[SPARC64]: Add sun4v_cpu_qconf() hypervisor call.
[linux-2.6/linux-2.6-openrd.git] / arch / sparc64 / kernel / irq.c
blobe1729e5189a38a0eaefba9ba0488f6c93fc96136
1 /* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
2 * irq.c: UltraSparc IRQ handling/init/registry.
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/errno.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/signal.h>
16 #include <linux/mm.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/random.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/bootmem.h>
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <asm/atomic.h>
29 #include <asm/system.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/sbus.h>
33 #include <asm/iommu.h>
34 #include <asm/upa.h>
35 #include <asm/oplib.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <asm/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
45 #ifdef CONFIG_SMP
46 static void distribute_irqs(void);
47 #endif
49 /* UPA nodes send interrupt packet to UltraSparc with first data reg
50 * value low 5 (7 on Starfire) bits holding the IRQ identifier being
51 * delivered. We must translate this into a non-vector IRQ so we can
52 * set the softint on this cpu.
54 * To make processing these packets efficient and race free we use
55 * an array of irq buckets below. The interrupt vector handler in
56 * entry.S feeds incoming packets into per-cpu pil-indexed lists.
57 * The IVEC handler does not need to act atomically, the PIL dispatch
58 * code uses CAS to get an atomic snapshot of the list and clear it
59 * at the same time.
62 struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
64 /* This has to be in the main kernel image, it cannot be
65 * turned into per-cpu data. The reason is that the main
66 * kernel image is locked into the TLB and this structure
67 * is accessed from the vectored interrupt trap handler. If
68 * access to this structure takes a TLB miss it could cause
69 * the 5-level sparc v9 trap stack to overflow.
71 struct irq_work_struct {
72 unsigned int irq_worklists[16];
74 struct irq_work_struct __irq_work[NR_CPUS];
75 #define irq_work(__cpu, __pil) &(__irq_work[(__cpu)].irq_worklists[(__pil)])
77 static struct irqaction *irq_action[NR_IRQS+1];
79 /* This only synchronizes entities which modify IRQ handler
80 * state and some selected user-level spots that want to
81 * read things in the table. IRQ handler processing orders
82 * its' accesses such that no locking is needed.
84 static DEFINE_SPINLOCK(irq_action_lock);
86 static void register_irq_proc (unsigned int irq);
89 * Upper 2b of irqaction->flags holds the ino.
90 * irqaction->mask holds the smp affinity information.
92 #define put_ino_in_irqaction(action, irq) \
93 action->flags &= 0xffffffffffffUL; \
94 if (__bucket(irq) == &pil0_dummy_bucket) \
95 action->flags |= 0xdeadUL << 48; \
96 else \
97 action->flags |= __irq_ino(irq) << 48;
98 #define get_ino_in_irqaction(action) (action->flags >> 48)
100 #define put_smpaff_in_irqaction(action, smpaff) (action)->mask = (smpaff)
101 #define get_smpaff_in_irqaction(action) ((action)->mask)
103 int show_interrupts(struct seq_file *p, void *v)
105 unsigned long flags;
106 int i = *(loff_t *) v;
107 struct irqaction *action;
108 #ifdef CONFIG_SMP
109 int j;
110 #endif
112 spin_lock_irqsave(&irq_action_lock, flags);
113 if (i <= NR_IRQS) {
114 if (!(action = *(i + irq_action)))
115 goto out_unlock;
116 seq_printf(p, "%3d: ", i);
117 #ifndef CONFIG_SMP
118 seq_printf(p, "%10u ", kstat_irqs(i));
119 #else
120 for (j = 0; j < NR_CPUS; j++) {
121 if (!cpu_online(j))
122 continue;
123 seq_printf(p, "%10u ",
124 kstat_cpu(j).irqs[i]);
126 #endif
127 seq_printf(p, " %s:%lx", action->name,
128 get_ino_in_irqaction(action));
129 for (action = action->next; action; action = action->next) {
130 seq_printf(p, ", %s:%lx", action->name,
131 get_ino_in_irqaction(action));
133 seq_putc(p, '\n');
135 out_unlock:
136 spin_unlock_irqrestore(&irq_action_lock, flags);
138 return 0;
141 /* Now these are always passed a true fully specified sun4u INO. */
142 void enable_irq(unsigned int irq)
144 struct ino_bucket *bucket = __bucket(irq);
145 unsigned long imap;
146 unsigned long tid;
148 imap = bucket->imap;
149 if (imap == 0UL)
150 return;
152 preempt_disable();
154 if (tlb_type == hypervisor) {
155 unsigned int ino = __irq_ino(irq);
156 int cpu = hard_smp_processor_id();
157 int err;
159 err = sun4v_intr_settarget(ino, cpu);
160 if (err != HV_EOK)
161 printk("sun4v_intr_settarget(%x,%d): err(%d)\n",
162 ino, cpu, err);
163 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
164 if (err != HV_EOK)
165 printk("sun4v_intr_setenabled(%x): err(%d)\n",
166 ino, err);
167 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
168 if (err != HV_EOK)
169 printk("sun4v_intr_setstate(%x): "
170 "err(%d)\n", ino, err);
171 } else {
172 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
173 unsigned long ver;
175 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
176 if ((ver >> 32) == __JALAPENO_ID ||
177 (ver >> 32) == __SERRANO_ID) {
178 /* We set it to our JBUS ID. */
179 __asm__ __volatile__("ldxa [%%g0] %1, %0"
180 : "=r" (tid)
181 : "i" (ASI_JBUS_CONFIG));
182 tid = ((tid & (0x1fUL<<17)) << 9);
183 tid &= IMAP_TID_JBUS;
184 } else {
185 /* We set it to our Safari AID. */
186 __asm__ __volatile__("ldxa [%%g0] %1, %0"
187 : "=r" (tid)
188 : "i"(ASI_SAFARI_CONFIG));
189 tid = ((tid & (0x3ffUL<<17)) << 9);
190 tid &= IMAP_AID_SAFARI;
192 } else if (this_is_starfire == 0) {
193 /* We set it to our UPA MID. */
194 __asm__ __volatile__("ldxa [%%g0] %1, %0"
195 : "=r" (tid)
196 : "i" (ASI_UPA_CONFIG));
197 tid = ((tid & UPA_CONFIG_MID) << 9);
198 tid &= IMAP_TID_UPA;
199 } else {
200 tid = (starfire_translate(imap,
201 smp_processor_id()) << 26);
202 tid &= IMAP_TID_UPA;
205 /* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product
206 * of this SYSIO's preconfigured IGN in the SYSIO Control
207 * Register, the hardware just mirrors that value here.
208 * However for Graphics and UPA Slave devices the full
209 * IMAP_INR field can be set by the programmer here.
211 * Things like FFB can now be handled via the new IRQ
212 * mechanism.
214 upa_writel(tid | IMAP_VALID, imap);
217 preempt_enable();
220 /* This now gets passed true ino's as well. */
221 void disable_irq(unsigned int irq)
223 struct ino_bucket *bucket = __bucket(irq);
224 unsigned long imap;
226 imap = bucket->imap;
227 if (imap != 0UL) {
228 if (tlb_type == hypervisor) {
229 unsigned int ino = __irq_ino(irq);
230 int err;
232 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
233 if (err != HV_EOK)
234 printk("sun4v_intr_setenabled(%x): "
235 "err(%d)\n", ino, err);
236 } else {
237 u32 tmp;
239 /* NOTE: We do not want to futz with the IRQ clear registers
240 * and move the state to IDLE, the SCSI code does call
241 * disable_irq() to assure atomicity in the queue cmd
242 * SCSI adapter driver code. Thus we'd lose interrupts.
244 tmp = upa_readl(imap);
245 tmp &= ~IMAP_VALID;
246 upa_writel(tmp, imap);
251 /* The timer is the one "weird" interrupt which is generated by
252 * the CPU %tick register and not by some normal vectored interrupt
253 * source. To handle this special case, we use this dummy INO bucket.
255 static struct irq_desc pil0_dummy_desc;
256 static struct ino_bucket pil0_dummy_bucket = {
257 .irq_info = &pil0_dummy_desc,
260 static void build_irq_error(const char *msg, unsigned int ino, int pil, int inofixup,
261 unsigned long iclr, unsigned long imap,
262 struct ino_bucket *bucket)
264 prom_printf("IRQ: INO %04x (%d:%016lx:%016lx) --> "
265 "(%d:%d:%016lx:%016lx), halting...\n",
266 ino, bucket->pil, bucket->iclr, bucket->imap,
267 pil, inofixup, iclr, imap);
268 prom_halt();
271 unsigned int build_irq(int pil, int inofixup, unsigned long iclr, unsigned long imap)
273 struct ino_bucket *bucket;
274 int ino;
276 if (pil == 0) {
277 if (iclr != 0UL || imap != 0UL) {
278 prom_printf("Invalid dummy bucket for PIL0 (%lx:%lx)\n",
279 iclr, imap);
280 prom_halt();
282 return __irq(&pil0_dummy_bucket);
285 BUG_ON(tlb_type == hypervisor);
287 /* RULE: Both must be specified in all other cases. */
288 if (iclr == 0UL || imap == 0UL) {
289 prom_printf("Invalid build_irq %d %d %016lx %016lx\n",
290 pil, inofixup, iclr, imap);
291 prom_halt();
294 ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
295 if (ino > NUM_IVECS) {
296 prom_printf("Invalid INO %04x (%d:%d:%016lx:%016lx)\n",
297 ino, pil, inofixup, iclr, imap);
298 prom_halt();
301 bucket = &ivector_table[ino];
302 if (bucket->flags & IBF_ACTIVE)
303 build_irq_error("IRQ: Trying to build active INO bucket.\n",
304 ino, pil, inofixup, iclr, imap, bucket);
306 if (bucket->irq_info) {
307 if (bucket->imap != imap || bucket->iclr != iclr)
308 build_irq_error("IRQ: Trying to reinit INO bucket.\n",
309 ino, pil, inofixup, iclr, imap, bucket);
311 goto out;
314 bucket->irq_info = kmalloc(sizeof(struct irq_desc), GFP_ATOMIC);
315 if (!bucket->irq_info) {
316 prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
317 prom_halt();
319 memset(bucket->irq_info, 0, sizeof(struct irq_desc));
321 /* Ok, looks good, set it up. Don't touch the irq_chain or
322 * the pending flag.
324 bucket->imap = imap;
325 bucket->iclr = iclr;
326 bucket->pil = pil;
327 bucket->flags = 0;
329 out:
330 return __irq(bucket);
333 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino, int pil, unsigned char flags)
335 struct ino_bucket *bucket;
336 unsigned long sysino;
338 sysino = sun4v_devino_to_sysino(devhandle, devino);
340 bucket = &ivector_table[sysino];
342 /* Catch accidental accesses to these things. IMAP/ICLR handling
343 * is done by hypervisor calls on sun4v platforms, not by direct
344 * register accesses.
346 bucket->imap = ~0UL;
347 bucket->iclr = ~0UL;
349 bucket->pil = pil;
350 bucket->flags = flags;
352 bucket->irq_info = kmalloc(sizeof(struct irq_desc), GFP_ATOMIC);
353 if (!bucket->irq_info) {
354 prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
355 prom_halt();
357 memset(bucket->irq_info, 0, sizeof(struct irq_desc));
359 return __irq(bucket);
362 static void atomic_bucket_insert(struct ino_bucket *bucket)
364 unsigned long pstate;
365 unsigned int *ent;
367 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
368 __asm__ __volatile__("wrpr %0, %1, %%pstate"
369 : : "r" (pstate), "i" (PSTATE_IE));
370 ent = irq_work(smp_processor_id(), bucket->pil);
371 bucket->irq_chain = *ent;
372 *ent = __irq(bucket);
373 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
376 static int check_irq_sharing(int pil, unsigned long irqflags)
378 struct irqaction *action, *tmp;
380 action = *(irq_action + pil);
381 if (action) {
382 if ((action->flags & SA_SHIRQ) && (irqflags & SA_SHIRQ)) {
383 for (tmp = action; tmp->next; tmp = tmp->next)
385 } else {
386 return -EBUSY;
389 return 0;
392 static void append_irq_action(int pil, struct irqaction *action)
394 struct irqaction **pp = irq_action + pil;
396 while (*pp)
397 pp = &((*pp)->next);
398 *pp = action;
401 static struct irqaction *get_action_slot(struct ino_bucket *bucket)
403 struct irq_desc *desc = bucket->irq_info;
404 int max_irq, i;
406 max_irq = 1;
407 if (bucket->flags & IBF_PCI)
408 max_irq = MAX_IRQ_DESC_ACTION;
409 for (i = 0; i < max_irq; i++) {
410 struct irqaction *p = &desc->action[i];
411 u32 mask = (1 << i);
413 if (desc->action_active_mask & mask)
414 continue;
416 desc->action_active_mask |= mask;
417 return p;
419 return NULL;
422 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
423 unsigned long irqflags, const char *name, void *dev_id)
425 struct irqaction *action;
426 struct ino_bucket *bucket = __bucket(irq);
427 unsigned long flags;
428 int pending = 0;
430 if (unlikely(!handler))
431 return -EINVAL;
433 if (unlikely(!bucket->irq_info))
434 return -ENODEV;
436 if ((bucket != &pil0_dummy_bucket) && (irqflags & SA_SAMPLE_RANDOM)) {
438 * This function might sleep, we want to call it first,
439 * outside of the atomic block. In SA_STATIC_ALLOC case,
440 * random driver's kmalloc will fail, but it is safe.
441 * If already initialized, random driver will not reinit.
442 * Yes, this might clear the entropy pool if the wrong
443 * driver is attempted to be loaded, without actually
444 * installing a new handler, but is this really a problem,
445 * only the sysadmin is able to do this.
447 rand_initialize_irq(irq);
450 spin_lock_irqsave(&irq_action_lock, flags);
452 if (check_irq_sharing(bucket->pil, irqflags)) {
453 spin_unlock_irqrestore(&irq_action_lock, flags);
454 return -EBUSY;
457 action = get_action_slot(bucket);
458 if (!action) {
459 spin_unlock_irqrestore(&irq_action_lock, flags);
460 return -ENOMEM;
463 bucket->flags |= IBF_ACTIVE;
464 pending = 0;
465 if (bucket != &pil0_dummy_bucket) {
466 pending = bucket->pending;
467 if (pending)
468 bucket->pending = 0;
471 action->handler = handler;
472 action->flags = irqflags;
473 action->name = name;
474 action->next = NULL;
475 action->dev_id = dev_id;
476 put_ino_in_irqaction(action, irq);
477 put_smpaff_in_irqaction(action, CPU_MASK_NONE);
479 append_irq_action(bucket->pil, action);
481 enable_irq(irq);
483 /* We ate the IVEC already, this makes sure it does not get lost. */
484 if (pending) {
485 atomic_bucket_insert(bucket);
486 set_softint(1 << bucket->pil);
489 spin_unlock_irqrestore(&irq_action_lock, flags);
491 if (bucket != &pil0_dummy_bucket)
492 register_irq_proc(__irq_ino(irq));
494 #ifdef CONFIG_SMP
495 distribute_irqs();
496 #endif
497 return 0;
500 EXPORT_SYMBOL(request_irq);
502 static struct irqaction *unlink_irq_action(unsigned int irq, void *dev_id)
504 struct ino_bucket *bucket = __bucket(irq);
505 struct irqaction *action, **pp;
507 pp = irq_action + bucket->pil;
508 action = *pp;
509 if (unlikely(!action))
510 return NULL;
512 if (unlikely(!action->handler)) {
513 printk("Freeing free IRQ %d\n", bucket->pil);
514 return NULL;
517 while (action && action->dev_id != dev_id) {
518 pp = &action->next;
519 action = *pp;
522 if (likely(action))
523 *pp = action->next;
525 return action;
528 void free_irq(unsigned int irq, void *dev_id)
530 struct irqaction *action;
531 struct ino_bucket *bucket;
532 unsigned long flags;
534 spin_lock_irqsave(&irq_action_lock, flags);
536 action = unlink_irq_action(irq, dev_id);
538 spin_unlock_irqrestore(&irq_action_lock, flags);
540 if (unlikely(!action))
541 return;
543 synchronize_irq(irq);
545 spin_lock_irqsave(&irq_action_lock, flags);
547 bucket = __bucket(irq);
548 if (bucket != &pil0_dummy_bucket) {
549 struct irq_desc *desc = bucket->irq_info;
550 unsigned long imap = bucket->imap;
551 int ent, i;
553 for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
554 struct irqaction *p = &desc->action[i];
556 if (p == action) {
557 desc->action_active_mask &= ~(1 << i);
558 break;
562 if (!desc->action_active_mask) {
563 /* This unique interrupt source is now inactive. */
564 bucket->flags &= ~IBF_ACTIVE;
566 /* See if any other buckets share this bucket's IMAP
567 * and are still active.
569 for (ent = 0; ent < NUM_IVECS; ent++) {
570 struct ino_bucket *bp = &ivector_table[ent];
571 if (bp != bucket &&
572 bp->imap == imap &&
573 (bp->flags & IBF_ACTIVE) != 0)
574 break;
577 /* Only disable when no other sub-irq levels of
578 * the same IMAP are active.
580 if (ent == NUM_IVECS)
581 disable_irq(irq);
585 spin_unlock_irqrestore(&irq_action_lock, flags);
588 EXPORT_SYMBOL(free_irq);
590 #ifdef CONFIG_SMP
591 void synchronize_irq(unsigned int irq)
593 struct ino_bucket *bucket = __bucket(irq);
595 #if 0
596 /* The following is how I wish I could implement this.
597 * Unfortunately the ICLR registers are read-only, you can
598 * only write ICLR_foo values to them. To get the current
599 * IRQ status you would need to get at the IRQ diag registers
600 * in the PCI/SBUS controller and the layout of those vary
601 * from one controller to the next, sigh... -DaveM
603 unsigned long iclr = bucket->iclr;
605 while (1) {
606 u32 tmp = upa_readl(iclr);
608 if (tmp == ICLR_TRANSMIT ||
609 tmp == ICLR_PENDING) {
610 cpu_relax();
611 continue;
613 break;
615 #else
616 /* So we have to do this with a INPROGRESS bit just like x86. */
617 while (bucket->flags & IBF_INPROGRESS)
618 cpu_relax();
619 #endif
621 #endif /* CONFIG_SMP */
623 static void process_bucket(int irq, struct ino_bucket *bp, struct pt_regs *regs)
625 struct irq_desc *desc = bp->irq_info;
626 unsigned char flags = bp->flags;
627 u32 action_mask, i;
628 int random;
630 bp->flags |= IBF_INPROGRESS;
632 if (unlikely(!(flags & IBF_ACTIVE))) {
633 bp->pending = 1;
634 goto out;
637 if (desc->pre_handler)
638 desc->pre_handler(bp,
639 desc->pre_handler_arg1,
640 desc->pre_handler_arg2);
642 action_mask = desc->action_active_mask;
643 random = 0;
644 for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
645 struct irqaction *p = &desc->action[i];
646 u32 mask = (1 << i);
648 if (!(action_mask & mask))
649 continue;
651 action_mask &= ~mask;
653 if (p->handler(__irq(bp), p->dev_id, regs) == IRQ_HANDLED)
654 random |= p->flags;
656 if (!action_mask)
657 break;
659 if (bp->pil != 0) {
660 if (tlb_type == hypervisor) {
661 unsigned int ino = __irq_ino(bp);
662 int err;
664 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
665 if (err != HV_EOK)
666 printk("sun4v_intr_setstate(%x): "
667 "err(%d)\n", ino, err);
668 } else {
669 upa_writel(ICLR_IDLE, bp->iclr);
672 /* Test and add entropy */
673 if (random & SA_SAMPLE_RANDOM)
674 add_interrupt_randomness(irq);
676 out:
677 bp->flags &= ~IBF_INPROGRESS;
680 void handler_irq(int irq, struct pt_regs *regs)
682 struct ino_bucket *bp;
683 int cpu = smp_processor_id();
685 #ifndef CONFIG_SMP
687 * Check for TICK_INT on level 14 softint.
690 unsigned long clr_mask = 1 << irq;
691 unsigned long tick_mask = tick_ops->softint_mask;
693 if ((irq == 14) && (get_softint() & tick_mask)) {
694 irq = 0;
695 clr_mask = tick_mask;
697 clear_softint(clr_mask);
699 #else
700 clear_softint(1 << irq);
701 #endif
703 irq_enter();
704 kstat_this_cpu.irqs[irq]++;
706 /* Sliiiick... */
707 #ifndef CONFIG_SMP
708 bp = ((irq != 0) ?
709 __bucket(xchg32(irq_work(cpu, irq), 0)) :
710 &pil0_dummy_bucket);
711 #else
712 bp = __bucket(xchg32(irq_work(cpu, irq), 0));
713 #endif
714 while (bp) {
715 struct ino_bucket *nbp = __bucket(bp->irq_chain);
717 bp->irq_chain = 0;
718 process_bucket(irq, bp, regs);
719 bp = nbp;
721 irq_exit();
724 #ifdef CONFIG_BLK_DEV_FD
725 extern irqreturn_t floppy_interrupt(int, void *, struct pt_regs *);;
727 /* XXX No easy way to include asm/floppy.h XXX */
728 extern unsigned char *pdma_vaddr;
729 extern unsigned long pdma_size;
730 extern volatile int doing_pdma;
731 extern unsigned long fdc_status;
733 irqreturn_t sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs)
735 if (likely(doing_pdma)) {
736 void __iomem *stat = (void __iomem *) fdc_status;
737 unsigned char *vaddr = pdma_vaddr;
738 unsigned long size = pdma_size;
739 u8 val;
741 while (size) {
742 val = readb(stat);
743 if (unlikely(!(val & 0x80))) {
744 pdma_vaddr = vaddr;
745 pdma_size = size;
746 return IRQ_HANDLED;
748 if (unlikely(!(val & 0x20))) {
749 pdma_vaddr = vaddr;
750 pdma_size = size;
751 doing_pdma = 0;
752 goto main_interrupt;
754 if (val & 0x40) {
755 /* read */
756 *vaddr++ = readb(stat + 1);
757 } else {
758 unsigned char data = *vaddr++;
760 /* write */
761 writeb(data, stat + 1);
763 size--;
766 pdma_vaddr = vaddr;
767 pdma_size = size;
769 /* Send Terminal Count pulse to floppy controller. */
770 val = readb(auxio_register);
771 val |= AUXIO_AUX1_FTCNT;
772 writeb(val, auxio_register);
773 val &= ~AUXIO_AUX1_FTCNT;
774 writeb(val, auxio_register);
776 doing_pdma = 0;
779 main_interrupt:
780 return floppy_interrupt(irq, dev_cookie, regs);
782 EXPORT_SYMBOL(sparc_floppy_irq);
783 #endif
785 /* We really don't need these at all on the Sparc. We only have
786 * stubs here because they are exported to modules.
788 unsigned long probe_irq_on(void)
790 return 0;
793 EXPORT_SYMBOL(probe_irq_on);
795 int probe_irq_off(unsigned long mask)
797 return 0;
800 EXPORT_SYMBOL(probe_irq_off);
802 #ifdef CONFIG_SMP
803 static int retarget_one_irq(struct irqaction *p, int goal_cpu)
805 struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table;
806 unsigned long imap = bucket->imap;
808 while (!cpu_online(goal_cpu)) {
809 if (++goal_cpu >= NR_CPUS)
810 goal_cpu = 0;
813 if (tlb_type == hypervisor) {
814 unsigned int ino = __irq_ino(bucket);
816 sun4v_intr_settarget(ino, goal_cpu);
817 sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
818 } else {
819 unsigned int tid;
821 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
822 tid = goal_cpu << 26;
823 tid &= IMAP_AID_SAFARI;
824 } else if (this_is_starfire == 0) {
825 tid = goal_cpu << 26;
826 tid &= IMAP_TID_UPA;
827 } else {
828 tid = (starfire_translate(imap, goal_cpu) << 26);
829 tid &= IMAP_TID_UPA;
831 upa_writel(tid | IMAP_VALID, imap);
834 do {
835 if (++goal_cpu >= NR_CPUS)
836 goal_cpu = 0;
837 } while (!cpu_online(goal_cpu));
839 return goal_cpu;
842 /* Called from request_irq. */
843 static void distribute_irqs(void)
845 unsigned long flags;
846 int cpu, level;
848 spin_lock_irqsave(&irq_action_lock, flags);
849 cpu = 0;
852 * Skip the timer at [0], and very rare error/power intrs at [15].
853 * Also level [12], it causes problems on Ex000 systems.
855 for (level = 1; level < NR_IRQS; level++) {
856 struct irqaction *p = irq_action[level];
858 if (level == 12)
859 continue;
861 while(p) {
862 cpu = retarget_one_irq(p, cpu);
863 p = p->next;
866 spin_unlock_irqrestore(&irq_action_lock, flags);
868 #endif
870 struct sun5_timer {
871 u64 count0;
872 u64 limit0;
873 u64 count1;
874 u64 limit1;
877 static struct sun5_timer *prom_timers;
878 static u64 prom_limit0, prom_limit1;
880 static void map_prom_timers(void)
882 unsigned int addr[3];
883 int tnode, err;
885 /* PROM timer node hangs out in the top level of device siblings... */
886 tnode = prom_finddevice("/counter-timer");
888 /* Assume if node is not present, PROM uses different tick mechanism
889 * which we should not care about.
891 if (tnode == 0 || tnode == -1) {
892 prom_timers = (struct sun5_timer *) 0;
893 return;
896 /* If PROM is really using this, it must be mapped by him. */
897 err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr));
898 if (err == -1) {
899 prom_printf("PROM does not have timer mapped, trying to continue.\n");
900 prom_timers = (struct sun5_timer *) 0;
901 return;
903 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
906 static void kill_prom_timer(void)
908 if (!prom_timers)
909 return;
911 /* Save them away for later. */
912 prom_limit0 = prom_timers->limit0;
913 prom_limit1 = prom_timers->limit1;
915 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
916 * We turn both off here just to be paranoid.
918 prom_timers->limit0 = 0;
919 prom_timers->limit1 = 0;
921 /* Wheee, eat the interrupt packet too... */
922 __asm__ __volatile__(
923 " mov 0x40, %%g2\n"
924 " ldxa [%%g0] %0, %%g1\n"
925 " ldxa [%%g2] %1, %%g1\n"
926 " stxa %%g0, [%%g0] %0\n"
927 " membar #Sync\n"
928 : /* no outputs */
929 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
930 : "g1", "g2");
933 void init_irqwork_curcpu(void)
935 int cpu = hard_smp_processor_id();
937 memset(__irq_work + cpu, 0, sizeof(struct irq_work_struct));
940 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type)
942 unsigned long num_entries = 128;
943 unsigned long status;
945 status = sun4v_cpu_qconf(type, paddr, num_entries);
946 if (status != HV_EOK) {
947 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
948 "err %lu\n", type, paddr, num_entries, status);
949 prom_halt();
953 static void __cpuinit sun4v_register_mondo_queues(int this_cpu)
955 struct trap_per_cpu *tb = &trap_block[this_cpu];
957 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO);
958 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO);
959 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR);
960 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR);
963 static void __cpuinit alloc_one_mondo(unsigned long *pa_ptr, int use_bootmem)
965 void *page;
967 if (use_bootmem)
968 page = alloc_bootmem_low_pages(PAGE_SIZE);
969 else
970 page = (void *) get_zeroed_page(GFP_ATOMIC);
972 if (!page) {
973 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
974 prom_halt();
977 *pa_ptr = __pa(page);
980 static void __cpuinit alloc_one_kbuf(unsigned long *pa_ptr, int use_bootmem)
982 void *page;
984 if (use_bootmem)
985 page = alloc_bootmem_low_pages(PAGE_SIZE);
986 else
987 page = (void *) get_zeroed_page(GFP_ATOMIC);
989 if (!page) {
990 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
991 prom_halt();
994 *pa_ptr = __pa(page);
997 static void __cpuinit init_cpu_send_mondo_info(struct trap_per_cpu *tb, int use_bootmem)
999 #ifdef CONFIG_SMP
1000 void *page;
1002 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
1004 if (use_bootmem)
1005 page = alloc_bootmem_low_pages(PAGE_SIZE);
1006 else
1007 page = (void *) get_zeroed_page(GFP_ATOMIC);
1009 if (!page) {
1010 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
1011 prom_halt();
1014 tb->cpu_mondo_block_pa = __pa(page);
1015 tb->cpu_list_pa = __pa(page + 64);
1016 #endif
1019 /* Allocate and register the mondo and error queues for this cpu. */
1020 void __cpuinit sun4v_init_mondo_queues(int use_bootmem)
1022 int cpu = hard_smp_processor_id();
1023 struct trap_per_cpu *tb = &trap_block[cpu];
1025 alloc_one_mondo(&tb->cpu_mondo_pa, use_bootmem);
1026 alloc_one_mondo(&tb->dev_mondo_pa, use_bootmem);
1027 alloc_one_mondo(&tb->resum_mondo_pa, use_bootmem);
1028 alloc_one_kbuf(&tb->resum_kernel_buf_pa, use_bootmem);
1029 alloc_one_mondo(&tb->nonresum_mondo_pa, use_bootmem);
1030 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa, use_bootmem);
1032 init_cpu_send_mondo_info(tb, use_bootmem);
1034 sun4v_register_mondo_queues(cpu);
1037 /* Only invoked on boot processor. */
1038 void __init init_IRQ(void)
1040 map_prom_timers();
1041 kill_prom_timer();
1042 memset(&ivector_table[0], 0, sizeof(ivector_table));
1044 if (tlb_type == hypervisor)
1045 sun4v_init_mondo_queues(1);
1047 /* We need to clear any IRQ's pending in the soft interrupt
1048 * registers, a spurious one could be left around from the
1049 * PROM timer which we just disabled.
1051 clear_softint(get_softint());
1053 /* Now that ivector table is initialized, it is safe
1054 * to receive IRQ vector traps. We will normally take
1055 * one or two right now, in case some device PROM used
1056 * to boot us wants to speak to us. We just ignore them.
1058 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1059 "or %%g1, %0, %%g1\n\t"
1060 "wrpr %%g1, 0x0, %%pstate"
1061 : /* No outputs */
1062 : "i" (PSTATE_IE)
1063 : "g1");
1066 static struct proc_dir_entry * root_irq_dir;
1067 static struct proc_dir_entry * irq_dir [NUM_IVECS];
1069 #ifdef CONFIG_SMP
1071 static int irq_affinity_read_proc (char *page, char **start, off_t off,
1072 int count, int *eof, void *data)
1074 struct ino_bucket *bp = ivector_table + (long)data;
1075 struct irq_desc *desc = bp->irq_info;
1076 struct irqaction *ap = desc->action;
1077 cpumask_t mask;
1078 int len;
1080 mask = get_smpaff_in_irqaction(ap);
1081 if (cpus_empty(mask))
1082 mask = cpu_online_map;
1084 len = cpumask_scnprintf(page, count, mask);
1085 if (count - len < 2)
1086 return -EINVAL;
1087 len += sprintf(page + len, "\n");
1088 return len;
1091 static inline void set_intr_affinity(int irq, cpumask_t hw_aff)
1093 struct ino_bucket *bp = ivector_table + irq;
1094 struct irq_desc *desc = bp->irq_info;
1095 struct irqaction *ap = desc->action;
1097 /* Users specify affinity in terms of hw cpu ids.
1098 * As soon as we do this, handler_irq() might see and take action.
1100 put_smpaff_in_irqaction(ap, hw_aff);
1102 /* Migration is simply done by the next cpu to service this
1103 * interrupt.
1107 static int irq_affinity_write_proc (struct file *file, const char __user *buffer,
1108 unsigned long count, void *data)
1110 int irq = (long) data, full_count = count, err;
1111 cpumask_t new_value;
1113 err = cpumask_parse(buffer, count, new_value);
1116 * Do not allow disabling IRQs completely - it's a too easy
1117 * way to make the system unusable accidentally :-) At least
1118 * one online CPU still has to be targeted.
1120 cpus_and(new_value, new_value, cpu_online_map);
1121 if (cpus_empty(new_value))
1122 return -EINVAL;
1124 set_intr_affinity(irq, new_value);
1126 return full_count;
1129 #endif
1131 #define MAX_NAMELEN 10
1133 static void register_irq_proc (unsigned int irq)
1135 char name [MAX_NAMELEN];
1137 if (!root_irq_dir || irq_dir[irq])
1138 return;
1140 memset(name, 0, MAX_NAMELEN);
1141 sprintf(name, "%x", irq);
1143 /* create /proc/irq/1234 */
1144 irq_dir[irq] = proc_mkdir(name, root_irq_dir);
1146 #ifdef CONFIG_SMP
1147 /* XXX SMP affinity not supported on starfire yet. */
1148 if (this_is_starfire == 0) {
1149 struct proc_dir_entry *entry;
1151 /* create /proc/irq/1234/smp_affinity */
1152 entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
1154 if (entry) {
1155 entry->nlink = 1;
1156 entry->data = (void *)(long)irq;
1157 entry->read_proc = irq_affinity_read_proc;
1158 entry->write_proc = irq_affinity_write_proc;
1161 #endif
1164 void init_irq_proc (void)
1166 /* create /proc/irq */
1167 root_irq_dir = proc_mkdir("irq", NULL);