Merge branch 'tracing/hw-breakpoints' into perf/core
[linux-2.6/linux-2.6-openrd.git] / arch / x86 / kernel / kprobes.c
blob3fe86d706a1493ad59cb655478bd9b41cfd11f4d
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
43 #include <linux/kprobes.h>
44 #include <linux/ptrace.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/hardirq.h>
48 #include <linux/preempt.h>
49 #include <linux/module.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
53 #include <asm/cacheflush.h>
54 #include <asm/desc.h>
55 #include <asm/pgtable.h>
56 #include <asm/uaccess.h>
57 #include <asm/alternative.h>
58 #include <asm/insn.h>
59 #include <asm/debugreg.h>
61 void jprobe_return_end(void);
63 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
64 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
66 #ifdef CONFIG_X86_64
67 #define stack_addr(regs) ((unsigned long *)regs->sp)
68 #else
70 * "&regs->sp" looks wrong, but it's correct for x86_32. x86_32 CPUs
71 * don't save the ss and esp registers if the CPU is already in kernel
72 * mode when it traps. So for kprobes, regs->sp and regs->ss are not
73 * the [nonexistent] saved stack pointer and ss register, but rather
74 * the top 8 bytes of the pre-int3 stack. So &regs->sp happens to
75 * point to the top of the pre-int3 stack.
77 #define stack_addr(regs) ((unsigned long *)&regs->sp)
78 #endif
80 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
81 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
82 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
83 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
84 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
85 << (row % 32))
87 * Undefined/reserved opcodes, conditional jump, Opcode Extension
88 * Groups, and some special opcodes can not boost.
90 static const u32 twobyte_is_boostable[256 / 32] = {
91 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
92 /* ---------------------------------------------- */
93 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
94 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
95 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
96 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
97 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
98 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
99 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
100 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
101 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
102 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
103 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
104 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
105 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
106 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
107 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
108 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
109 /* ----------------------------------------------- */
110 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
112 #undef W
114 struct kretprobe_blackpoint kretprobe_blacklist[] = {
115 {"__switch_to", }, /* This function switches only current task, but
116 doesn't switch kernel stack.*/
117 {NULL, NULL} /* Terminator */
119 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
121 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
122 static void __kprobes set_jmp_op(void *from, void *to)
124 struct __arch_jmp_op {
125 char op;
126 s32 raddr;
127 } __attribute__((packed)) * jop;
128 jop = (struct __arch_jmp_op *)from;
129 jop->raddr = (s32)((long)(to) - ((long)(from) + 5));
130 jop->op = RELATIVEJUMP_INSTRUCTION;
134 * Check for the REX prefix which can only exist on X86_64
135 * X86_32 always returns 0
137 static int __kprobes is_REX_prefix(kprobe_opcode_t *insn)
139 #ifdef CONFIG_X86_64
140 if ((*insn & 0xf0) == 0x40)
141 return 1;
142 #endif
143 return 0;
147 * Returns non-zero if opcode is boostable.
148 * RIP relative instructions are adjusted at copying time in 64 bits mode
150 static int __kprobes can_boost(kprobe_opcode_t *opcodes)
152 kprobe_opcode_t opcode;
153 kprobe_opcode_t *orig_opcodes = opcodes;
155 if (search_exception_tables((unsigned long)opcodes))
156 return 0; /* Page fault may occur on this address. */
158 retry:
159 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
160 return 0;
161 opcode = *(opcodes++);
163 /* 2nd-byte opcode */
164 if (opcode == 0x0f) {
165 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
166 return 0;
167 return test_bit(*opcodes,
168 (unsigned long *)twobyte_is_boostable);
171 switch (opcode & 0xf0) {
172 #ifdef CONFIG_X86_64
173 case 0x40:
174 goto retry; /* REX prefix is boostable */
175 #endif
176 case 0x60:
177 if (0x63 < opcode && opcode < 0x67)
178 goto retry; /* prefixes */
179 /* can't boost Address-size override and bound */
180 return (opcode != 0x62 && opcode != 0x67);
181 case 0x70:
182 return 0; /* can't boost conditional jump */
183 case 0xc0:
184 /* can't boost software-interruptions */
185 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
186 case 0xd0:
187 /* can boost AA* and XLAT */
188 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
189 case 0xe0:
190 /* can boost in/out and absolute jmps */
191 return ((opcode & 0x04) || opcode == 0xea);
192 case 0xf0:
193 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
194 goto retry; /* lock/rep(ne) prefix */
195 /* clear and set flags are boostable */
196 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
197 default:
198 /* segment override prefixes are boostable */
199 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
200 goto retry; /* prefixes */
201 /* CS override prefix and call are not boostable */
202 return (opcode != 0x2e && opcode != 0x9a);
206 /* Recover the probed instruction at addr for further analysis. */
207 static int recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
209 struct kprobe *kp;
210 kp = get_kprobe((void *)addr);
211 if (!kp)
212 return -EINVAL;
215 * Basically, kp->ainsn.insn has an original instruction.
216 * However, RIP-relative instruction can not do single-stepping
217 * at different place, fix_riprel() tweaks the displacement of
218 * that instruction. In that case, we can't recover the instruction
219 * from the kp->ainsn.insn.
221 * On the other hand, kp->opcode has a copy of the first byte of
222 * the probed instruction, which is overwritten by int3. And
223 * the instruction at kp->addr is not modified by kprobes except
224 * for the first byte, we can recover the original instruction
225 * from it and kp->opcode.
227 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
228 buf[0] = kp->opcode;
229 return 0;
232 /* Dummy buffers for kallsyms_lookup */
233 static char __dummy_buf[KSYM_NAME_LEN];
235 /* Check if paddr is at an instruction boundary */
236 static int __kprobes can_probe(unsigned long paddr)
238 int ret;
239 unsigned long addr, offset = 0;
240 struct insn insn;
241 kprobe_opcode_t buf[MAX_INSN_SIZE];
243 if (!kallsyms_lookup(paddr, NULL, &offset, NULL, __dummy_buf))
244 return 0;
246 /* Decode instructions */
247 addr = paddr - offset;
248 while (addr < paddr) {
249 kernel_insn_init(&insn, (void *)addr);
250 insn_get_opcode(&insn);
253 * Check if the instruction has been modified by another
254 * kprobe, in which case we replace the breakpoint by the
255 * original instruction in our buffer.
257 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
258 ret = recover_probed_instruction(buf, addr);
259 if (ret)
261 * Another debugging subsystem might insert
262 * this breakpoint. In that case, we can't
263 * recover it.
265 return 0;
266 kernel_insn_init(&insn, buf);
268 insn_get_length(&insn);
269 addr += insn.length;
272 return (addr == paddr);
276 * Returns non-zero if opcode modifies the interrupt flag.
278 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
280 switch (*insn) {
281 case 0xfa: /* cli */
282 case 0xfb: /* sti */
283 case 0xcf: /* iret/iretd */
284 case 0x9d: /* popf/popfd */
285 return 1;
289 * on X86_64, 0x40-0x4f are REX prefixes so we need to look
290 * at the next byte instead.. but of course not recurse infinitely
292 if (is_REX_prefix(insn))
293 return is_IF_modifier(++insn);
295 return 0;
299 * Adjust the displacement if the instruction uses the %rip-relative
300 * addressing mode.
301 * If it does, Return the address of the 32-bit displacement word.
302 * If not, return null.
303 * Only applicable to 64-bit x86.
305 static void __kprobes fix_riprel(struct kprobe *p)
307 #ifdef CONFIG_X86_64
308 struct insn insn;
309 kernel_insn_init(&insn, p->ainsn.insn);
311 if (insn_rip_relative(&insn)) {
312 s64 newdisp;
313 u8 *disp;
314 insn_get_displacement(&insn);
316 * The copied instruction uses the %rip-relative addressing
317 * mode. Adjust the displacement for the difference between
318 * the original location of this instruction and the location
319 * of the copy that will actually be run. The tricky bit here
320 * is making sure that the sign extension happens correctly in
321 * this calculation, since we need a signed 32-bit result to
322 * be sign-extended to 64 bits when it's added to the %rip
323 * value and yield the same 64-bit result that the sign-
324 * extension of the original signed 32-bit displacement would
325 * have given.
327 newdisp = (u8 *) p->addr + (s64) insn.displacement.value -
328 (u8 *) p->ainsn.insn;
329 BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check. */
330 disp = (u8 *) p->ainsn.insn + insn_offset_displacement(&insn);
331 *(s32 *) disp = (s32) newdisp;
333 #endif
336 static void __kprobes arch_copy_kprobe(struct kprobe *p)
338 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
340 fix_riprel(p);
342 if (can_boost(p->addr))
343 p->ainsn.boostable = 0;
344 else
345 p->ainsn.boostable = -1;
347 p->opcode = *p->addr;
350 int __kprobes arch_prepare_kprobe(struct kprobe *p)
352 if (!can_probe((unsigned long)p->addr))
353 return -EILSEQ;
354 /* insn: must be on special executable page on x86. */
355 p->ainsn.insn = get_insn_slot();
356 if (!p->ainsn.insn)
357 return -ENOMEM;
358 arch_copy_kprobe(p);
359 return 0;
362 void __kprobes arch_arm_kprobe(struct kprobe *p)
364 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
367 void __kprobes arch_disarm_kprobe(struct kprobe *p)
369 text_poke(p->addr, &p->opcode, 1);
372 void __kprobes arch_remove_kprobe(struct kprobe *p)
374 if (p->ainsn.insn) {
375 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
376 p->ainsn.insn = NULL;
380 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
382 kcb->prev_kprobe.kp = kprobe_running();
383 kcb->prev_kprobe.status = kcb->kprobe_status;
384 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
385 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
388 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
390 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
391 kcb->kprobe_status = kcb->prev_kprobe.status;
392 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
393 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
396 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
397 struct kprobe_ctlblk *kcb)
399 __get_cpu_var(current_kprobe) = p;
400 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
401 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
402 if (is_IF_modifier(p->ainsn.insn))
403 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
406 static void __kprobes clear_btf(void)
408 if (test_thread_flag(TIF_DEBUGCTLMSR))
409 update_debugctlmsr(0);
412 static void __kprobes restore_btf(void)
414 if (test_thread_flag(TIF_DEBUGCTLMSR))
415 update_debugctlmsr(current->thread.debugctlmsr);
418 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
420 clear_btf();
421 regs->flags |= X86_EFLAGS_TF;
422 regs->flags &= ~X86_EFLAGS_IF;
423 /* single step inline if the instruction is an int3 */
424 if (p->opcode == BREAKPOINT_INSTRUCTION)
425 regs->ip = (unsigned long)p->addr;
426 else
427 regs->ip = (unsigned long)p->ainsn.insn;
430 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
431 struct pt_regs *regs)
433 unsigned long *sara = stack_addr(regs);
435 ri->ret_addr = (kprobe_opcode_t *) *sara;
437 /* Replace the return addr with trampoline addr */
438 *sara = (unsigned long) &kretprobe_trampoline;
441 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
442 struct kprobe_ctlblk *kcb)
444 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_FREEZER)
445 if (p->ainsn.boostable == 1 && !p->post_handler) {
446 /* Boost up -- we can execute copied instructions directly */
447 reset_current_kprobe();
448 regs->ip = (unsigned long)p->ainsn.insn;
449 preempt_enable_no_resched();
450 return;
452 #endif
453 prepare_singlestep(p, regs);
454 kcb->kprobe_status = KPROBE_HIT_SS;
458 * We have reentered the kprobe_handler(), since another probe was hit while
459 * within the handler. We save the original kprobes variables and just single
460 * step on the instruction of the new probe without calling any user handlers.
462 static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
463 struct kprobe_ctlblk *kcb)
465 switch (kcb->kprobe_status) {
466 case KPROBE_HIT_SSDONE:
467 case KPROBE_HIT_ACTIVE:
468 save_previous_kprobe(kcb);
469 set_current_kprobe(p, regs, kcb);
470 kprobes_inc_nmissed_count(p);
471 prepare_singlestep(p, regs);
472 kcb->kprobe_status = KPROBE_REENTER;
473 break;
474 case KPROBE_HIT_SS:
475 /* A probe has been hit in the codepath leading up to, or just
476 * after, single-stepping of a probed instruction. This entire
477 * codepath should strictly reside in .kprobes.text section.
478 * Raise a BUG or we'll continue in an endless reentering loop
479 * and eventually a stack overflow.
481 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
482 p->addr);
483 dump_kprobe(p);
484 BUG();
485 default:
486 /* impossible cases */
487 WARN_ON(1);
488 return 0;
491 return 1;
495 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
496 * remain disabled thorough out this function.
498 static int __kprobes kprobe_handler(struct pt_regs *regs)
500 kprobe_opcode_t *addr;
501 struct kprobe *p;
502 struct kprobe_ctlblk *kcb;
504 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
505 if (*addr != BREAKPOINT_INSTRUCTION) {
507 * The breakpoint instruction was removed right
508 * after we hit it. Another cpu has removed
509 * either a probepoint or a debugger breakpoint
510 * at this address. In either case, no further
511 * handling of this interrupt is appropriate.
512 * Back up over the (now missing) int3 and run
513 * the original instruction.
515 regs->ip = (unsigned long)addr;
516 return 1;
520 * We don't want to be preempted for the entire
521 * duration of kprobe processing. We conditionally
522 * re-enable preemption at the end of this function,
523 * and also in reenter_kprobe() and setup_singlestep().
525 preempt_disable();
527 kcb = get_kprobe_ctlblk();
528 p = get_kprobe(addr);
530 if (p) {
531 if (kprobe_running()) {
532 if (reenter_kprobe(p, regs, kcb))
533 return 1;
534 } else {
535 set_current_kprobe(p, regs, kcb);
536 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
539 * If we have no pre-handler or it returned 0, we
540 * continue with normal processing. If we have a
541 * pre-handler and it returned non-zero, it prepped
542 * for calling the break_handler below on re-entry
543 * for jprobe processing, so get out doing nothing
544 * more here.
546 if (!p->pre_handler || !p->pre_handler(p, regs))
547 setup_singlestep(p, regs, kcb);
548 return 1;
550 } else if (kprobe_running()) {
551 p = __get_cpu_var(current_kprobe);
552 if (p->break_handler && p->break_handler(p, regs)) {
553 setup_singlestep(p, regs, kcb);
554 return 1;
556 } /* else: not a kprobe fault; let the kernel handle it */
558 preempt_enable_no_resched();
559 return 0;
563 * When a retprobed function returns, this code saves registers and
564 * calls trampoline_handler() runs, which calls the kretprobe's handler.
566 static void __used __kprobes kretprobe_trampoline_holder(void)
568 asm volatile (
569 ".global kretprobe_trampoline\n"
570 "kretprobe_trampoline: \n"
571 #ifdef CONFIG_X86_64
572 /* We don't bother saving the ss register */
573 " pushq %rsp\n"
574 " pushfq\n"
576 * Skip cs, ip, orig_ax.
577 * trampoline_handler() will plug in these values
579 " subq $24, %rsp\n"
580 " pushq %rdi\n"
581 " pushq %rsi\n"
582 " pushq %rdx\n"
583 " pushq %rcx\n"
584 " pushq %rax\n"
585 " pushq %r8\n"
586 " pushq %r9\n"
587 " pushq %r10\n"
588 " pushq %r11\n"
589 " pushq %rbx\n"
590 " pushq %rbp\n"
591 " pushq %r12\n"
592 " pushq %r13\n"
593 " pushq %r14\n"
594 " pushq %r15\n"
595 " movq %rsp, %rdi\n"
596 " call trampoline_handler\n"
597 /* Replace saved sp with true return address. */
598 " movq %rax, 152(%rsp)\n"
599 " popq %r15\n"
600 " popq %r14\n"
601 " popq %r13\n"
602 " popq %r12\n"
603 " popq %rbp\n"
604 " popq %rbx\n"
605 " popq %r11\n"
606 " popq %r10\n"
607 " popq %r9\n"
608 " popq %r8\n"
609 " popq %rax\n"
610 " popq %rcx\n"
611 " popq %rdx\n"
612 " popq %rsi\n"
613 " popq %rdi\n"
614 /* Skip orig_ax, ip, cs */
615 " addq $24, %rsp\n"
616 " popfq\n"
617 #else
618 " pushf\n"
620 * Skip cs, ip, orig_ax and gs.
621 * trampoline_handler() will plug in these values
623 " subl $16, %esp\n"
624 " pushl %fs\n"
625 " pushl %es\n"
626 " pushl %ds\n"
627 " pushl %eax\n"
628 " pushl %ebp\n"
629 " pushl %edi\n"
630 " pushl %esi\n"
631 " pushl %edx\n"
632 " pushl %ecx\n"
633 " pushl %ebx\n"
634 " movl %esp, %eax\n"
635 " call trampoline_handler\n"
636 /* Move flags to cs */
637 " movl 56(%esp), %edx\n"
638 " movl %edx, 52(%esp)\n"
639 /* Replace saved flags with true return address. */
640 " movl %eax, 56(%esp)\n"
641 " popl %ebx\n"
642 " popl %ecx\n"
643 " popl %edx\n"
644 " popl %esi\n"
645 " popl %edi\n"
646 " popl %ebp\n"
647 " popl %eax\n"
648 /* Skip ds, es, fs, gs, orig_ax and ip */
649 " addl $24, %esp\n"
650 " popf\n"
651 #endif
652 " ret\n");
656 * Called from kretprobe_trampoline
658 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
660 struct kretprobe_instance *ri = NULL;
661 struct hlist_head *head, empty_rp;
662 struct hlist_node *node, *tmp;
663 unsigned long flags, orig_ret_address = 0;
664 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
666 INIT_HLIST_HEAD(&empty_rp);
667 kretprobe_hash_lock(current, &head, &flags);
668 /* fixup registers */
669 #ifdef CONFIG_X86_64
670 regs->cs = __KERNEL_CS;
671 #else
672 regs->cs = __KERNEL_CS | get_kernel_rpl();
673 regs->gs = 0;
674 #endif
675 regs->ip = trampoline_address;
676 regs->orig_ax = ~0UL;
679 * It is possible to have multiple instances associated with a given
680 * task either because multiple functions in the call path have
681 * return probes installed on them, and/or more than one
682 * return probe was registered for a target function.
684 * We can handle this because:
685 * - instances are always pushed into the head of the list
686 * - when multiple return probes are registered for the same
687 * function, the (chronologically) first instance's ret_addr
688 * will be the real return address, and all the rest will
689 * point to kretprobe_trampoline.
691 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
692 if (ri->task != current)
693 /* another task is sharing our hash bucket */
694 continue;
696 if (ri->rp && ri->rp->handler) {
697 __get_cpu_var(current_kprobe) = &ri->rp->kp;
698 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
699 ri->rp->handler(ri, regs);
700 __get_cpu_var(current_kprobe) = NULL;
703 orig_ret_address = (unsigned long)ri->ret_addr;
704 recycle_rp_inst(ri, &empty_rp);
706 if (orig_ret_address != trampoline_address)
708 * This is the real return address. Any other
709 * instances associated with this task are for
710 * other calls deeper on the call stack
712 break;
715 kretprobe_assert(ri, orig_ret_address, trampoline_address);
717 kretprobe_hash_unlock(current, &flags);
719 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
720 hlist_del(&ri->hlist);
721 kfree(ri);
723 return (void *)orig_ret_address;
727 * Called after single-stepping. p->addr is the address of the
728 * instruction whose first byte has been replaced by the "int 3"
729 * instruction. To avoid the SMP problems that can occur when we
730 * temporarily put back the original opcode to single-step, we
731 * single-stepped a copy of the instruction. The address of this
732 * copy is p->ainsn.insn.
734 * This function prepares to return from the post-single-step
735 * interrupt. We have to fix up the stack as follows:
737 * 0) Except in the case of absolute or indirect jump or call instructions,
738 * the new ip is relative to the copied instruction. We need to make
739 * it relative to the original instruction.
741 * 1) If the single-stepped instruction was pushfl, then the TF and IF
742 * flags are set in the just-pushed flags, and may need to be cleared.
744 * 2) If the single-stepped instruction was a call, the return address
745 * that is atop the stack is the address following the copied instruction.
746 * We need to make it the address following the original instruction.
748 * If this is the first time we've single-stepped the instruction at
749 * this probepoint, and the instruction is boostable, boost it: add a
750 * jump instruction after the copied instruction, that jumps to the next
751 * instruction after the probepoint.
753 static void __kprobes resume_execution(struct kprobe *p,
754 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
756 unsigned long *tos = stack_addr(regs);
757 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
758 unsigned long orig_ip = (unsigned long)p->addr;
759 kprobe_opcode_t *insn = p->ainsn.insn;
761 /*skip the REX prefix*/
762 if (is_REX_prefix(insn))
763 insn++;
765 regs->flags &= ~X86_EFLAGS_TF;
766 switch (*insn) {
767 case 0x9c: /* pushfl */
768 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
769 *tos |= kcb->kprobe_old_flags;
770 break;
771 case 0xc2: /* iret/ret/lret */
772 case 0xc3:
773 case 0xca:
774 case 0xcb:
775 case 0xcf:
776 case 0xea: /* jmp absolute -- ip is correct */
777 /* ip is already adjusted, no more changes required */
778 p->ainsn.boostable = 1;
779 goto no_change;
780 case 0xe8: /* call relative - Fix return addr */
781 *tos = orig_ip + (*tos - copy_ip);
782 break;
783 #ifdef CONFIG_X86_32
784 case 0x9a: /* call absolute -- same as call absolute, indirect */
785 *tos = orig_ip + (*tos - copy_ip);
786 goto no_change;
787 #endif
788 case 0xff:
789 if ((insn[1] & 0x30) == 0x10) {
791 * call absolute, indirect
792 * Fix return addr; ip is correct.
793 * But this is not boostable
795 *tos = orig_ip + (*tos - copy_ip);
796 goto no_change;
797 } else if (((insn[1] & 0x31) == 0x20) ||
798 ((insn[1] & 0x31) == 0x21)) {
800 * jmp near and far, absolute indirect
801 * ip is correct. And this is boostable
803 p->ainsn.boostable = 1;
804 goto no_change;
806 default:
807 break;
810 if (p->ainsn.boostable == 0) {
811 if ((regs->ip > copy_ip) &&
812 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
814 * These instructions can be executed directly if it
815 * jumps back to correct address.
817 set_jmp_op((void *)regs->ip,
818 (void *)orig_ip + (regs->ip - copy_ip));
819 p->ainsn.boostable = 1;
820 } else {
821 p->ainsn.boostable = -1;
825 regs->ip += orig_ip - copy_ip;
827 no_change:
828 restore_btf();
832 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
833 * remain disabled thoroughout this function.
835 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
837 struct kprobe *cur = kprobe_running();
838 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
840 if (!cur)
841 return 0;
843 resume_execution(cur, regs, kcb);
844 regs->flags |= kcb->kprobe_saved_flags;
846 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
847 kcb->kprobe_status = KPROBE_HIT_SSDONE;
848 cur->post_handler(cur, regs, 0);
851 /* Restore back the original saved kprobes variables and continue. */
852 if (kcb->kprobe_status == KPROBE_REENTER) {
853 restore_previous_kprobe(kcb);
854 goto out;
856 reset_current_kprobe();
857 out:
858 preempt_enable_no_resched();
861 * if somebody else is singlestepping across a probe point, flags
862 * will have TF set, in which case, continue the remaining processing
863 * of do_debug, as if this is not a probe hit.
865 if (regs->flags & X86_EFLAGS_TF)
866 return 0;
868 return 1;
871 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
873 struct kprobe *cur = kprobe_running();
874 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
876 switch (kcb->kprobe_status) {
877 case KPROBE_HIT_SS:
878 case KPROBE_REENTER:
880 * We are here because the instruction being single
881 * stepped caused a page fault. We reset the current
882 * kprobe and the ip points back to the probe address
883 * and allow the page fault handler to continue as a
884 * normal page fault.
886 regs->ip = (unsigned long)cur->addr;
887 regs->flags |= kcb->kprobe_old_flags;
888 if (kcb->kprobe_status == KPROBE_REENTER)
889 restore_previous_kprobe(kcb);
890 else
891 reset_current_kprobe();
892 preempt_enable_no_resched();
893 break;
894 case KPROBE_HIT_ACTIVE:
895 case KPROBE_HIT_SSDONE:
897 * We increment the nmissed count for accounting,
898 * we can also use npre/npostfault count for accounting
899 * these specific fault cases.
901 kprobes_inc_nmissed_count(cur);
904 * We come here because instructions in the pre/post
905 * handler caused the page_fault, this could happen
906 * if handler tries to access user space by
907 * copy_from_user(), get_user() etc. Let the
908 * user-specified handler try to fix it first.
910 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
911 return 1;
914 * In case the user-specified fault handler returned
915 * zero, try to fix up.
917 if (fixup_exception(regs))
918 return 1;
921 * fixup routine could not handle it,
922 * Let do_page_fault() fix it.
924 break;
925 default:
926 break;
928 return 0;
932 * Wrapper routine for handling exceptions.
934 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
935 unsigned long val, void *data)
937 struct die_args *args = data;
938 int ret = NOTIFY_DONE;
940 if (args->regs && user_mode_vm(args->regs))
941 return ret;
943 switch (val) {
944 case DIE_INT3:
945 if (kprobe_handler(args->regs))
946 ret = NOTIFY_STOP;
947 break;
948 case DIE_DEBUG:
949 if (post_kprobe_handler(args->regs)) {
951 * Reset the BS bit in dr6 (pointed by args->err) to
952 * denote completion of processing
954 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
955 ret = NOTIFY_STOP;
957 break;
958 case DIE_GPF:
960 * To be potentially processing a kprobe fault and to
961 * trust the result from kprobe_running(), we have
962 * be non-preemptible.
964 if (!preemptible() && kprobe_running() &&
965 kprobe_fault_handler(args->regs, args->trapnr))
966 ret = NOTIFY_STOP;
967 break;
968 default:
969 break;
971 return ret;
974 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
976 struct jprobe *jp = container_of(p, struct jprobe, kp);
977 unsigned long addr;
978 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
980 kcb->jprobe_saved_regs = *regs;
981 kcb->jprobe_saved_sp = stack_addr(regs);
982 addr = (unsigned long)(kcb->jprobe_saved_sp);
985 * As Linus pointed out, gcc assumes that the callee
986 * owns the argument space and could overwrite it, e.g.
987 * tailcall optimization. So, to be absolutely safe
988 * we also save and restore enough stack bytes to cover
989 * the argument area.
991 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
992 MIN_STACK_SIZE(addr));
993 regs->flags &= ~X86_EFLAGS_IF;
994 trace_hardirqs_off();
995 regs->ip = (unsigned long)(jp->entry);
996 return 1;
999 void __kprobes jprobe_return(void)
1001 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1003 asm volatile (
1004 #ifdef CONFIG_X86_64
1005 " xchg %%rbx,%%rsp \n"
1006 #else
1007 " xchgl %%ebx,%%esp \n"
1008 #endif
1009 " int3 \n"
1010 " .globl jprobe_return_end\n"
1011 " jprobe_return_end: \n"
1012 " nop \n"::"b"
1013 (kcb->jprobe_saved_sp):"memory");
1016 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1018 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1019 u8 *addr = (u8 *) (regs->ip - 1);
1020 struct jprobe *jp = container_of(p, struct jprobe, kp);
1022 if ((addr > (u8 *) jprobe_return) &&
1023 (addr < (u8 *) jprobe_return_end)) {
1024 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
1025 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1026 printk(KERN_ERR
1027 "current sp %p does not match saved sp %p\n",
1028 stack_addr(regs), kcb->jprobe_saved_sp);
1029 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1030 show_registers(saved_regs);
1031 printk(KERN_ERR "Current registers\n");
1032 show_registers(regs);
1033 BUG();
1035 *regs = kcb->jprobe_saved_regs;
1036 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1037 kcb->jprobes_stack,
1038 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1039 preempt_enable_no_resched();
1040 return 1;
1042 return 0;
1045 int __init arch_init_kprobes(void)
1047 return 0;
1050 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1052 return 0;