drm/i915: batch submit seqno off-by-one.
[linux-2.6/linux-2.6-openrd.git] / kernel / perf_event.c
blob0f86feb6db0c227c2f4e7b1c47c8b4d2c0e92156
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_event.h>
31 #include <asm/irq_regs.h>
34 * Each CPU has a list of per CPU events:
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
38 int perf_max_events __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
42 static atomic_t nr_events __read_mostly;
43 static atomic_t nr_mmap_events __read_mostly;
44 static atomic_t nr_comm_events __read_mostly;
45 static atomic_t nr_task_events __read_mostly;
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
54 int sysctl_perf_event_paranoid __read_mostly = 1;
56 static inline bool perf_paranoid_tracepoint_raw(void)
58 return sysctl_perf_event_paranoid > -1;
61 static inline bool perf_paranoid_cpu(void)
63 return sysctl_perf_event_paranoid > 0;
66 static inline bool perf_paranoid_kernel(void)
68 return sysctl_perf_event_paranoid > 1;
71 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
74 * max perf event sample rate
76 int sysctl_perf_event_sample_rate __read_mostly = 100000;
78 static atomic64_t perf_event_id;
81 * Lock for (sysadmin-configurable) event reservations:
83 static DEFINE_SPINLOCK(perf_resource_lock);
86 * Architecture provided APIs - weak aliases:
88 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
90 return NULL;
93 void __weak hw_perf_disable(void) { barrier(); }
94 void __weak hw_perf_enable(void) { barrier(); }
96 void __weak hw_perf_event_setup(int cpu) { barrier(); }
97 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
99 int __weak
100 hw_perf_group_sched_in(struct perf_event *group_leader,
101 struct perf_cpu_context *cpuctx,
102 struct perf_event_context *ctx, int cpu)
104 return 0;
107 void __weak perf_event_print_debug(void) { }
109 static DEFINE_PER_CPU(int, perf_disable_count);
111 void __perf_disable(void)
113 __get_cpu_var(perf_disable_count)++;
116 bool __perf_enable(void)
118 return !--__get_cpu_var(perf_disable_count);
121 void perf_disable(void)
123 __perf_disable();
124 hw_perf_disable();
127 void perf_enable(void)
129 if (__perf_enable())
130 hw_perf_enable();
133 static void get_ctx(struct perf_event_context *ctx)
135 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
138 static void free_ctx(struct rcu_head *head)
140 struct perf_event_context *ctx;
142 ctx = container_of(head, struct perf_event_context, rcu_head);
143 kfree(ctx);
146 static void put_ctx(struct perf_event_context *ctx)
148 if (atomic_dec_and_test(&ctx->refcount)) {
149 if (ctx->parent_ctx)
150 put_ctx(ctx->parent_ctx);
151 if (ctx->task)
152 put_task_struct(ctx->task);
153 call_rcu(&ctx->rcu_head, free_ctx);
157 static void unclone_ctx(struct perf_event_context *ctx)
159 if (ctx->parent_ctx) {
160 put_ctx(ctx->parent_ctx);
161 ctx->parent_ctx = NULL;
166 * If we inherit events we want to return the parent event id
167 * to userspace.
169 static u64 primary_event_id(struct perf_event *event)
171 u64 id = event->id;
173 if (event->parent)
174 id = event->parent->id;
176 return id;
180 * Get the perf_event_context for a task and lock it.
181 * This has to cope with with the fact that until it is locked,
182 * the context could get moved to another task.
184 static struct perf_event_context *
185 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
187 struct perf_event_context *ctx;
189 rcu_read_lock();
190 retry:
191 ctx = rcu_dereference(task->perf_event_ctxp);
192 if (ctx) {
194 * If this context is a clone of another, it might
195 * get swapped for another underneath us by
196 * perf_event_task_sched_out, though the
197 * rcu_read_lock() protects us from any context
198 * getting freed. Lock the context and check if it
199 * got swapped before we could get the lock, and retry
200 * if so. If we locked the right context, then it
201 * can't get swapped on us any more.
203 spin_lock_irqsave(&ctx->lock, *flags);
204 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
205 spin_unlock_irqrestore(&ctx->lock, *flags);
206 goto retry;
209 if (!atomic_inc_not_zero(&ctx->refcount)) {
210 spin_unlock_irqrestore(&ctx->lock, *flags);
211 ctx = NULL;
214 rcu_read_unlock();
215 return ctx;
219 * Get the context for a task and increment its pin_count so it
220 * can't get swapped to another task. This also increments its
221 * reference count so that the context can't get freed.
223 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
225 struct perf_event_context *ctx;
226 unsigned long flags;
228 ctx = perf_lock_task_context(task, &flags);
229 if (ctx) {
230 ++ctx->pin_count;
231 spin_unlock_irqrestore(&ctx->lock, flags);
233 return ctx;
236 static void perf_unpin_context(struct perf_event_context *ctx)
238 unsigned long flags;
240 spin_lock_irqsave(&ctx->lock, flags);
241 --ctx->pin_count;
242 spin_unlock_irqrestore(&ctx->lock, flags);
243 put_ctx(ctx);
247 * Add a event from the lists for its context.
248 * Must be called with ctx->mutex and ctx->lock held.
250 static void
251 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
253 struct perf_event *group_leader = event->group_leader;
256 * Depending on whether it is a standalone or sibling event,
257 * add it straight to the context's event list, or to the group
258 * leader's sibling list:
260 if (group_leader == event)
261 list_add_tail(&event->group_entry, &ctx->group_list);
262 else {
263 list_add_tail(&event->group_entry, &group_leader->sibling_list);
264 group_leader->nr_siblings++;
267 list_add_rcu(&event->event_entry, &ctx->event_list);
268 ctx->nr_events++;
269 if (event->attr.inherit_stat)
270 ctx->nr_stat++;
274 * Remove a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
277 static void
278 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
280 struct perf_event *sibling, *tmp;
282 if (list_empty(&event->group_entry))
283 return;
284 ctx->nr_events--;
285 if (event->attr.inherit_stat)
286 ctx->nr_stat--;
288 list_del_init(&event->group_entry);
289 list_del_rcu(&event->event_entry);
291 if (event->group_leader != event)
292 event->group_leader->nr_siblings--;
295 * If this was a group event with sibling events then
296 * upgrade the siblings to singleton events by adding them
297 * to the context list directly:
299 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
301 list_move_tail(&sibling->group_entry, &ctx->group_list);
302 sibling->group_leader = sibling;
306 static void
307 event_sched_out(struct perf_event *event,
308 struct perf_cpu_context *cpuctx,
309 struct perf_event_context *ctx)
311 if (event->state != PERF_EVENT_STATE_ACTIVE)
312 return;
314 event->state = PERF_EVENT_STATE_INACTIVE;
315 if (event->pending_disable) {
316 event->pending_disable = 0;
317 event->state = PERF_EVENT_STATE_OFF;
319 event->tstamp_stopped = ctx->time;
320 event->pmu->disable(event);
321 event->oncpu = -1;
323 if (!is_software_event(event))
324 cpuctx->active_oncpu--;
325 ctx->nr_active--;
326 if (event->attr.exclusive || !cpuctx->active_oncpu)
327 cpuctx->exclusive = 0;
330 static void
331 group_sched_out(struct perf_event *group_event,
332 struct perf_cpu_context *cpuctx,
333 struct perf_event_context *ctx)
335 struct perf_event *event;
337 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
338 return;
340 event_sched_out(group_event, cpuctx, ctx);
343 * Schedule out siblings (if any):
345 list_for_each_entry(event, &group_event->sibling_list, group_entry)
346 event_sched_out(event, cpuctx, ctx);
348 if (group_event->attr.exclusive)
349 cpuctx->exclusive = 0;
353 * Cross CPU call to remove a performance event
355 * We disable the event on the hardware level first. After that we
356 * remove it from the context list.
358 static void __perf_event_remove_from_context(void *info)
360 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
361 struct perf_event *event = info;
362 struct perf_event_context *ctx = event->ctx;
365 * If this is a task context, we need to check whether it is
366 * the current task context of this cpu. If not it has been
367 * scheduled out before the smp call arrived.
369 if (ctx->task && cpuctx->task_ctx != ctx)
370 return;
372 spin_lock(&ctx->lock);
374 * Protect the list operation against NMI by disabling the
375 * events on a global level.
377 perf_disable();
379 event_sched_out(event, cpuctx, ctx);
381 list_del_event(event, ctx);
383 if (!ctx->task) {
385 * Allow more per task events with respect to the
386 * reservation:
388 cpuctx->max_pertask =
389 min(perf_max_events - ctx->nr_events,
390 perf_max_events - perf_reserved_percpu);
393 perf_enable();
394 spin_unlock(&ctx->lock);
399 * Remove the event from a task's (or a CPU's) list of events.
401 * Must be called with ctx->mutex held.
403 * CPU events are removed with a smp call. For task events we only
404 * call when the task is on a CPU.
406 * If event->ctx is a cloned context, callers must make sure that
407 * every task struct that event->ctx->task could possibly point to
408 * remains valid. This is OK when called from perf_release since
409 * that only calls us on the top-level context, which can't be a clone.
410 * When called from perf_event_exit_task, it's OK because the
411 * context has been detached from its task.
413 static void perf_event_remove_from_context(struct perf_event *event)
415 struct perf_event_context *ctx = event->ctx;
416 struct task_struct *task = ctx->task;
418 if (!task) {
420 * Per cpu events are removed via an smp call and
421 * the removal is always sucessful.
423 smp_call_function_single(event->cpu,
424 __perf_event_remove_from_context,
425 event, 1);
426 return;
429 retry:
430 task_oncpu_function_call(task, __perf_event_remove_from_context,
431 event);
433 spin_lock_irq(&ctx->lock);
435 * If the context is active we need to retry the smp call.
437 if (ctx->nr_active && !list_empty(&event->group_entry)) {
438 spin_unlock_irq(&ctx->lock);
439 goto retry;
443 * The lock prevents that this context is scheduled in so we
444 * can remove the event safely, if the call above did not
445 * succeed.
447 if (!list_empty(&event->group_entry)) {
448 list_del_event(event, ctx);
450 spin_unlock_irq(&ctx->lock);
453 static inline u64 perf_clock(void)
455 return cpu_clock(smp_processor_id());
459 * Update the record of the current time in a context.
461 static void update_context_time(struct perf_event_context *ctx)
463 u64 now = perf_clock();
465 ctx->time += now - ctx->timestamp;
466 ctx->timestamp = now;
470 * Update the total_time_enabled and total_time_running fields for a event.
472 static void update_event_times(struct perf_event *event)
474 struct perf_event_context *ctx = event->ctx;
475 u64 run_end;
477 if (event->state < PERF_EVENT_STATE_INACTIVE ||
478 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
479 return;
481 event->total_time_enabled = ctx->time - event->tstamp_enabled;
483 if (event->state == PERF_EVENT_STATE_INACTIVE)
484 run_end = event->tstamp_stopped;
485 else
486 run_end = ctx->time;
488 event->total_time_running = run_end - event->tstamp_running;
492 * Update total_time_enabled and total_time_running for all events in a group.
494 static void update_group_times(struct perf_event *leader)
496 struct perf_event *event;
498 update_event_times(leader);
499 list_for_each_entry(event, &leader->sibling_list, group_entry)
500 update_event_times(event);
504 * Cross CPU call to disable a performance event
506 static void __perf_event_disable(void *info)
508 struct perf_event *event = info;
509 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
510 struct perf_event_context *ctx = event->ctx;
513 * If this is a per-task event, need to check whether this
514 * event's task is the current task on this cpu.
516 if (ctx->task && cpuctx->task_ctx != ctx)
517 return;
519 spin_lock(&ctx->lock);
522 * If the event is on, turn it off.
523 * If it is in error state, leave it in error state.
525 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
526 update_context_time(ctx);
527 update_group_times(event);
528 if (event == event->group_leader)
529 group_sched_out(event, cpuctx, ctx);
530 else
531 event_sched_out(event, cpuctx, ctx);
532 event->state = PERF_EVENT_STATE_OFF;
535 spin_unlock(&ctx->lock);
539 * Disable a event.
541 * If event->ctx is a cloned context, callers must make sure that
542 * every task struct that event->ctx->task could possibly point to
543 * remains valid. This condition is satisifed when called through
544 * perf_event_for_each_child or perf_event_for_each because they
545 * hold the top-level event's child_mutex, so any descendant that
546 * goes to exit will block in sync_child_event.
547 * When called from perf_pending_event it's OK because event->ctx
548 * is the current context on this CPU and preemption is disabled,
549 * hence we can't get into perf_event_task_sched_out for this context.
551 static void perf_event_disable(struct perf_event *event)
553 struct perf_event_context *ctx = event->ctx;
554 struct task_struct *task = ctx->task;
556 if (!task) {
558 * Disable the event on the cpu that it's on
560 smp_call_function_single(event->cpu, __perf_event_disable,
561 event, 1);
562 return;
565 retry:
566 task_oncpu_function_call(task, __perf_event_disable, event);
568 spin_lock_irq(&ctx->lock);
570 * If the event is still active, we need to retry the cross-call.
572 if (event->state == PERF_EVENT_STATE_ACTIVE) {
573 spin_unlock_irq(&ctx->lock);
574 goto retry;
578 * Since we have the lock this context can't be scheduled
579 * in, so we can change the state safely.
581 if (event->state == PERF_EVENT_STATE_INACTIVE) {
582 update_group_times(event);
583 event->state = PERF_EVENT_STATE_OFF;
586 spin_unlock_irq(&ctx->lock);
589 static int
590 event_sched_in(struct perf_event *event,
591 struct perf_cpu_context *cpuctx,
592 struct perf_event_context *ctx,
593 int cpu)
595 if (event->state <= PERF_EVENT_STATE_OFF)
596 return 0;
598 event->state = PERF_EVENT_STATE_ACTIVE;
599 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
601 * The new state must be visible before we turn it on in the hardware:
603 smp_wmb();
605 if (event->pmu->enable(event)) {
606 event->state = PERF_EVENT_STATE_INACTIVE;
607 event->oncpu = -1;
608 return -EAGAIN;
611 event->tstamp_running += ctx->time - event->tstamp_stopped;
613 if (!is_software_event(event))
614 cpuctx->active_oncpu++;
615 ctx->nr_active++;
617 if (event->attr.exclusive)
618 cpuctx->exclusive = 1;
620 return 0;
623 static int
624 group_sched_in(struct perf_event *group_event,
625 struct perf_cpu_context *cpuctx,
626 struct perf_event_context *ctx,
627 int cpu)
629 struct perf_event *event, *partial_group;
630 int ret;
632 if (group_event->state == PERF_EVENT_STATE_OFF)
633 return 0;
635 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
636 if (ret)
637 return ret < 0 ? ret : 0;
639 if (event_sched_in(group_event, cpuctx, ctx, cpu))
640 return -EAGAIN;
643 * Schedule in siblings as one group (if any):
645 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
646 if (event_sched_in(event, cpuctx, ctx, cpu)) {
647 partial_group = event;
648 goto group_error;
652 return 0;
654 group_error:
656 * Groups can be scheduled in as one unit only, so undo any
657 * partial group before returning:
659 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
660 if (event == partial_group)
661 break;
662 event_sched_out(event, cpuctx, ctx);
664 event_sched_out(group_event, cpuctx, ctx);
666 return -EAGAIN;
670 * Return 1 for a group consisting entirely of software events,
671 * 0 if the group contains any hardware events.
673 static int is_software_only_group(struct perf_event *leader)
675 struct perf_event *event;
677 if (!is_software_event(leader))
678 return 0;
680 list_for_each_entry(event, &leader->sibling_list, group_entry)
681 if (!is_software_event(event))
682 return 0;
684 return 1;
688 * Work out whether we can put this event group on the CPU now.
690 static int group_can_go_on(struct perf_event *event,
691 struct perf_cpu_context *cpuctx,
692 int can_add_hw)
695 * Groups consisting entirely of software events can always go on.
697 if (is_software_only_group(event))
698 return 1;
700 * If an exclusive group is already on, no other hardware
701 * events can go on.
703 if (cpuctx->exclusive)
704 return 0;
706 * If this group is exclusive and there are already
707 * events on the CPU, it can't go on.
709 if (event->attr.exclusive && cpuctx->active_oncpu)
710 return 0;
712 * Otherwise, try to add it if all previous groups were able
713 * to go on.
715 return can_add_hw;
718 static void add_event_to_ctx(struct perf_event *event,
719 struct perf_event_context *ctx)
721 list_add_event(event, ctx);
722 event->tstamp_enabled = ctx->time;
723 event->tstamp_running = ctx->time;
724 event->tstamp_stopped = ctx->time;
728 * Cross CPU call to install and enable a performance event
730 * Must be called with ctx->mutex held
732 static void __perf_install_in_context(void *info)
734 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
735 struct perf_event *event = info;
736 struct perf_event_context *ctx = event->ctx;
737 struct perf_event *leader = event->group_leader;
738 int cpu = smp_processor_id();
739 int err;
742 * If this is a task context, we need to check whether it is
743 * the current task context of this cpu. If not it has been
744 * scheduled out before the smp call arrived.
745 * Or possibly this is the right context but it isn't
746 * on this cpu because it had no events.
748 if (ctx->task && cpuctx->task_ctx != ctx) {
749 if (cpuctx->task_ctx || ctx->task != current)
750 return;
751 cpuctx->task_ctx = ctx;
754 spin_lock(&ctx->lock);
755 ctx->is_active = 1;
756 update_context_time(ctx);
759 * Protect the list operation against NMI by disabling the
760 * events on a global level. NOP for non NMI based events.
762 perf_disable();
764 add_event_to_ctx(event, ctx);
767 * Don't put the event on if it is disabled or if
768 * it is in a group and the group isn't on.
770 if (event->state != PERF_EVENT_STATE_INACTIVE ||
771 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
772 goto unlock;
775 * An exclusive event can't go on if there are already active
776 * hardware events, and no hardware event can go on if there
777 * is already an exclusive event on.
779 if (!group_can_go_on(event, cpuctx, 1))
780 err = -EEXIST;
781 else
782 err = event_sched_in(event, cpuctx, ctx, cpu);
784 if (err) {
786 * This event couldn't go on. If it is in a group
787 * then we have to pull the whole group off.
788 * If the event group is pinned then put it in error state.
790 if (leader != event)
791 group_sched_out(leader, cpuctx, ctx);
792 if (leader->attr.pinned) {
793 update_group_times(leader);
794 leader->state = PERF_EVENT_STATE_ERROR;
798 if (!err && !ctx->task && cpuctx->max_pertask)
799 cpuctx->max_pertask--;
801 unlock:
802 perf_enable();
804 spin_unlock(&ctx->lock);
808 * Attach a performance event to a context
810 * First we add the event to the list with the hardware enable bit
811 * in event->hw_config cleared.
813 * If the event is attached to a task which is on a CPU we use a smp
814 * call to enable it in the task context. The task might have been
815 * scheduled away, but we check this in the smp call again.
817 * Must be called with ctx->mutex held.
819 static void
820 perf_install_in_context(struct perf_event_context *ctx,
821 struct perf_event *event,
822 int cpu)
824 struct task_struct *task = ctx->task;
826 if (!task) {
828 * Per cpu events are installed via an smp call and
829 * the install is always sucessful.
831 smp_call_function_single(cpu, __perf_install_in_context,
832 event, 1);
833 return;
836 retry:
837 task_oncpu_function_call(task, __perf_install_in_context,
838 event);
840 spin_lock_irq(&ctx->lock);
842 * we need to retry the smp call.
844 if (ctx->is_active && list_empty(&event->group_entry)) {
845 spin_unlock_irq(&ctx->lock);
846 goto retry;
850 * The lock prevents that this context is scheduled in so we
851 * can add the event safely, if it the call above did not
852 * succeed.
854 if (list_empty(&event->group_entry))
855 add_event_to_ctx(event, ctx);
856 spin_unlock_irq(&ctx->lock);
860 * Put a event into inactive state and update time fields.
861 * Enabling the leader of a group effectively enables all
862 * the group members that aren't explicitly disabled, so we
863 * have to update their ->tstamp_enabled also.
864 * Note: this works for group members as well as group leaders
865 * since the non-leader members' sibling_lists will be empty.
867 static void __perf_event_mark_enabled(struct perf_event *event,
868 struct perf_event_context *ctx)
870 struct perf_event *sub;
872 event->state = PERF_EVENT_STATE_INACTIVE;
873 event->tstamp_enabled = ctx->time - event->total_time_enabled;
874 list_for_each_entry(sub, &event->sibling_list, group_entry)
875 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
876 sub->tstamp_enabled =
877 ctx->time - sub->total_time_enabled;
881 * Cross CPU call to enable a performance event
883 static void __perf_event_enable(void *info)
885 struct perf_event *event = info;
886 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
887 struct perf_event_context *ctx = event->ctx;
888 struct perf_event *leader = event->group_leader;
889 int err;
892 * If this is a per-task event, need to check whether this
893 * event's task is the current task on this cpu.
895 if (ctx->task && cpuctx->task_ctx != ctx) {
896 if (cpuctx->task_ctx || ctx->task != current)
897 return;
898 cpuctx->task_ctx = ctx;
901 spin_lock(&ctx->lock);
902 ctx->is_active = 1;
903 update_context_time(ctx);
905 if (event->state >= PERF_EVENT_STATE_INACTIVE)
906 goto unlock;
907 __perf_event_mark_enabled(event, ctx);
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
921 err = group_sched_in(event, cpuctx, ctx,
922 smp_processor_id());
923 else
924 err = event_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 perf_enable();
929 if (err) {
931 * If this event can't go on and it's part of a
932 * group, then the whole group has to come off.
934 if (leader != event)
935 group_sched_out(leader, cpuctx, ctx);
936 if (leader->attr.pinned) {
937 update_group_times(leader);
938 leader->state = PERF_EVENT_STATE_ERROR;
942 unlock:
943 spin_unlock(&ctx->lock);
947 * Enable a event.
949 * If event->ctx is a cloned context, callers must make sure that
950 * every task struct that event->ctx->task could possibly point to
951 * remains valid. This condition is satisfied when called through
952 * perf_event_for_each_child or perf_event_for_each as described
953 * for perf_event_disable.
955 static void perf_event_enable(struct perf_event *event)
957 struct perf_event_context *ctx = event->ctx;
958 struct task_struct *task = ctx->task;
960 if (!task) {
962 * Enable the event on the cpu that it's on
964 smp_call_function_single(event->cpu, __perf_event_enable,
965 event, 1);
966 return;
969 spin_lock_irq(&ctx->lock);
970 if (event->state >= PERF_EVENT_STATE_INACTIVE)
971 goto out;
974 * If the event is in error state, clear that first.
975 * That way, if we see the event in error state below, we
976 * know that it has gone back into error state, as distinct
977 * from the task having been scheduled away before the
978 * cross-call arrived.
980 if (event->state == PERF_EVENT_STATE_ERROR)
981 event->state = PERF_EVENT_STATE_OFF;
983 retry:
984 spin_unlock_irq(&ctx->lock);
985 task_oncpu_function_call(task, __perf_event_enable, event);
987 spin_lock_irq(&ctx->lock);
990 * If the context is active and the event is still off,
991 * we need to retry the cross-call.
993 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
994 goto retry;
997 * Since we have the lock this context can't be scheduled
998 * in, so we can change the state safely.
1000 if (event->state == PERF_EVENT_STATE_OFF)
1001 __perf_event_mark_enabled(event, ctx);
1003 out:
1004 spin_unlock_irq(&ctx->lock);
1007 static int perf_event_refresh(struct perf_event *event, int refresh)
1010 * not supported on inherited events
1012 if (event->attr.inherit)
1013 return -EINVAL;
1015 atomic_add(refresh, &event->event_limit);
1016 perf_event_enable(event);
1018 return 0;
1021 void __perf_event_sched_out(struct perf_event_context *ctx,
1022 struct perf_cpu_context *cpuctx)
1024 struct perf_event *event;
1026 spin_lock(&ctx->lock);
1027 ctx->is_active = 0;
1028 if (likely(!ctx->nr_events))
1029 goto out;
1030 update_context_time(ctx);
1032 perf_disable();
1033 if (ctx->nr_active) {
1034 list_for_each_entry(event, &ctx->group_list, group_entry) {
1035 if (event != event->group_leader)
1036 event_sched_out(event, cpuctx, ctx);
1037 else
1038 group_sched_out(event, cpuctx, ctx);
1041 perf_enable();
1042 out:
1043 spin_unlock(&ctx->lock);
1047 * Test whether two contexts are equivalent, i.e. whether they
1048 * have both been cloned from the same version of the same context
1049 * and they both have the same number of enabled events.
1050 * If the number of enabled events is the same, then the set
1051 * of enabled events should be the same, because these are both
1052 * inherited contexts, therefore we can't access individual events
1053 * in them directly with an fd; we can only enable/disable all
1054 * events via prctl, or enable/disable all events in a family
1055 * via ioctl, which will have the same effect on both contexts.
1057 static int context_equiv(struct perf_event_context *ctx1,
1058 struct perf_event_context *ctx2)
1060 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1061 && ctx1->parent_gen == ctx2->parent_gen
1062 && !ctx1->pin_count && !ctx2->pin_count;
1065 static void __perf_event_read(void *event);
1067 static void __perf_event_sync_stat(struct perf_event *event,
1068 struct perf_event *next_event)
1070 u64 value;
1072 if (!event->attr.inherit_stat)
1073 return;
1076 * Update the event value, we cannot use perf_event_read()
1077 * because we're in the middle of a context switch and have IRQs
1078 * disabled, which upsets smp_call_function_single(), however
1079 * we know the event must be on the current CPU, therefore we
1080 * don't need to use it.
1082 switch (event->state) {
1083 case PERF_EVENT_STATE_ACTIVE:
1084 __perf_event_read(event);
1085 break;
1087 case PERF_EVENT_STATE_INACTIVE:
1088 update_event_times(event);
1089 break;
1091 default:
1092 break;
1096 * In order to keep per-task stats reliable we need to flip the event
1097 * values when we flip the contexts.
1099 value = atomic64_read(&next_event->count);
1100 value = atomic64_xchg(&event->count, value);
1101 atomic64_set(&next_event->count, value);
1103 swap(event->total_time_enabled, next_event->total_time_enabled);
1104 swap(event->total_time_running, next_event->total_time_running);
1107 * Since we swizzled the values, update the user visible data too.
1109 perf_event_update_userpage(event);
1110 perf_event_update_userpage(next_event);
1113 #define list_next_entry(pos, member) \
1114 list_entry(pos->member.next, typeof(*pos), member)
1116 static void perf_event_sync_stat(struct perf_event_context *ctx,
1117 struct perf_event_context *next_ctx)
1119 struct perf_event *event, *next_event;
1121 if (!ctx->nr_stat)
1122 return;
1124 event = list_first_entry(&ctx->event_list,
1125 struct perf_event, event_entry);
1127 next_event = list_first_entry(&next_ctx->event_list,
1128 struct perf_event, event_entry);
1130 while (&event->event_entry != &ctx->event_list &&
1131 &next_event->event_entry != &next_ctx->event_list) {
1133 __perf_event_sync_stat(event, next_event);
1135 event = list_next_entry(event, event_entry);
1136 next_event = list_next_entry(next_event, event_entry);
1141 * Called from scheduler to remove the events of the current task,
1142 * with interrupts disabled.
1144 * We stop each event and update the event value in event->count.
1146 * This does not protect us against NMI, but disable()
1147 * sets the disabled bit in the control field of event _before_
1148 * accessing the event control register. If a NMI hits, then it will
1149 * not restart the event.
1151 void perf_event_task_sched_out(struct task_struct *task,
1152 struct task_struct *next, int cpu)
1154 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1155 struct perf_event_context *ctx = task->perf_event_ctxp;
1156 struct perf_event_context *next_ctx;
1157 struct perf_event_context *parent;
1158 struct pt_regs *regs;
1159 int do_switch = 1;
1161 regs = task_pt_regs(task);
1162 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1164 if (likely(!ctx || !cpuctx->task_ctx))
1165 return;
1167 update_context_time(ctx);
1169 rcu_read_lock();
1170 parent = rcu_dereference(ctx->parent_ctx);
1171 next_ctx = next->perf_event_ctxp;
1172 if (parent && next_ctx &&
1173 rcu_dereference(next_ctx->parent_ctx) == parent) {
1175 * Looks like the two contexts are clones, so we might be
1176 * able to optimize the context switch. We lock both
1177 * contexts and check that they are clones under the
1178 * lock (including re-checking that neither has been
1179 * uncloned in the meantime). It doesn't matter which
1180 * order we take the locks because no other cpu could
1181 * be trying to lock both of these tasks.
1183 spin_lock(&ctx->lock);
1184 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1185 if (context_equiv(ctx, next_ctx)) {
1187 * XXX do we need a memory barrier of sorts
1188 * wrt to rcu_dereference() of perf_event_ctxp
1190 task->perf_event_ctxp = next_ctx;
1191 next->perf_event_ctxp = ctx;
1192 ctx->task = next;
1193 next_ctx->task = task;
1194 do_switch = 0;
1196 perf_event_sync_stat(ctx, next_ctx);
1198 spin_unlock(&next_ctx->lock);
1199 spin_unlock(&ctx->lock);
1201 rcu_read_unlock();
1203 if (do_switch) {
1204 __perf_event_sched_out(ctx, cpuctx);
1205 cpuctx->task_ctx = NULL;
1210 * Called with IRQs disabled
1212 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1214 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1216 if (!cpuctx->task_ctx)
1217 return;
1219 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1220 return;
1222 __perf_event_sched_out(ctx, cpuctx);
1223 cpuctx->task_ctx = NULL;
1227 * Called with IRQs disabled
1229 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1231 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1234 static void
1235 __perf_event_sched_in(struct perf_event_context *ctx,
1236 struct perf_cpu_context *cpuctx, int cpu)
1238 struct perf_event *event;
1239 int can_add_hw = 1;
1241 spin_lock(&ctx->lock);
1242 ctx->is_active = 1;
1243 if (likely(!ctx->nr_events))
1244 goto out;
1246 ctx->timestamp = perf_clock();
1248 perf_disable();
1251 * First go through the list and put on any pinned groups
1252 * in order to give them the best chance of going on.
1254 list_for_each_entry(event, &ctx->group_list, group_entry) {
1255 if (event->state <= PERF_EVENT_STATE_OFF ||
1256 !event->attr.pinned)
1257 continue;
1258 if (event->cpu != -1 && event->cpu != cpu)
1259 continue;
1261 if (event != event->group_leader)
1262 event_sched_in(event, cpuctx, ctx, cpu);
1263 else {
1264 if (group_can_go_on(event, cpuctx, 1))
1265 group_sched_in(event, cpuctx, ctx, cpu);
1269 * If this pinned group hasn't been scheduled,
1270 * put it in error state.
1272 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1273 update_group_times(event);
1274 event->state = PERF_EVENT_STATE_ERROR;
1278 list_for_each_entry(event, &ctx->group_list, group_entry) {
1280 * Ignore events in OFF or ERROR state, and
1281 * ignore pinned events since we did them already.
1283 if (event->state <= PERF_EVENT_STATE_OFF ||
1284 event->attr.pinned)
1285 continue;
1288 * Listen to the 'cpu' scheduling filter constraint
1289 * of events:
1291 if (event->cpu != -1 && event->cpu != cpu)
1292 continue;
1294 if (event != event->group_leader) {
1295 if (event_sched_in(event, cpuctx, ctx, cpu))
1296 can_add_hw = 0;
1297 } else {
1298 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1299 if (group_sched_in(event, cpuctx, ctx, cpu))
1300 can_add_hw = 0;
1304 perf_enable();
1305 out:
1306 spin_unlock(&ctx->lock);
1310 * Called from scheduler to add the events of the current task
1311 * with interrupts disabled.
1313 * We restore the event value and then enable it.
1315 * This does not protect us against NMI, but enable()
1316 * sets the enabled bit in the control field of event _before_
1317 * accessing the event control register. If a NMI hits, then it will
1318 * keep the event running.
1320 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1322 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1323 struct perf_event_context *ctx = task->perf_event_ctxp;
1325 if (likely(!ctx))
1326 return;
1327 if (cpuctx->task_ctx == ctx)
1328 return;
1329 __perf_event_sched_in(ctx, cpuctx, cpu);
1330 cpuctx->task_ctx = ctx;
1333 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1335 struct perf_event_context *ctx = &cpuctx->ctx;
1337 __perf_event_sched_in(ctx, cpuctx, cpu);
1340 #define MAX_INTERRUPTS (~0ULL)
1342 static void perf_log_throttle(struct perf_event *event, int enable);
1344 static void perf_adjust_period(struct perf_event *event, u64 events)
1346 struct hw_perf_event *hwc = &event->hw;
1347 u64 period, sample_period;
1348 s64 delta;
1350 events *= hwc->sample_period;
1351 period = div64_u64(events, event->attr.sample_freq);
1353 delta = (s64)(period - hwc->sample_period);
1354 delta = (delta + 7) / 8; /* low pass filter */
1356 sample_period = hwc->sample_period + delta;
1358 if (!sample_period)
1359 sample_period = 1;
1361 hwc->sample_period = sample_period;
1364 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1366 struct perf_event *event;
1367 struct hw_perf_event *hwc;
1368 u64 interrupts, freq;
1370 spin_lock(&ctx->lock);
1371 list_for_each_entry(event, &ctx->group_list, group_entry) {
1372 if (event->state != PERF_EVENT_STATE_ACTIVE)
1373 continue;
1375 hwc = &event->hw;
1377 interrupts = hwc->interrupts;
1378 hwc->interrupts = 0;
1381 * unthrottle events on the tick
1383 if (interrupts == MAX_INTERRUPTS) {
1384 perf_log_throttle(event, 1);
1385 event->pmu->unthrottle(event);
1386 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1389 if (!event->attr.freq || !event->attr.sample_freq)
1390 continue;
1393 * if the specified freq < HZ then we need to skip ticks
1395 if (event->attr.sample_freq < HZ) {
1396 freq = event->attr.sample_freq;
1398 hwc->freq_count += freq;
1399 hwc->freq_interrupts += interrupts;
1401 if (hwc->freq_count < HZ)
1402 continue;
1404 interrupts = hwc->freq_interrupts;
1405 hwc->freq_interrupts = 0;
1406 hwc->freq_count -= HZ;
1407 } else
1408 freq = HZ;
1410 perf_adjust_period(event, freq * interrupts);
1413 * In order to avoid being stalled by an (accidental) huge
1414 * sample period, force reset the sample period if we didn't
1415 * get any events in this freq period.
1417 if (!interrupts) {
1418 perf_disable();
1419 event->pmu->disable(event);
1420 atomic64_set(&hwc->period_left, 0);
1421 event->pmu->enable(event);
1422 perf_enable();
1425 spin_unlock(&ctx->lock);
1429 * Round-robin a context's events:
1431 static void rotate_ctx(struct perf_event_context *ctx)
1433 struct perf_event *event;
1435 if (!ctx->nr_events)
1436 return;
1438 spin_lock(&ctx->lock);
1440 * Rotate the first entry last (works just fine for group events too):
1442 perf_disable();
1443 list_for_each_entry(event, &ctx->group_list, group_entry) {
1444 list_move_tail(&event->group_entry, &ctx->group_list);
1445 break;
1447 perf_enable();
1449 spin_unlock(&ctx->lock);
1452 void perf_event_task_tick(struct task_struct *curr, int cpu)
1454 struct perf_cpu_context *cpuctx;
1455 struct perf_event_context *ctx;
1457 if (!atomic_read(&nr_events))
1458 return;
1460 cpuctx = &per_cpu(perf_cpu_context, cpu);
1461 ctx = curr->perf_event_ctxp;
1463 perf_ctx_adjust_freq(&cpuctx->ctx);
1464 if (ctx)
1465 perf_ctx_adjust_freq(ctx);
1467 perf_event_cpu_sched_out(cpuctx);
1468 if (ctx)
1469 __perf_event_task_sched_out(ctx);
1471 rotate_ctx(&cpuctx->ctx);
1472 if (ctx)
1473 rotate_ctx(ctx);
1475 perf_event_cpu_sched_in(cpuctx, cpu);
1476 if (ctx)
1477 perf_event_task_sched_in(curr, cpu);
1481 * Enable all of a task's events that have been marked enable-on-exec.
1482 * This expects task == current.
1484 static void perf_event_enable_on_exec(struct task_struct *task)
1486 struct perf_event_context *ctx;
1487 struct perf_event *event;
1488 unsigned long flags;
1489 int enabled = 0;
1491 local_irq_save(flags);
1492 ctx = task->perf_event_ctxp;
1493 if (!ctx || !ctx->nr_events)
1494 goto out;
1496 __perf_event_task_sched_out(ctx);
1498 spin_lock(&ctx->lock);
1500 list_for_each_entry(event, &ctx->group_list, group_entry) {
1501 if (!event->attr.enable_on_exec)
1502 continue;
1503 event->attr.enable_on_exec = 0;
1504 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1505 continue;
1506 __perf_event_mark_enabled(event, ctx);
1507 enabled = 1;
1511 * Unclone this context if we enabled any event.
1513 if (enabled)
1514 unclone_ctx(ctx);
1516 spin_unlock(&ctx->lock);
1518 perf_event_task_sched_in(task, smp_processor_id());
1519 out:
1520 local_irq_restore(flags);
1524 * Cross CPU call to read the hardware event
1526 static void __perf_event_read(void *info)
1528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1529 struct perf_event *event = info;
1530 struct perf_event_context *ctx = event->ctx;
1531 unsigned long flags;
1534 * If this is a task context, we need to check whether it is
1535 * the current task context of this cpu. If not it has been
1536 * scheduled out before the smp call arrived. In that case
1537 * event->count would have been updated to a recent sample
1538 * when the event was scheduled out.
1540 if (ctx->task && cpuctx->task_ctx != ctx)
1541 return;
1543 local_irq_save(flags);
1544 if (ctx->is_active)
1545 update_context_time(ctx);
1546 event->pmu->read(event);
1547 update_event_times(event);
1548 local_irq_restore(flags);
1551 static u64 perf_event_read(struct perf_event *event)
1554 * If event is enabled and currently active on a CPU, update the
1555 * value in the event structure:
1557 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1558 smp_call_function_single(event->oncpu,
1559 __perf_event_read, event, 1);
1560 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1561 update_event_times(event);
1564 return atomic64_read(&event->count);
1568 * Initialize the perf_event context in a task_struct:
1570 static void
1571 __perf_event_init_context(struct perf_event_context *ctx,
1572 struct task_struct *task)
1574 memset(ctx, 0, sizeof(*ctx));
1575 spin_lock_init(&ctx->lock);
1576 mutex_init(&ctx->mutex);
1577 INIT_LIST_HEAD(&ctx->group_list);
1578 INIT_LIST_HEAD(&ctx->event_list);
1579 atomic_set(&ctx->refcount, 1);
1580 ctx->task = task;
1583 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1585 struct perf_event_context *ctx;
1586 struct perf_cpu_context *cpuctx;
1587 struct task_struct *task;
1588 unsigned long flags;
1589 int err;
1592 * If cpu is not a wildcard then this is a percpu event:
1594 if (cpu != -1) {
1595 /* Must be root to operate on a CPU event: */
1596 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1597 return ERR_PTR(-EACCES);
1599 if (cpu < 0 || cpu > num_possible_cpus())
1600 return ERR_PTR(-EINVAL);
1603 * We could be clever and allow to attach a event to an
1604 * offline CPU and activate it when the CPU comes up, but
1605 * that's for later.
1607 if (!cpu_isset(cpu, cpu_online_map))
1608 return ERR_PTR(-ENODEV);
1610 cpuctx = &per_cpu(perf_cpu_context, cpu);
1611 ctx = &cpuctx->ctx;
1612 get_ctx(ctx);
1614 return ctx;
1617 rcu_read_lock();
1618 if (!pid)
1619 task = current;
1620 else
1621 task = find_task_by_vpid(pid);
1622 if (task)
1623 get_task_struct(task);
1624 rcu_read_unlock();
1626 if (!task)
1627 return ERR_PTR(-ESRCH);
1630 * Can't attach events to a dying task.
1632 err = -ESRCH;
1633 if (task->flags & PF_EXITING)
1634 goto errout;
1636 /* Reuse ptrace permission checks for now. */
1637 err = -EACCES;
1638 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1639 goto errout;
1641 retry:
1642 ctx = perf_lock_task_context(task, &flags);
1643 if (ctx) {
1644 unclone_ctx(ctx);
1645 spin_unlock_irqrestore(&ctx->lock, flags);
1648 if (!ctx) {
1649 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1650 err = -ENOMEM;
1651 if (!ctx)
1652 goto errout;
1653 __perf_event_init_context(ctx, task);
1654 get_ctx(ctx);
1655 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1657 * We raced with some other task; use
1658 * the context they set.
1660 kfree(ctx);
1661 goto retry;
1663 get_task_struct(task);
1666 put_task_struct(task);
1667 return ctx;
1669 errout:
1670 put_task_struct(task);
1671 return ERR_PTR(err);
1674 static void free_event_rcu(struct rcu_head *head)
1676 struct perf_event *event;
1678 event = container_of(head, struct perf_event, rcu_head);
1679 if (event->ns)
1680 put_pid_ns(event->ns);
1681 kfree(event);
1684 static void perf_pending_sync(struct perf_event *event);
1686 static void free_event(struct perf_event *event)
1688 perf_pending_sync(event);
1690 if (!event->parent) {
1691 atomic_dec(&nr_events);
1692 if (event->attr.mmap)
1693 atomic_dec(&nr_mmap_events);
1694 if (event->attr.comm)
1695 atomic_dec(&nr_comm_events);
1696 if (event->attr.task)
1697 atomic_dec(&nr_task_events);
1700 if (event->output) {
1701 fput(event->output->filp);
1702 event->output = NULL;
1705 if (event->destroy)
1706 event->destroy(event);
1708 put_ctx(event->ctx);
1709 call_rcu(&event->rcu_head, free_event_rcu);
1713 * Called when the last reference to the file is gone.
1715 static int perf_release(struct inode *inode, struct file *file)
1717 struct perf_event *event = file->private_data;
1718 struct perf_event_context *ctx = event->ctx;
1720 file->private_data = NULL;
1722 WARN_ON_ONCE(ctx->parent_ctx);
1723 mutex_lock(&ctx->mutex);
1724 perf_event_remove_from_context(event);
1725 mutex_unlock(&ctx->mutex);
1727 mutex_lock(&event->owner->perf_event_mutex);
1728 list_del_init(&event->owner_entry);
1729 mutex_unlock(&event->owner->perf_event_mutex);
1730 put_task_struct(event->owner);
1732 free_event(event);
1734 return 0;
1737 static int perf_event_read_size(struct perf_event *event)
1739 int entry = sizeof(u64); /* value */
1740 int size = 0;
1741 int nr = 1;
1743 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1744 size += sizeof(u64);
1746 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1747 size += sizeof(u64);
1749 if (event->attr.read_format & PERF_FORMAT_ID)
1750 entry += sizeof(u64);
1752 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1753 nr += event->group_leader->nr_siblings;
1754 size += sizeof(u64);
1757 size += entry * nr;
1759 return size;
1762 static u64 perf_event_read_value(struct perf_event *event)
1764 struct perf_event *child;
1765 u64 total = 0;
1767 total += perf_event_read(event);
1768 list_for_each_entry(child, &event->child_list, child_list)
1769 total += perf_event_read(child);
1771 return total;
1774 static int perf_event_read_entry(struct perf_event *event,
1775 u64 read_format, char __user *buf)
1777 int n = 0, count = 0;
1778 u64 values[2];
1780 values[n++] = perf_event_read_value(event);
1781 if (read_format & PERF_FORMAT_ID)
1782 values[n++] = primary_event_id(event);
1784 count = n * sizeof(u64);
1786 if (copy_to_user(buf, values, count))
1787 return -EFAULT;
1789 return count;
1792 static int perf_event_read_group(struct perf_event *event,
1793 u64 read_format, char __user *buf)
1795 struct perf_event *leader = event->group_leader, *sub;
1796 int n = 0, size = 0, err = -EFAULT;
1797 u64 values[3];
1799 values[n++] = 1 + leader->nr_siblings;
1800 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1801 values[n++] = leader->total_time_enabled +
1802 atomic64_read(&leader->child_total_time_enabled);
1804 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1805 values[n++] = leader->total_time_running +
1806 atomic64_read(&leader->child_total_time_running);
1809 size = n * sizeof(u64);
1811 if (copy_to_user(buf, values, size))
1812 return -EFAULT;
1814 err = perf_event_read_entry(leader, read_format, buf + size);
1815 if (err < 0)
1816 return err;
1818 size += err;
1820 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1821 err = perf_event_read_entry(sub, read_format,
1822 buf + size);
1823 if (err < 0)
1824 return err;
1826 size += err;
1829 return size;
1832 static int perf_event_read_one(struct perf_event *event,
1833 u64 read_format, char __user *buf)
1835 u64 values[4];
1836 int n = 0;
1838 values[n++] = perf_event_read_value(event);
1839 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1840 values[n++] = event->total_time_enabled +
1841 atomic64_read(&event->child_total_time_enabled);
1843 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1844 values[n++] = event->total_time_running +
1845 atomic64_read(&event->child_total_time_running);
1847 if (read_format & PERF_FORMAT_ID)
1848 values[n++] = primary_event_id(event);
1850 if (copy_to_user(buf, values, n * sizeof(u64)))
1851 return -EFAULT;
1853 return n * sizeof(u64);
1857 * Read the performance event - simple non blocking version for now
1859 static ssize_t
1860 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1862 u64 read_format = event->attr.read_format;
1863 int ret;
1866 * Return end-of-file for a read on a event that is in
1867 * error state (i.e. because it was pinned but it couldn't be
1868 * scheduled on to the CPU at some point).
1870 if (event->state == PERF_EVENT_STATE_ERROR)
1871 return 0;
1873 if (count < perf_event_read_size(event))
1874 return -ENOSPC;
1876 WARN_ON_ONCE(event->ctx->parent_ctx);
1877 mutex_lock(&event->child_mutex);
1878 if (read_format & PERF_FORMAT_GROUP)
1879 ret = perf_event_read_group(event, read_format, buf);
1880 else
1881 ret = perf_event_read_one(event, read_format, buf);
1882 mutex_unlock(&event->child_mutex);
1884 return ret;
1887 static ssize_t
1888 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1890 struct perf_event *event = file->private_data;
1892 return perf_read_hw(event, buf, count);
1895 static unsigned int perf_poll(struct file *file, poll_table *wait)
1897 struct perf_event *event = file->private_data;
1898 struct perf_mmap_data *data;
1899 unsigned int events = POLL_HUP;
1901 rcu_read_lock();
1902 data = rcu_dereference(event->data);
1903 if (data)
1904 events = atomic_xchg(&data->poll, 0);
1905 rcu_read_unlock();
1907 poll_wait(file, &event->waitq, wait);
1909 return events;
1912 static void perf_event_reset(struct perf_event *event)
1914 (void)perf_event_read(event);
1915 atomic64_set(&event->count, 0);
1916 perf_event_update_userpage(event);
1920 * Holding the top-level event's child_mutex means that any
1921 * descendant process that has inherited this event will block
1922 * in sync_child_event if it goes to exit, thus satisfying the
1923 * task existence requirements of perf_event_enable/disable.
1925 static void perf_event_for_each_child(struct perf_event *event,
1926 void (*func)(struct perf_event *))
1928 struct perf_event *child;
1930 WARN_ON_ONCE(event->ctx->parent_ctx);
1931 mutex_lock(&event->child_mutex);
1932 func(event);
1933 list_for_each_entry(child, &event->child_list, child_list)
1934 func(child);
1935 mutex_unlock(&event->child_mutex);
1938 static void perf_event_for_each(struct perf_event *event,
1939 void (*func)(struct perf_event *))
1941 struct perf_event_context *ctx = event->ctx;
1942 struct perf_event *sibling;
1944 WARN_ON_ONCE(ctx->parent_ctx);
1945 mutex_lock(&ctx->mutex);
1946 event = event->group_leader;
1948 perf_event_for_each_child(event, func);
1949 func(event);
1950 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1951 perf_event_for_each_child(event, func);
1952 mutex_unlock(&ctx->mutex);
1955 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1957 struct perf_event_context *ctx = event->ctx;
1958 unsigned long size;
1959 int ret = 0;
1960 u64 value;
1962 if (!event->attr.sample_period)
1963 return -EINVAL;
1965 size = copy_from_user(&value, arg, sizeof(value));
1966 if (size != sizeof(value))
1967 return -EFAULT;
1969 if (!value)
1970 return -EINVAL;
1972 spin_lock_irq(&ctx->lock);
1973 if (event->attr.freq) {
1974 if (value > sysctl_perf_event_sample_rate) {
1975 ret = -EINVAL;
1976 goto unlock;
1979 event->attr.sample_freq = value;
1980 } else {
1981 event->attr.sample_period = value;
1982 event->hw.sample_period = value;
1984 unlock:
1985 spin_unlock_irq(&ctx->lock);
1987 return ret;
1990 int perf_event_set_output(struct perf_event *event, int output_fd);
1992 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1994 struct perf_event *event = file->private_data;
1995 void (*func)(struct perf_event *);
1996 u32 flags = arg;
1998 switch (cmd) {
1999 case PERF_EVENT_IOC_ENABLE:
2000 func = perf_event_enable;
2001 break;
2002 case PERF_EVENT_IOC_DISABLE:
2003 func = perf_event_disable;
2004 break;
2005 case PERF_EVENT_IOC_RESET:
2006 func = perf_event_reset;
2007 break;
2009 case PERF_EVENT_IOC_REFRESH:
2010 return perf_event_refresh(event, arg);
2012 case PERF_EVENT_IOC_PERIOD:
2013 return perf_event_period(event, (u64 __user *)arg);
2015 case PERF_EVENT_IOC_SET_OUTPUT:
2016 return perf_event_set_output(event, arg);
2018 default:
2019 return -ENOTTY;
2022 if (flags & PERF_IOC_FLAG_GROUP)
2023 perf_event_for_each(event, func);
2024 else
2025 perf_event_for_each_child(event, func);
2027 return 0;
2030 int perf_event_task_enable(void)
2032 struct perf_event *event;
2034 mutex_lock(&current->perf_event_mutex);
2035 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2036 perf_event_for_each_child(event, perf_event_enable);
2037 mutex_unlock(&current->perf_event_mutex);
2039 return 0;
2042 int perf_event_task_disable(void)
2044 struct perf_event *event;
2046 mutex_lock(&current->perf_event_mutex);
2047 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2048 perf_event_for_each_child(event, perf_event_disable);
2049 mutex_unlock(&current->perf_event_mutex);
2051 return 0;
2054 #ifndef PERF_EVENT_INDEX_OFFSET
2055 # define PERF_EVENT_INDEX_OFFSET 0
2056 #endif
2058 static int perf_event_index(struct perf_event *event)
2060 if (event->state != PERF_EVENT_STATE_ACTIVE)
2061 return 0;
2063 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2067 * Callers need to ensure there can be no nesting of this function, otherwise
2068 * the seqlock logic goes bad. We can not serialize this because the arch
2069 * code calls this from NMI context.
2071 void perf_event_update_userpage(struct perf_event *event)
2073 struct perf_event_mmap_page *userpg;
2074 struct perf_mmap_data *data;
2076 rcu_read_lock();
2077 data = rcu_dereference(event->data);
2078 if (!data)
2079 goto unlock;
2081 userpg = data->user_page;
2084 * Disable preemption so as to not let the corresponding user-space
2085 * spin too long if we get preempted.
2087 preempt_disable();
2088 ++userpg->lock;
2089 barrier();
2090 userpg->index = perf_event_index(event);
2091 userpg->offset = atomic64_read(&event->count);
2092 if (event->state == PERF_EVENT_STATE_ACTIVE)
2093 userpg->offset -= atomic64_read(&event->hw.prev_count);
2095 userpg->time_enabled = event->total_time_enabled +
2096 atomic64_read(&event->child_total_time_enabled);
2098 userpg->time_running = event->total_time_running +
2099 atomic64_read(&event->child_total_time_running);
2101 barrier();
2102 ++userpg->lock;
2103 preempt_enable();
2104 unlock:
2105 rcu_read_unlock();
2108 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2110 struct perf_event *event = vma->vm_file->private_data;
2111 struct perf_mmap_data *data;
2112 int ret = VM_FAULT_SIGBUS;
2114 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2115 if (vmf->pgoff == 0)
2116 ret = 0;
2117 return ret;
2120 rcu_read_lock();
2121 data = rcu_dereference(event->data);
2122 if (!data)
2123 goto unlock;
2125 if (vmf->pgoff == 0) {
2126 vmf->page = virt_to_page(data->user_page);
2127 } else {
2128 int nr = vmf->pgoff - 1;
2130 if ((unsigned)nr > data->nr_pages)
2131 goto unlock;
2133 if (vmf->flags & FAULT_FLAG_WRITE)
2134 goto unlock;
2136 vmf->page = virt_to_page(data->data_pages[nr]);
2139 get_page(vmf->page);
2140 vmf->page->mapping = vma->vm_file->f_mapping;
2141 vmf->page->index = vmf->pgoff;
2143 ret = 0;
2144 unlock:
2145 rcu_read_unlock();
2147 return ret;
2150 static int perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2152 struct perf_mmap_data *data;
2153 unsigned long size;
2154 int i;
2156 WARN_ON(atomic_read(&event->mmap_count));
2158 size = sizeof(struct perf_mmap_data);
2159 size += nr_pages * sizeof(void *);
2161 data = kzalloc(size, GFP_KERNEL);
2162 if (!data)
2163 goto fail;
2165 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2166 if (!data->user_page)
2167 goto fail_user_page;
2169 for (i = 0; i < nr_pages; i++) {
2170 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2171 if (!data->data_pages[i])
2172 goto fail_data_pages;
2175 data->nr_pages = nr_pages;
2176 atomic_set(&data->lock, -1);
2178 if (event->attr.watermark) {
2179 data->watermark = min_t(long, PAGE_SIZE * nr_pages,
2180 event->attr.wakeup_watermark);
2182 if (!data->watermark)
2183 data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4);
2185 rcu_assign_pointer(event->data, data);
2187 return 0;
2189 fail_data_pages:
2190 for (i--; i >= 0; i--)
2191 free_page((unsigned long)data->data_pages[i]);
2193 free_page((unsigned long)data->user_page);
2195 fail_user_page:
2196 kfree(data);
2198 fail:
2199 return -ENOMEM;
2202 static void perf_mmap_free_page(unsigned long addr)
2204 struct page *page = virt_to_page((void *)addr);
2206 page->mapping = NULL;
2207 __free_page(page);
2210 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2212 struct perf_mmap_data *data;
2213 int i;
2215 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2217 perf_mmap_free_page((unsigned long)data->user_page);
2218 for (i = 0; i < data->nr_pages; i++)
2219 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2221 kfree(data);
2224 static void perf_mmap_data_free(struct perf_event *event)
2226 struct perf_mmap_data *data = event->data;
2228 WARN_ON(atomic_read(&event->mmap_count));
2230 rcu_assign_pointer(event->data, NULL);
2231 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2234 static void perf_mmap_open(struct vm_area_struct *vma)
2236 struct perf_event *event = vma->vm_file->private_data;
2238 atomic_inc(&event->mmap_count);
2241 static void perf_mmap_close(struct vm_area_struct *vma)
2243 struct perf_event *event = vma->vm_file->private_data;
2245 WARN_ON_ONCE(event->ctx->parent_ctx);
2246 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2247 struct user_struct *user = current_user();
2249 atomic_long_sub(event->data->nr_pages + 1, &user->locked_vm);
2250 vma->vm_mm->locked_vm -= event->data->nr_locked;
2251 perf_mmap_data_free(event);
2252 mutex_unlock(&event->mmap_mutex);
2256 static const struct vm_operations_struct perf_mmap_vmops = {
2257 .open = perf_mmap_open,
2258 .close = perf_mmap_close,
2259 .fault = perf_mmap_fault,
2260 .page_mkwrite = perf_mmap_fault,
2263 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2265 struct perf_event *event = file->private_data;
2266 unsigned long user_locked, user_lock_limit;
2267 struct user_struct *user = current_user();
2268 unsigned long locked, lock_limit;
2269 unsigned long vma_size;
2270 unsigned long nr_pages;
2271 long user_extra, extra;
2272 int ret = 0;
2274 if (!(vma->vm_flags & VM_SHARED))
2275 return -EINVAL;
2277 vma_size = vma->vm_end - vma->vm_start;
2278 nr_pages = (vma_size / PAGE_SIZE) - 1;
2281 * If we have data pages ensure they're a power-of-two number, so we
2282 * can do bitmasks instead of modulo.
2284 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2285 return -EINVAL;
2287 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2288 return -EINVAL;
2290 if (vma->vm_pgoff != 0)
2291 return -EINVAL;
2293 WARN_ON_ONCE(event->ctx->parent_ctx);
2294 mutex_lock(&event->mmap_mutex);
2295 if (event->output) {
2296 ret = -EINVAL;
2297 goto unlock;
2300 if (atomic_inc_not_zero(&event->mmap_count)) {
2301 if (nr_pages != event->data->nr_pages)
2302 ret = -EINVAL;
2303 goto unlock;
2306 user_extra = nr_pages + 1;
2307 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2310 * Increase the limit linearly with more CPUs:
2312 user_lock_limit *= num_online_cpus();
2314 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2316 extra = 0;
2317 if (user_locked > user_lock_limit)
2318 extra = user_locked - user_lock_limit;
2320 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2321 lock_limit >>= PAGE_SHIFT;
2322 locked = vma->vm_mm->locked_vm + extra;
2324 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2325 !capable(CAP_IPC_LOCK)) {
2326 ret = -EPERM;
2327 goto unlock;
2330 WARN_ON(event->data);
2331 ret = perf_mmap_data_alloc(event, nr_pages);
2332 if (ret)
2333 goto unlock;
2335 atomic_set(&event->mmap_count, 1);
2336 atomic_long_add(user_extra, &user->locked_vm);
2337 vma->vm_mm->locked_vm += extra;
2338 event->data->nr_locked = extra;
2339 if (vma->vm_flags & VM_WRITE)
2340 event->data->writable = 1;
2342 unlock:
2343 mutex_unlock(&event->mmap_mutex);
2345 vma->vm_flags |= VM_RESERVED;
2346 vma->vm_ops = &perf_mmap_vmops;
2348 return ret;
2351 static int perf_fasync(int fd, struct file *filp, int on)
2353 struct inode *inode = filp->f_path.dentry->d_inode;
2354 struct perf_event *event = filp->private_data;
2355 int retval;
2357 mutex_lock(&inode->i_mutex);
2358 retval = fasync_helper(fd, filp, on, &event->fasync);
2359 mutex_unlock(&inode->i_mutex);
2361 if (retval < 0)
2362 return retval;
2364 return 0;
2367 static const struct file_operations perf_fops = {
2368 .release = perf_release,
2369 .read = perf_read,
2370 .poll = perf_poll,
2371 .unlocked_ioctl = perf_ioctl,
2372 .compat_ioctl = perf_ioctl,
2373 .mmap = perf_mmap,
2374 .fasync = perf_fasync,
2378 * Perf event wakeup
2380 * If there's data, ensure we set the poll() state and publish everything
2381 * to user-space before waking everybody up.
2384 void perf_event_wakeup(struct perf_event *event)
2386 wake_up_all(&event->waitq);
2388 if (event->pending_kill) {
2389 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2390 event->pending_kill = 0;
2395 * Pending wakeups
2397 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2399 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2400 * single linked list and use cmpxchg() to add entries lockless.
2403 static void perf_pending_event(struct perf_pending_entry *entry)
2405 struct perf_event *event = container_of(entry,
2406 struct perf_event, pending);
2408 if (event->pending_disable) {
2409 event->pending_disable = 0;
2410 __perf_event_disable(event);
2413 if (event->pending_wakeup) {
2414 event->pending_wakeup = 0;
2415 perf_event_wakeup(event);
2419 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2421 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2422 PENDING_TAIL,
2425 static void perf_pending_queue(struct perf_pending_entry *entry,
2426 void (*func)(struct perf_pending_entry *))
2428 struct perf_pending_entry **head;
2430 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2431 return;
2433 entry->func = func;
2435 head = &get_cpu_var(perf_pending_head);
2437 do {
2438 entry->next = *head;
2439 } while (cmpxchg(head, entry->next, entry) != entry->next);
2441 set_perf_event_pending();
2443 put_cpu_var(perf_pending_head);
2446 static int __perf_pending_run(void)
2448 struct perf_pending_entry *list;
2449 int nr = 0;
2451 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2452 while (list != PENDING_TAIL) {
2453 void (*func)(struct perf_pending_entry *);
2454 struct perf_pending_entry *entry = list;
2456 list = list->next;
2458 func = entry->func;
2459 entry->next = NULL;
2461 * Ensure we observe the unqueue before we issue the wakeup,
2462 * so that we won't be waiting forever.
2463 * -- see perf_not_pending().
2465 smp_wmb();
2467 func(entry);
2468 nr++;
2471 return nr;
2474 static inline int perf_not_pending(struct perf_event *event)
2477 * If we flush on whatever cpu we run, there is a chance we don't
2478 * need to wait.
2480 get_cpu();
2481 __perf_pending_run();
2482 put_cpu();
2485 * Ensure we see the proper queue state before going to sleep
2486 * so that we do not miss the wakeup. -- see perf_pending_handle()
2488 smp_rmb();
2489 return event->pending.next == NULL;
2492 static void perf_pending_sync(struct perf_event *event)
2494 wait_event(event->waitq, perf_not_pending(event));
2497 void perf_event_do_pending(void)
2499 __perf_pending_run();
2503 * Callchain support -- arch specific
2506 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2508 return NULL;
2512 * Output
2514 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2515 unsigned long offset, unsigned long head)
2517 unsigned long mask;
2519 if (!data->writable)
2520 return true;
2522 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2524 offset = (offset - tail) & mask;
2525 head = (head - tail) & mask;
2527 if ((int)(head - offset) < 0)
2528 return false;
2530 return true;
2533 static void perf_output_wakeup(struct perf_output_handle *handle)
2535 atomic_set(&handle->data->poll, POLL_IN);
2537 if (handle->nmi) {
2538 handle->event->pending_wakeup = 1;
2539 perf_pending_queue(&handle->event->pending,
2540 perf_pending_event);
2541 } else
2542 perf_event_wakeup(handle->event);
2546 * Curious locking construct.
2548 * We need to ensure a later event_id doesn't publish a head when a former
2549 * event_id isn't done writing. However since we need to deal with NMIs we
2550 * cannot fully serialize things.
2552 * What we do is serialize between CPUs so we only have to deal with NMI
2553 * nesting on a single CPU.
2555 * We only publish the head (and generate a wakeup) when the outer-most
2556 * event_id completes.
2558 static void perf_output_lock(struct perf_output_handle *handle)
2560 struct perf_mmap_data *data = handle->data;
2561 int cpu;
2563 handle->locked = 0;
2565 local_irq_save(handle->flags);
2566 cpu = smp_processor_id();
2568 if (in_nmi() && atomic_read(&data->lock) == cpu)
2569 return;
2571 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2572 cpu_relax();
2574 handle->locked = 1;
2577 static void perf_output_unlock(struct perf_output_handle *handle)
2579 struct perf_mmap_data *data = handle->data;
2580 unsigned long head;
2581 int cpu;
2583 data->done_head = data->head;
2585 if (!handle->locked)
2586 goto out;
2588 again:
2590 * The xchg implies a full barrier that ensures all writes are done
2591 * before we publish the new head, matched by a rmb() in userspace when
2592 * reading this position.
2594 while ((head = atomic_long_xchg(&data->done_head, 0)))
2595 data->user_page->data_head = head;
2598 * NMI can happen here, which means we can miss a done_head update.
2601 cpu = atomic_xchg(&data->lock, -1);
2602 WARN_ON_ONCE(cpu != smp_processor_id());
2605 * Therefore we have to validate we did not indeed do so.
2607 if (unlikely(atomic_long_read(&data->done_head))) {
2609 * Since we had it locked, we can lock it again.
2611 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2612 cpu_relax();
2614 goto again;
2617 if (atomic_xchg(&data->wakeup, 0))
2618 perf_output_wakeup(handle);
2619 out:
2620 local_irq_restore(handle->flags);
2623 void perf_output_copy(struct perf_output_handle *handle,
2624 const void *buf, unsigned int len)
2626 unsigned int pages_mask;
2627 unsigned int offset;
2628 unsigned int size;
2629 void **pages;
2631 offset = handle->offset;
2632 pages_mask = handle->data->nr_pages - 1;
2633 pages = handle->data->data_pages;
2635 do {
2636 unsigned int page_offset;
2637 int nr;
2639 nr = (offset >> PAGE_SHIFT) & pages_mask;
2640 page_offset = offset & (PAGE_SIZE - 1);
2641 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2643 memcpy(pages[nr] + page_offset, buf, size);
2645 len -= size;
2646 buf += size;
2647 offset += size;
2648 } while (len);
2650 handle->offset = offset;
2653 * Check we didn't copy past our reservation window, taking the
2654 * possible unsigned int wrap into account.
2656 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2659 int perf_output_begin(struct perf_output_handle *handle,
2660 struct perf_event *event, unsigned int size,
2661 int nmi, int sample)
2663 struct perf_event *output_event;
2664 struct perf_mmap_data *data;
2665 unsigned long tail, offset, head;
2666 int have_lost;
2667 struct {
2668 struct perf_event_header header;
2669 u64 id;
2670 u64 lost;
2671 } lost_event;
2673 rcu_read_lock();
2675 * For inherited events we send all the output towards the parent.
2677 if (event->parent)
2678 event = event->parent;
2680 output_event = rcu_dereference(event->output);
2681 if (output_event)
2682 event = output_event;
2684 data = rcu_dereference(event->data);
2685 if (!data)
2686 goto out;
2688 handle->data = data;
2689 handle->event = event;
2690 handle->nmi = nmi;
2691 handle->sample = sample;
2693 if (!data->nr_pages)
2694 goto fail;
2696 have_lost = atomic_read(&data->lost);
2697 if (have_lost)
2698 size += sizeof(lost_event);
2700 perf_output_lock(handle);
2702 do {
2704 * Userspace could choose to issue a mb() before updating the
2705 * tail pointer. So that all reads will be completed before the
2706 * write is issued.
2708 tail = ACCESS_ONCE(data->user_page->data_tail);
2709 smp_rmb();
2710 offset = head = atomic_long_read(&data->head);
2711 head += size;
2712 if (unlikely(!perf_output_space(data, tail, offset, head)))
2713 goto fail;
2714 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2716 handle->offset = offset;
2717 handle->head = head;
2719 if (head - tail > data->watermark)
2720 atomic_set(&data->wakeup, 1);
2722 if (have_lost) {
2723 lost_event.header.type = PERF_RECORD_LOST;
2724 lost_event.header.misc = 0;
2725 lost_event.header.size = sizeof(lost_event);
2726 lost_event.id = event->id;
2727 lost_event.lost = atomic_xchg(&data->lost, 0);
2729 perf_output_put(handle, lost_event);
2732 return 0;
2734 fail:
2735 atomic_inc(&data->lost);
2736 perf_output_unlock(handle);
2737 out:
2738 rcu_read_unlock();
2740 return -ENOSPC;
2743 void perf_output_end(struct perf_output_handle *handle)
2745 struct perf_event *event = handle->event;
2746 struct perf_mmap_data *data = handle->data;
2748 int wakeup_events = event->attr.wakeup_events;
2750 if (handle->sample && wakeup_events) {
2751 int events = atomic_inc_return(&data->events);
2752 if (events >= wakeup_events) {
2753 atomic_sub(wakeup_events, &data->events);
2754 atomic_set(&data->wakeup, 1);
2758 perf_output_unlock(handle);
2759 rcu_read_unlock();
2762 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2765 * only top level events have the pid namespace they were created in
2767 if (event->parent)
2768 event = event->parent;
2770 return task_tgid_nr_ns(p, event->ns);
2773 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2776 * only top level events have the pid namespace they were created in
2778 if (event->parent)
2779 event = event->parent;
2781 return task_pid_nr_ns(p, event->ns);
2784 static void perf_output_read_one(struct perf_output_handle *handle,
2785 struct perf_event *event)
2787 u64 read_format = event->attr.read_format;
2788 u64 values[4];
2789 int n = 0;
2791 values[n++] = atomic64_read(&event->count);
2792 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2793 values[n++] = event->total_time_enabled +
2794 atomic64_read(&event->child_total_time_enabled);
2796 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2797 values[n++] = event->total_time_running +
2798 atomic64_read(&event->child_total_time_running);
2800 if (read_format & PERF_FORMAT_ID)
2801 values[n++] = primary_event_id(event);
2803 perf_output_copy(handle, values, n * sizeof(u64));
2807 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2809 static void perf_output_read_group(struct perf_output_handle *handle,
2810 struct perf_event *event)
2812 struct perf_event *leader = event->group_leader, *sub;
2813 u64 read_format = event->attr.read_format;
2814 u64 values[5];
2815 int n = 0;
2817 values[n++] = 1 + leader->nr_siblings;
2819 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2820 values[n++] = leader->total_time_enabled;
2822 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2823 values[n++] = leader->total_time_running;
2825 if (leader != event)
2826 leader->pmu->read(leader);
2828 values[n++] = atomic64_read(&leader->count);
2829 if (read_format & PERF_FORMAT_ID)
2830 values[n++] = primary_event_id(leader);
2832 perf_output_copy(handle, values, n * sizeof(u64));
2834 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2835 n = 0;
2837 if (sub != event)
2838 sub->pmu->read(sub);
2840 values[n++] = atomic64_read(&sub->count);
2841 if (read_format & PERF_FORMAT_ID)
2842 values[n++] = primary_event_id(sub);
2844 perf_output_copy(handle, values, n * sizeof(u64));
2848 static void perf_output_read(struct perf_output_handle *handle,
2849 struct perf_event *event)
2851 if (event->attr.read_format & PERF_FORMAT_GROUP)
2852 perf_output_read_group(handle, event);
2853 else
2854 perf_output_read_one(handle, event);
2857 void perf_output_sample(struct perf_output_handle *handle,
2858 struct perf_event_header *header,
2859 struct perf_sample_data *data,
2860 struct perf_event *event)
2862 u64 sample_type = data->type;
2864 perf_output_put(handle, *header);
2866 if (sample_type & PERF_SAMPLE_IP)
2867 perf_output_put(handle, data->ip);
2869 if (sample_type & PERF_SAMPLE_TID)
2870 perf_output_put(handle, data->tid_entry);
2872 if (sample_type & PERF_SAMPLE_TIME)
2873 perf_output_put(handle, data->time);
2875 if (sample_type & PERF_SAMPLE_ADDR)
2876 perf_output_put(handle, data->addr);
2878 if (sample_type & PERF_SAMPLE_ID)
2879 perf_output_put(handle, data->id);
2881 if (sample_type & PERF_SAMPLE_STREAM_ID)
2882 perf_output_put(handle, data->stream_id);
2884 if (sample_type & PERF_SAMPLE_CPU)
2885 perf_output_put(handle, data->cpu_entry);
2887 if (sample_type & PERF_SAMPLE_PERIOD)
2888 perf_output_put(handle, data->period);
2890 if (sample_type & PERF_SAMPLE_READ)
2891 perf_output_read(handle, event);
2893 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2894 if (data->callchain) {
2895 int size = 1;
2897 if (data->callchain)
2898 size += data->callchain->nr;
2900 size *= sizeof(u64);
2902 perf_output_copy(handle, data->callchain, size);
2903 } else {
2904 u64 nr = 0;
2905 perf_output_put(handle, nr);
2909 if (sample_type & PERF_SAMPLE_RAW) {
2910 if (data->raw) {
2911 perf_output_put(handle, data->raw->size);
2912 perf_output_copy(handle, data->raw->data,
2913 data->raw->size);
2914 } else {
2915 struct {
2916 u32 size;
2917 u32 data;
2918 } raw = {
2919 .size = sizeof(u32),
2920 .data = 0,
2922 perf_output_put(handle, raw);
2927 void perf_prepare_sample(struct perf_event_header *header,
2928 struct perf_sample_data *data,
2929 struct perf_event *event,
2930 struct pt_regs *regs)
2932 u64 sample_type = event->attr.sample_type;
2934 data->type = sample_type;
2936 header->type = PERF_RECORD_SAMPLE;
2937 header->size = sizeof(*header);
2939 header->misc = 0;
2940 header->misc |= perf_misc_flags(regs);
2942 if (sample_type & PERF_SAMPLE_IP) {
2943 data->ip = perf_instruction_pointer(regs);
2945 header->size += sizeof(data->ip);
2948 if (sample_type & PERF_SAMPLE_TID) {
2949 /* namespace issues */
2950 data->tid_entry.pid = perf_event_pid(event, current);
2951 data->tid_entry.tid = perf_event_tid(event, current);
2953 header->size += sizeof(data->tid_entry);
2956 if (sample_type & PERF_SAMPLE_TIME) {
2957 data->time = perf_clock();
2959 header->size += sizeof(data->time);
2962 if (sample_type & PERF_SAMPLE_ADDR)
2963 header->size += sizeof(data->addr);
2965 if (sample_type & PERF_SAMPLE_ID) {
2966 data->id = primary_event_id(event);
2968 header->size += sizeof(data->id);
2971 if (sample_type & PERF_SAMPLE_STREAM_ID) {
2972 data->stream_id = event->id;
2974 header->size += sizeof(data->stream_id);
2977 if (sample_type & PERF_SAMPLE_CPU) {
2978 data->cpu_entry.cpu = raw_smp_processor_id();
2979 data->cpu_entry.reserved = 0;
2981 header->size += sizeof(data->cpu_entry);
2984 if (sample_type & PERF_SAMPLE_PERIOD)
2985 header->size += sizeof(data->period);
2987 if (sample_type & PERF_SAMPLE_READ)
2988 header->size += perf_event_read_size(event);
2990 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2991 int size = 1;
2993 data->callchain = perf_callchain(regs);
2995 if (data->callchain)
2996 size += data->callchain->nr;
2998 header->size += size * sizeof(u64);
3001 if (sample_type & PERF_SAMPLE_RAW) {
3002 int size = sizeof(u32);
3004 if (data->raw)
3005 size += data->raw->size;
3006 else
3007 size += sizeof(u32);
3009 WARN_ON_ONCE(size & (sizeof(u64)-1));
3010 header->size += size;
3014 static void perf_event_output(struct perf_event *event, int nmi,
3015 struct perf_sample_data *data,
3016 struct pt_regs *regs)
3018 struct perf_output_handle handle;
3019 struct perf_event_header header;
3021 perf_prepare_sample(&header, data, event, regs);
3023 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3024 return;
3026 perf_output_sample(&handle, &header, data, event);
3028 perf_output_end(&handle);
3032 * read event_id
3035 struct perf_read_event {
3036 struct perf_event_header header;
3038 u32 pid;
3039 u32 tid;
3042 static void
3043 perf_event_read_event(struct perf_event *event,
3044 struct task_struct *task)
3046 struct perf_output_handle handle;
3047 struct perf_read_event read_event = {
3048 .header = {
3049 .type = PERF_RECORD_READ,
3050 .misc = 0,
3051 .size = sizeof(read_event) + perf_event_read_size(event),
3053 .pid = perf_event_pid(event, task),
3054 .tid = perf_event_tid(event, task),
3056 int ret;
3058 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3059 if (ret)
3060 return;
3062 perf_output_put(&handle, read_event);
3063 perf_output_read(&handle, event);
3065 perf_output_end(&handle);
3069 * task tracking -- fork/exit
3071 * enabled by: attr.comm | attr.mmap | attr.task
3074 struct perf_task_event {
3075 struct task_struct *task;
3076 struct perf_event_context *task_ctx;
3078 struct {
3079 struct perf_event_header header;
3081 u32 pid;
3082 u32 ppid;
3083 u32 tid;
3084 u32 ptid;
3085 u64 time;
3086 } event_id;
3089 static void perf_event_task_output(struct perf_event *event,
3090 struct perf_task_event *task_event)
3092 struct perf_output_handle handle;
3093 int size;
3094 struct task_struct *task = task_event->task;
3095 int ret;
3097 size = task_event->event_id.header.size;
3098 ret = perf_output_begin(&handle, event, size, 0, 0);
3100 if (ret)
3101 return;
3103 task_event->event_id.pid = perf_event_pid(event, task);
3104 task_event->event_id.ppid = perf_event_pid(event, current);
3106 task_event->event_id.tid = perf_event_tid(event, task);
3107 task_event->event_id.ptid = perf_event_tid(event, current);
3109 task_event->event_id.time = perf_clock();
3111 perf_output_put(&handle, task_event->event_id);
3113 perf_output_end(&handle);
3116 static int perf_event_task_match(struct perf_event *event)
3118 if (event->attr.comm || event->attr.mmap || event->attr.task)
3119 return 1;
3121 return 0;
3124 static void perf_event_task_ctx(struct perf_event_context *ctx,
3125 struct perf_task_event *task_event)
3127 struct perf_event *event;
3129 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3130 return;
3132 rcu_read_lock();
3133 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3134 if (perf_event_task_match(event))
3135 perf_event_task_output(event, task_event);
3137 rcu_read_unlock();
3140 static void perf_event_task_event(struct perf_task_event *task_event)
3142 struct perf_cpu_context *cpuctx;
3143 struct perf_event_context *ctx = task_event->task_ctx;
3145 cpuctx = &get_cpu_var(perf_cpu_context);
3146 perf_event_task_ctx(&cpuctx->ctx, task_event);
3147 put_cpu_var(perf_cpu_context);
3149 rcu_read_lock();
3150 if (!ctx)
3151 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3152 if (ctx)
3153 perf_event_task_ctx(ctx, task_event);
3154 rcu_read_unlock();
3157 static void perf_event_task(struct task_struct *task,
3158 struct perf_event_context *task_ctx,
3159 int new)
3161 struct perf_task_event task_event;
3163 if (!atomic_read(&nr_comm_events) &&
3164 !atomic_read(&nr_mmap_events) &&
3165 !atomic_read(&nr_task_events))
3166 return;
3168 task_event = (struct perf_task_event){
3169 .task = task,
3170 .task_ctx = task_ctx,
3171 .event_id = {
3172 .header = {
3173 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3174 .misc = 0,
3175 .size = sizeof(task_event.event_id),
3177 /* .pid */
3178 /* .ppid */
3179 /* .tid */
3180 /* .ptid */
3184 perf_event_task_event(&task_event);
3187 void perf_event_fork(struct task_struct *task)
3189 perf_event_task(task, NULL, 1);
3193 * comm tracking
3196 struct perf_comm_event {
3197 struct task_struct *task;
3198 char *comm;
3199 int comm_size;
3201 struct {
3202 struct perf_event_header header;
3204 u32 pid;
3205 u32 tid;
3206 } event_id;
3209 static void perf_event_comm_output(struct perf_event *event,
3210 struct perf_comm_event *comm_event)
3212 struct perf_output_handle handle;
3213 int size = comm_event->event_id.header.size;
3214 int ret = perf_output_begin(&handle, event, size, 0, 0);
3216 if (ret)
3217 return;
3219 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3220 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3222 perf_output_put(&handle, comm_event->event_id);
3223 perf_output_copy(&handle, comm_event->comm,
3224 comm_event->comm_size);
3225 perf_output_end(&handle);
3228 static int perf_event_comm_match(struct perf_event *event)
3230 if (event->attr.comm)
3231 return 1;
3233 return 0;
3236 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3237 struct perf_comm_event *comm_event)
3239 struct perf_event *event;
3241 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3242 return;
3244 rcu_read_lock();
3245 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3246 if (perf_event_comm_match(event))
3247 perf_event_comm_output(event, comm_event);
3249 rcu_read_unlock();
3252 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3254 struct perf_cpu_context *cpuctx;
3255 struct perf_event_context *ctx;
3256 unsigned int size;
3257 char comm[TASK_COMM_LEN];
3259 memset(comm, 0, sizeof(comm));
3260 strncpy(comm, comm_event->task->comm, sizeof(comm));
3261 size = ALIGN(strlen(comm)+1, sizeof(u64));
3263 comm_event->comm = comm;
3264 comm_event->comm_size = size;
3266 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3268 cpuctx = &get_cpu_var(perf_cpu_context);
3269 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3270 put_cpu_var(perf_cpu_context);
3272 rcu_read_lock();
3274 * doesn't really matter which of the child contexts the
3275 * events ends up in.
3277 ctx = rcu_dereference(current->perf_event_ctxp);
3278 if (ctx)
3279 perf_event_comm_ctx(ctx, comm_event);
3280 rcu_read_unlock();
3283 void perf_event_comm(struct task_struct *task)
3285 struct perf_comm_event comm_event;
3287 if (task->perf_event_ctxp)
3288 perf_event_enable_on_exec(task);
3290 if (!atomic_read(&nr_comm_events))
3291 return;
3293 comm_event = (struct perf_comm_event){
3294 .task = task,
3295 /* .comm */
3296 /* .comm_size */
3297 .event_id = {
3298 .header = {
3299 .type = PERF_RECORD_COMM,
3300 .misc = 0,
3301 /* .size */
3303 /* .pid */
3304 /* .tid */
3308 perf_event_comm_event(&comm_event);
3312 * mmap tracking
3315 struct perf_mmap_event {
3316 struct vm_area_struct *vma;
3318 const char *file_name;
3319 int file_size;
3321 struct {
3322 struct perf_event_header header;
3324 u32 pid;
3325 u32 tid;
3326 u64 start;
3327 u64 len;
3328 u64 pgoff;
3329 } event_id;
3332 static void perf_event_mmap_output(struct perf_event *event,
3333 struct perf_mmap_event *mmap_event)
3335 struct perf_output_handle handle;
3336 int size = mmap_event->event_id.header.size;
3337 int ret = perf_output_begin(&handle, event, size, 0, 0);
3339 if (ret)
3340 return;
3342 mmap_event->event_id.pid = perf_event_pid(event, current);
3343 mmap_event->event_id.tid = perf_event_tid(event, current);
3345 perf_output_put(&handle, mmap_event->event_id);
3346 perf_output_copy(&handle, mmap_event->file_name,
3347 mmap_event->file_size);
3348 perf_output_end(&handle);
3351 static int perf_event_mmap_match(struct perf_event *event,
3352 struct perf_mmap_event *mmap_event)
3354 if (event->attr.mmap)
3355 return 1;
3357 return 0;
3360 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3361 struct perf_mmap_event *mmap_event)
3363 struct perf_event *event;
3365 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3366 return;
3368 rcu_read_lock();
3369 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3370 if (perf_event_mmap_match(event, mmap_event))
3371 perf_event_mmap_output(event, mmap_event);
3373 rcu_read_unlock();
3376 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3378 struct perf_cpu_context *cpuctx;
3379 struct perf_event_context *ctx;
3380 struct vm_area_struct *vma = mmap_event->vma;
3381 struct file *file = vma->vm_file;
3382 unsigned int size;
3383 char tmp[16];
3384 char *buf = NULL;
3385 const char *name;
3387 memset(tmp, 0, sizeof(tmp));
3389 if (file) {
3391 * d_path works from the end of the buffer backwards, so we
3392 * need to add enough zero bytes after the string to handle
3393 * the 64bit alignment we do later.
3395 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3396 if (!buf) {
3397 name = strncpy(tmp, "//enomem", sizeof(tmp));
3398 goto got_name;
3400 name = d_path(&file->f_path, buf, PATH_MAX);
3401 if (IS_ERR(name)) {
3402 name = strncpy(tmp, "//toolong", sizeof(tmp));
3403 goto got_name;
3405 } else {
3406 if (arch_vma_name(mmap_event->vma)) {
3407 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3408 sizeof(tmp));
3409 goto got_name;
3412 if (!vma->vm_mm) {
3413 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3414 goto got_name;
3417 name = strncpy(tmp, "//anon", sizeof(tmp));
3418 goto got_name;
3421 got_name:
3422 size = ALIGN(strlen(name)+1, sizeof(u64));
3424 mmap_event->file_name = name;
3425 mmap_event->file_size = size;
3427 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3429 cpuctx = &get_cpu_var(perf_cpu_context);
3430 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3431 put_cpu_var(perf_cpu_context);
3433 rcu_read_lock();
3435 * doesn't really matter which of the child contexts the
3436 * events ends up in.
3438 ctx = rcu_dereference(current->perf_event_ctxp);
3439 if (ctx)
3440 perf_event_mmap_ctx(ctx, mmap_event);
3441 rcu_read_unlock();
3443 kfree(buf);
3446 void __perf_event_mmap(struct vm_area_struct *vma)
3448 struct perf_mmap_event mmap_event;
3450 if (!atomic_read(&nr_mmap_events))
3451 return;
3453 mmap_event = (struct perf_mmap_event){
3454 .vma = vma,
3455 /* .file_name */
3456 /* .file_size */
3457 .event_id = {
3458 .header = {
3459 .type = PERF_RECORD_MMAP,
3460 .misc = 0,
3461 /* .size */
3463 /* .pid */
3464 /* .tid */
3465 .start = vma->vm_start,
3466 .len = vma->vm_end - vma->vm_start,
3467 .pgoff = vma->vm_pgoff,
3471 perf_event_mmap_event(&mmap_event);
3475 * IRQ throttle logging
3478 static void perf_log_throttle(struct perf_event *event, int enable)
3480 struct perf_output_handle handle;
3481 int ret;
3483 struct {
3484 struct perf_event_header header;
3485 u64 time;
3486 u64 id;
3487 u64 stream_id;
3488 } throttle_event = {
3489 .header = {
3490 .type = PERF_RECORD_THROTTLE,
3491 .misc = 0,
3492 .size = sizeof(throttle_event),
3494 .time = perf_clock(),
3495 .id = primary_event_id(event),
3496 .stream_id = event->id,
3499 if (enable)
3500 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3502 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3503 if (ret)
3504 return;
3506 perf_output_put(&handle, throttle_event);
3507 perf_output_end(&handle);
3511 * Generic event overflow handling, sampling.
3514 static int __perf_event_overflow(struct perf_event *event, int nmi,
3515 int throttle, struct perf_sample_data *data,
3516 struct pt_regs *regs)
3518 int events = atomic_read(&event->event_limit);
3519 struct hw_perf_event *hwc = &event->hw;
3520 int ret = 0;
3522 throttle = (throttle && event->pmu->unthrottle != NULL);
3524 if (!throttle) {
3525 hwc->interrupts++;
3526 } else {
3527 if (hwc->interrupts != MAX_INTERRUPTS) {
3528 hwc->interrupts++;
3529 if (HZ * hwc->interrupts >
3530 (u64)sysctl_perf_event_sample_rate) {
3531 hwc->interrupts = MAX_INTERRUPTS;
3532 perf_log_throttle(event, 0);
3533 ret = 1;
3535 } else {
3537 * Keep re-disabling events even though on the previous
3538 * pass we disabled it - just in case we raced with a
3539 * sched-in and the event got enabled again:
3541 ret = 1;
3545 if (event->attr.freq) {
3546 u64 now = perf_clock();
3547 s64 delta = now - hwc->freq_stamp;
3549 hwc->freq_stamp = now;
3551 if (delta > 0 && delta < TICK_NSEC)
3552 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3556 * XXX event_limit might not quite work as expected on inherited
3557 * events
3560 event->pending_kill = POLL_IN;
3561 if (events && atomic_dec_and_test(&event->event_limit)) {
3562 ret = 1;
3563 event->pending_kill = POLL_HUP;
3564 if (nmi) {
3565 event->pending_disable = 1;
3566 perf_pending_queue(&event->pending,
3567 perf_pending_event);
3568 } else
3569 perf_event_disable(event);
3572 perf_event_output(event, nmi, data, regs);
3573 return ret;
3576 int perf_event_overflow(struct perf_event *event, int nmi,
3577 struct perf_sample_data *data,
3578 struct pt_regs *regs)
3580 return __perf_event_overflow(event, nmi, 1, data, regs);
3584 * Generic software event infrastructure
3588 * We directly increment event->count and keep a second value in
3589 * event->hw.period_left to count intervals. This period event
3590 * is kept in the range [-sample_period, 0] so that we can use the
3591 * sign as trigger.
3594 static u64 perf_swevent_set_period(struct perf_event *event)
3596 struct hw_perf_event *hwc = &event->hw;
3597 u64 period = hwc->last_period;
3598 u64 nr, offset;
3599 s64 old, val;
3601 hwc->last_period = hwc->sample_period;
3603 again:
3604 old = val = atomic64_read(&hwc->period_left);
3605 if (val < 0)
3606 return 0;
3608 nr = div64_u64(period + val, period);
3609 offset = nr * period;
3610 val -= offset;
3611 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3612 goto again;
3614 return nr;
3617 static void perf_swevent_overflow(struct perf_event *event,
3618 int nmi, struct perf_sample_data *data,
3619 struct pt_regs *regs)
3621 struct hw_perf_event *hwc = &event->hw;
3622 int throttle = 0;
3623 u64 overflow;
3625 data->period = event->hw.last_period;
3626 overflow = perf_swevent_set_period(event);
3628 if (hwc->interrupts == MAX_INTERRUPTS)
3629 return;
3631 for (; overflow; overflow--) {
3632 if (__perf_event_overflow(event, nmi, throttle,
3633 data, regs)) {
3635 * We inhibit the overflow from happening when
3636 * hwc->interrupts == MAX_INTERRUPTS.
3638 break;
3640 throttle = 1;
3644 static void perf_swevent_unthrottle(struct perf_event *event)
3647 * Nothing to do, we already reset hwc->interrupts.
3651 static void perf_swevent_add(struct perf_event *event, u64 nr,
3652 int nmi, struct perf_sample_data *data,
3653 struct pt_regs *regs)
3655 struct hw_perf_event *hwc = &event->hw;
3657 atomic64_add(nr, &event->count);
3659 if (!hwc->sample_period)
3660 return;
3662 if (!regs)
3663 return;
3665 if (!atomic64_add_negative(nr, &hwc->period_left))
3666 perf_swevent_overflow(event, nmi, data, regs);
3669 static int perf_swevent_is_counting(struct perf_event *event)
3672 * The event is active, we're good!
3674 if (event->state == PERF_EVENT_STATE_ACTIVE)
3675 return 1;
3678 * The event is off/error, not counting.
3680 if (event->state != PERF_EVENT_STATE_INACTIVE)
3681 return 0;
3684 * The event is inactive, if the context is active
3685 * we're part of a group that didn't make it on the 'pmu',
3686 * not counting.
3688 if (event->ctx->is_active)
3689 return 0;
3692 * We're inactive and the context is too, this means the
3693 * task is scheduled out, we're counting events that happen
3694 * to us, like migration events.
3696 return 1;
3699 static int perf_swevent_match(struct perf_event *event,
3700 enum perf_type_id type,
3701 u32 event_id, struct pt_regs *regs)
3703 if (!perf_swevent_is_counting(event))
3704 return 0;
3706 if (event->attr.type != type)
3707 return 0;
3708 if (event->attr.config != event_id)
3709 return 0;
3711 if (regs) {
3712 if (event->attr.exclude_user && user_mode(regs))
3713 return 0;
3715 if (event->attr.exclude_kernel && !user_mode(regs))
3716 return 0;
3719 return 1;
3722 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3723 enum perf_type_id type,
3724 u32 event_id, u64 nr, int nmi,
3725 struct perf_sample_data *data,
3726 struct pt_regs *regs)
3728 struct perf_event *event;
3730 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3731 return;
3733 rcu_read_lock();
3734 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3735 if (perf_swevent_match(event, type, event_id, regs))
3736 perf_swevent_add(event, nr, nmi, data, regs);
3738 rcu_read_unlock();
3741 static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3743 if (in_nmi())
3744 return &cpuctx->recursion[3];
3746 if (in_irq())
3747 return &cpuctx->recursion[2];
3749 if (in_softirq())
3750 return &cpuctx->recursion[1];
3752 return &cpuctx->recursion[0];
3755 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3756 u64 nr, int nmi,
3757 struct perf_sample_data *data,
3758 struct pt_regs *regs)
3760 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3761 int *recursion = perf_swevent_recursion_context(cpuctx);
3762 struct perf_event_context *ctx;
3764 if (*recursion)
3765 goto out;
3767 (*recursion)++;
3768 barrier();
3770 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3771 nr, nmi, data, regs);
3772 rcu_read_lock();
3774 * doesn't really matter which of the child contexts the
3775 * events ends up in.
3777 ctx = rcu_dereference(current->perf_event_ctxp);
3778 if (ctx)
3779 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3780 rcu_read_unlock();
3782 barrier();
3783 (*recursion)--;
3785 out:
3786 put_cpu_var(perf_cpu_context);
3789 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3790 struct pt_regs *regs, u64 addr)
3792 struct perf_sample_data data = {
3793 .addr = addr,
3796 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3797 &data, regs);
3800 static void perf_swevent_read(struct perf_event *event)
3804 static int perf_swevent_enable(struct perf_event *event)
3806 struct hw_perf_event *hwc = &event->hw;
3808 if (hwc->sample_period) {
3809 hwc->last_period = hwc->sample_period;
3810 perf_swevent_set_period(event);
3812 return 0;
3815 static void perf_swevent_disable(struct perf_event *event)
3819 static const struct pmu perf_ops_generic = {
3820 .enable = perf_swevent_enable,
3821 .disable = perf_swevent_disable,
3822 .read = perf_swevent_read,
3823 .unthrottle = perf_swevent_unthrottle,
3827 * hrtimer based swevent callback
3830 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3832 enum hrtimer_restart ret = HRTIMER_RESTART;
3833 struct perf_sample_data data;
3834 struct pt_regs *regs;
3835 struct perf_event *event;
3836 u64 period;
3838 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3839 event->pmu->read(event);
3841 data.addr = 0;
3842 regs = get_irq_regs();
3844 * In case we exclude kernel IPs or are somehow not in interrupt
3845 * context, provide the next best thing, the user IP.
3847 if ((event->attr.exclude_kernel || !regs) &&
3848 !event->attr.exclude_user)
3849 regs = task_pt_regs(current);
3851 if (regs) {
3852 if (perf_event_overflow(event, 0, &data, regs))
3853 ret = HRTIMER_NORESTART;
3856 period = max_t(u64, 10000, event->hw.sample_period);
3857 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3859 return ret;
3863 * Software event: cpu wall time clock
3866 static void cpu_clock_perf_event_update(struct perf_event *event)
3868 int cpu = raw_smp_processor_id();
3869 s64 prev;
3870 u64 now;
3872 now = cpu_clock(cpu);
3873 prev = atomic64_read(&event->hw.prev_count);
3874 atomic64_set(&event->hw.prev_count, now);
3875 atomic64_add(now - prev, &event->count);
3878 static int cpu_clock_perf_event_enable(struct perf_event *event)
3880 struct hw_perf_event *hwc = &event->hw;
3881 int cpu = raw_smp_processor_id();
3883 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3884 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3885 hwc->hrtimer.function = perf_swevent_hrtimer;
3886 if (hwc->sample_period) {
3887 u64 period = max_t(u64, 10000, hwc->sample_period);
3888 __hrtimer_start_range_ns(&hwc->hrtimer,
3889 ns_to_ktime(period), 0,
3890 HRTIMER_MODE_REL, 0);
3893 return 0;
3896 static void cpu_clock_perf_event_disable(struct perf_event *event)
3898 if (event->hw.sample_period)
3899 hrtimer_cancel(&event->hw.hrtimer);
3900 cpu_clock_perf_event_update(event);
3903 static void cpu_clock_perf_event_read(struct perf_event *event)
3905 cpu_clock_perf_event_update(event);
3908 static const struct pmu perf_ops_cpu_clock = {
3909 .enable = cpu_clock_perf_event_enable,
3910 .disable = cpu_clock_perf_event_disable,
3911 .read = cpu_clock_perf_event_read,
3915 * Software event: task time clock
3918 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
3920 u64 prev;
3921 s64 delta;
3923 prev = atomic64_xchg(&event->hw.prev_count, now);
3924 delta = now - prev;
3925 atomic64_add(delta, &event->count);
3928 static int task_clock_perf_event_enable(struct perf_event *event)
3930 struct hw_perf_event *hwc = &event->hw;
3931 u64 now;
3933 now = event->ctx->time;
3935 atomic64_set(&hwc->prev_count, now);
3936 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3937 hwc->hrtimer.function = perf_swevent_hrtimer;
3938 if (hwc->sample_period) {
3939 u64 period = max_t(u64, 10000, hwc->sample_period);
3940 __hrtimer_start_range_ns(&hwc->hrtimer,
3941 ns_to_ktime(period), 0,
3942 HRTIMER_MODE_REL, 0);
3945 return 0;
3948 static void task_clock_perf_event_disable(struct perf_event *event)
3950 if (event->hw.sample_period)
3951 hrtimer_cancel(&event->hw.hrtimer);
3952 task_clock_perf_event_update(event, event->ctx->time);
3956 static void task_clock_perf_event_read(struct perf_event *event)
3958 u64 time;
3960 if (!in_nmi()) {
3961 update_context_time(event->ctx);
3962 time = event->ctx->time;
3963 } else {
3964 u64 now = perf_clock();
3965 u64 delta = now - event->ctx->timestamp;
3966 time = event->ctx->time + delta;
3969 task_clock_perf_event_update(event, time);
3972 static const struct pmu perf_ops_task_clock = {
3973 .enable = task_clock_perf_event_enable,
3974 .disable = task_clock_perf_event_disable,
3975 .read = task_clock_perf_event_read,
3978 #ifdef CONFIG_EVENT_PROFILE
3979 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
3980 int entry_size)
3982 struct perf_raw_record raw = {
3983 .size = entry_size,
3984 .data = record,
3987 struct perf_sample_data data = {
3988 .addr = addr,
3989 .raw = &raw,
3992 struct pt_regs *regs = get_irq_regs();
3994 if (!regs)
3995 regs = task_pt_regs(current);
3997 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
3998 &data, regs);
4000 EXPORT_SYMBOL_GPL(perf_tp_event);
4002 extern int ftrace_profile_enable(int);
4003 extern void ftrace_profile_disable(int);
4005 static void tp_perf_event_destroy(struct perf_event *event)
4007 ftrace_profile_disable(event->attr.config);
4010 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4013 * Raw tracepoint data is a severe data leak, only allow root to
4014 * have these.
4016 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4017 perf_paranoid_tracepoint_raw() &&
4018 !capable(CAP_SYS_ADMIN))
4019 return ERR_PTR(-EPERM);
4021 if (ftrace_profile_enable(event->attr.config))
4022 return NULL;
4024 event->destroy = tp_perf_event_destroy;
4026 return &perf_ops_generic;
4028 #else
4029 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4031 return NULL;
4033 #endif
4035 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4037 static void sw_perf_event_destroy(struct perf_event *event)
4039 u64 event_id = event->attr.config;
4041 WARN_ON(event->parent);
4043 atomic_dec(&perf_swevent_enabled[event_id]);
4046 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4048 const struct pmu *pmu = NULL;
4049 u64 event_id = event->attr.config;
4052 * Software events (currently) can't in general distinguish
4053 * between user, kernel and hypervisor events.
4054 * However, context switches and cpu migrations are considered
4055 * to be kernel events, and page faults are never hypervisor
4056 * events.
4058 switch (event_id) {
4059 case PERF_COUNT_SW_CPU_CLOCK:
4060 pmu = &perf_ops_cpu_clock;
4062 break;
4063 case PERF_COUNT_SW_TASK_CLOCK:
4065 * If the user instantiates this as a per-cpu event,
4066 * use the cpu_clock event instead.
4068 if (event->ctx->task)
4069 pmu = &perf_ops_task_clock;
4070 else
4071 pmu = &perf_ops_cpu_clock;
4073 break;
4074 case PERF_COUNT_SW_PAGE_FAULTS:
4075 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4076 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4077 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4078 case PERF_COUNT_SW_CPU_MIGRATIONS:
4079 if (!event->parent) {
4080 atomic_inc(&perf_swevent_enabled[event_id]);
4081 event->destroy = sw_perf_event_destroy;
4083 pmu = &perf_ops_generic;
4084 break;
4087 return pmu;
4091 * Allocate and initialize a event structure
4093 static struct perf_event *
4094 perf_event_alloc(struct perf_event_attr *attr,
4095 int cpu,
4096 struct perf_event_context *ctx,
4097 struct perf_event *group_leader,
4098 struct perf_event *parent_event,
4099 gfp_t gfpflags)
4101 const struct pmu *pmu;
4102 struct perf_event *event;
4103 struct hw_perf_event *hwc;
4104 long err;
4106 event = kzalloc(sizeof(*event), gfpflags);
4107 if (!event)
4108 return ERR_PTR(-ENOMEM);
4111 * Single events are their own group leaders, with an
4112 * empty sibling list:
4114 if (!group_leader)
4115 group_leader = event;
4117 mutex_init(&event->child_mutex);
4118 INIT_LIST_HEAD(&event->child_list);
4120 INIT_LIST_HEAD(&event->group_entry);
4121 INIT_LIST_HEAD(&event->event_entry);
4122 INIT_LIST_HEAD(&event->sibling_list);
4123 init_waitqueue_head(&event->waitq);
4125 mutex_init(&event->mmap_mutex);
4127 event->cpu = cpu;
4128 event->attr = *attr;
4129 event->group_leader = group_leader;
4130 event->pmu = NULL;
4131 event->ctx = ctx;
4132 event->oncpu = -1;
4134 event->parent = parent_event;
4136 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4137 event->id = atomic64_inc_return(&perf_event_id);
4139 event->state = PERF_EVENT_STATE_INACTIVE;
4141 if (attr->disabled)
4142 event->state = PERF_EVENT_STATE_OFF;
4144 pmu = NULL;
4146 hwc = &event->hw;
4147 hwc->sample_period = attr->sample_period;
4148 if (attr->freq && attr->sample_freq)
4149 hwc->sample_period = 1;
4150 hwc->last_period = hwc->sample_period;
4152 atomic64_set(&hwc->period_left, hwc->sample_period);
4155 * we currently do not support PERF_FORMAT_GROUP on inherited events
4157 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4158 goto done;
4160 switch (attr->type) {
4161 case PERF_TYPE_RAW:
4162 case PERF_TYPE_HARDWARE:
4163 case PERF_TYPE_HW_CACHE:
4164 pmu = hw_perf_event_init(event);
4165 break;
4167 case PERF_TYPE_SOFTWARE:
4168 pmu = sw_perf_event_init(event);
4169 break;
4171 case PERF_TYPE_TRACEPOINT:
4172 pmu = tp_perf_event_init(event);
4173 break;
4175 default:
4176 break;
4178 done:
4179 err = 0;
4180 if (!pmu)
4181 err = -EINVAL;
4182 else if (IS_ERR(pmu))
4183 err = PTR_ERR(pmu);
4185 if (err) {
4186 if (event->ns)
4187 put_pid_ns(event->ns);
4188 kfree(event);
4189 return ERR_PTR(err);
4192 event->pmu = pmu;
4194 if (!event->parent) {
4195 atomic_inc(&nr_events);
4196 if (event->attr.mmap)
4197 atomic_inc(&nr_mmap_events);
4198 if (event->attr.comm)
4199 atomic_inc(&nr_comm_events);
4200 if (event->attr.task)
4201 atomic_inc(&nr_task_events);
4204 return event;
4207 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4208 struct perf_event_attr *attr)
4210 u32 size;
4211 int ret;
4213 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4214 return -EFAULT;
4217 * zero the full structure, so that a short copy will be nice.
4219 memset(attr, 0, sizeof(*attr));
4221 ret = get_user(size, &uattr->size);
4222 if (ret)
4223 return ret;
4225 if (size > PAGE_SIZE) /* silly large */
4226 goto err_size;
4228 if (!size) /* abi compat */
4229 size = PERF_ATTR_SIZE_VER0;
4231 if (size < PERF_ATTR_SIZE_VER0)
4232 goto err_size;
4235 * If we're handed a bigger struct than we know of,
4236 * ensure all the unknown bits are 0 - i.e. new
4237 * user-space does not rely on any kernel feature
4238 * extensions we dont know about yet.
4240 if (size > sizeof(*attr)) {
4241 unsigned char __user *addr;
4242 unsigned char __user *end;
4243 unsigned char val;
4245 addr = (void __user *)uattr + sizeof(*attr);
4246 end = (void __user *)uattr + size;
4248 for (; addr < end; addr++) {
4249 ret = get_user(val, addr);
4250 if (ret)
4251 return ret;
4252 if (val)
4253 goto err_size;
4255 size = sizeof(*attr);
4258 ret = copy_from_user(attr, uattr, size);
4259 if (ret)
4260 return -EFAULT;
4263 * If the type exists, the corresponding creation will verify
4264 * the attr->config.
4266 if (attr->type >= PERF_TYPE_MAX)
4267 return -EINVAL;
4269 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4270 return -EINVAL;
4272 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4273 return -EINVAL;
4275 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4276 return -EINVAL;
4278 out:
4279 return ret;
4281 err_size:
4282 put_user(sizeof(*attr), &uattr->size);
4283 ret = -E2BIG;
4284 goto out;
4287 int perf_event_set_output(struct perf_event *event, int output_fd)
4289 struct perf_event *output_event = NULL;
4290 struct file *output_file = NULL;
4291 struct perf_event *old_output;
4292 int fput_needed = 0;
4293 int ret = -EINVAL;
4295 if (!output_fd)
4296 goto set;
4298 output_file = fget_light(output_fd, &fput_needed);
4299 if (!output_file)
4300 return -EBADF;
4302 if (output_file->f_op != &perf_fops)
4303 goto out;
4305 output_event = output_file->private_data;
4307 /* Don't chain output fds */
4308 if (output_event->output)
4309 goto out;
4311 /* Don't set an output fd when we already have an output channel */
4312 if (event->data)
4313 goto out;
4315 atomic_long_inc(&output_file->f_count);
4317 set:
4318 mutex_lock(&event->mmap_mutex);
4319 old_output = event->output;
4320 rcu_assign_pointer(event->output, output_event);
4321 mutex_unlock(&event->mmap_mutex);
4323 if (old_output) {
4325 * we need to make sure no existing perf_output_*()
4326 * is still referencing this event.
4328 synchronize_rcu();
4329 fput(old_output->filp);
4332 ret = 0;
4333 out:
4334 fput_light(output_file, fput_needed);
4335 return ret;
4339 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4341 * @attr_uptr: event_id type attributes for monitoring/sampling
4342 * @pid: target pid
4343 * @cpu: target cpu
4344 * @group_fd: group leader event fd
4346 SYSCALL_DEFINE5(perf_event_open,
4347 struct perf_event_attr __user *, attr_uptr,
4348 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4350 struct perf_event *event, *group_leader;
4351 struct perf_event_attr attr;
4352 struct perf_event_context *ctx;
4353 struct file *event_file = NULL;
4354 struct file *group_file = NULL;
4355 int fput_needed = 0;
4356 int fput_needed2 = 0;
4357 int err;
4359 /* for future expandability... */
4360 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4361 return -EINVAL;
4363 err = perf_copy_attr(attr_uptr, &attr);
4364 if (err)
4365 return err;
4367 if (!attr.exclude_kernel) {
4368 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4369 return -EACCES;
4372 if (attr.freq) {
4373 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4374 return -EINVAL;
4378 * Get the target context (task or percpu):
4380 ctx = find_get_context(pid, cpu);
4381 if (IS_ERR(ctx))
4382 return PTR_ERR(ctx);
4385 * Look up the group leader (we will attach this event to it):
4387 group_leader = NULL;
4388 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4389 err = -EINVAL;
4390 group_file = fget_light(group_fd, &fput_needed);
4391 if (!group_file)
4392 goto err_put_context;
4393 if (group_file->f_op != &perf_fops)
4394 goto err_put_context;
4396 group_leader = group_file->private_data;
4398 * Do not allow a recursive hierarchy (this new sibling
4399 * becoming part of another group-sibling):
4401 if (group_leader->group_leader != group_leader)
4402 goto err_put_context;
4404 * Do not allow to attach to a group in a different
4405 * task or CPU context:
4407 if (group_leader->ctx != ctx)
4408 goto err_put_context;
4410 * Only a group leader can be exclusive or pinned
4412 if (attr.exclusive || attr.pinned)
4413 goto err_put_context;
4416 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4417 NULL, GFP_KERNEL);
4418 err = PTR_ERR(event);
4419 if (IS_ERR(event))
4420 goto err_put_context;
4422 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4423 if (err < 0)
4424 goto err_free_put_context;
4426 event_file = fget_light(err, &fput_needed2);
4427 if (!event_file)
4428 goto err_free_put_context;
4430 if (flags & PERF_FLAG_FD_OUTPUT) {
4431 err = perf_event_set_output(event, group_fd);
4432 if (err)
4433 goto err_fput_free_put_context;
4436 event->filp = event_file;
4437 WARN_ON_ONCE(ctx->parent_ctx);
4438 mutex_lock(&ctx->mutex);
4439 perf_install_in_context(ctx, event, cpu);
4440 ++ctx->generation;
4441 mutex_unlock(&ctx->mutex);
4443 event->owner = current;
4444 get_task_struct(current);
4445 mutex_lock(&current->perf_event_mutex);
4446 list_add_tail(&event->owner_entry, &current->perf_event_list);
4447 mutex_unlock(&current->perf_event_mutex);
4449 err_fput_free_put_context:
4450 fput_light(event_file, fput_needed2);
4452 err_free_put_context:
4453 if (err < 0)
4454 kfree(event);
4456 err_put_context:
4457 if (err < 0)
4458 put_ctx(ctx);
4460 fput_light(group_file, fput_needed);
4462 return err;
4466 * inherit a event from parent task to child task:
4468 static struct perf_event *
4469 inherit_event(struct perf_event *parent_event,
4470 struct task_struct *parent,
4471 struct perf_event_context *parent_ctx,
4472 struct task_struct *child,
4473 struct perf_event *group_leader,
4474 struct perf_event_context *child_ctx)
4476 struct perf_event *child_event;
4479 * Instead of creating recursive hierarchies of events,
4480 * we link inherited events back to the original parent,
4481 * which has a filp for sure, which we use as the reference
4482 * count:
4484 if (parent_event->parent)
4485 parent_event = parent_event->parent;
4487 child_event = perf_event_alloc(&parent_event->attr,
4488 parent_event->cpu, child_ctx,
4489 group_leader, parent_event,
4490 GFP_KERNEL);
4491 if (IS_ERR(child_event))
4492 return child_event;
4493 get_ctx(child_ctx);
4496 * Make the child state follow the state of the parent event,
4497 * not its attr.disabled bit. We hold the parent's mutex,
4498 * so we won't race with perf_event_{en, dis}able_family.
4500 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4501 child_event->state = PERF_EVENT_STATE_INACTIVE;
4502 else
4503 child_event->state = PERF_EVENT_STATE_OFF;
4505 if (parent_event->attr.freq)
4506 child_event->hw.sample_period = parent_event->hw.sample_period;
4509 * Link it up in the child's context:
4511 add_event_to_ctx(child_event, child_ctx);
4514 * Get a reference to the parent filp - we will fput it
4515 * when the child event exits. This is safe to do because
4516 * we are in the parent and we know that the filp still
4517 * exists and has a nonzero count:
4519 atomic_long_inc(&parent_event->filp->f_count);
4522 * Link this into the parent event's child list
4524 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4525 mutex_lock(&parent_event->child_mutex);
4526 list_add_tail(&child_event->child_list, &parent_event->child_list);
4527 mutex_unlock(&parent_event->child_mutex);
4529 return child_event;
4532 static int inherit_group(struct perf_event *parent_event,
4533 struct task_struct *parent,
4534 struct perf_event_context *parent_ctx,
4535 struct task_struct *child,
4536 struct perf_event_context *child_ctx)
4538 struct perf_event *leader;
4539 struct perf_event *sub;
4540 struct perf_event *child_ctr;
4542 leader = inherit_event(parent_event, parent, parent_ctx,
4543 child, NULL, child_ctx);
4544 if (IS_ERR(leader))
4545 return PTR_ERR(leader);
4546 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4547 child_ctr = inherit_event(sub, parent, parent_ctx,
4548 child, leader, child_ctx);
4549 if (IS_ERR(child_ctr))
4550 return PTR_ERR(child_ctr);
4552 return 0;
4555 static void sync_child_event(struct perf_event *child_event,
4556 struct task_struct *child)
4558 struct perf_event *parent_event = child_event->parent;
4559 u64 child_val;
4561 if (child_event->attr.inherit_stat)
4562 perf_event_read_event(child_event, child);
4564 child_val = atomic64_read(&child_event->count);
4567 * Add back the child's count to the parent's count:
4569 atomic64_add(child_val, &parent_event->count);
4570 atomic64_add(child_event->total_time_enabled,
4571 &parent_event->child_total_time_enabled);
4572 atomic64_add(child_event->total_time_running,
4573 &parent_event->child_total_time_running);
4576 * Remove this event from the parent's list
4578 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4579 mutex_lock(&parent_event->child_mutex);
4580 list_del_init(&child_event->child_list);
4581 mutex_unlock(&parent_event->child_mutex);
4584 * Release the parent event, if this was the last
4585 * reference to it.
4587 fput(parent_event->filp);
4590 static void
4591 __perf_event_exit_task(struct perf_event *child_event,
4592 struct perf_event_context *child_ctx,
4593 struct task_struct *child)
4595 struct perf_event *parent_event;
4597 update_event_times(child_event);
4598 perf_event_remove_from_context(child_event);
4600 parent_event = child_event->parent;
4602 * It can happen that parent exits first, and has events
4603 * that are still around due to the child reference. These
4604 * events need to be zapped - but otherwise linger.
4606 if (parent_event) {
4607 sync_child_event(child_event, child);
4608 free_event(child_event);
4613 * When a child task exits, feed back event values to parent events.
4615 void perf_event_exit_task(struct task_struct *child)
4617 struct perf_event *child_event, *tmp;
4618 struct perf_event_context *child_ctx;
4619 unsigned long flags;
4621 if (likely(!child->perf_event_ctxp)) {
4622 perf_event_task(child, NULL, 0);
4623 return;
4626 local_irq_save(flags);
4628 * We can't reschedule here because interrupts are disabled,
4629 * and either child is current or it is a task that can't be
4630 * scheduled, so we are now safe from rescheduling changing
4631 * our context.
4633 child_ctx = child->perf_event_ctxp;
4634 __perf_event_task_sched_out(child_ctx);
4637 * Take the context lock here so that if find_get_context is
4638 * reading child->perf_event_ctxp, we wait until it has
4639 * incremented the context's refcount before we do put_ctx below.
4641 spin_lock(&child_ctx->lock);
4642 child->perf_event_ctxp = NULL;
4644 * If this context is a clone; unclone it so it can't get
4645 * swapped to another process while we're removing all
4646 * the events from it.
4648 unclone_ctx(child_ctx);
4649 spin_unlock_irqrestore(&child_ctx->lock, flags);
4652 * Report the task dead after unscheduling the events so that we
4653 * won't get any samples after PERF_RECORD_EXIT. We can however still
4654 * get a few PERF_RECORD_READ events.
4656 perf_event_task(child, child_ctx, 0);
4659 * We can recurse on the same lock type through:
4661 * __perf_event_exit_task()
4662 * sync_child_event()
4663 * fput(parent_event->filp)
4664 * perf_release()
4665 * mutex_lock(&ctx->mutex)
4667 * But since its the parent context it won't be the same instance.
4669 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4671 again:
4672 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4673 group_entry)
4674 __perf_event_exit_task(child_event, child_ctx, child);
4677 * If the last event was a group event, it will have appended all
4678 * its siblings to the list, but we obtained 'tmp' before that which
4679 * will still point to the list head terminating the iteration.
4681 if (!list_empty(&child_ctx->group_list))
4682 goto again;
4684 mutex_unlock(&child_ctx->mutex);
4686 put_ctx(child_ctx);
4690 * free an unexposed, unused context as created by inheritance by
4691 * init_task below, used by fork() in case of fail.
4693 void perf_event_free_task(struct task_struct *task)
4695 struct perf_event_context *ctx = task->perf_event_ctxp;
4696 struct perf_event *event, *tmp;
4698 if (!ctx)
4699 return;
4701 mutex_lock(&ctx->mutex);
4702 again:
4703 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
4704 struct perf_event *parent = event->parent;
4706 if (WARN_ON_ONCE(!parent))
4707 continue;
4709 mutex_lock(&parent->child_mutex);
4710 list_del_init(&event->child_list);
4711 mutex_unlock(&parent->child_mutex);
4713 fput(parent->filp);
4715 list_del_event(event, ctx);
4716 free_event(event);
4719 if (!list_empty(&ctx->group_list))
4720 goto again;
4722 mutex_unlock(&ctx->mutex);
4724 put_ctx(ctx);
4728 * Initialize the perf_event context in task_struct
4730 int perf_event_init_task(struct task_struct *child)
4732 struct perf_event_context *child_ctx, *parent_ctx;
4733 struct perf_event_context *cloned_ctx;
4734 struct perf_event *event;
4735 struct task_struct *parent = current;
4736 int inherited_all = 1;
4737 int ret = 0;
4739 child->perf_event_ctxp = NULL;
4741 mutex_init(&child->perf_event_mutex);
4742 INIT_LIST_HEAD(&child->perf_event_list);
4744 if (likely(!parent->perf_event_ctxp))
4745 return 0;
4748 * This is executed from the parent task context, so inherit
4749 * events that have been marked for cloning.
4750 * First allocate and initialize a context for the child.
4753 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4754 if (!child_ctx)
4755 return -ENOMEM;
4757 __perf_event_init_context(child_ctx, child);
4758 child->perf_event_ctxp = child_ctx;
4759 get_task_struct(child);
4762 * If the parent's context is a clone, pin it so it won't get
4763 * swapped under us.
4765 parent_ctx = perf_pin_task_context(parent);
4768 * No need to check if parent_ctx != NULL here; since we saw
4769 * it non-NULL earlier, the only reason for it to become NULL
4770 * is if we exit, and since we're currently in the middle of
4771 * a fork we can't be exiting at the same time.
4775 * Lock the parent list. No need to lock the child - not PID
4776 * hashed yet and not running, so nobody can access it.
4778 mutex_lock(&parent_ctx->mutex);
4781 * We dont have to disable NMIs - we are only looking at
4782 * the list, not manipulating it:
4784 list_for_each_entry_rcu(event, &parent_ctx->event_list, event_entry) {
4785 if (event != event->group_leader)
4786 continue;
4788 if (!event->attr.inherit) {
4789 inherited_all = 0;
4790 continue;
4793 ret = inherit_group(event, parent, parent_ctx,
4794 child, child_ctx);
4795 if (ret) {
4796 inherited_all = 0;
4797 break;
4801 if (inherited_all) {
4803 * Mark the child context as a clone of the parent
4804 * context, or of whatever the parent is a clone of.
4805 * Note that if the parent is a clone, it could get
4806 * uncloned at any point, but that doesn't matter
4807 * because the list of events and the generation
4808 * count can't have changed since we took the mutex.
4810 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4811 if (cloned_ctx) {
4812 child_ctx->parent_ctx = cloned_ctx;
4813 child_ctx->parent_gen = parent_ctx->parent_gen;
4814 } else {
4815 child_ctx->parent_ctx = parent_ctx;
4816 child_ctx->parent_gen = parent_ctx->generation;
4818 get_ctx(child_ctx->parent_ctx);
4821 mutex_unlock(&parent_ctx->mutex);
4823 perf_unpin_context(parent_ctx);
4825 return ret;
4828 static void __cpuinit perf_event_init_cpu(int cpu)
4830 struct perf_cpu_context *cpuctx;
4832 cpuctx = &per_cpu(perf_cpu_context, cpu);
4833 __perf_event_init_context(&cpuctx->ctx, NULL);
4835 spin_lock(&perf_resource_lock);
4836 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
4837 spin_unlock(&perf_resource_lock);
4839 hw_perf_event_setup(cpu);
4842 #ifdef CONFIG_HOTPLUG_CPU
4843 static void __perf_event_exit_cpu(void *info)
4845 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4846 struct perf_event_context *ctx = &cpuctx->ctx;
4847 struct perf_event *event, *tmp;
4849 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
4850 __perf_event_remove_from_context(event);
4852 static void perf_event_exit_cpu(int cpu)
4854 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4855 struct perf_event_context *ctx = &cpuctx->ctx;
4857 mutex_lock(&ctx->mutex);
4858 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
4859 mutex_unlock(&ctx->mutex);
4861 #else
4862 static inline void perf_event_exit_cpu(int cpu) { }
4863 #endif
4865 static int __cpuinit
4866 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4868 unsigned int cpu = (long)hcpu;
4870 switch (action) {
4872 case CPU_UP_PREPARE:
4873 case CPU_UP_PREPARE_FROZEN:
4874 perf_event_init_cpu(cpu);
4875 break;
4877 case CPU_ONLINE:
4878 case CPU_ONLINE_FROZEN:
4879 hw_perf_event_setup_online(cpu);
4880 break;
4882 case CPU_DOWN_PREPARE:
4883 case CPU_DOWN_PREPARE_FROZEN:
4884 perf_event_exit_cpu(cpu);
4885 break;
4887 default:
4888 break;
4891 return NOTIFY_OK;
4895 * This has to have a higher priority than migration_notifier in sched.c.
4897 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4898 .notifier_call = perf_cpu_notify,
4899 .priority = 20,
4902 void __init perf_event_init(void)
4904 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4905 (void *)(long)smp_processor_id());
4906 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4907 (void *)(long)smp_processor_id());
4908 register_cpu_notifier(&perf_cpu_nb);
4911 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4913 return sprintf(buf, "%d\n", perf_reserved_percpu);
4916 static ssize_t
4917 perf_set_reserve_percpu(struct sysdev_class *class,
4918 const char *buf,
4919 size_t count)
4921 struct perf_cpu_context *cpuctx;
4922 unsigned long val;
4923 int err, cpu, mpt;
4925 err = strict_strtoul(buf, 10, &val);
4926 if (err)
4927 return err;
4928 if (val > perf_max_events)
4929 return -EINVAL;
4931 spin_lock(&perf_resource_lock);
4932 perf_reserved_percpu = val;
4933 for_each_online_cpu(cpu) {
4934 cpuctx = &per_cpu(perf_cpu_context, cpu);
4935 spin_lock_irq(&cpuctx->ctx.lock);
4936 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
4937 perf_max_events - perf_reserved_percpu);
4938 cpuctx->max_pertask = mpt;
4939 spin_unlock_irq(&cpuctx->ctx.lock);
4941 spin_unlock(&perf_resource_lock);
4943 return count;
4946 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4948 return sprintf(buf, "%d\n", perf_overcommit);
4951 static ssize_t
4952 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4954 unsigned long val;
4955 int err;
4957 err = strict_strtoul(buf, 10, &val);
4958 if (err)
4959 return err;
4960 if (val > 1)
4961 return -EINVAL;
4963 spin_lock(&perf_resource_lock);
4964 perf_overcommit = val;
4965 spin_unlock(&perf_resource_lock);
4967 return count;
4970 static SYSDEV_CLASS_ATTR(
4971 reserve_percpu,
4972 0644,
4973 perf_show_reserve_percpu,
4974 perf_set_reserve_percpu
4977 static SYSDEV_CLASS_ATTR(
4978 overcommit,
4979 0644,
4980 perf_show_overcommit,
4981 perf_set_overcommit
4984 static struct attribute *perfclass_attrs[] = {
4985 &attr_reserve_percpu.attr,
4986 &attr_overcommit.attr,
4987 NULL
4990 static struct attribute_group perfclass_attr_group = {
4991 .attrs = perfclass_attrs,
4992 .name = "perf_events",
4995 static int __init perf_event_sysfs_init(void)
4997 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4998 &perfclass_attr_group);
5000 device_initcall(perf_event_sysfs_init);