto out;
3075 *pagep = page;
3077 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3078 ext4_da_get_block_prep);
3079 if (ret < 0) {
3080 unlock_page(page);
3081 ext4_journal_stop(handle);
3082 page_cache_release(page);
3084 * block_write_begin may have instantiated a few blocks
3085 * outside i_size. Trim these off again. Don't need
3086 * i_size_read because we hold i_mutex.
3088 if (pos + len > inode->i_size)
3089 ext4_truncate_failed_write(inode);
3092 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3093 goto retry;
3094 out:
3095 return ret;
3099 * Check if we should update i_disksize
3100 * when write to the end of file but not require block allocation
3102 static int ext4_da_should_update_i_disksize(struct page *page,
3103 unsigned long offset)
3105 struct buffer_head *bh;
3106 struct inode *inode = page->mapping->host;
3107 unsigned int idx;
3108 int i;
3110 bh = page_buffers(page);
3111 idx = offset >> inode->i_blkbits;
3113 for (i = 0; i < idx; i++)
3114 bh = bh->b_this_page;
3116 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3117 return 0;
3118 return 1;
3121 static int ext4_da_write_end(struct file *file,
3122 struct address_space *mapping,
3123 loff_t pos, unsigned len, unsigned copied,
3124 struct page *page, void *fsdata)
3126 struct inode *inode = mapping->host;
3127 int ret = 0, ret2;
3128 handle_t *handle = ext4_journal_current_handle();
3129 loff_t new_i_size;
3130 unsigned long start, end;
3131 int write_mode = (int)(unsigned long)fsdata;
3133 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3134 if (ext4_should_order_data(inode)) {
3135 return ext4_ordered_write_end(file, mapping, pos,
3136 len, copied, page, fsdata);
3137 } else if (ext4_should_writeback_data(inode)) {
3138 return ext4_writeback_write_end(file, mapping, pos,
3139 len, copied, page, fsdata);
3140 } else {
3141 BUG();
3145 trace_ext4_da_write_end(inode, pos, len, copied);
3146 start = pos & (PAGE_CACHE_SIZE - 1);
3147 end = start + copied - 1;
3150 * generic_write_end() will run mark_inode_dirty() if i_size
3151 * changes. So let's piggyback the i_disksize mark_inode_dirty
3152 * into that.
3155 new_i_size = pos + copied;
3156 if (new_i_size > EXT4_I(inode)->i_disksize) {
3157 if (ext4_da_should_update_i_disksize(page, end)) {
3158 down_write(&EXT4_I(inode)->i_data_sem);
3159 if (new_i_size > EXT4_I(inode)->i_disksize) {
3161 * Updating i_disksize when extending file
3162 * without needing block allocation
3164 if (ext4_should_order_data(inode))
3165 ret = ext4_jbd2_file_inode(handle,
3166 inode);
3168 EXT4_I(inode)->i_disksize = new_i_size;
3170 up_write(&EXT4_I(inode)->i_data_sem);
3171 /* We need to mark inode dirty even if
3172 * new_i_size is less that inode->i_size
3173 * bu greater than i_disksize.(hint delalloc)
3175 ext4_mark_inode_dirty(handle, inode);
3178 ret2 = generic_write_end(file, mapping, pos, len, copied,
3179 page, fsdata);
3180 copied = ret2;
3181 if (ret2 < 0)
3182 ret = ret2;
3183 ret2 = ext4_journal_stop(handle);
3184 if (!ret)
3185 ret = ret2;
3187 return ret ? ret : copied;
3190 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3193 * Drop reserved blocks
3195 BUG_ON(!PageLocked(page));
3196 if (!page_has_buffers(page))
3197 goto out;
3199 ext4_da_page_release_reservation(page, offset);
3201 out:
3202 ext4_invalidatepage(page, offset);
3204 return;
3208 * Force all delayed allocation blocks to be allocated for a given inode.
3210 int ext4_alloc_da_blocks(struct inode *inode)
3212 trace_ext4_alloc_da_blocks(inode);
3214 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3215 !EXT4_I(inode)->i_reserved_meta_blocks)
3216 return 0;
3219 * We do something simple for now. The filemap_flush() will
3220 * also start triggering a write of the data blocks, which is
3221 * not strictly speaking necessary (and for users of
3222 * laptop_mode, not even desirable). However, to do otherwise
3223 * would require replicating code paths in:
3225 * ext4_da_writepages() ->
3226 * write_cache_pages() ---> (via passed in callback function)
3227 * __mpage_da_writepage() -->
3228 * mpage_add_bh_to_extent()
3229 * mpage_da_map_blocks()
3231 * The problem is that write_cache_pages(), located in
3232 * mm/page-writeback.c, marks pages clean in preparation for
3233 * doing I/O, which is not desirable if we're not planning on
3234 * doing I/O at all.
3236 * We could call write_cache_pages(), and then redirty all of
3237 * the pages by calling redirty_page_for_writeback() but that
3238 * would be ugly in the extreme. So instead we would need to
3239 * replicate parts of the code in the above functions,
3240 * simplifying them becuase we wouldn't actually intend to
3241 * write out the pages, but rather only collect contiguous
3242 * logical block extents, call the multi-block allocator, and
3243 * then update the buffer heads with the block allocations.
3245 * For now, though, we'll cheat by calling filemap_flush(),
3246 * which will map the blocks, and start the I/O, but not
3247 * actually wait for the I/O to complete.
3249 return filemap_flush(inode->i_mapping);
3253 * bmap() is special. It gets used by applications such as lilo and by
3254 * the swapper to find the on-disk block of a specific piece of data.
3256 * Naturally, this is dangerous if the block concerned is still in the
3257 * journal. If somebody makes a swapfile on an ext4 data-journaling
3258 * filesystem and enables swap, then they may get a nasty shock when the
3259 * data getting swapped to that swapfile suddenly gets overwritten by
3260 * the original zero's written out previously to the journal and
3261 * awaiting writeback in the kernel's buffer cache.
3263 * So, if we see any bmap calls here on a modified, data-journaled file,
3264 * take extra steps to flush any blocks which might be in the cache.
3266 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3268 struct inode *inode = mapping->host;
3269 journal_t *journal;
3270 int err;
3272 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3273 test_opt(inode->i_sb, DELALLOC)) {
3275 * With delalloc we want to sync the file
3276 * so that we can make sure we allocate
3277 * blocks for file
3279 filemap_write_and_wait(mapping);
3282 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3284 * This is a REALLY heavyweight approach, but the use of
3285 * bmap on dirty files is expected to be extremely rare:
3286 * only if we run lilo or swapon on a freshly made file
3287 * do we expect this to happen.
3289 * (bmap requires CAP_SYS_RAWIO so this does not
3290 * represent an unprivileged user DOS attack --- we'd be
3291 * in trouble if mortal users could trigger this path at
3292 * will.)
3294 * NB. EXT4_STATE_JDATA is not set on files other than
3295 * regular files. If somebody wants to bmap a directory
3296 * or symlink and gets confused because the buffer
3297 * hasn't yet been flushed to disk, they deserve
3298 * everything they get.
3301 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3302 journal = EXT4_JOURNAL(inode);
3303 jbd2_journal_lock_updates(journal);
3304 err = jbd2_journal_flush(journal);
3305 jbd2_journal_unlock_updates(journal);
3307 if (err)
3308 return 0;
3311 return generic_block_bmap(mapping, block, ext4_get_block);
3314 static int ext4_readpage(struct file *file, struct page *page)
3316 return mpage_readpage(page, ext4_get_block);
3319 static int
3320 ext4_readpages(struct file *file, struct address_space *mapping,
3321 struct list_head *pages, unsigned nr_pages)
3323 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3326 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3328 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3331 * If it's a full truncate we just forget about the pending dirtying
3333 if (offset == 0)
3334 ClearPageChecked(page);
3336 if (journal)
3337 jbd2_journal_invalidatepage(journal, page, offset);
3338 else
3339 block_invalidatepage(page, offset);
3342 static int ext4_releasepage(struct page *page, gfp_t wait)
3344 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3346 WARN_ON(PageChecked(page));
3347 if (!page_has_buffers(page))
3348 return 0;
3349 if (journal)
3350 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3351 else
3352 return try_to_free_buffers(page);
3356 * O_DIRECT for ext3 (or indirect map) based files
3358 * If the O_DIRECT write will extend the file then add this inode to the
3359 * orphan list. So recovery will truncate it back to the original size
3360 * if the machine crashes during the write.
3362 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3363 * crashes then stale disk data _may_ be exposed inside the file. But current
3364 * VFS code falls back into buffered path in that case so we are safe.
3366 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3367 const struct iovec *iov, loff_t offset,
3368 unsigned long nr_segs)
3370 struct file *file = iocb->ki_filp;
3371 struct inode *inode = file->f_mapping->host;
3372 struct ext4_inode_info *ei = EXT4_I(inode);
3373 handle_t *handle;
3374 ssize_t ret;
3375 int orphan = 0;
3376 size_t count = iov_length(iov, nr_segs);
3377 int retries = 0;
3379 if (rw == WRITE) {
3380 loff_t final_size = offset + count;
3382 if (final_size > inode->i_size) {
3383 /* Credits for sb + inode write */
3384 handle = ext4_journal_start(inode, 2);
3385 if (IS_ERR(handle)) {
3386 ret = PTR_ERR(handle);
3387 goto out;
3389 ret = ext4_orphan_add(handle, inode);
3390 if (ret) {
3391 ext4_journal_stop(handle);
3392 goto out;
3394 orphan = 1;
3395 ei->i_disksize = inode->i_size;
3396 ext4_journal_stop(handle);
3400 retry:
3401 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3402 offset, nr_segs,
3403 ext4_get_block, NULL);
3404 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3405 goto retry;
3407 if (orphan) {
3408 int err;
3410 /* Credits for sb + inode write */
3411 handle = ext4_journal_start(inode, 2);
3412 if (IS_ERR(handle)) {
3413 /* This is really bad luck. We've written the data
3414 * but cannot extend i_size. Bail out and pretend
3415 * the write failed... */
3416 ret = PTR_ERR(handle);
3417 goto out;
3419 if (inode->i_nlink)
3420 ext4_orphan_del(handle, inode);
3421 if (ret > 0) {
3422 loff_t end = offset + ret;
3423 if (end > inode->i_size) {
3424 ei->i_disksize = end;
3425 i_size_write(inode, end);
3427 * We're going to return a positive `ret'
3428 * here due to non-zero-length I/O, so there's
3429 * no way of reporting error returns from
3430 * ext4_mark_inode_dirty() to userspace. So
3431 * ignore it.
3433 ext4_mark_inode_dirty(handle, inode);
3436 err = ext4_journal_stop(handle);
3437 if (ret == 0)
3438 ret = err;
3440 out:
3441 return ret;
3444 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3445 struct buffer_head *bh_result, int create)
3447 handle_t *handle = NULL;
3448 int ret = 0;
3449 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3450 int dio_credits;
3452 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3453 inode->i_ino, create);
3455 * DIO VFS code passes create = 0 flag for write to
3456 * the middle of file. It does this to avoid block
3457 * allocation for holes, to prevent expose stale data
3458 * out when there is parallel buffered read (which does
3459 * not hold the i_mutex lock) while direct IO write has
3460 * not completed. DIO request on holes finally falls back
3461 * to buffered IO for this reason.
3463 * For ext4 extent based file, since we support fallocate,
3464 * new allocated extent as uninitialized, for holes, we
3465 * could fallocate blocks for holes, thus parallel
3466 * buffered IO read will zero out the page when read on
3467 * a hole while parallel DIO write to the hole has not completed.
3469 * when we come here, we know it's a direct IO write to
3470 * to the middle of file (<i_size)
3471 * so it's safe to override the create flag from VFS.
3473 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3475 if (max_blocks > DIO_MAX_BLOCKS)
3476 max_blocks = DIO_MAX_BLOCKS;
3477 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3478 handle = ext4_journal_start(inode, dio_credits);
3479 if (IS_ERR(handle)) {
3480 ret = PTR_ERR(handle);
3481 goto out;
3483 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3484 create);
3485 if (ret > 0) {
3486 bh_result->b_size = (ret << inode->i_blkbits);
3487 ret = 0;
3489 ext4_journal_stop(handle);
3490 out:
3491 return ret;
3494 static void ext4_free_io_end(ext4_io_end_t *io)
3496 BUG_ON(!io);
3497 iput(io->inode);
3498 kfree(io);
3500 static void dump_aio_dio_list(struct inode * inode)
3502 #ifdef EXT4_DEBUG
3503 struct list_head *cur, *before, *after;
3504 ext4_io_end_t *io, *io0, *io1;
3506 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3507 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3508 return;
3511 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3512 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3513 cur = &io->list;
3514 before = cur->prev;
3515 io0 = container_of(before, ext4_io_end_t, list);
3516 after = cur->next;
3517 io1 = container_of(after, ext4_io_end_t, list);
3519 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3520 io, inode->i_ino, io0, io1);
3522 #endif
3526 * check a range of space and convert unwritten extents to written.
3528 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3530 struct inode *inode = io->inode;
3531 loff_t offset = io->offset;
3532 size_t size = io->size;
3533 int ret = 0;
3535 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3536 "list->prev 0x%p\n",
3537 io, inode->i_ino, io->list.next, io->list.prev);
3539 if (list_empty(&io->list))
3540 return ret;
3542 if (io->flag != DIO_AIO_UNWRITTEN)
3543 return ret;
3545 if (offset + size <= i_size_read(inode))
3546 ret = ext4_convert_unwritten_extents(inode, offset, size);
3548 if (ret < 0) {
3549 printk(KERN_EMERG "%s: failed to convert unwritten"
3550 "extents to written extents, error is %d"
3551 " io is still on inode %lu aio dio list\n",
3552 __func__, ret, inode->i_ino);
3553 return ret;
3556 /* clear the DIO AIO unwritten flag */
3557 io->flag = 0;
3558 return ret;
3561 * work on completed aio dio IO, to convert unwritten extents to extents
3563 static void ext4_end_aio_dio_work(struct work_struct *work)
3565 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3566 struct inode *inode = io->inode;
3567 int ret = 0;
3569 mutex_lock(&inode->i_mutex);
3570 ret = ext4_end_aio_dio_nolock(io);
3571 if (ret >= 0) {
3572 if (!list_empty(&io->list))
3573 list_del_init(&io->list);
3574 ext4_free_io_end(io);
3576 mutex_unlock(&inode->i_mutex);
3579 * This function is called from ext4_sync_file().
3581 * When AIO DIO IO is completed, the work to convert unwritten
3582 * extents to written is queued on workqueue but may not get immediately
3583 * scheduled. When fsync is called, we need to ensure the
3584 * conversion is complete before fsync returns.
3585 * The inode keeps track of a list of completed AIO from DIO path
3586 * that might needs to do the conversion. This function walks through
3587 * the list and convert the related unwritten extents to written.
3589 int flush_aio_dio_completed_IO(struct inode *inode)
3591 ext4_io_end_t *io;
3592 int ret = 0;
3593 int ret2 = 0;
3595 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3596 return ret;
3598 dump_aio_dio_list(inode);
3599 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3600 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3601 ext4_io_end_t, list);
3603 * Calling ext4_end_aio_dio_nolock() to convert completed
3604 * IO to written.
3606 * When ext4_sync_file() is called, run_queue() may already
3607 * about to flush the work corresponding to this io structure.
3608 * It will be upset if it founds the io structure related
3609 * to the work-to-be schedule is freed.
3611 * Thus we need to keep the io structure still valid here after
3612 * convertion finished. The io structure has a flag to
3613 * avoid double converting from both fsync and background work
3614 * queue work.
3616 ret = ext4_end_aio_dio_nolock(io);
3617 if (ret < 0)
3618 ret2 = ret;
3619 else
3620 list_del_init(&io->list);
3622 return (ret2 < 0) ? ret2 : 0;
3625 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3627 ext4_io_end_t *io = NULL;
3629 io = kmalloc(sizeof(*io), GFP_NOFS);
3631 if (io) {
3632 igrab(inode);
3633 io->inode = inode;
3634 io->flag = 0;
3635 io->offset = 0;
3636 io->size = 0;
3637 io->error = 0;
3638 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3639 INIT_LIST_HEAD(&io->list);
3642 return io;
3645 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3646 ssize_t size, void *private)
3648 ext4_io_end_t *io_end = iocb->private;
3649 struct workqueue_struct *wq;
3651 /* if not async direct IO or dio with 0 bytes write, just return */
3652 if (!io_end || !size)
3653 return;
3655 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3656 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3657 iocb->private, io_end->inode->i_ino, iocb, offset,
3658 size);
3660 /* if not aio dio with unwritten extents, just free io and return */
3661 if (io_end->flag != DIO_AIO_UNWRITTEN){
3662 ext4_free_io_end(io_end);
3663 iocb->private = NULL;
3664 return;
3667 io_end->offset = offset;
3668 io_end->size = size;
3669 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3671 /* queue the work to convert unwritten extents to written */
3672 queue_work(wq, &io_end->work);
3674 /* Add the io_end to per-inode completed aio dio list*/
3675 list_add_tail(&io_end->list,
3676 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3677 iocb->private = NULL;
3680 * For ext4 extent files, ext4 will do direct-io write to holes,
3681 * preallocated extents, and those write extend the file, no need to
3682 * fall back to buffered IO.
3684 * For holes, we fallocate those blocks, mark them as unintialized
3685 * If those blocks were preallocated, we mark sure they are splited, but
3686 * still keep the range to write as unintialized.
3688 * The unwrritten extents will be converted to written when DIO is completed.
3689 * For async direct IO, since the IO may still pending when return, we
3690 * set up an end_io call back function, which will do the convertion
3691 * when async direct IO completed.
3693 * If the O_DIRECT write will extend the file then add this inode to the
3694 * orphan list. So recovery will truncate it back to the original size
3695 * if the machine crashes during the write.
3698 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3699 const struct iovec *iov, loff_t offset,
3700 unsigned long nr_segs)
3702 struct file *file = iocb->ki_filp;
3703 struct inode *inode = file->f_mapping->host;
3704 ssize_t ret;
3705 size_t count = iov_length(iov, nr_segs);
3707 loff_t final_size = offset + count;
3708 if (rw == WRITE && final_size <= inode->i_size) {
3710 * We could direct write to holes and fallocate.
3712 * Allocated blocks to fill the hole are marked as uninitialized
3713 * to prevent paralel buffered read to expose the stale data
3714 * before DIO complete the data IO.
3716 * As to previously fallocated extents, ext4 get_block
3717 * will just simply mark the buffer mapped but still
3718 * keep the extents uninitialized.
3720 * for non AIO case, we will convert those unwritten extents
3721 * to written after return back from blockdev_direct_IO.
3723 * for async DIO, the conversion needs to be defered when
3724 * the IO is completed. The ext4 end_io callback function
3725 * will be called to take care of the conversion work.
3726 * Here for async case, we allocate an io_end structure to
3727 * hook to the iocb.
3729 iocb->private = NULL;
3730 EXT4_I(inode)->cur_aio_dio = NULL;
3731 if (!is_sync_kiocb(iocb)) {
3732 iocb->private = ext4_init_io_end(inode);
3733 if (!iocb->private)
3734 return -ENOMEM;
3736 * we save the io structure for current async
3737 * direct IO, so that later ext4_get_blocks()
3738 * could flag the io structure whether there
3739 * is a unwritten extents needs to be converted
3740 * when IO is completed.
3742 EXT4_I(inode)->cur_aio_dio = iocb->private;
3745 ret = blockdev_direct_IO(rw, iocb, inode,
3746 inode->i_sb->s_bdev, iov,
3747 offset, nr_segs,
3748 ext4_get_block_dio_write,
3749 ext4_end_io_dio);
3750 if (iocb->private)
3751 EXT4_I(inode)->cur_aio_dio = NULL;
3753 * The io_end structure takes a reference to the inode,
3754 * that structure needs to be destroyed and the
3755 * reference to the inode need to be dropped, when IO is
3756 * complete, even with 0 byte write, or failed.
3758 * In the successful AIO DIO case, the io_end structure will be
3759 * desctroyed and the reference to the inode will be dropped
3760 * after the end_io call back function is called.
3762 * In the case there is 0 byte write, or error case, since
3763 * VFS direct IO won't invoke the end_io call back function,
3764 * we need to free the end_io structure here.
3766 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3767 ext4_free_io_end(iocb->private);
3768 iocb->private = NULL;
3769 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3770 EXT4_STATE_DIO_UNWRITTEN)) {
3771 int err;
3773 * for non AIO case, since the IO is already
3774 * completed, we could do the convertion right here
3776 err = ext4_convert_unwritten_extents(inode,
3777 offset, ret);
3778 if (err < 0)
3779 ret = err;
3780 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3782 return ret;
3785 /* for write the the end of file case, we fall back to old way */
3786 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3789 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3790 const struct iovec *iov, loff_t offset,
3791 unsigned long nr_segs)
3793 struct file *file = iocb->ki_filp;
3794 struct inode *inode = file->f_mapping->host;
3796 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3797 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3799 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3803 * Pages can be marked dirty completely asynchronously from ext4's journalling
3804 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3805 * much here because ->set_page_dirty is called under VFS locks. The page is
3806 * not necessarily locked.
3808 * We cannot just dirty the page and leave attached buffers clean, because the
3809 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3810 * or jbddirty because all the journalling code will explode.
3812 * So what we do is to mark the page "pending dirty" and next time writepage
3813 * is called, propagate that into the buffers appropriately.
3815 static int ext4_journalled_set_page_dirty(struct page *page)
3817 SetPageChecked(page);
3818 return __set_page_dirty_nobuffers(page);
3821 static const struct address_space_operations ext4_ordered_aops = {
3822 .readpage = ext4_readpage,
3823 .readpages = ext4_readpages,
3824 .writepage = ext4_writepage,
3825 .sync_page = block_sync_page,
3826 .write_begin = ext4_write_begin,
3827 .write_end = ext4_ordered_write_end,
3828 .bmap = ext4_bmap,
3829 .invalidatepage = ext4_invalidatepage,
3830 .releasepage = ext4_releasepage,
3831 .direct_IO = ext4_direct_IO,
3832 .migratepage = buffer_migrate_page,
3833 .is_partially_uptodate = block_is_partially_uptodate,
3834 .error_remove_page = generic_error_remove_page,
3837 static const struct address_space_operations ext4_writeback_aops = {
3838 .readpage = ext4_readpage,
3839 .readpages = ext4_readpages,
3840 .writepage = ext4_writepage,
3841 .sync_page = block_sync_page,
3842 .write_begin = ext4_write_begin,
3843 .write_end = ext4_writeback_write_end,
3844 .bmap = ext4_bmap,
3845 .invalidatepage = ext4_invalidatepage,
3846 .releasepage = ext4_releasepage,
3847 .direct_IO = ext4_direct_IO,
3848 .migratepage = buffer_migrate_page,
3849 .is_partially_uptodate = block_is_partially_uptodate,
3850 .error_remove_page = generic_error_remove_page,
3853 static const struct address_space_operations ext4_journalled_aops = {
3854 .readpage = ext4_readpage,
3855 .readpages = ext4_readpages,
3856 .writepage = ext4_writepage,
3857 .sync_page = block_sync_page,
3858 .write_begin = ext4_write_begin,
3859 .write_end = ext4_journalled_write_end,
3860 .set_page_dirty = ext4_journalled_set_page_dirty,
3861 .bmap = ext4_bmap,
3862 .invalidatepage = ext4_invalidatepage,
3863 .releasepage = ext4_releasepage,
3864 .is_partially_uptodate = block_is_partially_uptodate,
3865 .error_remove_page = generic_error_remove_page,
3868 static const struct address_space_operations ext4_da_aops = {
3869 .readpage = ext4_readpage,
3870 .readpages = ext4_readpages,
3871 .writepage = ext4_writepage,
3872 .writepages = ext4_da_writepages,
3873 .sync_page = block_sync_page,
3874 .write_begin = ext4_da_write_begin,
3875 .write_end = ext4_da_write_end,
3876 .bmap = ext4_bmap,
3877 .invalidatepage = ext4_da_invalidatepage,
3878 .releasepage = ext4_releasepage,
3879 .direct_IO = ext4_direct_IO,
3880 .migratepage = buffer_migrate_page,
3881 .is_partially_uptodate = block_is_partially_uptodate,
3882 .error_remove_page = generic_error_remove_page,
3885 void ext4_set_aops(struct inode *inode)
3887 if (ext4_should_order_data(inode) &&
3888 test_opt(inode->i_sb, DELALLOC))
3889 inode->i_mapping->a_ops = &ext4_da_aops;
3890 else if (ext4_should_order_data(inode))
3891 inode->i_mapping->a_ops = &ext4_ordered_aops;
3892 else if (ext4_should_writeback_data(inode) &&
3893 test_opt(inode->i_sb, DELALLOC))
3894 inode->i_mapping->a_ops = &ext4_da_aops;
3895 else if (ext4_should_writeback_data(inode))
3896 inode->i_mapping->a_ops = &ext4_writeback_aops;
3897 else
3898 inode->i_mapping->a_ops = &ext4_journalled_aops;
3902 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3903 * up to the end of the block which corresponds to `from'.
3904 * This required during truncate. We need to physically zero the tail end
3905 * of that block so it doesn't yield old data if the file is later grown.
3907 int ext4_block_truncate_page(handle_t *handle,
3908 struct address_space *mapping, loff_t from)
3910 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3911 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3912 unsigned blocksize, length, pos;
3913 ext4_lblk_t iblock;
3914 struct inode *inode = mapping->host;
3915 struct buffer_head *bh;
3916 struct page *page;
3917 int err = 0;
3919 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3920 mapping_gfp_mask(mapping) & ~__GFP_FS);
3921 if (!page)
3922 return -EINVAL;
3924 blocksize = inode->i_sb->s_blocksize;
3925 length = blocksize - (offset & (blocksize - 1));
3926 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3929 * For "nobh" option, we can only work if we don't need to
3930 * read-in the page - otherwise we create buffers to do the IO.
3932 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3933 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3934 zero_user(page, offset, length);
3935 set_page_dirty(page);
3936 goto unlock;
3939 if (!page_has_buffers(page))
3940 create_empty_buffers(page, blocksize, 0);
3942 /* Find the buffer that contains "offset" */
3943 bh = page_buffers(page);
3944 pos = blocksize;
3945 while (offset >= pos) {
3946 bh = bh->b_this_page;
3947 iblock++;
3948 pos += blocksize;
3951 err = 0;
3952 if (buffer_freed(bh)) {
3953 BUFFER_TRACE(bh, "freed: skip");
3954 goto unlock;
3957 if (!buffer_mapped(bh)) {
3958 BUFFER_TRACE(bh, "unmapped");
3959 ext4_get_block(inode, iblock, bh, 0);
3960 /* unmapped? It's a hole - nothing to do */
3961 if (!buffer_mapped(bh)) {
3962 BUFFER_TRACE(bh, "still unmapped");
3963 goto unlock;
3967 /* Ok, it's mapped. Make sure it's up-to-date */
3968 if (PageUptodate(page))
3969 set_buffer_uptodate(bh);
3971 if (!buffer_uptodate(bh)) {
3972 err = -EIO;
3973 ll_rw_block(READ, 1, &bh);
3974 wait_on_buffer(bh);
3975 /* Uhhuh. Read error. Complain and punt. */
3976 if (!buffer_uptodate(bh))
3977 goto unlock;
3980 if (ext4_should_journal_data(inode)) {
3981 BUFFER_TRACE(bh, "get write access");
3982 err = ext4_journal_get_write_access(handle, bh);
3983 if (err)
3984 goto unlock;
3987 zero_user(page, offset, length);
3989 BUFFER_TRACE(bh, "zeroed end of block");
3991 err = 0;
3992 if (ext4_should_journal_data(inode)) {
3993 err = ext4_handle_dirty_metadata(handle, inode, bh);
3994 } else {
3995 if (ext4_should_order_data(inode))
3996 err = ext4_jbd2_file_inode(handle, inode);
3997 mark_buffer_dirty(bh);
4000 unlock:
4001 unlock_page(page);
4002 page_cache_release(page);
4003 return err;
4007 * Probably it should be a library function... search for first non-zero word
4008 * or memcmp with zero_page, whatever is better for particular architecture.
4009 * Linus?
4011 static inline int all_zeroes(__le32 *p, __le32 *q)
4013 while (p < q)
4014 if (*p++)
4015 return 0;
4016 return 1;
4020 * ext4_find_shared - find the indirect blocks for partial truncation.
4021 * @inode: inode in question
4022 * @depth: depth of the affected branch
4023 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4024 * @chain: place to store the pointers to partial indirect blocks
4025 * @top: place to the (detached) top of branch
4027 * This is a helper function used by ext4_truncate().
4029 * When we do truncate() we may have to clean the ends of several
4030 * indirect blocks but leave the blocks themselves alive. Block is
4031 * partially truncated if some data below the new i_size is refered
4032 * from it (and it is on the path to the first completely truncated
4033 * data block, indeed). We have to free the top of that path along
4034 * with everything to the right of the path. Since no allocation
4035 * past the truncation point is possible until ext4_truncate()
4036 * finishes, we may safely do the latter, but top of branch may
4037 * require special attention - pageout below the truncation point
4038 * might try to populate it.
4040 * We atomically detach the top of branch from the tree, store the
4041 * block number of its root in *@top, pointers to buffer_heads of
4042 * partially truncated blocks - in @chain[].bh and pointers to
4043 * their last elements that should not be removed - in
4044 * @chain[].p. Return value is the pointer to last filled element
4045 * of @chain.
4047 * The work left to caller to do the actual freeing of subtrees:
4048 * a) free the subtree starting from *@top
4049 * b) free the subtrees whose roots are stored in
4050 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4051 * c) free the subtrees growing from the inode past the @chain[0].
4052 * (no partially truncated stuff there). */
4054 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4055 ext4_lblk_t offsets[4], Indirect chain[4],
4056 __le32 *top)
4058 Indirect *partial, *p;
4059 int k, err;
4061 *top = 0;
4062 /* Make k index the deepest non-null offset + 1 */
4063 for (k = depth; k > 1 && !offsets[k-1]; k--)
4065 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4066 /* Writer: pointers */
4067 if (!partial)
4068 partial = chain + k-1;
4070 * If the branch acquired continuation since we've looked at it -
4071 * fine, it should all survive and (new) top doesn't belong to us.
4073 if (!partial->key && *partial->p)
4074 /* Writer: end */
4075 goto no_top;
4076 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4079 * OK, we've found the last block that must survive. The rest of our
4080 * branch should be detached before unlocking. However, if that rest
4081 * of branch is all ours and does not grow immediately from the inode
4082 * it's easier to cheat and just decrement partial->p.
4084 if (p == chain + k - 1 && p > chain) {
4085 p->p--;
4086 } else {
4087 *top = *p->p;
4088 /* Nope, don't do this in ext4. Must leave the tree intact */
4089 #if 0
4090 *p->p = 0;
4091 #endif
4093 /* Writer: end */
4095 while (partial > p) {
4096 brelse(partial->bh);
4097 partial--;
4099 no_top:
4100 return partial;
4104 * Zero a number of block pointers in either an inode or an indirect block.
4105 * If we restart the transaction we must again get write access to the
4106 * indirect block for further modification.
4108 * We release `count' blocks on disk, but (last - first) may be greater
4109 * than `count' because there can be holes in there.
4111 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4112 struct buffer_head *bh,
4113 ext4_fsblk_t block_to_free,
4114 unsigned long count, __le32 *first,
4115 __le32 *last)
4117 __le32 *p;
4118 int flags = EXT4_FREE_BLOCKS_FORGET;
4120 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4121 flags |= EXT4_FREE_BLOCKS_METADATA;
4123 if (try_to_extend_transaction(handle, inode)) {
4124 if (bh) {
4125 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4126 ext4_handle_dirty_metadata(handle, inode, bh);
4128 ext4_mark_inode_dirty(handle, inode);
4129 ext4_truncate_restart_trans(handle, inode,
4130 blocks_for_truncate(inode));
4131 if (bh) {
4132 BUFFER_TRACE(bh, "retaking write access");
4133 ext4_journal_get_write_access(handle, bh);
4137 for (p = first; p < last; p++)
4138 *p = 0;
4140 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4144 * ext4_free_data - free a list of data blocks
4145 * @handle: handle for this transaction
4146 * @inode: inode we are dealing with
4147 * @this_bh: indirect buffer_head which contains *@first and *@last
4148 * @first: array of block numbers
4149 * @last: points immediately past the end of array
4151 * We are freeing all blocks refered from that array (numbers are stored as
4152 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4154 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4155 * blocks are contiguous then releasing them at one time will only affect one
4156 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4157 * actually use a lot of journal space.
4159 * @this_bh will be %NULL if @first and @last point into the inode's direct
4160 * block pointers.
4162 static void ext4_free_data(handle_t *handle, struct inode *inode,
4163 struct buffer_head *this_bh,
4164 __le32 *first, __le32 *last)
4166 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4167 unsigned long count = 0; /* Number of blocks in the run */
4168 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4169 corresponding to
4170 block_to_free */
4171 ext4_fsblk_t nr; /* Current block # */
4172 __le32 *p; /* Pointer into inode/ind
4173 for current block */
4174 int err;
4176 if (this_bh) { /* For indirect block */
4177 BUFFER_TRACE(this_bh, "get_write_access");
4178 err = ext4_journal_get_write_access(handle, this_bh);
4179 /* Important: if we can't update the indirect pointers
4180 * to the blocks, we can't free them. */
4181 if (err)
4182 return;
4185 for (p = first; p < last; p++) {
4186 nr = le32_to_cpu(*p);
4187 if (nr) {
4188 /* accumulate blocks to free if they're contiguous */
4189 if (count == 0) {
4190 block_to_free = nr;
4191 block_to_free_p = p;
4192 count = 1;
4193 } else if (nr == block_to_free + count) {
4194 count++;
4195 } else {
4196 ext4_clear_blocks(handle, inode, this_bh,
4197 block_to_free,
4198 count, block_to_free_p, p);
4199 block_to_free = nr;
4200 block_to_free_p = p;
4201 count = 1;
4206 if (count > 0)
4207 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4208 count, block_to_free_p, p);
4210 if (this_bh) {
4211 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4214 * The buffer head should have an attached journal head at this
4215 * point. However, if the data is corrupted and an indirect
4216 * block pointed to itself, it would have been detached when
4217 * the block was cleared. Check for this instead of OOPSing.
4219 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4220 ext4_handle_dirty_metadata(handle, inode, this_bh);
4221 else
4222 ext4_error(inode->i_sb, __func__,
4223 "circular indirect block detected, "
4224 "inode=%lu, block=%llu",
4225 inode->i_ino,
4226 (unsigned long long) this_bh->b_blocknr);
4231 * ext4_free_branches - free an array of branches
4232 * @handle: JBD handle for this transaction
4233 * @inode: inode we are dealing with
4234 * @parent_bh: the buffer_head which contains *@first and *@last
4235 * @first: array of block numbers
4236 * @last: pointer immediately past the end of array
4237 * @depth: depth of the branches to free
4239 * We are freeing all blocks refered from these branches (numbers are
4240 * stored as little-endian 32-bit) and updating @inode->i_blocks
4241 * appropriately.
4243 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4244 struct buffer_head *parent_bh,
4245 __le32 *first, __le32 *last, int depth)
4247 ext4_fsblk_t nr;
4248 __le32 *p;
4250 if (ext4_handle_is_aborted(handle))
4251 return;
4253 if (depth--) {
4254 struct buffer_head *bh;
4255 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4256 p = last;
4257 while (--p >= first) {
4258 nr = le32_to_cpu(*p);
4259 if (!nr)
4260 continue; /* A hole */
4262 /* Go read the buffer for the next level down */
4263 bh = sb_bread(inode->i_sb, nr);
4266 * A read failure? Report error and clear slot
4267 * (should be rare).
4269 if (!bh) {
4270 ext4_error(inode->i_sb, "ext4_free_branches",
4271 "Read failure, inode=%lu, block=%llu",
4272 inode->i_ino, nr);
4273 continue;
4276 /* This zaps the entire block. Bottom up. */
4277 BUFFER_TRACE(bh, "free child branches");
4278 ext4_free_branches(handle, inode, bh,
4279 (__le32 *) bh->b_data,
4280 (__le32 *) bh->b_data + addr_per_block,
4281 depth);
4284 * We've probably journalled the indirect block several
4285 * times during the truncate. But it's no longer
4286 * needed and we now drop it from the transaction via
4287 * jbd2_journal_revoke().
4289 * That's easy if it's exclusively part of this
4290 * transaction. But if it's part of the committing
4291 * transaction then jbd2_journal_forget() will simply
4292 * brelse() it. That means that if the underlying
4293 * block is reallocated in ext4_get_block(),
4294 * unmap_underlying_metadata() will find this block
4295 * and will try to get rid of it. damn, damn.
4297 * If this block has already been committed to the
4298 * journal, a revoke record will be written. And
4299 * revoke records must be emitted *before* clearing
4300 * this block's bit in the bitmaps.
4302 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4305 * Everything below this this pointer has been
4306 * released. Now let this top-of-subtree go.
4308 * We want the freeing of this indirect block to be
4309 * atomic in the journal with the updating of the
4310 * bitmap block which owns it. So make some room in
4311 * the journal.
4313 * We zero the parent pointer *after* freeing its
4314 * pointee in the bitmaps, so if extend_transaction()
4315 * for some reason fails to put the bitmap changes and
4316 * the release into the same transaction, recovery
4317 * will merely complain about releasing a free block,
4318 * rather than leaking blocks.
4320 if (ext4_handle_is_aborted(handle))
4321 return;
4322 if (try_to_extend_transaction(handle, inode)) {
4323 ext4_mark_inode_dirty(handle, inode);
4324 ext4_truncate_restart_trans(handle, inode,
4325 blocks_for_truncate(inode));
4328 ext4_free_blocks(handle, inode, 0, nr, 1,
4329 EXT4_FREE_BLOCKS_METADATA);
4331 if (parent_bh) {
4333 * The block which we have just freed is
4334 * pointed to by an indirect block: journal it
4336 BUFFER_TRACE(parent_bh, "get_write_access");
4337 if (!ext4_journal_get_write_access(handle,
4338 parent_bh)){
4339 *p = 0;
4340 BUFFER_TRACE(parent_bh,
4341 "call ext4_handle_dirty_metadata");
4342 ext4_handle_dirty_metadata(handle,
4343 inode,
4344 parent_bh);
4348 } else {
4349 /* We have reached the bottom of the tree. */
4350 BUFFER_TRACE(parent_bh, "free data blocks");
4351 ext4_free_data(handle, inode, parent_bh, first, last);
4355 int ext4_can_truncate(struct inode *inode)
4357 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4358 return 0;
4359 if (S_ISREG(inode->i_mode))
4360 return 1;
4361 if (S_ISDIR(inode->i_mode))
4362 return 1;
4363 if (S_ISLNK(inode->i_mode))
4364 return !ext4_inode_is_fast_symlink(inode);
4365 return 0;
4369 * ext4_truncate()
4371 * We block out ext4_get_block() block instantiations across the entire
4372 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4373 * simultaneously on behalf of the same inode.
4375 * As we work through the truncate and commmit bits of it to the journal there
4376 * is one core, guiding principle: the file's tree must always be consistent on
4377 * disk. We must be able to restart the truncate after a crash.
4379 * The file's tree may be transiently inconsistent in memory (although it
4380 * probably isn't), but whenever we close off and commit a journal transaction,
4381 * the contents of (the filesystem + the journal) must be consistent and
4382 * restartable. It's pretty simple, really: bottom up, right to left (although
4383 * left-to-right works OK too).
4385 * Note that at recovery time, journal replay occurs *before* the restart of
4386 * truncate against the orphan inode list.
4388 * The committed inode has the new, desired i_size (which is the same as
4389 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4390 * that this inode's truncate did not complete and it will again call
4391 * ext4_truncate() to have another go. So there will be instantiated blocks
4392 * to the right of the truncation point in a crashed ext4 filesystem. But
4393 * that's fine - as long as they are linked from the inode, the post-crash
4394 * ext4_truncate() run will find them and release them.
4396 void ext4_truncate(struct inode *inode)
4398 handle_t *handle;
4399 struct ext4_inode_info *ei = EXT4_I(inode);
4400 __le32 *i_data = ei->i_data;
4401 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4402 struct address_space *mapping = inode->i_mapping;
4403 ext4_lblk_t offsets[4];
4404 Indirect chain[4];
4405 Indirect *partial;
4406 __le32 nr = 0;
4407 int n;
4408 ext4_lblk_t last_block;
4409 unsigned blocksize = inode->i_sb->s_blocksize;
4411 if (!ext4_can_truncate(inode))
4412 return;
4414 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4415 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4417 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4418 ext4_ext_truncate(inode);
4419 return;
4422 handle = start_transaction(inode);
4423 if (IS_ERR(handle))
4424 return; /* AKPM: return what? */
4426 last_block = (inode->i_size + blocksize-1)
4427 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4429 if (inode->i_size & (blocksize - 1))
4430 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4431 goto out_stop;
4433 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4434 if (n == 0)
4435 goto out_stop; /* error */
4438 * OK. This truncate is going to happen. We add the inode to the
4439 * orphan list, so that if this truncate spans multiple transactions,
4440 * and we crash, we will resume the truncate when the filesystem
4441 * recovers. It also marks the inode dirty, to catch the new size.
4443 * Implication: the file must always be in a sane, consistent
4444 * truncatable state while each transaction commits.
4446 if (ext4_orphan_add(handle, inode))
4447 goto out_stop;
4450 * From here we block out all ext4_get_block() callers who want to
4451 * modify the block allocation tree.
4453 down_write(&ei->i_data_sem);
4455 ext4_discard_preallocations(inode);
4458 * The orphan list entry will now protect us from any crash which
4459 * occurs before the truncate completes, so it is now safe to propagate
4460 * the new, shorter inode size (held for now in i_size) into the
4461 * on-disk inode. We do this via i_disksize, which is the value which
4462 * ext4 *really* writes onto the disk inode.
4464 ei->i_disksize = inode->i_size;
4466 if (n == 1) { /* direct blocks */
4467 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4468 i_data + EXT4_NDIR_BLOCKS);
4469 goto do_indirects;
4472 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4473 /* Kill the top of shared branch (not detached) */
4474 if (nr) {
4475 if (partial == chain) {
4476 /* Shared branch grows from the inode */
4477 ext4_free_branches(handle, inode, NULL,
4478 &nr, &nr+1, (chain+n-1) - partial);
4479 *partial->p = 0;
4481 * We mark the inode dirty prior to restart,
4482 * and prior to stop. No need for it here.
4484 } else {
4485 /* Shared branch grows from an indirect block */
4486 BUFFER_TRACE(partial->bh, "get_write_access");
4487 ext4_free_branches(handle, inode, partial->bh,
4488 partial->p,
4489 partial->p+1, (chain+n-1) - partial);
4492 /* Clear the ends of indirect blocks on the shared branch */
4493 while (partial > chain) {
4494 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4495 (__le32*)partial->bh->b_data+addr_per_block,
4496 (chain+n-1) - partial);
4497 BUFFER_TRACE(partial->bh, "call brelse");
4498 brelse(partial->bh);
4499 partial--;
4501 do_indirects:
4502 /* Kill the remaining (whole) subtrees */
4503 switch (offsets[0]) {
4504 default:
4505 nr = i_data[EXT4_IND_BLOCK];
4506 if (nr) {
4507 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4508 i_data[EXT4_IND_BLOCK] = 0;
4510 case EXT4_IND_BLOCK:
4511 nr = i_data[EXT4_DIND_BLOCK];
4512 if (nr) {
4513 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4514 i_data[EXT4_DIND_BLOCK] = 0;
4516 case EXT4_DIND_BLOCK:
4517 nr = i_data[EXT4_TIND_BLOCK];
4518 if (nr) {
4519 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4520 i_data[EXT4_TIND_BLOCK] = 0;
4522 case EXT4_TIND_BLOCK:
4526 up_write(&ei->i_data_sem);
4527 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4528 ext4_mark_inode_dirty(handle, inode);
4531 * In a multi-transaction truncate, we only make the final transaction
4532 * synchronous
4534 if (IS_SYNC(inode))
4535 ext4_handle_sync(handle);
4536 out_stop:
4538 * If this was a simple ftruncate(), and the file will remain alive
4539 * then we need to clear up the orphan record which we created above.
4540 * However, if this was a real unlink then we were called by
4541 * ext4_delete_inode(), and we allow that function to clean up the
4542 * orphan info for us.
4544 if (inode->i_nlink)
4545 ext4_orphan_del(handle, inode);
4547 ext4_journal_stop(handle);
4551 * ext4_get_inode_loc returns with an extra refcount against the inode's
4552 * underlying buffer_head on success. If 'in_mem' is true, we have all
4553 * data in memory that is needed to recreate the on-disk version of this
4554 * inode.
4556 static int __ext4_get_inode_loc(struct inode *inode,
4557 struct ext4_iloc *iloc, int in_mem)
4559 struct ext4_group_desc *gdp;
4560 struct buffer_head *bh;
4561 struct super_block *sb = inode->i_sb;
4562 ext4_fsblk_t block;
4563 int inodes_per_block, inode_offset;
4565 iloc->bh = NULL;
4566 if (!ext4_valid_inum(sb, inode->i_ino))
4567 return -EIO;
4569 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4570 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4571 if (!gdp)
4572 return -EIO;
4575 * Figure out the offset within the block group inode table
4577 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4578 inode_offset = ((inode->i_ino - 1) %
4579 EXT4_INODES_PER_GROUP(sb));
4580 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4581 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4583 bh = sb_getblk(sb, block);
4584 if (!bh) {
4585 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4586 "inode block - inode=%lu, block=%llu",
4587 inode->i_ino, block);
4588 return -EIO;
4590 if (!buffer_uptodate(bh)) {
4591 lock_buffer(bh);
4594 * If the buffer has the write error flag, we have failed
4595 * to write out another inode in the same block. In this
4596 * case, we don't have to read the block because we may
4597 * read the old inode data successfully.
4599 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4600 set_buffer_uptodate(bh);
4602 if (buffer_uptodate(bh)) {
4603 /* someone brought it uptodate while we waited */
4604 unlock_buffer(bh);
4605 goto has_buffer;
4609 * If we have all information of the inode in memory and this
4610 * is the only valid inode in the block, we need not read the
4611 * block.
4613 if (in_mem) {
4614 struct buffer_head *bitmap_bh;
4615 int i, start;
4617 start = inode_offset & ~(inodes_per_block - 1);
4619 /* Is the inode bitmap in cache? */
4620 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4621 if (!bitmap_bh)
4622 goto make_io;
4625 * If the inode bitmap isn't in cache then the
4626 * optimisation may end up performing two reads instead
4627 * of one, so skip it.
4629 if (!buffer_uptodate(bitmap_bh)) {
4630 brelse(bitmap_bh);
4631 goto make_io;
4633 for (i = start; i < start + inodes_per_block; i++) {
4634 if (i == inode_offset)
4635 continue;
4636 if (ext4_test_bit(i, bitmap_bh->b_data))
4637 break;
4639 brelse(bitmap_bh);
4640 if (i == start + inodes_per_block) {
4641 /* all other inodes are free, so skip I/O */
4642 memset(bh->b_data, 0, bh->b_size);
4643 set_buffer_uptodate(bh);
4644 unlock_buffer(bh);
4645 goto has_buffer;
4649 make_io:
4651 * If we need to do any I/O, try to pre-readahead extra
4652 * blocks from the inode table.
4654 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4655 ext4_fsblk_t b, end, table;
4656 unsigned num;
4658 table = ext4_inode_table(sb, gdp);
4659 /* s_inode_readahead_blks is always a power of 2 */
4660 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4661 if (table > b)
4662 b = table;
4663 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4664 num = EXT4_INODES_PER_GROUP(sb);
4665 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4666 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4667 num -= ext4_itable_unused_count(sb, gdp);
4668 table += num / inodes_per_block;
4669 if (end > table)
4670 end = table;
4671 while (b <= end)
4672 sb_breadahead(sb, b++);
4676 * There are other valid inodes in the buffer, this inode
4677 * has in-inode xattrs, or we don't have this inode in memory.
4678 * Read the block from disk.
4680 get_bh(bh);
4681 bh->b_end_io = end_buffer_read_sync;
4682 submit_bh(READ_META, bh);
4683 wait_on_buffer(bh);
4684 if (!buffer_uptodate(bh)) {
4685 ext4_error(sb, __func__,
4686 "unable to read inode block - inode=%lu, "
4687 "block=%llu", inode->i_ino, block);
4688 brelse(bh);
4689 return -EIO;
4692 has_buffer:
4693 iloc->bh = bh;
4694 return 0;
4697 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4699 /* We have all inode data except xattrs in memory here. */
4700 return __ext4_get_inode_loc(inode, iloc,
4701 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4704 void ext4_set_inode_flags(struct inode *inode)
4706 unsigned int flags = EXT4_I(inode)->i_flags;
4708 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4709 if (flags & EXT4_SYNC_FL)
4710 inode->i_flags |= S_SYNC;
4711 if (flags & EXT4_APPEND_FL)
4712 inode->i_flags |= S_APPEND;
4713 if (flags & EXT4_IMMUTABLE_FL)
4714 inode->i_flags |= S_IMMUTABLE;
4715 if (flags & EXT4_NOATIME_FL)
4716 inode->i_flags |= S_NOATIME;
4717 if (flags & EXT4_DIRSYNC_FL)
4718 inode->i_flags |= S_DIRSYNC;
4721 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4722 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4724 unsigned int flags = ei->vfs_inode.i_flags;
4726 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4727 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4728 if (flags & S_SYNC)
4729 ei->i_flags |= EXT4_SYNC_FL;
4730 if (flags & S_APPEND)
4731 ei->i_flags |= EXT4_APPEND_FL;
4732 if (flags & S_IMMUTABLE)
4733 ei->i_flags |= EXT4_IMMUTABLE_FL;
4734 if (flags & S_NOATIME)
4735 ei->i_flags |= EXT4_NOATIME_FL;
4736 if (flags & S_DIRSYNC)
4737 ei->i_flags |= EXT4_DIRSYNC_FL;
4740 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4741 struct ext4_inode_info *ei)
4743 blkcnt_t i_blocks ;
4744 struct inode *inode = &(ei->vfs_inode);
4745 struct super_block *sb = inode->i_sb;
4747 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4748 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4749 /* we are using combined 48 bit field */
4750 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4751 le32_to_cpu(raw_inode->i_blocks_lo);
4752 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4753 /* i_blocks represent file system block size */
4754 return i_blocks << (inode->i_blkbits - 9);
4755 } else {
4756 return i_blocks;
4758 } else {
4759 return le32_to_cpu(raw_inode->i_blocks_lo);
4763 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4765 struct ext4_iloc iloc;
4766 struct ext4_inode *raw_inode;
4767 struct ext4_inode_info *ei;
4768 struct inode *inode;
4769 journal_t *journal = EXT4_SB(sb)->s_journal;
4770 long ret;
4771 int block;
4773 inode = iget_locked(sb, ino);
4774 if (!inode)
4775 return ERR_PTR(-ENOMEM);
4776 if (!(inode->i_state & I_NEW))
4777 return inode;
4779 ei = EXT4_I(inode);
4780 iloc.bh = 0;
4782 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4783 if (ret < 0)
4784 goto bad_inode;
4785 raw_inode = ext4_raw_inode(&iloc);
4786 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4787 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4788 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4789 if (!(test_opt(inode->i_sb, NO_UID32))) {
4790 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4791 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4793 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4795 ei->i_state = 0;
4796 ei->i_dir_start_lookup = 0;
4797 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4798 /* We now have enough fields to check if the inode was active or not.
4799 * This is needed because nfsd might try to access dead inodes
4800 * the test is that same one that e2fsck uses
4801 * NeilBrown 1999oct15
4803 if (inode->i_nlink == 0) {
4804 if (inode->i_mode == 0 ||
4805 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4806 /* this inode is deleted */
4807 ret = -ESTALE;
4808 goto bad_inode;
4810 /* The only unlinked inodes we let through here have
4811 * valid i_mode and are being read by the orphan
4812 * recovery code: that's fine, we're about to complete
4813 * the process of deleting those. */
4815 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4816 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4817 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4818 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4819 ei->i_file_acl |=
4820 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4821 inode->i_size = ext4_isize(raw_inode);
4822 ei->i_disksize = inode->i_size;
4823 #ifdef CONFIG_QUOTA
4824 ei->i_reserved_quota = 0;
4825 #endif
4826 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4827 ei->i_block_group = iloc.block_group;
4828 ei->i_last_alloc_group = ~0;
4830 * NOTE! The in-memory inode i_data array is in little-endian order
4831 * even on big-endian machines: we do NOT byteswap the block numbers!
4833 for (block = 0; block < EXT4_N_BLOCKS; block++)
4834 ei->i_data[block] = raw_inode->i_block[block];
4835 INIT_LIST_HEAD(&ei->i_orphan);
4838 * Set transaction id's of transactions that have to be committed
4839 * to finish f[data]sync. We set them to currently running transaction
4840 * as we cannot be sure that the inode or some of its metadata isn't
4841 * part of the transaction - the inode could have been reclaimed and
4842 * now it is reread from disk.
4844 if (journal) {
4845 transaction_t *transaction;
4846 tid_t tid;
4848 spin_lock(&journal->j_state_lock);
4849 if (journal->j_running_transaction)
4850 transaction = journal->j_running_transaction;
4851 else
4852 transaction = journal->j_committing_transaction;
4853 if (transaction)
4854 tid = transaction->t_tid;
4855 else
4856 tid = journal->j_commit_sequence;
4857 spin_unlock(&journal->j_state_lock);
4858 ei->i_sync_tid = tid;
4859 ei->i_datasync_tid = tid;
4862 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4864 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4865 EXT4_INODE_SIZE(inode->i_sb)) {
4866 ret = -EIO;
4867 goto bad_inode;
4869 if (ei->i_extra_isize == 0) {
4870 /* The extra space is currently unused. Use it. */
4871 ei->i_extra_isize = sizeof(struct ext4_inode) -
4872 EXT4_GOOD_OLD_INODE_SIZE;
4873 } else {
4874 __le32 *magic = (void *)raw_inode +
4875 EXT4_GOOD_OLD_INODE_SIZE +
4876 ei->i_extra_isize;
4877 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4878 ei->i_state |= EXT4_STATE_XATTR;
4880 } else
4881 ei->i_extra_isize = 0;
4883 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4884 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4885 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4886 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4888 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4889 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4890 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4891 inode->i_version |=
4892 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4895 ret = 0;
4896 if (ei->i_file_acl &&
4897 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4898 ext4_error(sb, __func__,
4899 "bad extended attribute block %llu in inode #%lu",
4900 ei->i_file_acl, inode->i_ino);
4901 ret = -EIO;
4902 goto bad_inode;
4903 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4904 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4905 (S_ISLNK(inode->i_mode) &&
4906 !ext4_inode_is_fast_symlink(inode)))
4907 /* Validate extent which is part of inode */
4908 ret = ext4_ext_check_inode(inode);
4909 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4910 (S_ISLNK(inode->i_mode) &&
4911 !ext4_inode_is_fast_symlink(inode))) {
4912 /* Validate block references which are part of inode */
4913 ret = ext4_check_inode_blockref(inode);
4915 if (ret)
4916 goto bad_inode;
4918 if (S_ISREG(inode->i_mode)) {
4919 inode->i_op = &ext4_file_inode_operations;
4920 inode->i_fop = &ext4_file_operations;
4921 ext4_set_aops(inode);
4922 } else if (S_ISDIR(inode->i_mode)) {
4923 inode->i_op = &ext4_dir_inode_operations;
4924 inode->i_fop = &ext4_dir_operations;
4925 } else if (S_ISLNK(inode->i_mode)) {
4926 if (ext4_inode_is_fast_symlink(inode)) {
4927 inode->i_op = &ext4_fast_symlink_inode_operations;
4928 nd_terminate_link(ei->i_data, inode->i_size,
4929 sizeof(ei->i_data) - 1);
4930 } else {
4931 inode->i_op = &ext4_symlink_inode_operations;
4932 ext4_set_aops(inode);
4934 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4935 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4936 inode->i_op = &ext4_special_inode_operations;
4937 if (raw_inode->i_block[0])
4938 init_special_inode(inode, inode->i_mode,
4939 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4940 else
4941 init_special_inode(inode, inode->i_mode,
4942 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4943 } else {
4944 ret = -EIO;
4945 ext4_error(inode->i_sb, __func__,
4946 "bogus i_mode (%o) for inode=%lu",
4947 inode->i_mode, inode->i_ino);
4948 goto bad_inode;
4950 brelse(iloc.bh);
4951 ext4_set_inode_flags(inode);
4952 unlock_new_inode(inode);
4953 return inode;
4955 bad_inode:
4956 brelse(iloc.bh);
4957 iget_failed(inode);
4958 return ERR_PTR(ret);
4961 static int ext4_inode_blocks_set(handle_t *handle,
4962 struct ext4_inode *raw_inode,
4963 struct ext4_inode_info *ei)
4965 struct inode *inode = &(ei->vfs_inode);
4966 u64 i_blocks = inode->i_blocks;
4967 struct super_block *sb = inode->i_sb;
4969 if (i_blocks <= ~0U) {
4971 * i_blocks can be represnted in a 32 bit variable
4972 * as multiple of 512 bytes
4974 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4975 raw_inode->i_blocks_high = 0;
4976 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4977 return 0;
4979 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4980 return -EFBIG;
4982 if (i_blocks <= 0xffffffffffffULL) {
4984 * i_blocks can be represented in a 48 bit variable
4985 * as multiple of 512 bytes
4987 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4988 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4989 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4990 } else {
4991 ei->i_flags |= EXT4_HUGE_FILE_FL;
4992 /* i_block is stored in file system block size */
4993 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4994 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4995 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4997 return 0;
5001 * Post the struct inode info into an on-disk inode location in the
5002 * buffer-cache. This gobbles the caller's reference to the
5003 * buffer_head in the inode location struct.
5005 * The caller must have write access to iloc->bh.
5007 static int ext4_do_update_inode(handle_t *handle,
5008 struct inode *inode,
5009 struct ext4_iloc *iloc)
5011 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5012 struct ext4_inode_info *ei = EXT4_I(inode);
5013 struct buffer_head *bh = iloc->bh;
5014 int err = 0, rc, block;
5016 /* For fields not not tracking in the in-memory inode,
5017 * initialise them to zero for new inodes. */
5018 if (ei->i_state & EXT4_STATE_NEW)
5019 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5021 ext4_get_inode_flags(ei);
5022 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5023 if (!(test_opt(inode->i_sb, NO_UID32))) {
5024 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5025 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5027 * Fix up interoperability with old kernels. Otherwise, old inodes get
5028 * re-used with the upper 16 bits of the uid/gid intact
5030 if (!ei->i_dtime) {
5031 raw_inode->i_uid_high =
5032 cpu_to_le16(high_16_bits(inode->i_uid));
5033 raw_inode->i_gid_high =
5034 cpu_to_le16(high_16_bits(inode->i_gid));
5035 } else {
5036 raw_inode->i_uid_high = 0;
5037 raw_inode->i_gid_high = 0;
5039 } else {
5040 raw_inode->i_uid_low =
5041 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5042 raw_inode->i_gid_low =
5043 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5044 raw_inode->i_uid_high = 0;
5045 raw_inode->i_gid_high = 0;
5047 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5049 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5050 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5051 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5052 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5054 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5055 goto out_brelse;
5056 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5057 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5058 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5059 cpu_to_le32(EXT4_OS_HURD))
5060 raw_inode->i_file_acl_high =
5061 cpu_to_le16(ei->i_file_acl >> 32);
5062 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5063 ext4_isize_set(raw_inode, ei->i_disksize);
5064 if (ei->i_disksize > 0x7fffffffULL) {
5065 struct super_block *sb = inode->i_sb;
5066 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5067 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5068 EXT4_SB(sb)->s_es->s_rev_level ==
5069 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5070 /* If this is the first large file
5071 * created, add a flag to the superblock.
5073 err = ext4_journal_get_write_access(handle,
5074 EXT4_SB(sb)->s_sbh);
5075 if (err)
5076 goto out_brelse;
5077 ext4_update_dynamic_rev(sb);
5078 EXT4_SET_RO_COMPAT_FEATURE(sb,
5079 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5080 sb->s_dirt = 1;
5081 ext4_handle_sync(handle);
5082 err = ext4_handle_dirty_metadata(handle, inode,
5083 EXT4_SB(sb)->s_sbh);
5086 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5087 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5088 if (old_valid_dev(inode->i_rdev)) {
5089 raw_inode->i_block[0] =
5090 cpu_to_le32(old_encode_dev(inode->i_rdev));
5091 raw_inode->i_block[1] = 0;
5092 } else {
5093 raw_inode->i_block[0] = 0;
5094 raw_inode->i_block[1] =
5095 cpu_to_le32(new_encode_dev(inode->i_rdev));
5096 raw_inode->i_block[2] = 0;
5098 } else
5099 for (block = 0; block < EXT4_N_BLOCKS; block++)
5100 raw_inode->i_block[block] = ei->i_data[block];
5102 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5103 if (ei->i_extra_isize) {
5104 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5105 raw_inode->i_version_hi =
5106 cpu_to_le32(inode->i_version >> 32);
5107 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5110 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5111 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5112 if (!err)
5113 err = rc;
5114 ei->i_state &= ~EXT4_STATE_NEW;
5116 ext4_update_inode_fsync_trans(handle, inode, 0);
5117 out_brelse:
5118 brelse(bh);
5119 ext4_std_error(inode->i_sb, err);
5120 return err;
5124 * ext4_write_inode()
5126 * We are called from a few places:
5128 * - Within generic_file_write() for O_SYNC files.
5129 * Here, there will be no transaction running. We wait for any running
5130 * trasnaction to commit.
5132 * - Within sys_sync(), kupdate and such.
5133 * We wait on commit, if tol to.
5135 * - Within prune_icache() (PF_MEMALLOC == true)
5136 * Here we simply return. We can't afford to block kswapd on the
5137 * journal commit.
5139 * In all cases it is actually safe for us to return without doing anything,
5140 * because the inode has been copied into a raw inode buffer in
5141 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5142 * knfsd.
5144 * Note that we are absolutely dependent upon all inode dirtiers doing the
5145 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5146 * which we are interested.
5148 * It would be a bug for them to not do this. The code:
5150 * mark_inode_dirty(inode)
5151 * stuff();
5152 * inode->i_size = expr;
5154 * is in error because a kswapd-driven write_inode() could occur while
5155 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5156 * will no longer be on the superblock's dirty inode list.
5158 int ext4_write_inode(struct inode *inode, int wait)
5160 int err;
5162 if (current->flags & PF_MEMALLOC)
5163 return 0;
5165 if (EXT4_SB(inode->i_sb)->s_journal) {
5166 if (ext4_journal_current_handle()) {
5167 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5168 dump_stack();
5169 return -EIO;
5172 if (!wait)
5173 return 0;
5175 err = ext4_force_commit(inode->i_sb);
5176 } else {
5177 struct ext4_iloc iloc;
5179 err = ext4_get_inode_loc(inode, &iloc);
5180 if (err)
5181 return err;
5182 if (wait)
5183 sync_dirty_buffer(iloc.bh);
5184 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5185 ext4_error(inode->i_sb, __func__,
5186 "IO error syncing inode, "
5187 "inode=%lu, block=%llu",
5188 inode->i_ino,
5189 (unsigned long long)iloc.bh->b_blocknr);
5190 err = -EIO;
5193 return err;
5197 * ext4_setattr()
5199 * Called from notify_change.
5201 * We want to trap VFS attempts to truncate the file as soon as
5202 * possible. In particular, we want to make sure that when the VFS
5203 * shrinks i_size, we put the inode on the orphan list and modify
5204 * i_disksize immediately, so that during the subsequent flushing of
5205 * dirty pages and freeing of disk blocks, we can guarantee that any
5206 * commit will leave the blocks being flushed in an unused state on
5207 * disk. (On recovery, the inode will get truncated and the blocks will
5208 * be freed, so we have a strong guarantee that no future commit will
5209 * leave these blocks visible to the user.)
5211 * Another thing we have to assure is that if we are in ordered mode
5212 * and inode is still attached to the committing transaction, we must
5213 * we start writeout of all the dirty pages which are being truncated.
5214 * This way we are sure that all the data written in the previous
5215 * transaction are already on disk (truncate waits for pages under
5216 * writeback).
5218 * Called with inode->i_mutex down.
5220 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5222 struct inode *inode = dentry->d_inode;
5223 int error, rc = 0;
5224 const unsigned int ia_valid = attr->ia_valid;
5226 error = inode_change_ok(inode, attr);
5227 if (error)
5228 return error;
5230 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5231 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5232 handle_t *handle;
5234 /* (user+group)*(old+new) structure, inode write (sb,
5235 * inode block, ? - but truncate inode update has it) */
5236 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5237 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5238 if (IS_ERR(handle)) {
5239 error = PTR_ERR(handle);
5240 goto err_out;
5242 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5243 if (error) {
5244 ext4_journal_stop(handle);
5245 return error;
5247 /* Update corresponding info in inode so that everything is in
5248 * one transaction */
5249 if (attr->ia_valid & ATTR_UID)
5250 inode->i_uid = attr->ia_uid;
5251 if (attr->ia_valid & ATTR_GID)
5252 inode->i_gid = attr->ia_gid;
5253 error = ext4_mark_inode_dirty(handle, inode);
5254 ext4_journal_stop(handle);
5257 if (attr->ia_valid & ATTR_SIZE) {
5258 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5259 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5261 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5262 error = -EFBIG;
5263 goto err_out;
5268 if (S_ISREG(inode->i_mode) &&
5269 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5270 handle_t *handle;
5272 handle = ext4_journal_start(inode, 3);
5273 if (IS_ERR(handle)) {
5274 error = PTR_ERR(handle);
5275 goto err_out;
5278 error = ext4_orphan_add(handle, inode);
5279 EXT4_I(inode)->i_disksize = attr->ia_size;
5280 rc = ext4_mark_inode_dirty(handle, inode);
5281 if (!error)
5282 error = rc;
5283 ext4_journal_stop(handle);
5285 if (ext4_should_order_data(inode)) {
5286 error = ext4_begin_ordered_truncate(inode,
5287 attr->ia_size);
5288 if (error) {
5289 /* Do as much error cleanup as possible */
5290 handle = ext4_journal_start(inode, 3);
5291 if (IS_ERR(handle)) {
5292 ext4_orphan_del(NULL, inode);
5293 goto err_out;
5295 ext4_orphan_del(handle, inode);
5296 ext4_journal_stop(handle);
5297 goto err_out;
5302 rc = inode_setattr(inode, attr);
5304 /* If inode_setattr's call to ext4_truncate failed to get a
5305 * transaction handle at all, we need to clean up the in-core
5306 * orphan list manually. */
5307 if (inode->i_nlink)
5308 ext4_orphan_del(NULL, inode);
5310 if (!rc && (ia_valid & ATTR_MODE))
5311 rc = ext4_acl_chmod(inode);
5313 err_out:
5314 ext4_std_error(inode->i_sb, error);
5315 if (!error)
5316 error = rc;
5317 return error;
5320 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5321 struct kstat *stat)
5323 struct inode *inode;
5324 unsigned long delalloc_blocks;
5326 inode = dentry->d_inode;
5327 generic_fillattr(inode, stat);
5330 * We can't update i_blocks if the block allocation is delayed
5331 * otherwise in the case of system crash before the real block
5332 * allocation is done, we will have i_blocks inconsistent with
5333 * on-disk file blocks.
5334 * We always keep i_blocks updated together with real
5335 * allocation. But to not confuse with user, stat
5336 * will return the blocks that include the delayed allocation
5337 * blocks for this file.
5339 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5340 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5341 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5343 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5344 return 0;
5347 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5348 int chunk)
5350 int indirects;
5352 /* if nrblocks are contiguous */
5353 if (chunk) {
5355 * With N contiguous data blocks, it need at most
5356 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5357 * 2 dindirect blocks
5358 * 1 tindirect block
5360 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5361 return indirects + 3;
5364 * if nrblocks are not contiguous, worse case, each block touch
5365 * a indirect block, and each indirect block touch a double indirect
5366 * block, plus a triple indirect block
5368 indirects = nrblocks * 2 + 1;
5369 return indirects;
5372 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5374 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5375 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5376 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5380 * Account for index blocks, block groups bitmaps and block group
5381 * descriptor blocks if modify datablocks and index blocks
5382 * worse case, the indexs blocks spread over different block groups
5384 * If datablocks are discontiguous, they are possible to spread over
5385 * different block groups too. If they are contiuguous, with flexbg,
5386 * they could still across block group boundary.
5388 * Also account for superblock, inode, quota and xattr blocks
5390 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5392 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5393 int gdpblocks;
5394 int idxblocks;
5395 int ret = 0;
5398 * How many index blocks need to touch to modify nrblocks?
5399 * The "Chunk" flag indicating whether the nrblocks is
5400 * physically contiguous on disk
5402 * For Direct IO and fallocate, they calls get_block to allocate
5403 * one single extent at a time, so they could set the "Chunk" flag
5405 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5407 ret = idxblocks;
5410 * Now let's see how many group bitmaps and group descriptors need
5411 * to account
5413 groups = idxblocks;
5414 if (chunk)
5415 groups += 1;
5416 else
5417 groups += nrblocks;
5419 gdpblocks = groups;
5420 if (groups > ngroups)
5421 groups = ngroups;
5422 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5423 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5425 /* bitmaps and block group descriptor blocks */
5426 ret += groups + gdpblocks;
5428 /* Blocks for super block, inode, quota and xattr blocks */
5429 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5431 return ret;
5435 * Calulate the total number of credits to reserve to fit
5436 * the modification of a single pages into a single transaction,
5437 * which may include multiple chunks of block allocations.
5439 * This could be called via ext4_write_begin()
5441 * We need to consider the worse case, when
5442 * one new block per extent.
5444 int ext4_writepage_trans_blocks(struct inode *inode)
5446 int bpp = ext4_journal_blocks_per_page(inode);
5447 int ret;
5449 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5451 /* Account for data blocks for journalled mode */
5452 if (ext4_should_journal_data(inode))
5453 ret += bpp;
5454 return ret;
5458 * Calculate the journal credits for a chunk of data modification.
5460 * This is called from DIO, fallocate or whoever calling
5461 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5463 * journal buffers for data blocks are not included here, as DIO
5464 * and fallocate do no need to journal data buffers.
5466 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5468 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5472 * The caller must have previously called ext4_reserve_inode_write().
5473 * Give this, we know that the caller already has write access to iloc->bh.
5475 int ext4_mark_iloc_dirty(handle_t *handle,
5476 struct inode *inode, struct ext4_iloc *iloc)
5478 int err = 0;
5480 if (test_opt(inode->i_sb, I_VERSION))
5481 inode_inc_iversion(inode);
5483 /* the do_update_inode consumes one bh->b_count */
5484 get_bh(iloc->bh);
5486 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5487 err = ext4_do_update_inode(handle, inode, iloc);
5488 put_bh(iloc->bh);
5489 return err;
5493 * On success, We end up with an outstanding reference count against
5494 * iloc->bh. This _must_ be cleaned up later.
5498 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5499 struct ext4_iloc *iloc)
5501 int err;
5503 err = ext4_get_inode_loc(inode, iloc);
5504 if (!err) {
5505 BUFFER_TRACE(iloc->bh, "get_write_access");
5506 err = ext4_journal_get_write_access(handle, iloc->bh);
5507 if (err) {
5508 brelse(iloc->bh);
5509 iloc->bh = NULL;
5512 ext4_std_error(inode->i_sb, err);
5513 return err;
5517 * Expand an inode by new_extra_isize bytes.
5518 * Returns 0 on success or negative error number on failure.
5520 static int ext4_expand_extra_isize(struct inode *inode,
5521 unsigned int new_extra_isize,
5522 struct ext4_iloc iloc,
5523 handle_t *handle)
5525 struct ext4_inode *raw_inode;
5526 struct ext4_xattr_ibody_header *header;
5527 struct ext4_xattr_entry *entry;
5529 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5530 return 0;
5532 raw_inode = ext4_raw_inode(&iloc);
5534 header = IHDR(inode, raw_inode);
5535 entry = IFIRST(header);
5537 /* No extended attributes present */
5538 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5539 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5540 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5541 new_extra_isize);
5542 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5543 return 0;
5546 /* try to expand with EAs present */
5547 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5548 raw_inode, handle);
5552 * What we do here is to mark the in-core inode as clean with respect to inode
5553 * dirtiness (it may still be data-dirty).
5554 * This means that the in-core inode may be reaped by prune_icache
5555 * without having to perform any I/O. This is a very good thing,
5556 * because *any* task may call prune_icache - even ones which
5557 * have a transaction open against a different journal.
5559 * Is this cheating? Not really. Sure, we haven't written the
5560 * inode out, but prune_icache isn't a user-visible syncing function.
5561 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5562 * we start and wait on commits.
5564 * Is this efficient/effective? Well, we're being nice to the system
5565 * by cleaning up our inodes proactively so they can be reaped
5566 * without I/O. But we are potentially leaving up to five seconds'
5567 * worth of inodes floating about which prune_icache wants us to
5568 * write out. One way to fix that would be to get prune_icache()
5569 * to do a write_super() to free up some memory. It has the desired
5570 * effect.
5572 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5574 struct ext4_iloc iloc;
5575 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5576 static unsigned int mnt_count;
5577 int err, ret;
5579 might_sleep();
5580 err = ext4_reserve_inode_write(handle, inode, &iloc);
5581 if (ext4_handle_valid(handle) &&
5582 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5583 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5585 * We need extra buffer credits since we may write into EA block
5586 * with this same handle. If journal_extend fails, then it will
5587 * only result in a minor loss of functionality for that inode.
5588 * If this is felt to be critical, then e2fsck should be run to
5589 * force a large enough s_min_extra_isize.
5591 if ((jbd2_journal_extend(handle,
5592 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5593 ret = ext4_expand_extra_isize(inode,
5594 sbi->s_want_extra_isize,
5595 iloc, handle);
5596 if (ret) {
5597 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5598 if (mnt_count !=
5599 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5600 ext4_warning(inode->i_sb, __func__,
5601 "Unable to expand inode %lu. Delete"
5602 " some EAs or run e2fsck.",
5603 inode->i_ino);
5604 mnt_count =
5605 le16_to_cpu(sbi->s_es->s_mnt_count);
5610 if (!err)
5611 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5612 return err;
5616 * ext4_dirty_inode() is called from __mark_inode_dirty()
5618 * We're really interested in the case where a file is being extended.
5619 * i_size has been changed by generic_commit_write() and we thus need
5620 * to include the updated inode in the current transaction.
5622 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5623 * are allocated to the file.
5625 * If the inode is marked synchronous, we don't honour that here - doing
5626 * so would cause a commit on atime updates, which we don't bother doing.
5627 * We handle synchronous inodes at the highest possible level.
5629 void ext4_dirty_inode(struct inode *inode)
5631 handle_t *handle;
5633 handle = ext4_journal_start(inode, 2);
5634 if (IS_ERR(handle))
5635 goto out;
5637 ext4_mark_inode_dirty(handle, inode);
5639 ext4_journal_stop(handle);
5640 out:
5641 return;
5644 #if 0
5646 * Bind an inode's backing buffer_head into this transaction, to prevent
5647 * it from being flushed to disk early. Unlike
5648 * ext4_reserve_inode_write, this leaves behind no bh reference and
5649 * returns no iloc structure, so the caller needs to repeat the iloc
5650 * lookup to mark the inode dirty later.
5652 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5654 struct ext4_iloc iloc;
5656 int err = 0;
5657 if (handle) {
5658 err = ext4_get_inode_loc(inode, &iloc);
5659 if (!err) {
5660 BUFFER_TRACE(iloc.bh, "get_write_access");
5661 err = jbd2_journal_get_write_access(handle, iloc.bh);
5662 if (!err)
5663 err = ext4_handle_dirty_metadata(handle,
5664 inode,
5665 iloc.bh);
5666 brelse(iloc.bh);
5669 ext4_std_error(inode->i_sb, err);
5670 return err;
5672 #endif
5674 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5676 journal_t *journal;
5677 handle_t *handle;
5678 int err;
5681 * We have to be very careful here: changing a data block's
5682 * journaling status dynamically is dangerous. If we write a
5683 * data block to the journal, change the status and then delete
5684 * that block, we risk forgetting to revoke the old log record
5685 * from the journal and so a subsequent replay can corrupt data.
5686 * So, first we make sure that the journal is empty and that
5687 * nobody is changing anything.
5690 journal = EXT4_JOURNAL(inode);
5691 if (!journal)
5692 return 0;
5693 if (is_journal_aborted(journal))
5694 return -EROFS;
5696 jbd2_journal_lock_updates(journal);
5697 jbd2_journal_flush(journal);
5700 * OK, there are no updates running now, and all cached data is
5701 * synced to disk. We are now in a completely consistent state
5702 * which doesn't have anything in the journal, and we know that
5703 * no filesystem updates are running, so it is safe to modify
5704 * the inode's in-core data-journaling state flag now.
5707 if (val)
5708 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5709 else
5710 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5711 ext4_set_aops(inode);
5713 jbd2_journal_unlock_updates(journal);
5715 /* Finally we can mark the inode as dirty. */
5717 handle = ext4_journal_start(inode, 1);
5718 if (IS_ERR(handle))
5719 return PTR_ERR(handle);
5721 err = ext4_mark_inode_dirty(handle, inode);
5722 ext4_handle_sync(handle);
5723 ext4_journal_stop(handle);
5724 ext4_std_error(inode->i_sb, err);
5726 return err;
5729 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5731 return !buffer_mapped(bh);
5734 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5736 struct page *page = vmf->page;
5737 loff_t size;
5738 unsigned long len;
5739 int ret = -EINVAL;
5740 void *fsdata;
5741 struct file *file = vma->vm_file;
5742 struct inode *inode = file->f_path.dentry->d_inode;
5743 struct address_space *mapping = inode->i_mapping;
5746 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5747 * get i_mutex because we are already holding mmap_sem.
5749 down_read(&inode->i_alloc_sem);
5750 size = i_size_read(inode);
5751 if (page->mapping != mapping || size <= page_offset(page)
5752 || !PageUptodate(page)) {
5753 /* page got truncated from under us? */
5754 goto out_unlock;
5756 ret = 0;
5757 if (PageMappedToDisk(page))
5758 goto out_unlock;
5760 if (page->index == size >> PAGE_CACHE_SHIFT)
5761 len = size & ~PAGE_CACHE_MASK;
5762 else
5763 len = PAGE_CACHE_SIZE;
5765 lock_page(page);
5767 * return if we have all the buffers mapped. This avoid
5768 * the need to call write_begin/write_end which does a
5769 * journal_start/journal_stop which can block and take
5770 * long time
5772 if (page_has_buffers(page)) {
5773 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5774 ext4_bh_unmapped)) {
5775 unlock_page(page);
5776 goto out_unlock;
5779 unlock_page(page);
5781 * OK, we need to fill the hole... Do write_begin write_end
5782 * to do block allocation/reservation.We are not holding
5783 * inode.i__mutex here. That allow * parallel write_begin,
5784 * write_end call. lock_page prevent this from happening
5785 * on the same page though
5787 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5788 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5789 if (ret < 0)
5790 goto out_unlock;
5791 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5792 len, len, page, fsdata);
5793 if (ret < 0)
5794 goto out_unlock;
5795 ret = 0;
5796 out_unlock:
5797 if (ret)
5798 ret = VM_FAULT_SIGBUS;
5799 up_read(&inode->i_alloc_sem);
5800 return ret;