USB: musb_gadget: fix kernel oops in txstate()
[linux-2.6/linux-2.6-openrd.git] / fs / xfs / xfs_mount.c
blobeb403b40e120d5f20661445b7fab21a58a8c31bd
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 #include "xfs_trace.h"
50 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
53 #ifdef HAVE_PERCPU_SB
54 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
55 int);
56 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
57 int);
58 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59 int64_t, int);
60 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
62 #else
64 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
65 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
66 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
68 #endif
70 static const struct {
71 short offset;
72 short type; /* 0 = integer
73 * 1 = binary / string (no translation)
75 } xfs_sb_info[] = {
76 { offsetof(xfs_sb_t, sb_magicnum), 0 },
77 { offsetof(xfs_sb_t, sb_blocksize), 0 },
78 { offsetof(xfs_sb_t, sb_dblocks), 0 },
79 { offsetof(xfs_sb_t, sb_rblocks), 0 },
80 { offsetof(xfs_sb_t, sb_rextents), 0 },
81 { offsetof(xfs_sb_t, sb_uuid), 1 },
82 { offsetof(xfs_sb_t, sb_logstart), 0 },
83 { offsetof(xfs_sb_t, sb_rootino), 0 },
84 { offsetof(xfs_sb_t, sb_rbmino), 0 },
85 { offsetof(xfs_sb_t, sb_rsumino), 0 },
86 { offsetof(xfs_sb_t, sb_rextsize), 0 },
87 { offsetof(xfs_sb_t, sb_agblocks), 0 },
88 { offsetof(xfs_sb_t, sb_agcount), 0 },
89 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
90 { offsetof(xfs_sb_t, sb_logblocks), 0 },
91 { offsetof(xfs_sb_t, sb_versionnum), 0 },
92 { offsetof(xfs_sb_t, sb_sectsize), 0 },
93 { offsetof(xfs_sb_t, sb_inodesize), 0 },
94 { offsetof(xfs_sb_t, sb_inopblock), 0 },
95 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
96 { offsetof(xfs_sb_t, sb_blocklog), 0 },
97 { offsetof(xfs_sb_t, sb_sectlog), 0 },
98 { offsetof(xfs_sb_t, sb_inodelog), 0 },
99 { offsetof(xfs_sb_t, sb_inopblog), 0 },
100 { offsetof(xfs_sb_t, sb_agblklog), 0 },
101 { offsetof(xfs_sb_t, sb_rextslog), 0 },
102 { offsetof(xfs_sb_t, sb_inprogress), 0 },
103 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
104 { offsetof(xfs_sb_t, sb_icount), 0 },
105 { offsetof(xfs_sb_t, sb_ifree), 0 },
106 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
107 { offsetof(xfs_sb_t, sb_frextents), 0 },
108 { offsetof(xfs_sb_t, sb_uquotino), 0 },
109 { offsetof(xfs_sb_t, sb_gquotino), 0 },
110 { offsetof(xfs_sb_t, sb_qflags), 0 },
111 { offsetof(xfs_sb_t, sb_flags), 0 },
112 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
113 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
114 { offsetof(xfs_sb_t, sb_unit), 0 },
115 { offsetof(xfs_sb_t, sb_width), 0 },
116 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
117 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
118 { offsetof(xfs_sb_t, sb_logsectsize),0 },
119 { offsetof(xfs_sb_t, sb_logsunit), 0 },
120 { offsetof(xfs_sb_t, sb_features2), 0 },
121 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
122 { sizeof(xfs_sb_t), 0 }
125 static DEFINE_MUTEX(xfs_uuid_table_mutex);
126 static int xfs_uuid_table_size;
127 static uuid_t *xfs_uuid_table;
130 * See if the UUID is unique among mounted XFS filesystems.
131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
133 STATIC int
134 xfs_uuid_mount(
135 struct xfs_mount *mp)
137 uuid_t *uuid = &mp->m_sb.sb_uuid;
138 int hole, i;
140 if (mp->m_flags & XFS_MOUNT_NOUUID)
141 return 0;
143 if (uuid_is_nil(uuid)) {
144 cmn_err(CE_WARN,
145 "XFS: Filesystem %s has nil UUID - can't mount",
146 mp->m_fsname);
147 return XFS_ERROR(EINVAL);
150 mutex_lock(&xfs_uuid_table_mutex);
151 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
152 if (uuid_is_nil(&xfs_uuid_table[i])) {
153 hole = i;
154 continue;
156 if (uuid_equal(uuid, &xfs_uuid_table[i]))
157 goto out_duplicate;
160 if (hole < 0) {
161 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
162 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
163 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
164 KM_SLEEP);
165 hole = xfs_uuid_table_size++;
167 xfs_uuid_table[hole] = *uuid;
168 mutex_unlock(&xfs_uuid_table_mutex);
170 return 0;
172 out_duplicate:
173 mutex_unlock(&xfs_uuid_table_mutex);
174 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
175 mp->m_fsname);
176 return XFS_ERROR(EINVAL);
179 STATIC void
180 xfs_uuid_unmount(
181 struct xfs_mount *mp)
183 uuid_t *uuid = &mp->m_sb.sb_uuid;
184 int i;
186 if (mp->m_flags & XFS_MOUNT_NOUUID)
187 return;
189 mutex_lock(&xfs_uuid_table_mutex);
190 for (i = 0; i < xfs_uuid_table_size; i++) {
191 if (uuid_is_nil(&xfs_uuid_table[i]))
192 continue;
193 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
194 continue;
195 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
196 break;
198 ASSERT(i < xfs_uuid_table_size);
199 mutex_unlock(&xfs_uuid_table_mutex);
204 * Free up the resources associated with a mount structure. Assume that
205 * the structure was initially zeroed, so we can tell which fields got
206 * initialized.
208 STATIC void
209 xfs_free_perag(
210 xfs_mount_t *mp)
212 if (mp->m_perag) {
213 int agno;
215 for (agno = 0; agno < mp->m_maxagi; agno++)
216 if (mp->m_perag[agno].pagb_list)
217 kmem_free(mp->m_perag[agno].pagb_list);
218 kmem_free(mp->m_perag);
223 * Check size of device based on the (data/realtime) block count.
224 * Note: this check is used by the growfs code as well as mount.
227 xfs_sb_validate_fsb_count(
228 xfs_sb_t *sbp,
229 __uint64_t nblocks)
231 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
232 ASSERT(sbp->sb_blocklog >= BBSHIFT);
234 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
235 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
236 return E2BIG;
237 #else /* Limited by UINT_MAX of sectors */
238 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
239 return E2BIG;
240 #endif
241 return 0;
245 * Check the validity of the SB found.
247 STATIC int
248 xfs_mount_validate_sb(
249 xfs_mount_t *mp,
250 xfs_sb_t *sbp,
251 int flags)
254 * If the log device and data device have the
255 * same device number, the log is internal.
256 * Consequently, the sb_logstart should be non-zero. If
257 * we have a zero sb_logstart in this case, we may be trying to mount
258 * a volume filesystem in a non-volume manner.
260 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
261 xfs_fs_mount_cmn_err(flags, "bad magic number");
262 return XFS_ERROR(EWRONGFS);
265 if (!xfs_sb_good_version(sbp)) {
266 xfs_fs_mount_cmn_err(flags, "bad version");
267 return XFS_ERROR(EWRONGFS);
270 if (unlikely(
271 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
272 xfs_fs_mount_cmn_err(flags,
273 "filesystem is marked as having an external log; "
274 "specify logdev on the\nmount command line.");
275 return XFS_ERROR(EINVAL);
278 if (unlikely(
279 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
280 xfs_fs_mount_cmn_err(flags,
281 "filesystem is marked as having an internal log; "
282 "do not specify logdev on\nthe mount command line.");
283 return XFS_ERROR(EINVAL);
287 * More sanity checking. These were stolen directly from
288 * xfs_repair.
290 if (unlikely(
291 sbp->sb_agcount <= 0 ||
292 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
293 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
294 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
295 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
296 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
297 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
298 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
299 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
300 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
301 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
302 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
303 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
304 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
305 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
306 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
307 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
308 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
309 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
310 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
311 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
312 return XFS_ERROR(EFSCORRUPTED);
316 * Sanity check AG count, size fields against data size field
318 if (unlikely(
319 sbp->sb_dblocks == 0 ||
320 sbp->sb_dblocks >
321 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
322 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
323 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
324 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
325 return XFS_ERROR(EFSCORRUPTED);
329 * Until this is fixed only page-sized or smaller data blocks work.
331 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
332 xfs_fs_mount_cmn_err(flags,
333 "file system with blocksize %d bytes",
334 sbp->sb_blocksize);
335 xfs_fs_mount_cmn_err(flags,
336 "only pagesize (%ld) or less will currently work.",
337 PAGE_SIZE);
338 return XFS_ERROR(ENOSYS);
342 * Currently only very few inode sizes are supported.
344 switch (sbp->sb_inodesize) {
345 case 256:
346 case 512:
347 case 1024:
348 case 2048:
349 break;
350 default:
351 xfs_fs_mount_cmn_err(flags,
352 "inode size of %d bytes not supported",
353 sbp->sb_inodesize);
354 return XFS_ERROR(ENOSYS);
357 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
358 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
359 xfs_fs_mount_cmn_err(flags,
360 "file system too large to be mounted on this system.");
361 return XFS_ERROR(E2BIG);
364 if (unlikely(sbp->sb_inprogress)) {
365 xfs_fs_mount_cmn_err(flags, "file system busy");
366 return XFS_ERROR(EFSCORRUPTED);
370 * Version 1 directory format has never worked on Linux.
372 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
373 xfs_fs_mount_cmn_err(flags,
374 "file system using version 1 directory format");
375 return XFS_ERROR(ENOSYS);
378 return 0;
381 STATIC void
382 xfs_initialize_perag_icache(
383 xfs_perag_t *pag)
385 if (!pag->pag_ici_init) {
386 rwlock_init(&pag->pag_ici_lock);
387 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
388 pag->pag_ici_init = 1;
392 xfs_agnumber_t
393 xfs_initialize_perag(
394 xfs_mount_t *mp,
395 xfs_agnumber_t agcount)
397 xfs_agnumber_t index, max_metadata;
398 xfs_perag_t *pag;
399 xfs_agino_t agino;
400 xfs_ino_t ino;
401 xfs_sb_t *sbp = &mp->m_sb;
402 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
404 /* Check to see if the filesystem can overflow 32 bit inodes */
405 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
406 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
408 /* Clear the mount flag if no inode can overflow 32 bits
409 * on this filesystem, or if specifically requested..
411 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
412 mp->m_flags |= XFS_MOUNT_32BITINODES;
413 } else {
414 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
417 /* If we can overflow then setup the ag headers accordingly */
418 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
419 /* Calculate how much should be reserved for inodes to
420 * meet the max inode percentage.
422 if (mp->m_maxicount) {
423 __uint64_t icount;
425 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
426 do_div(icount, 100);
427 icount += sbp->sb_agblocks - 1;
428 do_div(icount, sbp->sb_agblocks);
429 max_metadata = icount;
430 } else {
431 max_metadata = agcount;
433 for (index = 0; index < agcount; index++) {
434 ino = XFS_AGINO_TO_INO(mp, index, agino);
435 if (ino > max_inum) {
436 index++;
437 break;
440 /* This ag is preferred for inodes */
441 pag = &mp->m_perag[index];
442 pag->pagi_inodeok = 1;
443 if (index < max_metadata)
444 pag->pagf_metadata = 1;
445 xfs_initialize_perag_icache(pag);
447 } else {
448 /* Setup default behavior for smaller filesystems */
449 for (index = 0; index < agcount; index++) {
450 pag = &mp->m_perag[index];
451 pag->pagi_inodeok = 1;
452 xfs_initialize_perag_icache(pag);
455 return index;
458 void
459 xfs_sb_from_disk(
460 xfs_sb_t *to,
461 xfs_dsb_t *from)
463 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
464 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
465 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
466 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
467 to->sb_rextents = be64_to_cpu(from->sb_rextents);
468 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
469 to->sb_logstart = be64_to_cpu(from->sb_logstart);
470 to->sb_rootino = be64_to_cpu(from->sb_rootino);
471 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
472 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
473 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
474 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
475 to->sb_agcount = be32_to_cpu(from->sb_agcount);
476 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
477 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
478 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
479 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
480 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
481 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
482 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
483 to->sb_blocklog = from->sb_blocklog;
484 to->sb_sectlog = from->sb_sectlog;
485 to->sb_inodelog = from->sb_inodelog;
486 to->sb_inopblog = from->sb_inopblog;
487 to->sb_agblklog = from->sb_agblklog;
488 to->sb_rextslog = from->sb_rextslog;
489 to->sb_inprogress = from->sb_inprogress;
490 to->sb_imax_pct = from->sb_imax_pct;
491 to->sb_icount = be64_to_cpu(from->sb_icount);
492 to->sb_ifree = be64_to_cpu(from->sb_ifree);
493 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
494 to->sb_frextents = be64_to_cpu(from->sb_frextents);
495 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
496 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
497 to->sb_qflags = be16_to_cpu(from->sb_qflags);
498 to->sb_flags = from->sb_flags;
499 to->sb_shared_vn = from->sb_shared_vn;
500 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
501 to->sb_unit = be32_to_cpu(from->sb_unit);
502 to->sb_width = be32_to_cpu(from->sb_width);
503 to->sb_dirblklog = from->sb_dirblklog;
504 to->sb_logsectlog = from->sb_logsectlog;
505 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
506 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
507 to->sb_features2 = be32_to_cpu(from->sb_features2);
508 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
512 * Copy in core superblock to ondisk one.
514 * The fields argument is mask of superblock fields to copy.
516 void
517 xfs_sb_to_disk(
518 xfs_dsb_t *to,
519 xfs_sb_t *from,
520 __int64_t fields)
522 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
523 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
524 xfs_sb_field_t f;
525 int first;
526 int size;
528 ASSERT(fields);
529 if (!fields)
530 return;
532 while (fields) {
533 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
534 first = xfs_sb_info[f].offset;
535 size = xfs_sb_info[f + 1].offset - first;
537 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
539 if (size == 1 || xfs_sb_info[f].type == 1) {
540 memcpy(to_ptr + first, from_ptr + first, size);
541 } else {
542 switch (size) {
543 case 2:
544 *(__be16 *)(to_ptr + first) =
545 cpu_to_be16(*(__u16 *)(from_ptr + first));
546 break;
547 case 4:
548 *(__be32 *)(to_ptr + first) =
549 cpu_to_be32(*(__u32 *)(from_ptr + first));
550 break;
551 case 8:
552 *(__be64 *)(to_ptr + first) =
553 cpu_to_be64(*(__u64 *)(from_ptr + first));
554 break;
555 default:
556 ASSERT(0);
560 fields &= ~(1LL << f);
565 * xfs_readsb
567 * Does the initial read of the superblock.
570 xfs_readsb(xfs_mount_t *mp, int flags)
572 unsigned int sector_size;
573 unsigned int extra_flags;
574 xfs_buf_t *bp;
575 int error;
577 ASSERT(mp->m_sb_bp == NULL);
578 ASSERT(mp->m_ddev_targp != NULL);
581 * Allocate a (locked) buffer to hold the superblock.
582 * This will be kept around at all times to optimize
583 * access to the superblock.
585 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
586 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
588 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size),
589 extra_flags);
590 if (!bp || XFS_BUF_ISERROR(bp)) {
591 xfs_fs_mount_cmn_err(flags, "SB read failed");
592 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
593 goto fail;
595 ASSERT(XFS_BUF_ISBUSY(bp));
596 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
599 * Initialize the mount structure from the superblock.
600 * But first do some basic consistency checking.
602 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
604 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
605 if (error) {
606 xfs_fs_mount_cmn_err(flags, "SB validate failed");
607 goto fail;
611 * We must be able to do sector-sized and sector-aligned IO.
613 if (sector_size > mp->m_sb.sb_sectsize) {
614 xfs_fs_mount_cmn_err(flags,
615 "device supports only %u byte sectors (not %u)",
616 sector_size, mp->m_sb.sb_sectsize);
617 error = ENOSYS;
618 goto fail;
622 * If device sector size is smaller than the superblock size,
623 * re-read the superblock so the buffer is correctly sized.
625 if (sector_size < mp->m_sb.sb_sectsize) {
626 XFS_BUF_UNMANAGE(bp);
627 xfs_buf_relse(bp);
628 sector_size = mp->m_sb.sb_sectsize;
629 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR,
630 BTOBB(sector_size), extra_flags);
631 if (!bp || XFS_BUF_ISERROR(bp)) {
632 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
633 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
634 goto fail;
636 ASSERT(XFS_BUF_ISBUSY(bp));
637 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
640 /* Initialize per-cpu counters */
641 xfs_icsb_reinit_counters(mp);
643 mp->m_sb_bp = bp;
644 xfs_buf_relse(bp);
645 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
646 return 0;
648 fail:
649 if (bp) {
650 XFS_BUF_UNMANAGE(bp);
651 xfs_buf_relse(bp);
653 return error;
658 * xfs_mount_common
660 * Mount initialization code establishing various mount
661 * fields from the superblock associated with the given
662 * mount structure
664 STATIC void
665 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
667 mp->m_agfrotor = mp->m_agirotor = 0;
668 spin_lock_init(&mp->m_agirotor_lock);
669 mp->m_maxagi = mp->m_sb.sb_agcount;
670 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
671 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
672 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
673 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
674 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
675 mp->m_blockmask = sbp->sb_blocksize - 1;
676 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
677 mp->m_blockwmask = mp->m_blockwsize - 1;
679 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
680 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
681 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
682 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
684 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
685 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
686 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
687 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
689 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
690 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
691 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
692 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
694 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
695 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
696 sbp->sb_inopblock);
697 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
701 * xfs_initialize_perag_data
703 * Read in each per-ag structure so we can count up the number of
704 * allocated inodes, free inodes and used filesystem blocks as this
705 * information is no longer persistent in the superblock. Once we have
706 * this information, write it into the in-core superblock structure.
708 STATIC int
709 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
711 xfs_agnumber_t index;
712 xfs_perag_t *pag;
713 xfs_sb_t *sbp = &mp->m_sb;
714 uint64_t ifree = 0;
715 uint64_t ialloc = 0;
716 uint64_t bfree = 0;
717 uint64_t bfreelst = 0;
718 uint64_t btree = 0;
719 int error;
721 for (index = 0; index < agcount; index++) {
723 * read the agf, then the agi. This gets us
724 * all the information we need and populates the
725 * per-ag structures for us.
727 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
728 if (error)
729 return error;
731 error = xfs_ialloc_pagi_init(mp, NULL, index);
732 if (error)
733 return error;
734 pag = &mp->m_perag[index];
735 ifree += pag->pagi_freecount;
736 ialloc += pag->pagi_count;
737 bfree += pag->pagf_freeblks;
738 bfreelst += pag->pagf_flcount;
739 btree += pag->pagf_btreeblks;
742 * Overwrite incore superblock counters with just-read data
744 spin_lock(&mp->m_sb_lock);
745 sbp->sb_ifree = ifree;
746 sbp->sb_icount = ialloc;
747 sbp->sb_fdblocks = bfree + bfreelst + btree;
748 spin_unlock(&mp->m_sb_lock);
750 /* Fixup the per-cpu counters as well. */
751 xfs_icsb_reinit_counters(mp);
753 return 0;
757 * Update alignment values based on mount options and sb values
759 STATIC int
760 xfs_update_alignment(xfs_mount_t *mp)
762 xfs_sb_t *sbp = &(mp->m_sb);
764 if (mp->m_dalign) {
766 * If stripe unit and stripe width are not multiples
767 * of the fs blocksize turn off alignment.
769 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
770 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
771 if (mp->m_flags & XFS_MOUNT_RETERR) {
772 cmn_err(CE_WARN,
773 "XFS: alignment check 1 failed");
774 return XFS_ERROR(EINVAL);
776 mp->m_dalign = mp->m_swidth = 0;
777 } else {
779 * Convert the stripe unit and width to FSBs.
781 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
782 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
783 if (mp->m_flags & XFS_MOUNT_RETERR) {
784 return XFS_ERROR(EINVAL);
786 xfs_fs_cmn_err(CE_WARN, mp,
787 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
788 mp->m_dalign, mp->m_swidth,
789 sbp->sb_agblocks);
791 mp->m_dalign = 0;
792 mp->m_swidth = 0;
793 } else if (mp->m_dalign) {
794 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
795 } else {
796 if (mp->m_flags & XFS_MOUNT_RETERR) {
797 xfs_fs_cmn_err(CE_WARN, mp,
798 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
799 mp->m_dalign,
800 mp->m_blockmask +1);
801 return XFS_ERROR(EINVAL);
803 mp->m_swidth = 0;
808 * Update superblock with new values
809 * and log changes
811 if (xfs_sb_version_hasdalign(sbp)) {
812 if (sbp->sb_unit != mp->m_dalign) {
813 sbp->sb_unit = mp->m_dalign;
814 mp->m_update_flags |= XFS_SB_UNIT;
816 if (sbp->sb_width != mp->m_swidth) {
817 sbp->sb_width = mp->m_swidth;
818 mp->m_update_flags |= XFS_SB_WIDTH;
821 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
822 xfs_sb_version_hasdalign(&mp->m_sb)) {
823 mp->m_dalign = sbp->sb_unit;
824 mp->m_swidth = sbp->sb_width;
827 return 0;
831 * Set the maximum inode count for this filesystem
833 STATIC void
834 xfs_set_maxicount(xfs_mount_t *mp)
836 xfs_sb_t *sbp = &(mp->m_sb);
837 __uint64_t icount;
839 if (sbp->sb_imax_pct) {
841 * Make sure the maximum inode count is a multiple
842 * of the units we allocate inodes in.
844 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
845 do_div(icount, 100);
846 do_div(icount, mp->m_ialloc_blks);
847 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
848 sbp->sb_inopblog;
849 } else {
850 mp->m_maxicount = 0;
855 * Set the default minimum read and write sizes unless
856 * already specified in a mount option.
857 * We use smaller I/O sizes when the file system
858 * is being used for NFS service (wsync mount option).
860 STATIC void
861 xfs_set_rw_sizes(xfs_mount_t *mp)
863 xfs_sb_t *sbp = &(mp->m_sb);
864 int readio_log, writeio_log;
866 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
867 if (mp->m_flags & XFS_MOUNT_WSYNC) {
868 readio_log = XFS_WSYNC_READIO_LOG;
869 writeio_log = XFS_WSYNC_WRITEIO_LOG;
870 } else {
871 readio_log = XFS_READIO_LOG_LARGE;
872 writeio_log = XFS_WRITEIO_LOG_LARGE;
874 } else {
875 readio_log = mp->m_readio_log;
876 writeio_log = mp->m_writeio_log;
879 if (sbp->sb_blocklog > readio_log) {
880 mp->m_readio_log = sbp->sb_blocklog;
881 } else {
882 mp->m_readio_log = readio_log;
884 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
885 if (sbp->sb_blocklog > writeio_log) {
886 mp->m_writeio_log = sbp->sb_blocklog;
887 } else {
888 mp->m_writeio_log = writeio_log;
890 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
894 * Set whether we're using inode alignment.
896 STATIC void
897 xfs_set_inoalignment(xfs_mount_t *mp)
899 if (xfs_sb_version_hasalign(&mp->m_sb) &&
900 mp->m_sb.sb_inoalignmt >=
901 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
902 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
903 else
904 mp->m_inoalign_mask = 0;
906 * If we are using stripe alignment, check whether
907 * the stripe unit is a multiple of the inode alignment
909 if (mp->m_dalign && mp->m_inoalign_mask &&
910 !(mp->m_dalign & mp->m_inoalign_mask))
911 mp->m_sinoalign = mp->m_dalign;
912 else
913 mp->m_sinoalign = 0;
917 * Check that the data (and log if separate) are an ok size.
919 STATIC int
920 xfs_check_sizes(xfs_mount_t *mp)
922 xfs_buf_t *bp;
923 xfs_daddr_t d;
924 int error;
926 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
927 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
928 cmn_err(CE_WARN, "XFS: size check 1 failed");
929 return XFS_ERROR(E2BIG);
931 error = xfs_read_buf(mp, mp->m_ddev_targp,
932 d - XFS_FSS_TO_BB(mp, 1),
933 XFS_FSS_TO_BB(mp, 1), 0, &bp);
934 if (!error) {
935 xfs_buf_relse(bp);
936 } else {
937 cmn_err(CE_WARN, "XFS: size check 2 failed");
938 if (error == ENOSPC)
939 error = XFS_ERROR(E2BIG);
940 return error;
943 if (mp->m_logdev_targp != mp->m_ddev_targp) {
944 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
945 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
946 cmn_err(CE_WARN, "XFS: size check 3 failed");
947 return XFS_ERROR(E2BIG);
949 error = xfs_read_buf(mp, mp->m_logdev_targp,
950 d - XFS_FSB_TO_BB(mp, 1),
951 XFS_FSB_TO_BB(mp, 1), 0, &bp);
952 if (!error) {
953 xfs_buf_relse(bp);
954 } else {
955 cmn_err(CE_WARN, "XFS: size check 3 failed");
956 if (error == ENOSPC)
957 error = XFS_ERROR(E2BIG);
958 return error;
961 return 0;
965 * Clear the quotaflags in memory and in the superblock.
968 xfs_mount_reset_sbqflags(
969 struct xfs_mount *mp)
971 int error;
972 struct xfs_trans *tp;
974 mp->m_qflags = 0;
977 * It is OK to look at sb_qflags here in mount path,
978 * without m_sb_lock.
980 if (mp->m_sb.sb_qflags == 0)
981 return 0;
982 spin_lock(&mp->m_sb_lock);
983 mp->m_sb.sb_qflags = 0;
984 spin_unlock(&mp->m_sb_lock);
987 * If the fs is readonly, let the incore superblock run
988 * with quotas off but don't flush the update out to disk
990 if (mp->m_flags & XFS_MOUNT_RDONLY)
991 return 0;
993 #ifdef QUOTADEBUG
994 xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
995 #endif
997 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
998 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
999 XFS_DEFAULT_LOG_COUNT);
1000 if (error) {
1001 xfs_trans_cancel(tp, 0);
1002 xfs_fs_cmn_err(CE_ALERT, mp,
1003 "xfs_mount_reset_sbqflags: Superblock update failed!");
1004 return error;
1007 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1008 return xfs_trans_commit(tp, 0);
1012 * This function does the following on an initial mount of a file system:
1013 * - reads the superblock from disk and init the mount struct
1014 * - if we're a 32-bit kernel, do a size check on the superblock
1015 * so we don't mount terabyte filesystems
1016 * - init mount struct realtime fields
1017 * - allocate inode hash table for fs
1018 * - init directory manager
1019 * - perform recovery and init the log manager
1022 xfs_mountfs(
1023 xfs_mount_t *mp)
1025 xfs_sb_t *sbp = &(mp->m_sb);
1026 xfs_inode_t *rip;
1027 __uint64_t resblks;
1028 uint quotamount = 0;
1029 uint quotaflags = 0;
1030 int error = 0;
1032 xfs_mount_common(mp, sbp);
1035 * Check for a mismatched features2 values. Older kernels
1036 * read & wrote into the wrong sb offset for sb_features2
1037 * on some platforms due to xfs_sb_t not being 64bit size aligned
1038 * when sb_features2 was added, which made older superblock
1039 * reading/writing routines swap it as a 64-bit value.
1041 * For backwards compatibility, we make both slots equal.
1043 * If we detect a mismatched field, we OR the set bits into the
1044 * existing features2 field in case it has already been modified; we
1045 * don't want to lose any features. We then update the bad location
1046 * with the ORed value so that older kernels will see any features2
1047 * flags, and mark the two fields as needing updates once the
1048 * transaction subsystem is online.
1050 if (xfs_sb_has_mismatched_features2(sbp)) {
1051 cmn_err(CE_WARN,
1052 "XFS: correcting sb_features alignment problem");
1053 sbp->sb_features2 |= sbp->sb_bad_features2;
1054 sbp->sb_bad_features2 = sbp->sb_features2;
1055 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1058 * Re-check for ATTR2 in case it was found in bad_features2
1059 * slot.
1061 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1062 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1063 mp->m_flags |= XFS_MOUNT_ATTR2;
1066 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1067 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1068 xfs_sb_version_removeattr2(&mp->m_sb);
1069 mp->m_update_flags |= XFS_SB_FEATURES2;
1071 /* update sb_versionnum for the clearing of the morebits */
1072 if (!sbp->sb_features2)
1073 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1077 * Check if sb_agblocks is aligned at stripe boundary
1078 * If sb_agblocks is NOT aligned turn off m_dalign since
1079 * allocator alignment is within an ag, therefore ag has
1080 * to be aligned at stripe boundary.
1082 error = xfs_update_alignment(mp);
1083 if (error)
1084 goto out;
1086 xfs_alloc_compute_maxlevels(mp);
1087 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1088 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1089 xfs_ialloc_compute_maxlevels(mp);
1091 xfs_set_maxicount(mp);
1093 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1095 error = xfs_uuid_mount(mp);
1096 if (error)
1097 goto out;
1100 * Set the minimum read and write sizes
1102 xfs_set_rw_sizes(mp);
1105 * Set the inode cluster size.
1106 * This may still be overridden by the file system
1107 * block size if it is larger than the chosen cluster size.
1109 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1112 * Set inode alignment fields
1114 xfs_set_inoalignment(mp);
1117 * Check that the data (and log if separate) are an ok size.
1119 error = xfs_check_sizes(mp);
1120 if (error)
1121 goto out_remove_uuid;
1124 * Initialize realtime fields in the mount structure
1126 error = xfs_rtmount_init(mp);
1127 if (error) {
1128 cmn_err(CE_WARN, "XFS: RT mount failed");
1129 goto out_remove_uuid;
1133 * Copies the low order bits of the timestamp and the randomly
1134 * set "sequence" number out of a UUID.
1136 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1138 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1140 xfs_dir_mount(mp);
1143 * Initialize the attribute manager's entries.
1145 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1148 * Initialize the precomputed transaction reservations values.
1150 xfs_trans_init(mp);
1153 * Allocate and initialize the per-ag data.
1155 init_rwsem(&mp->m_peraglock);
1156 mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t),
1157 KM_MAYFAIL);
1158 if (!mp->m_perag)
1159 goto out_remove_uuid;
1161 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1163 if (!sbp->sb_logblocks) {
1164 cmn_err(CE_WARN, "XFS: no log defined");
1165 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1166 error = XFS_ERROR(EFSCORRUPTED);
1167 goto out_free_perag;
1171 * log's mount-time initialization. Perform 1st part recovery if needed
1173 error = xfs_log_mount(mp, mp->m_logdev_targp,
1174 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1175 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1176 if (error) {
1177 cmn_err(CE_WARN, "XFS: log mount failed");
1178 goto out_free_perag;
1182 * Now the log is mounted, we know if it was an unclean shutdown or
1183 * not. If it was, with the first phase of recovery has completed, we
1184 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1185 * but they are recovered transactionally in the second recovery phase
1186 * later.
1188 * Hence we can safely re-initialise incore superblock counters from
1189 * the per-ag data. These may not be correct if the filesystem was not
1190 * cleanly unmounted, so we need to wait for recovery to finish before
1191 * doing this.
1193 * If the filesystem was cleanly unmounted, then we can trust the
1194 * values in the superblock to be correct and we don't need to do
1195 * anything here.
1197 * If we are currently making the filesystem, the initialisation will
1198 * fail as the perag data is in an undefined state.
1200 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1201 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1202 !mp->m_sb.sb_inprogress) {
1203 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1204 if (error)
1205 goto out_free_perag;
1209 * Get and sanity-check the root inode.
1210 * Save the pointer to it in the mount structure.
1212 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1213 if (error) {
1214 cmn_err(CE_WARN, "XFS: failed to read root inode");
1215 goto out_log_dealloc;
1218 ASSERT(rip != NULL);
1220 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1221 cmn_err(CE_WARN, "XFS: corrupted root inode");
1222 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1223 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1224 (unsigned long long)rip->i_ino);
1225 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1226 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1227 mp);
1228 error = XFS_ERROR(EFSCORRUPTED);
1229 goto out_rele_rip;
1231 mp->m_rootip = rip; /* save it */
1233 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1236 * Initialize realtime inode pointers in the mount structure
1238 error = xfs_rtmount_inodes(mp);
1239 if (error) {
1241 * Free up the root inode.
1243 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1244 goto out_rele_rip;
1248 * If this is a read-only mount defer the superblock updates until
1249 * the next remount into writeable mode. Otherwise we would never
1250 * perform the update e.g. for the root filesystem.
1252 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1253 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1254 if (error) {
1255 cmn_err(CE_WARN, "XFS: failed to write sb changes");
1256 goto out_rtunmount;
1261 * Initialise the XFS quota management subsystem for this mount
1263 if (XFS_IS_QUOTA_RUNNING(mp)) {
1264 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1265 if (error)
1266 goto out_rtunmount;
1267 } else {
1268 ASSERT(!XFS_IS_QUOTA_ON(mp));
1271 * If a file system had quotas running earlier, but decided to
1272 * mount without -o uquota/pquota/gquota options, revoke the
1273 * quotachecked license.
1275 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1276 cmn_err(CE_NOTE,
1277 "XFS: resetting qflags for filesystem %s",
1278 mp->m_fsname);
1280 error = xfs_mount_reset_sbqflags(mp);
1281 if (error)
1282 return error;
1287 * Finish recovering the file system. This part needed to be
1288 * delayed until after the root and real-time bitmap inodes
1289 * were consistently read in.
1291 error = xfs_log_mount_finish(mp);
1292 if (error) {
1293 cmn_err(CE_WARN, "XFS: log mount finish failed");
1294 goto out_rtunmount;
1298 * Complete the quota initialisation, post-log-replay component.
1300 if (quotamount) {
1301 ASSERT(mp->m_qflags == 0);
1302 mp->m_qflags = quotaflags;
1304 xfs_qm_mount_quotas(mp);
1307 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
1308 if (XFS_IS_QUOTA_ON(mp))
1309 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas turned on");
1310 else
1311 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas not turned on");
1312 #endif
1315 * Now we are mounted, reserve a small amount of unused space for
1316 * privileged transactions. This is needed so that transaction
1317 * space required for critical operations can dip into this pool
1318 * when at ENOSPC. This is needed for operations like create with
1319 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1320 * are not allowed to use this reserved space.
1322 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1323 * This may drive us straight to ENOSPC on mount, but that implies
1324 * we were already there on the last unmount. Warn if this occurs.
1326 resblks = mp->m_sb.sb_dblocks;
1327 do_div(resblks, 20);
1328 resblks = min_t(__uint64_t, resblks, 1024);
1329 error = xfs_reserve_blocks(mp, &resblks, NULL);
1330 if (error)
1331 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1332 "Continuing without a reserve pool.");
1334 return 0;
1336 out_rtunmount:
1337 xfs_rtunmount_inodes(mp);
1338 out_rele_rip:
1339 IRELE(rip);
1340 out_log_dealloc:
1341 xfs_log_unmount(mp);
1342 out_free_perag:
1343 xfs_free_perag(mp);
1344 out_remove_uuid:
1345 xfs_uuid_unmount(mp);
1346 out:
1347 return error;
1351 * This flushes out the inodes,dquots and the superblock, unmounts the
1352 * log and makes sure that incore structures are freed.
1354 void
1355 xfs_unmountfs(
1356 struct xfs_mount *mp)
1358 __uint64_t resblks;
1359 int error;
1361 xfs_qm_unmount_quotas(mp);
1362 xfs_rtunmount_inodes(mp);
1363 IRELE(mp->m_rootip);
1366 * We can potentially deadlock here if we have an inode cluster
1367 * that has been freed has its buffer still pinned in memory because
1368 * the transaction is still sitting in a iclog. The stale inodes
1369 * on that buffer will have their flush locks held until the
1370 * transaction hits the disk and the callbacks run. the inode
1371 * flush takes the flush lock unconditionally and with nothing to
1372 * push out the iclog we will never get that unlocked. hence we
1373 * need to force the log first.
1375 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1376 xfs_reclaim_inodes(mp, XFS_IFLUSH_ASYNC);
1378 xfs_qm_unmount(mp);
1381 * Flush out the log synchronously so that we know for sure
1382 * that nothing is pinned. This is important because bflush()
1383 * will skip pinned buffers.
1385 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1387 xfs_binval(mp->m_ddev_targp);
1388 if (mp->m_rtdev_targp) {
1389 xfs_binval(mp->m_rtdev_targp);
1393 * Unreserve any blocks we have so that when we unmount we don't account
1394 * the reserved free space as used. This is really only necessary for
1395 * lazy superblock counting because it trusts the incore superblock
1396 * counters to be absolutely correct on clean unmount.
1398 * We don't bother correcting this elsewhere for lazy superblock
1399 * counting because on mount of an unclean filesystem we reconstruct the
1400 * correct counter value and this is irrelevant.
1402 * For non-lazy counter filesystems, this doesn't matter at all because
1403 * we only every apply deltas to the superblock and hence the incore
1404 * value does not matter....
1406 resblks = 0;
1407 error = xfs_reserve_blocks(mp, &resblks, NULL);
1408 if (error)
1409 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1410 "Freespace may not be correct on next mount.");
1412 error = xfs_log_sbcount(mp, 1);
1413 if (error)
1414 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1415 "Freespace may not be correct on next mount.");
1416 xfs_unmountfs_writesb(mp);
1417 xfs_unmountfs_wait(mp); /* wait for async bufs */
1418 xfs_log_unmount_write(mp);
1419 xfs_log_unmount(mp);
1420 xfs_uuid_unmount(mp);
1422 #if defined(DEBUG)
1423 xfs_errortag_clearall(mp, 0);
1424 #endif
1425 xfs_free_perag(mp);
1428 STATIC void
1429 xfs_unmountfs_wait(xfs_mount_t *mp)
1431 if (mp->m_logdev_targp != mp->m_ddev_targp)
1432 xfs_wait_buftarg(mp->m_logdev_targp);
1433 if (mp->m_rtdev_targp)
1434 xfs_wait_buftarg(mp->m_rtdev_targp);
1435 xfs_wait_buftarg(mp->m_ddev_targp);
1439 xfs_fs_writable(xfs_mount_t *mp)
1441 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1442 (mp->m_flags & XFS_MOUNT_RDONLY));
1446 * xfs_log_sbcount
1448 * Called either periodically to keep the on disk superblock values
1449 * roughly up to date or from unmount to make sure the values are
1450 * correct on a clean unmount.
1452 * Note this code can be called during the process of freezing, so
1453 * we may need to use the transaction allocator which does not not
1454 * block when the transaction subsystem is in its frozen state.
1457 xfs_log_sbcount(
1458 xfs_mount_t *mp,
1459 uint sync)
1461 xfs_trans_t *tp;
1462 int error;
1464 if (!xfs_fs_writable(mp))
1465 return 0;
1467 xfs_icsb_sync_counters(mp, 0);
1470 * we don't need to do this if we are updating the superblock
1471 * counters on every modification.
1473 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1474 return 0;
1476 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1477 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1478 XFS_DEFAULT_LOG_COUNT);
1479 if (error) {
1480 xfs_trans_cancel(tp, 0);
1481 return error;
1484 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1485 if (sync)
1486 xfs_trans_set_sync(tp);
1487 error = xfs_trans_commit(tp, 0);
1488 return error;
1492 xfs_unmountfs_writesb(xfs_mount_t *mp)
1494 xfs_buf_t *sbp;
1495 int error = 0;
1498 * skip superblock write if fs is read-only, or
1499 * if we are doing a forced umount.
1501 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1502 XFS_FORCED_SHUTDOWN(mp))) {
1504 sbp = xfs_getsb(mp, 0);
1506 XFS_BUF_UNDONE(sbp);
1507 XFS_BUF_UNREAD(sbp);
1508 XFS_BUF_UNDELAYWRITE(sbp);
1509 XFS_BUF_WRITE(sbp);
1510 XFS_BUF_UNASYNC(sbp);
1511 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1512 xfsbdstrat(mp, sbp);
1513 error = xfs_iowait(sbp);
1514 if (error)
1515 xfs_ioerror_alert("xfs_unmountfs_writesb",
1516 mp, sbp, XFS_BUF_ADDR(sbp));
1517 xfs_buf_relse(sbp);
1519 return error;
1523 * xfs_mod_sb() can be used to copy arbitrary changes to the
1524 * in-core superblock into the superblock buffer to be logged.
1525 * It does not provide the higher level of locking that is
1526 * needed to protect the in-core superblock from concurrent
1527 * access.
1529 void
1530 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1532 xfs_buf_t *bp;
1533 int first;
1534 int last;
1535 xfs_mount_t *mp;
1536 xfs_sb_field_t f;
1538 ASSERT(fields);
1539 if (!fields)
1540 return;
1541 mp = tp->t_mountp;
1542 bp = xfs_trans_getsb(tp, mp, 0);
1543 first = sizeof(xfs_sb_t);
1544 last = 0;
1546 /* translate/copy */
1548 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1550 /* find modified range */
1552 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1553 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1554 first = xfs_sb_info[f].offset;
1556 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1557 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1558 last = xfs_sb_info[f + 1].offset - 1;
1560 xfs_trans_log_buf(tp, bp, first, last);
1565 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1566 * a delta to a specified field in the in-core superblock. Simply
1567 * switch on the field indicated and apply the delta to that field.
1568 * Fields are not allowed to dip below zero, so if the delta would
1569 * do this do not apply it and return EINVAL.
1571 * The m_sb_lock must be held when this routine is called.
1573 STATIC int
1574 xfs_mod_incore_sb_unlocked(
1575 xfs_mount_t *mp,
1576 xfs_sb_field_t field,
1577 int64_t delta,
1578 int rsvd)
1580 int scounter; /* short counter for 32 bit fields */
1581 long long lcounter; /* long counter for 64 bit fields */
1582 long long res_used, rem;
1585 * With the in-core superblock spin lock held, switch
1586 * on the indicated field. Apply the delta to the
1587 * proper field. If the fields value would dip below
1588 * 0, then do not apply the delta and return EINVAL.
1590 switch (field) {
1591 case XFS_SBS_ICOUNT:
1592 lcounter = (long long)mp->m_sb.sb_icount;
1593 lcounter += delta;
1594 if (lcounter < 0) {
1595 ASSERT(0);
1596 return XFS_ERROR(EINVAL);
1598 mp->m_sb.sb_icount = lcounter;
1599 return 0;
1600 case XFS_SBS_IFREE:
1601 lcounter = (long long)mp->m_sb.sb_ifree;
1602 lcounter += delta;
1603 if (lcounter < 0) {
1604 ASSERT(0);
1605 return XFS_ERROR(EINVAL);
1607 mp->m_sb.sb_ifree = lcounter;
1608 return 0;
1609 case XFS_SBS_FDBLOCKS:
1610 lcounter = (long long)
1611 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1612 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1614 if (delta > 0) { /* Putting blocks back */
1615 if (res_used > delta) {
1616 mp->m_resblks_avail += delta;
1617 } else {
1618 rem = delta - res_used;
1619 mp->m_resblks_avail = mp->m_resblks;
1620 lcounter += rem;
1622 } else { /* Taking blocks away */
1624 lcounter += delta;
1627 * If were out of blocks, use any available reserved blocks if
1628 * were allowed to.
1631 if (lcounter < 0) {
1632 if (rsvd) {
1633 lcounter = (long long)mp->m_resblks_avail + delta;
1634 if (lcounter < 0) {
1635 return XFS_ERROR(ENOSPC);
1637 mp->m_resblks_avail = lcounter;
1638 return 0;
1639 } else { /* not reserved */
1640 return XFS_ERROR(ENOSPC);
1645 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1646 return 0;
1647 case XFS_SBS_FREXTENTS:
1648 lcounter = (long long)mp->m_sb.sb_frextents;
1649 lcounter += delta;
1650 if (lcounter < 0) {
1651 return XFS_ERROR(ENOSPC);
1653 mp->m_sb.sb_frextents = lcounter;
1654 return 0;
1655 case XFS_SBS_DBLOCKS:
1656 lcounter = (long long)mp->m_sb.sb_dblocks;
1657 lcounter += delta;
1658 if (lcounter < 0) {
1659 ASSERT(0);
1660 return XFS_ERROR(EINVAL);
1662 mp->m_sb.sb_dblocks = lcounter;
1663 return 0;
1664 case XFS_SBS_AGCOUNT:
1665 scounter = mp->m_sb.sb_agcount;
1666 scounter += delta;
1667 if (scounter < 0) {
1668 ASSERT(0);
1669 return XFS_ERROR(EINVAL);
1671 mp->m_sb.sb_agcount = scounter;
1672 return 0;
1673 case XFS_SBS_IMAX_PCT:
1674 scounter = mp->m_sb.sb_imax_pct;
1675 scounter += delta;
1676 if (scounter < 0) {
1677 ASSERT(0);
1678 return XFS_ERROR(EINVAL);
1680 mp->m_sb.sb_imax_pct = scounter;
1681 return 0;
1682 case XFS_SBS_REXTSIZE:
1683 scounter = mp->m_sb.sb_rextsize;
1684 scounter += delta;
1685 if (scounter < 0) {
1686 ASSERT(0);
1687 return XFS_ERROR(EINVAL);
1689 mp->m_sb.sb_rextsize = scounter;
1690 return 0;
1691 case XFS_SBS_RBMBLOCKS:
1692 scounter = mp->m_sb.sb_rbmblocks;
1693 scounter += delta;
1694 if (scounter < 0) {
1695 ASSERT(0);
1696 return XFS_ERROR(EINVAL);
1698 mp->m_sb.sb_rbmblocks = scounter;
1699 return 0;
1700 case XFS_SBS_RBLOCKS:
1701 lcounter = (long long)mp->m_sb.sb_rblocks;
1702 lcounter += delta;
1703 if (lcounter < 0) {
1704 ASSERT(0);
1705 return XFS_ERROR(EINVAL);
1707 mp->m_sb.sb_rblocks = lcounter;
1708 return 0;
1709 case XFS_SBS_REXTENTS:
1710 lcounter = (long long)mp->m_sb.sb_rextents;
1711 lcounter += delta;
1712 if (lcounter < 0) {
1713 ASSERT(0);
1714 return XFS_ERROR(EINVAL);
1716 mp->m_sb.sb_rextents = lcounter;
1717 return 0;
1718 case XFS_SBS_REXTSLOG:
1719 scounter = mp->m_sb.sb_rextslog;
1720 scounter += delta;
1721 if (scounter < 0) {
1722 ASSERT(0);
1723 return XFS_ERROR(EINVAL);
1725 mp->m_sb.sb_rextslog = scounter;
1726 return 0;
1727 default:
1728 ASSERT(0);
1729 return XFS_ERROR(EINVAL);
1734 * xfs_mod_incore_sb() is used to change a field in the in-core
1735 * superblock structure by the specified delta. This modification
1736 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1737 * routine to do the work.
1740 xfs_mod_incore_sb(
1741 xfs_mount_t *mp,
1742 xfs_sb_field_t field,
1743 int64_t delta,
1744 int rsvd)
1746 int status;
1748 /* check for per-cpu counters */
1749 switch (field) {
1750 #ifdef HAVE_PERCPU_SB
1751 case XFS_SBS_ICOUNT:
1752 case XFS_SBS_IFREE:
1753 case XFS_SBS_FDBLOCKS:
1754 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1755 status = xfs_icsb_modify_counters(mp, field,
1756 delta, rsvd);
1757 break;
1759 /* FALLTHROUGH */
1760 #endif
1761 default:
1762 spin_lock(&mp->m_sb_lock);
1763 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1764 spin_unlock(&mp->m_sb_lock);
1765 break;
1768 return status;
1772 * xfs_mod_incore_sb_batch() is used to change more than one field
1773 * in the in-core superblock structure at a time. This modification
1774 * is protected by a lock internal to this module. The fields and
1775 * changes to those fields are specified in the array of xfs_mod_sb
1776 * structures passed in.
1778 * Either all of the specified deltas will be applied or none of
1779 * them will. If any modified field dips below 0, then all modifications
1780 * will be backed out and EINVAL will be returned.
1783 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1785 int status=0;
1786 xfs_mod_sb_t *msbp;
1789 * Loop through the array of mod structures and apply each
1790 * individually. If any fail, then back out all those
1791 * which have already been applied. Do all of this within
1792 * the scope of the m_sb_lock so that all of the changes will
1793 * be atomic.
1795 spin_lock(&mp->m_sb_lock);
1796 msbp = &msb[0];
1797 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1799 * Apply the delta at index n. If it fails, break
1800 * from the loop so we'll fall into the undo loop
1801 * below.
1803 switch (msbp->msb_field) {
1804 #ifdef HAVE_PERCPU_SB
1805 case XFS_SBS_ICOUNT:
1806 case XFS_SBS_IFREE:
1807 case XFS_SBS_FDBLOCKS:
1808 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1809 spin_unlock(&mp->m_sb_lock);
1810 status = xfs_icsb_modify_counters(mp,
1811 msbp->msb_field,
1812 msbp->msb_delta, rsvd);
1813 spin_lock(&mp->m_sb_lock);
1814 break;
1816 /* FALLTHROUGH */
1817 #endif
1818 default:
1819 status = xfs_mod_incore_sb_unlocked(mp,
1820 msbp->msb_field,
1821 msbp->msb_delta, rsvd);
1822 break;
1825 if (status != 0) {
1826 break;
1831 * If we didn't complete the loop above, then back out
1832 * any changes made to the superblock. If you add code
1833 * between the loop above and here, make sure that you
1834 * preserve the value of status. Loop back until
1835 * we step below the beginning of the array. Make sure
1836 * we don't touch anything back there.
1838 if (status != 0) {
1839 msbp--;
1840 while (msbp >= msb) {
1841 switch (msbp->msb_field) {
1842 #ifdef HAVE_PERCPU_SB
1843 case XFS_SBS_ICOUNT:
1844 case XFS_SBS_IFREE:
1845 case XFS_SBS_FDBLOCKS:
1846 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1847 spin_unlock(&mp->m_sb_lock);
1848 status = xfs_icsb_modify_counters(mp,
1849 msbp->msb_field,
1850 -(msbp->msb_delta),
1851 rsvd);
1852 spin_lock(&mp->m_sb_lock);
1853 break;
1855 /* FALLTHROUGH */
1856 #endif
1857 default:
1858 status = xfs_mod_incore_sb_unlocked(mp,
1859 msbp->msb_field,
1860 -(msbp->msb_delta),
1861 rsvd);
1862 break;
1864 ASSERT(status == 0);
1865 msbp--;
1868 spin_unlock(&mp->m_sb_lock);
1869 return status;
1873 * xfs_getsb() is called to obtain the buffer for the superblock.
1874 * The buffer is returned locked and read in from disk.
1875 * The buffer should be released with a call to xfs_brelse().
1877 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1878 * the superblock buffer if it can be locked without sleeping.
1879 * If it can't then we'll return NULL.
1881 xfs_buf_t *
1882 xfs_getsb(
1883 xfs_mount_t *mp,
1884 int flags)
1886 xfs_buf_t *bp;
1888 ASSERT(mp->m_sb_bp != NULL);
1889 bp = mp->m_sb_bp;
1890 if (flags & XFS_BUF_TRYLOCK) {
1891 if (!XFS_BUF_CPSEMA(bp)) {
1892 return NULL;
1894 } else {
1895 XFS_BUF_PSEMA(bp, PRIBIO);
1897 XFS_BUF_HOLD(bp);
1898 ASSERT(XFS_BUF_ISDONE(bp));
1899 return bp;
1903 * Used to free the superblock along various error paths.
1905 void
1906 xfs_freesb(
1907 xfs_mount_t *mp)
1909 xfs_buf_t *bp;
1912 * Use xfs_getsb() so that the buffer will be locked
1913 * when we call xfs_buf_relse().
1915 bp = xfs_getsb(mp, 0);
1916 XFS_BUF_UNMANAGE(bp);
1917 xfs_buf_relse(bp);
1918 mp->m_sb_bp = NULL;
1922 * Used to log changes to the superblock unit and width fields which could
1923 * be altered by the mount options, as well as any potential sb_features2
1924 * fixup. Only the first superblock is updated.
1927 xfs_mount_log_sb(
1928 xfs_mount_t *mp,
1929 __int64_t fields)
1931 xfs_trans_t *tp;
1932 int error;
1934 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1935 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1936 XFS_SB_VERSIONNUM));
1938 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1939 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1940 XFS_DEFAULT_LOG_COUNT);
1941 if (error) {
1942 xfs_trans_cancel(tp, 0);
1943 return error;
1945 xfs_mod_sb(tp, fields);
1946 error = xfs_trans_commit(tp, 0);
1947 return error;
1951 #ifdef HAVE_PERCPU_SB
1953 * Per-cpu incore superblock counters
1955 * Simple concept, difficult implementation
1957 * Basically, replace the incore superblock counters with a distributed per cpu
1958 * counter for contended fields (e.g. free block count).
1960 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1961 * hence needs to be accurately read when we are running low on space. Hence
1962 * there is a method to enable and disable the per-cpu counters based on how
1963 * much "stuff" is available in them.
1965 * Basically, a counter is enabled if there is enough free resource to justify
1966 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1967 * ENOSPC), then we disable the counters to synchronise all callers and
1968 * re-distribute the available resources.
1970 * If, once we redistributed the available resources, we still get a failure,
1971 * we disable the per-cpu counter and go through the slow path.
1973 * The slow path is the current xfs_mod_incore_sb() function. This means that
1974 * when we disable a per-cpu counter, we need to drain its resources back to
1975 * the global superblock. We do this after disabling the counter to prevent
1976 * more threads from queueing up on the counter.
1978 * Essentially, this means that we still need a lock in the fast path to enable
1979 * synchronisation between the global counters and the per-cpu counters. This
1980 * is not a problem because the lock will be local to a CPU almost all the time
1981 * and have little contention except when we get to ENOSPC conditions.
1983 * Basically, this lock becomes a barrier that enables us to lock out the fast
1984 * path while we do things like enabling and disabling counters and
1985 * synchronising the counters.
1987 * Locking rules:
1989 * 1. m_sb_lock before picking up per-cpu locks
1990 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1991 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1992 * 4. modifying per-cpu counters requires holding per-cpu lock
1993 * 5. modifying global counters requires holding m_sb_lock
1994 * 6. enabling or disabling a counter requires holding the m_sb_lock
1995 * and _none_ of the per-cpu locks.
1997 * Disabled counters are only ever re-enabled by a balance operation
1998 * that results in more free resources per CPU than a given threshold.
1999 * To ensure counters don't remain disabled, they are rebalanced when
2000 * the global resource goes above a higher threshold (i.e. some hysteresis
2001 * is present to prevent thrashing).
2004 #ifdef CONFIG_HOTPLUG_CPU
2006 * hot-plug CPU notifier support.
2008 * We need a notifier per filesystem as we need to be able to identify
2009 * the filesystem to balance the counters out. This is achieved by
2010 * having a notifier block embedded in the xfs_mount_t and doing pointer
2011 * magic to get the mount pointer from the notifier block address.
2013 STATIC int
2014 xfs_icsb_cpu_notify(
2015 struct notifier_block *nfb,
2016 unsigned long action,
2017 void *hcpu)
2019 xfs_icsb_cnts_t *cntp;
2020 xfs_mount_t *mp;
2022 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2023 cntp = (xfs_icsb_cnts_t *)
2024 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2025 switch (action) {
2026 case CPU_UP_PREPARE:
2027 case CPU_UP_PREPARE_FROZEN:
2028 /* Easy Case - initialize the area and locks, and
2029 * then rebalance when online does everything else for us. */
2030 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2031 break;
2032 case CPU_ONLINE:
2033 case CPU_ONLINE_FROZEN:
2034 xfs_icsb_lock(mp);
2035 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2036 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2037 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2038 xfs_icsb_unlock(mp);
2039 break;
2040 case CPU_DEAD:
2041 case CPU_DEAD_FROZEN:
2042 /* Disable all the counters, then fold the dead cpu's
2043 * count into the total on the global superblock and
2044 * re-enable the counters. */
2045 xfs_icsb_lock(mp);
2046 spin_lock(&mp->m_sb_lock);
2047 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2048 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2049 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2051 mp->m_sb.sb_icount += cntp->icsb_icount;
2052 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2053 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2055 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2057 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2058 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2059 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2060 spin_unlock(&mp->m_sb_lock);
2061 xfs_icsb_unlock(mp);
2062 break;
2065 return NOTIFY_OK;
2067 #endif /* CONFIG_HOTPLUG_CPU */
2070 xfs_icsb_init_counters(
2071 xfs_mount_t *mp)
2073 xfs_icsb_cnts_t *cntp;
2074 int i;
2076 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2077 if (mp->m_sb_cnts == NULL)
2078 return -ENOMEM;
2080 #ifdef CONFIG_HOTPLUG_CPU
2081 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2082 mp->m_icsb_notifier.priority = 0;
2083 register_hotcpu_notifier(&mp->m_icsb_notifier);
2084 #endif /* CONFIG_HOTPLUG_CPU */
2086 for_each_online_cpu(i) {
2087 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2088 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2091 mutex_init(&mp->m_icsb_mutex);
2094 * start with all counters disabled so that the
2095 * initial balance kicks us off correctly
2097 mp->m_icsb_counters = -1;
2098 return 0;
2101 void
2102 xfs_icsb_reinit_counters(
2103 xfs_mount_t *mp)
2105 xfs_icsb_lock(mp);
2107 * start with all counters disabled so that the
2108 * initial balance kicks us off correctly
2110 mp->m_icsb_counters = -1;
2111 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2112 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2113 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2114 xfs_icsb_unlock(mp);
2117 void
2118 xfs_icsb_destroy_counters(
2119 xfs_mount_t *mp)
2121 if (mp->m_sb_cnts) {
2122 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2123 free_percpu(mp->m_sb_cnts);
2125 mutex_destroy(&mp->m_icsb_mutex);
2128 STATIC void
2129 xfs_icsb_lock_cntr(
2130 xfs_icsb_cnts_t *icsbp)
2132 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2133 ndelay(1000);
2137 STATIC void
2138 xfs_icsb_unlock_cntr(
2139 xfs_icsb_cnts_t *icsbp)
2141 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2145 STATIC void
2146 xfs_icsb_lock_all_counters(
2147 xfs_mount_t *mp)
2149 xfs_icsb_cnts_t *cntp;
2150 int i;
2152 for_each_online_cpu(i) {
2153 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2154 xfs_icsb_lock_cntr(cntp);
2158 STATIC void
2159 xfs_icsb_unlock_all_counters(
2160 xfs_mount_t *mp)
2162 xfs_icsb_cnts_t *cntp;
2163 int i;
2165 for_each_online_cpu(i) {
2166 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2167 xfs_icsb_unlock_cntr(cntp);
2171 STATIC void
2172 xfs_icsb_count(
2173 xfs_mount_t *mp,
2174 xfs_icsb_cnts_t *cnt,
2175 int flags)
2177 xfs_icsb_cnts_t *cntp;
2178 int i;
2180 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2182 if (!(flags & XFS_ICSB_LAZY_COUNT))
2183 xfs_icsb_lock_all_counters(mp);
2185 for_each_online_cpu(i) {
2186 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2187 cnt->icsb_icount += cntp->icsb_icount;
2188 cnt->icsb_ifree += cntp->icsb_ifree;
2189 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2192 if (!(flags & XFS_ICSB_LAZY_COUNT))
2193 xfs_icsb_unlock_all_counters(mp);
2196 STATIC int
2197 xfs_icsb_counter_disabled(
2198 xfs_mount_t *mp,
2199 xfs_sb_field_t field)
2201 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2202 return test_bit(field, &mp->m_icsb_counters);
2205 STATIC void
2206 xfs_icsb_disable_counter(
2207 xfs_mount_t *mp,
2208 xfs_sb_field_t field)
2210 xfs_icsb_cnts_t cnt;
2212 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2215 * If we are already disabled, then there is nothing to do
2216 * here. We check before locking all the counters to avoid
2217 * the expensive lock operation when being called in the
2218 * slow path and the counter is already disabled. This is
2219 * safe because the only time we set or clear this state is under
2220 * the m_icsb_mutex.
2222 if (xfs_icsb_counter_disabled(mp, field))
2223 return;
2225 xfs_icsb_lock_all_counters(mp);
2226 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2227 /* drain back to superblock */
2229 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2230 switch(field) {
2231 case XFS_SBS_ICOUNT:
2232 mp->m_sb.sb_icount = cnt.icsb_icount;
2233 break;
2234 case XFS_SBS_IFREE:
2235 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2236 break;
2237 case XFS_SBS_FDBLOCKS:
2238 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2239 break;
2240 default:
2241 BUG();
2245 xfs_icsb_unlock_all_counters(mp);
2248 STATIC void
2249 xfs_icsb_enable_counter(
2250 xfs_mount_t *mp,
2251 xfs_sb_field_t field,
2252 uint64_t count,
2253 uint64_t resid)
2255 xfs_icsb_cnts_t *cntp;
2256 int i;
2258 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2260 xfs_icsb_lock_all_counters(mp);
2261 for_each_online_cpu(i) {
2262 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2263 switch (field) {
2264 case XFS_SBS_ICOUNT:
2265 cntp->icsb_icount = count + resid;
2266 break;
2267 case XFS_SBS_IFREE:
2268 cntp->icsb_ifree = count + resid;
2269 break;
2270 case XFS_SBS_FDBLOCKS:
2271 cntp->icsb_fdblocks = count + resid;
2272 break;
2273 default:
2274 BUG();
2275 break;
2277 resid = 0;
2279 clear_bit(field, &mp->m_icsb_counters);
2280 xfs_icsb_unlock_all_counters(mp);
2283 void
2284 xfs_icsb_sync_counters_locked(
2285 xfs_mount_t *mp,
2286 int flags)
2288 xfs_icsb_cnts_t cnt;
2290 xfs_icsb_count(mp, &cnt, flags);
2292 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2293 mp->m_sb.sb_icount = cnt.icsb_icount;
2294 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2295 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2296 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2297 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2301 * Accurate update of per-cpu counters to incore superblock
2303 void
2304 xfs_icsb_sync_counters(
2305 xfs_mount_t *mp,
2306 int flags)
2308 spin_lock(&mp->m_sb_lock);
2309 xfs_icsb_sync_counters_locked(mp, flags);
2310 spin_unlock(&mp->m_sb_lock);
2314 * Balance and enable/disable counters as necessary.
2316 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2317 * chosen to be the same number as single on disk allocation chunk per CPU, and
2318 * free blocks is something far enough zero that we aren't going thrash when we
2319 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2320 * prevent looping endlessly when xfs_alloc_space asks for more than will
2321 * be distributed to a single CPU but each CPU has enough blocks to be
2322 * reenabled.
2324 * Note that we can be called when counters are already disabled.
2325 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2326 * prevent locking every per-cpu counter needlessly.
2329 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2330 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2331 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2332 STATIC void
2333 xfs_icsb_balance_counter_locked(
2334 xfs_mount_t *mp,
2335 xfs_sb_field_t field,
2336 int min_per_cpu)
2338 uint64_t count, resid;
2339 int weight = num_online_cpus();
2340 uint64_t min = (uint64_t)min_per_cpu;
2342 /* disable counter and sync counter */
2343 xfs_icsb_disable_counter(mp, field);
2345 /* update counters - first CPU gets residual*/
2346 switch (field) {
2347 case XFS_SBS_ICOUNT:
2348 count = mp->m_sb.sb_icount;
2349 resid = do_div(count, weight);
2350 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2351 return;
2352 break;
2353 case XFS_SBS_IFREE:
2354 count = mp->m_sb.sb_ifree;
2355 resid = do_div(count, weight);
2356 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2357 return;
2358 break;
2359 case XFS_SBS_FDBLOCKS:
2360 count = mp->m_sb.sb_fdblocks;
2361 resid = do_div(count, weight);
2362 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2363 return;
2364 break;
2365 default:
2366 BUG();
2367 count = resid = 0; /* quiet, gcc */
2368 break;
2371 xfs_icsb_enable_counter(mp, field, count, resid);
2374 STATIC void
2375 xfs_icsb_balance_counter(
2376 xfs_mount_t *mp,
2377 xfs_sb_field_t fields,
2378 int min_per_cpu)
2380 spin_lock(&mp->m_sb_lock);
2381 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2382 spin_unlock(&mp->m_sb_lock);
2385 STATIC int
2386 xfs_icsb_modify_counters(
2387 xfs_mount_t *mp,
2388 xfs_sb_field_t field,
2389 int64_t delta,
2390 int rsvd)
2392 xfs_icsb_cnts_t *icsbp;
2393 long long lcounter; /* long counter for 64 bit fields */
2394 int ret = 0;
2396 might_sleep();
2397 again:
2398 preempt_disable();
2399 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2402 * if the counter is disabled, go to slow path
2404 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2405 goto slow_path;
2406 xfs_icsb_lock_cntr(icsbp);
2407 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2408 xfs_icsb_unlock_cntr(icsbp);
2409 goto slow_path;
2412 switch (field) {
2413 case XFS_SBS_ICOUNT:
2414 lcounter = icsbp->icsb_icount;
2415 lcounter += delta;
2416 if (unlikely(lcounter < 0))
2417 goto balance_counter;
2418 icsbp->icsb_icount = lcounter;
2419 break;
2421 case XFS_SBS_IFREE:
2422 lcounter = icsbp->icsb_ifree;
2423 lcounter += delta;
2424 if (unlikely(lcounter < 0))
2425 goto balance_counter;
2426 icsbp->icsb_ifree = lcounter;
2427 break;
2429 case XFS_SBS_FDBLOCKS:
2430 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2432 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2433 lcounter += delta;
2434 if (unlikely(lcounter < 0))
2435 goto balance_counter;
2436 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2437 break;
2438 default:
2439 BUG();
2440 break;
2442 xfs_icsb_unlock_cntr(icsbp);
2443 preempt_enable();
2444 return 0;
2446 slow_path:
2447 preempt_enable();
2450 * serialise with a mutex so we don't burn lots of cpu on
2451 * the superblock lock. We still need to hold the superblock
2452 * lock, however, when we modify the global structures.
2454 xfs_icsb_lock(mp);
2457 * Now running atomically.
2459 * If the counter is enabled, someone has beaten us to rebalancing.
2460 * Drop the lock and try again in the fast path....
2462 if (!(xfs_icsb_counter_disabled(mp, field))) {
2463 xfs_icsb_unlock(mp);
2464 goto again;
2468 * The counter is currently disabled. Because we are
2469 * running atomically here, we know a rebalance cannot
2470 * be in progress. Hence we can go straight to operating
2471 * on the global superblock. We do not call xfs_mod_incore_sb()
2472 * here even though we need to get the m_sb_lock. Doing so
2473 * will cause us to re-enter this function and deadlock.
2474 * Hence we get the m_sb_lock ourselves and then call
2475 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2476 * directly on the global counters.
2478 spin_lock(&mp->m_sb_lock);
2479 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2480 spin_unlock(&mp->m_sb_lock);
2483 * Now that we've modified the global superblock, we
2484 * may be able to re-enable the distributed counters
2485 * (e.g. lots of space just got freed). After that
2486 * we are done.
2488 if (ret != ENOSPC)
2489 xfs_icsb_balance_counter(mp, field, 0);
2490 xfs_icsb_unlock(mp);
2491 return ret;
2493 balance_counter:
2494 xfs_icsb_unlock_cntr(icsbp);
2495 preempt_enable();
2498 * We may have multiple threads here if multiple per-cpu
2499 * counters run dry at the same time. This will mean we can
2500 * do more balances than strictly necessary but it is not
2501 * the common slowpath case.
2503 xfs_icsb_lock(mp);
2506 * running atomically.
2508 * This will leave the counter in the correct state for future
2509 * accesses. After the rebalance, we simply try again and our retry
2510 * will either succeed through the fast path or slow path without
2511 * another balance operation being required.
2513 xfs_icsb_balance_counter(mp, field, delta);
2514 xfs_icsb_unlock(mp);
2515 goto again;
2518 #endif