ath5k: don't change mac in eeprom_read_mac on error
[linux-2.6/linux-2.6-openrd.git] / drivers / net / wireless / ath5k / eeprom.c
blobac45ca47ca87fa483850d0295dd4a3a73b1eaa96
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include "ath5k.h"
25 #include "reg.h"
26 #include "debug.h"
27 #include "base.h"
30 * Read from eeprom
32 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
34 u32 status, timeout;
36 ATH5K_TRACE(ah->ah_sc);
38 * Initialize EEPROM access
40 if (ah->ah_version == AR5K_AR5210) {
41 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
42 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
43 } else {
44 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
45 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
46 AR5K_EEPROM_CMD_READ);
49 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
50 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
51 if (status & AR5K_EEPROM_STAT_RDDONE) {
52 if (status & AR5K_EEPROM_STAT_RDERR)
53 return -EIO;
54 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
55 0xffff);
56 return 0;
58 udelay(15);
61 return -ETIMEDOUT;
65 * Translate binary channel representation in EEPROM to frequency
67 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
68 unsigned int mode)
70 u16 val;
72 if (bin == AR5K_EEPROM_CHANNEL_DIS)
73 return bin;
75 if (mode == AR5K_EEPROM_MODE_11A) {
76 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
77 val = (5 * bin) + 4800;
78 else
79 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
80 (bin * 10) + 5100;
81 } else {
82 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
83 val = bin + 2300;
84 else
85 val = bin + 2400;
88 return val;
92 * Initialize eeprom & capabilities structs
94 static int
95 ath5k_eeprom_init_header(struct ath5k_hw *ah)
97 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
98 int ret;
99 u16 val;
101 /* Initial TX thermal adjustment values */
102 ee->ee_tx_clip = 4;
103 ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
104 ee->ee_gain_select = 1;
107 * Read values from EEPROM and store them in the capability structure
109 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
110 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
111 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
112 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
113 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
115 /* Return if we have an old EEPROM */
116 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
117 return 0;
119 #ifdef notyet
121 * Validate the checksum of the EEPROM date. There are some
122 * devices with invalid EEPROMs.
124 for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
125 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
126 cksum ^= val;
128 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
129 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
130 return -EIO;
132 #endif
134 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
135 ee_ant_gain);
137 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
138 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
139 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
141 /* XXX: Don't know which versions include these two */
142 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
144 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
147 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
148 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
149 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
150 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
154 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
155 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
156 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
157 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
159 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
160 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
161 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
164 return 0;
169 * Read antenna infos from eeprom
171 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
172 unsigned int mode)
174 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
175 u32 o = *offset;
176 u16 val;
177 int ret, i = 0;
179 AR5K_EEPROM_READ(o++, val);
180 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
181 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
182 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
184 AR5K_EEPROM_READ(o++, val);
185 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
186 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
187 ee->ee_ant_control[mode][i++] = val & 0x3f;
189 AR5K_EEPROM_READ(o++, val);
190 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
191 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
192 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
194 AR5K_EEPROM_READ(o++, val);
195 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
196 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
197 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
198 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
200 AR5K_EEPROM_READ(o++, val);
201 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
202 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
203 ee->ee_ant_control[mode][i++] = val & 0x3f;
205 /* Get antenna modes */
206 ah->ah_antenna[mode][0] =
207 (ee->ee_ant_control[mode][0] << 4);
208 ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
209 ee->ee_ant_control[mode][1] |
210 (ee->ee_ant_control[mode][2] << 6) |
211 (ee->ee_ant_control[mode][3] << 12) |
212 (ee->ee_ant_control[mode][4] << 18) |
213 (ee->ee_ant_control[mode][5] << 24);
214 ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
215 ee->ee_ant_control[mode][6] |
216 (ee->ee_ant_control[mode][7] << 6) |
217 (ee->ee_ant_control[mode][8] << 12) |
218 (ee->ee_ant_control[mode][9] << 18) |
219 (ee->ee_ant_control[mode][10] << 24);
221 /* return new offset */
222 *offset = o;
224 return 0;
228 * Read supported modes and some mode-specific calibration data
229 * from eeprom
231 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
232 unsigned int mode)
234 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
235 u32 o = *offset;
236 u16 val;
237 int ret;
239 ee->ee_n_piers[mode] = 0;
240 AR5K_EEPROM_READ(o++, val);
241 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
242 switch(mode) {
243 case AR5K_EEPROM_MODE_11A:
244 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
245 ee->ee_db[mode][3] = (val >> 2) & 0x7;
246 ee->ee_ob[mode][2] = (val << 1) & 0x7;
248 AR5K_EEPROM_READ(o++, val);
249 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
250 ee->ee_db[mode][2] = (val >> 12) & 0x7;
251 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
252 ee->ee_db[mode][1] = (val >> 6) & 0x7;
253 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
254 ee->ee_db[mode][0] = val & 0x7;
255 break;
256 case AR5K_EEPROM_MODE_11G:
257 case AR5K_EEPROM_MODE_11B:
258 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
259 ee->ee_db[mode][1] = val & 0x7;
260 break;
263 AR5K_EEPROM_READ(o++, val);
264 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
265 ee->ee_thr_62[mode] = val & 0xff;
267 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
268 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
270 AR5K_EEPROM_READ(o++, val);
271 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
272 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
274 AR5K_EEPROM_READ(o++, val);
275 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
277 if ((val & 0xff) & 0x80)
278 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
279 else
280 ee->ee_noise_floor_thr[mode] = val & 0xff;
282 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
283 ee->ee_noise_floor_thr[mode] =
284 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
286 AR5K_EEPROM_READ(o++, val);
287 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
288 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
289 ee->ee_xpd[mode] = val & 0x1;
291 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
292 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
294 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
295 AR5K_EEPROM_READ(o++, val);
296 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
298 if (mode == AR5K_EEPROM_MODE_11A)
299 ee->ee_xr_power[mode] = val & 0x3f;
300 else {
301 ee->ee_ob[mode][0] = val & 0x7;
302 ee->ee_db[mode][0] = (val >> 3) & 0x7;
306 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
307 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
308 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
309 } else {
310 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
312 AR5K_EEPROM_READ(o++, val);
313 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
315 if (mode == AR5K_EEPROM_MODE_11G) {
316 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
317 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
318 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
322 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
323 mode == AR5K_EEPROM_MODE_11A) {
324 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
325 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
328 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
329 goto done;
331 /* Note: >= v5 have bg freq piers on another location
332 * so these freq piers are ignored for >= v5 (should be 0xff
333 * anyway) */
334 switch(mode) {
335 case AR5K_EEPROM_MODE_11A:
336 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
337 break;
339 AR5K_EEPROM_READ(o++, val);
340 ee->ee_margin_tx_rx[mode] = val & 0x3f;
341 break;
342 case AR5K_EEPROM_MODE_11B:
343 AR5K_EEPROM_READ(o++, val);
345 ee->ee_pwr_cal_b[0].freq =
346 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
347 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
348 ee->ee_n_piers[mode]++;
350 ee->ee_pwr_cal_b[1].freq =
351 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
352 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
353 ee->ee_n_piers[mode]++;
355 AR5K_EEPROM_READ(o++, val);
356 ee->ee_pwr_cal_b[2].freq =
357 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
358 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
359 ee->ee_n_piers[mode]++;
361 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
362 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
363 break;
364 case AR5K_EEPROM_MODE_11G:
365 AR5K_EEPROM_READ(o++, val);
367 ee->ee_pwr_cal_g[0].freq =
368 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
369 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
370 ee->ee_n_piers[mode]++;
372 ee->ee_pwr_cal_g[1].freq =
373 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
374 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
375 ee->ee_n_piers[mode]++;
377 AR5K_EEPROM_READ(o++, val);
378 ee->ee_turbo_max_power[mode] = val & 0x7f;
379 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
381 AR5K_EEPROM_READ(o++, val);
382 ee->ee_pwr_cal_g[2].freq =
383 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
384 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
385 ee->ee_n_piers[mode]++;
387 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
388 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
390 AR5K_EEPROM_READ(o++, val);
391 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
392 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
394 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
395 AR5K_EEPROM_READ(o++, val);
396 ee->ee_cck_ofdm_gain_delta = val & 0xff;
398 break;
401 done:
402 /* return new offset */
403 *offset = o;
405 return 0;
409 * Read turbo mode information on newer EEPROM versions
411 static int
412 ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
413 u32 *offset, unsigned int mode)
415 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
416 u32 o = *offset;
417 u16 val;
418 int ret;
420 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
421 return 0;
423 switch (mode){
424 case AR5K_EEPROM_MODE_11A:
425 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
427 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
428 AR5K_EEPROM_READ(o++, val);
429 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
430 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
432 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
433 AR5K_EEPROM_READ(o++, val);
434 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
435 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
437 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
438 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
439 break;
440 case AR5K_EEPROM_MODE_11G:
441 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
443 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
444 AR5K_EEPROM_READ(o++, val);
445 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
446 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
448 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
449 AR5K_EEPROM_READ(o++, val);
450 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
451 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
452 break;
455 /* return new offset */
456 *offset = o;
458 return 0;
461 /* Read mode-specific data (except power calibration data) */
462 static int
463 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
465 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
466 u32 mode_offset[3];
467 unsigned int mode;
468 u32 offset;
469 int ret;
472 * Get values for all modes
474 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
475 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
476 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
478 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
479 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
481 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
482 offset = mode_offset[mode];
484 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
485 if (ret)
486 return ret;
488 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
489 if (ret)
490 return ret;
492 ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
493 if (ret)
494 return ret;
497 /* override for older eeprom versions for better performance */
498 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
499 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
500 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
501 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
504 return 0;
507 /* Used to match PCDAC steps with power values on RF5111 chips
508 * (eeprom versions < 4). For RF5111 we have 10 pre-defined PCDAC
509 * steps that match with the power values we read from eeprom. On
510 * older eeprom versions (< 3.2) these steps are equaly spaced at
511 * 10% of the pcdac curve -until the curve reaches it's maximum-
512 * (10 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
513 * these 10 steps are spaced in a different way. This function returns
514 * the pcdac steps based on eeprom version and curve min/max so that we
515 * can have pcdac/pwr points.
517 static inline void
518 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
520 static const u16 intercepts3[] =
521 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
522 static const u16 intercepts3_2[] =
523 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
524 const u16 *ip;
525 int i;
527 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
528 ip = intercepts3_2;
529 else
530 ip = intercepts3;
532 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
533 *vp++ = (ip[i] * max + (100 - ip[i]) * min) / 100;
536 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
537 * frequency mask) */
538 static inline int
539 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
540 struct ath5k_chan_pcal_info *pc, unsigned int mode)
542 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
543 int o = *offset;
544 int i = 0;
545 u8 freq1, freq2;
546 int ret;
547 u16 val;
549 while(i < max) {
550 AR5K_EEPROM_READ(o++, val);
552 freq1 = (val >> 8) & 0xff;
553 freq2 = val & 0xff;
555 if (freq1) {
556 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
557 freq1, mode);
558 ee->ee_n_piers[mode]++;
561 if (freq2) {
562 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
563 freq2, mode);
564 ee->ee_n_piers[mode]++;
567 if (!freq1 || !freq2)
568 break;
571 /* return new offset */
572 *offset = o;
574 return 0;
577 /* Read frequency piers for 802.11a */
578 static int
579 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
581 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
582 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
583 int i, ret;
584 u16 val;
585 u8 mask;
587 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
588 ath5k_eeprom_read_freq_list(ah, &offset,
589 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
590 AR5K_EEPROM_MODE_11A);
591 } else {
592 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
594 AR5K_EEPROM_READ(offset++, val);
595 pcal[0].freq = (val >> 9) & mask;
596 pcal[1].freq = (val >> 2) & mask;
597 pcal[2].freq = (val << 5) & mask;
599 AR5K_EEPROM_READ(offset++, val);
600 pcal[2].freq |= (val >> 11) & 0x1f;
601 pcal[3].freq = (val >> 4) & mask;
602 pcal[4].freq = (val << 3) & mask;
604 AR5K_EEPROM_READ(offset++, val);
605 pcal[4].freq |= (val >> 13) & 0x7;
606 pcal[5].freq = (val >> 6) & mask;
607 pcal[6].freq = (val << 1) & mask;
609 AR5K_EEPROM_READ(offset++, val);
610 pcal[6].freq |= (val >> 15) & 0x1;
611 pcal[7].freq = (val >> 8) & mask;
612 pcal[8].freq = (val >> 1) & mask;
613 pcal[9].freq = (val << 6) & mask;
615 AR5K_EEPROM_READ(offset++, val);
616 pcal[9].freq |= (val >> 10) & 0x3f;
618 /* Fixed number of piers */
619 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
621 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
622 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
623 pcal[i].freq, AR5K_EEPROM_MODE_11A);
627 return 0;
630 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
631 static inline int
632 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
634 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
635 struct ath5k_chan_pcal_info *pcal;
637 switch(mode) {
638 case AR5K_EEPROM_MODE_11B:
639 pcal = ee->ee_pwr_cal_b;
640 break;
641 case AR5K_EEPROM_MODE_11G:
642 pcal = ee->ee_pwr_cal_g;
643 break;
644 default:
645 return -EINVAL;
648 ath5k_eeprom_read_freq_list(ah, &offset,
649 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
650 mode);
652 return 0;
655 /* Read power calibration for RF5111 chips
656 * For RF5111 we have an XPD -eXternal Power Detector- curve
657 * for each calibrated channel. Each curve has PCDAC steps on
658 * x axis and power on y axis and looks like a logarithmic
659 * function. To recreate the curve and pass the power values
660 * on the pcdac table, we read 10 points here and interpolate later.
662 static int
663 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
665 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
666 struct ath5k_chan_pcal_info *pcal;
667 int offset, ret;
668 int i;
669 u16 val;
671 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
672 switch(mode) {
673 case AR5K_EEPROM_MODE_11A:
674 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
675 return 0;
677 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
678 offset + AR5K_EEPROM_GROUP1_OFFSET);
679 if (ret < 0)
680 return ret;
682 offset += AR5K_EEPROM_GROUP2_OFFSET;
683 pcal = ee->ee_pwr_cal_a;
684 break;
685 case AR5K_EEPROM_MODE_11B:
686 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
687 !AR5K_EEPROM_HDR_11G(ee->ee_header))
688 return 0;
690 pcal = ee->ee_pwr_cal_b;
691 offset += AR5K_EEPROM_GROUP3_OFFSET;
693 /* fixed piers */
694 pcal[0].freq = 2412;
695 pcal[1].freq = 2447;
696 pcal[2].freq = 2484;
697 ee->ee_n_piers[mode] = 3;
698 break;
699 case AR5K_EEPROM_MODE_11G:
700 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
701 return 0;
703 pcal = ee->ee_pwr_cal_g;
704 offset += AR5K_EEPROM_GROUP4_OFFSET;
706 /* fixed piers */
707 pcal[0].freq = 2312;
708 pcal[1].freq = 2412;
709 pcal[2].freq = 2484;
710 ee->ee_n_piers[mode] = 3;
711 break;
712 default:
713 return -EINVAL;
716 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
717 struct ath5k_chan_pcal_info_rf5111 *cdata =
718 &pcal[i].rf5111_info;
720 AR5K_EEPROM_READ(offset++, val);
721 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
722 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
723 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
725 AR5K_EEPROM_READ(offset++, val);
726 cdata->pwr[0] |= ((val >> 14) & 0x3);
727 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
728 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
729 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
731 AR5K_EEPROM_READ(offset++, val);
732 cdata->pwr[3] |= ((val >> 12) & 0xf);
733 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
734 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
736 AR5K_EEPROM_READ(offset++, val);
737 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
738 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
739 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
741 AR5K_EEPROM_READ(offset++, val);
742 cdata->pwr[8] |= ((val >> 14) & 0x3);
743 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
744 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
746 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
747 cdata->pcdac_max, cdata->pcdac);
750 return 0;
753 /* Read power calibration for RF5112 chips
754 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
755 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
756 * use the higher (3) and the lower (0) curves. Each curve has PCDAC
757 * steps on x axis and power on y axis and looks like a linear
758 * function. To recreate the curve and pass the power values
759 * on the pcdac table, we read 4 points for xpd 0 and 3 points
760 * for xpd 3 here and interpolate later.
762 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
764 static int
765 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
767 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
768 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
769 struct ath5k_chan_pcal_info *gen_chan_info;
770 u32 offset;
771 unsigned int i, c;
772 u16 val;
773 int ret;
775 switch (mode) {
776 case AR5K_EEPROM_MODE_11A:
778 * Read 5GHz EEPROM channels
780 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
781 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
783 offset += AR5K_EEPROM_GROUP2_OFFSET;
784 gen_chan_info = ee->ee_pwr_cal_a;
785 break;
786 case AR5K_EEPROM_MODE_11B:
787 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
788 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
789 offset += AR5K_EEPROM_GROUP3_OFFSET;
791 /* NB: frequency piers parsed during mode init */
792 gen_chan_info = ee->ee_pwr_cal_b;
793 break;
794 case AR5K_EEPROM_MODE_11G:
795 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
796 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
797 offset += AR5K_EEPROM_GROUP4_OFFSET;
798 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
799 offset += AR5K_EEPROM_GROUP2_OFFSET;
801 /* NB: frequency piers parsed during mode init */
802 gen_chan_info = ee->ee_pwr_cal_g;
803 break;
804 default:
805 return -EINVAL;
808 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
809 chan_pcal_info = &gen_chan_info[i].rf5112_info;
811 /* Power values in dBm * 4
812 * for the lower xpd gain curve
813 * (0 dBm -> higher output power) */
814 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
815 AR5K_EEPROM_READ(offset++, val);
816 chan_pcal_info->pwr_x0[c] = (val & 0xff);
817 chan_pcal_info->pwr_x0[++c] = ((val >> 8) & 0xff);
820 /* PCDAC steps
821 * corresponding to the above power
822 * measurements */
823 AR5K_EEPROM_READ(offset++, val);
824 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
825 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
826 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
828 /* Power values in dBm * 4
829 * for the higher xpd gain curve
830 * (18 dBm -> lower output power) */
831 AR5K_EEPROM_READ(offset++, val);
832 chan_pcal_info->pwr_x3[0] = (val & 0xff);
833 chan_pcal_info->pwr_x3[1] = ((val >> 8) & 0xff);
835 AR5K_EEPROM_READ(offset++, val);
836 chan_pcal_info->pwr_x3[2] = (val & 0xff);
838 /* PCDAC steps
839 * corresponding to the above power
840 * measurements (fixed) */
841 chan_pcal_info->pcdac_x3[0] = 20;
842 chan_pcal_info->pcdac_x3[1] = 35;
843 chan_pcal_info->pcdac_x3[2] = 63;
845 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
846 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0xff);
848 /* Last xpd0 power level is also channel maximum */
849 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
850 } else {
851 chan_pcal_info->pcdac_x0[0] = 1;
852 gen_chan_info[i].max_pwr = ((val >> 8) & 0xff);
855 /* Recreate pcdac_x0 table for this channel using pcdac steps */
856 chan_pcal_info->pcdac_x0[1] += chan_pcal_info->pcdac_x0[0];
857 chan_pcal_info->pcdac_x0[2] += chan_pcal_info->pcdac_x0[1];
858 chan_pcal_info->pcdac_x0[3] += chan_pcal_info->pcdac_x0[2];
861 return 0;
864 /* For RF2413 power calibration data doesn't start on a fixed location and
865 * if a mode is not supported, it's section is missing -not zeroed-.
866 * So we need to calculate the starting offset for each section by using
867 * these two functions */
869 /* Return the size of each section based on the mode and the number of pd
870 * gains available (maximum 4). */
871 static inline unsigned int
872 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
874 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
875 unsigned int sz;
877 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
878 sz *= ee->ee_n_piers[mode];
880 return sz;
883 /* Return the starting offset for a section based on the modes supported
884 * and each section's size. */
885 static unsigned int
886 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
888 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
890 switch(mode) {
891 case AR5K_EEPROM_MODE_11G:
892 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
893 offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11B) +
894 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
895 /* fall through */
896 case AR5K_EEPROM_MODE_11B:
897 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
898 offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11A) +
899 AR5K_EEPROM_N_5GHZ_CHAN / 2;
900 /* fall through */
901 case AR5K_EEPROM_MODE_11A:
902 break;
903 default:
904 break;
907 return offset;
910 /* Read power calibration for RF2413 chips
911 * For RF2413 we have a PDDAC table (Power Detector) instead
912 * of a PCDAC and 4 pd gain curves for each calibrated channel.
913 * Each curve has PDDAC steps on x axis and power on y axis and
914 * looks like an exponential function. To recreate the curves
915 * we read here the points and interpolate later. Note that
916 * in most cases only higher and lower curves are used (like
917 * RF5112) but vendors have the oportunity to include all 4
918 * curves on eeprom. The final curve (higher power) has an extra
919 * point for better accuracy like RF5112.
921 static int
922 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
924 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
925 struct ath5k_chan_pcal_info_rf2413 *chan_pcal_info;
926 struct ath5k_chan_pcal_info *gen_chan_info;
927 unsigned int i, c;
928 u32 offset;
929 int ret;
930 u16 val;
931 u8 pd_gains = 0;
933 if (ee->ee_x_gain[mode] & 0x1) pd_gains++;
934 if ((ee->ee_x_gain[mode] >> 1) & 0x1) pd_gains++;
935 if ((ee->ee_x_gain[mode] >> 2) & 0x1) pd_gains++;
936 if ((ee->ee_x_gain[mode] >> 3) & 0x1) pd_gains++;
937 ee->ee_pd_gains[mode] = pd_gains;
939 offset = ath5k_cal_data_offset_2413(ee, mode);
940 ee->ee_n_piers[mode] = 0;
941 switch (mode) {
942 case AR5K_EEPROM_MODE_11A:
943 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
944 return 0;
946 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
947 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
948 gen_chan_info = ee->ee_pwr_cal_a;
949 break;
950 case AR5K_EEPROM_MODE_11B:
951 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
952 return 0;
954 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
955 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
956 gen_chan_info = ee->ee_pwr_cal_b;
957 break;
958 case AR5K_EEPROM_MODE_11G:
959 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
960 return 0;
962 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
963 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
964 gen_chan_info = ee->ee_pwr_cal_g;
965 break;
966 default:
967 return -EINVAL;
970 if (pd_gains == 0)
971 return 0;
973 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
974 chan_pcal_info = &gen_chan_info[i].rf2413_info;
977 * Read pwr_i, pddac_i and the first
978 * 2 pd points (pwr, pddac)
980 AR5K_EEPROM_READ(offset++, val);
981 chan_pcal_info->pwr_i[0] = val & 0x1f;
982 chan_pcal_info->pddac_i[0] = (val >> 5) & 0x7f;
983 chan_pcal_info->pwr[0][0] =
984 (val >> 12) & 0xf;
986 AR5K_EEPROM_READ(offset++, val);
987 chan_pcal_info->pddac[0][0] = val & 0x3f;
988 chan_pcal_info->pwr[0][1] = (val >> 6) & 0xf;
989 chan_pcal_info->pddac[0][1] =
990 (val >> 10) & 0x3f;
992 AR5K_EEPROM_READ(offset++, val);
993 chan_pcal_info->pwr[0][2] = val & 0xf;
994 chan_pcal_info->pddac[0][2] =
995 (val >> 4) & 0x3f;
997 chan_pcal_info->pwr[0][3] = 0;
998 chan_pcal_info->pddac[0][3] = 0;
1000 if (pd_gains > 1) {
1002 * Pd gain 0 is not the last pd gain
1003 * so it only has 2 pd points.
1004 * Continue wih pd gain 1.
1006 chan_pcal_info->pwr_i[1] = (val >> 10) & 0x1f;
1008 chan_pcal_info->pddac_i[1] = (val >> 15) & 0x1;
1009 AR5K_EEPROM_READ(offset++, val);
1010 chan_pcal_info->pddac_i[1] |= (val & 0x3F) << 1;
1012 chan_pcal_info->pwr[1][0] = (val >> 6) & 0xf;
1013 chan_pcal_info->pddac[1][0] =
1014 (val >> 10) & 0x3f;
1016 AR5K_EEPROM_READ(offset++, val);
1017 chan_pcal_info->pwr[1][1] = val & 0xf;
1018 chan_pcal_info->pddac[1][1] =
1019 (val >> 4) & 0x3f;
1020 chan_pcal_info->pwr[1][2] =
1021 (val >> 10) & 0xf;
1023 chan_pcal_info->pddac[1][2] =
1024 (val >> 14) & 0x3;
1025 AR5K_EEPROM_READ(offset++, val);
1026 chan_pcal_info->pddac[1][2] |=
1027 (val & 0xF) << 2;
1029 chan_pcal_info->pwr[1][3] = 0;
1030 chan_pcal_info->pddac[1][3] = 0;
1031 } else if (pd_gains == 1) {
1033 * Pd gain 0 is the last one so
1034 * read the extra point.
1036 chan_pcal_info->pwr[0][3] =
1037 (val >> 10) & 0xf;
1039 chan_pcal_info->pddac[0][3] =
1040 (val >> 14) & 0x3;
1041 AR5K_EEPROM_READ(offset++, val);
1042 chan_pcal_info->pddac[0][3] |=
1043 (val & 0xF) << 2;
1047 * Proceed with the other pd_gains
1048 * as above.
1050 if (pd_gains > 2) {
1051 chan_pcal_info->pwr_i[2] = (val >> 4) & 0x1f;
1052 chan_pcal_info->pddac_i[2] = (val >> 9) & 0x7f;
1054 AR5K_EEPROM_READ(offset++, val);
1055 chan_pcal_info->pwr[2][0] =
1056 (val >> 0) & 0xf;
1057 chan_pcal_info->pddac[2][0] =
1058 (val >> 4) & 0x3f;
1059 chan_pcal_info->pwr[2][1] =
1060 (val >> 10) & 0xf;
1062 chan_pcal_info->pddac[2][1] =
1063 (val >> 14) & 0x3;
1064 AR5K_EEPROM_READ(offset++, val);
1065 chan_pcal_info->pddac[2][1] |=
1066 (val & 0xF) << 2;
1068 chan_pcal_info->pwr[2][2] =
1069 (val >> 4) & 0xf;
1070 chan_pcal_info->pddac[2][2] =
1071 (val >> 8) & 0x3f;
1073 chan_pcal_info->pwr[2][3] = 0;
1074 chan_pcal_info->pddac[2][3] = 0;
1075 } else if (pd_gains == 2) {
1076 chan_pcal_info->pwr[1][3] =
1077 (val >> 4) & 0xf;
1078 chan_pcal_info->pddac[1][3] =
1079 (val >> 8) & 0x3f;
1082 if (pd_gains > 3) {
1083 chan_pcal_info->pwr_i[3] = (val >> 14) & 0x3;
1084 AR5K_EEPROM_READ(offset++, val);
1085 chan_pcal_info->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1087 chan_pcal_info->pddac_i[3] = (val >> 3) & 0x7f;
1088 chan_pcal_info->pwr[3][0] =
1089 (val >> 10) & 0xf;
1090 chan_pcal_info->pddac[3][0] =
1091 (val >> 14) & 0x3;
1093 AR5K_EEPROM_READ(offset++, val);
1094 chan_pcal_info->pddac[3][0] |=
1095 (val & 0xF) << 2;
1096 chan_pcal_info->pwr[3][1] =
1097 (val >> 4) & 0xf;
1098 chan_pcal_info->pddac[3][1] =
1099 (val >> 8) & 0x3f;
1101 chan_pcal_info->pwr[3][2] =
1102 (val >> 14) & 0x3;
1103 AR5K_EEPROM_READ(offset++, val);
1104 chan_pcal_info->pwr[3][2] |=
1105 ((val >> 0) & 0x3) << 2;
1107 chan_pcal_info->pddac[3][2] =
1108 (val >> 2) & 0x3f;
1109 chan_pcal_info->pwr[3][3] =
1110 (val >> 8) & 0xf;
1112 chan_pcal_info->pddac[3][3] =
1113 (val >> 12) & 0xF;
1114 AR5K_EEPROM_READ(offset++, val);
1115 chan_pcal_info->pddac[3][3] |=
1116 ((val >> 0) & 0x3) << 4;
1117 } else if (pd_gains == 3) {
1118 chan_pcal_info->pwr[2][3] =
1119 (val >> 14) & 0x3;
1120 AR5K_EEPROM_READ(offset++, val);
1121 chan_pcal_info->pwr[2][3] |=
1122 ((val >> 0) & 0x3) << 2;
1124 chan_pcal_info->pddac[2][3] =
1125 (val >> 2) & 0x3f;
1128 for (c = 0; c < pd_gains; c++) {
1129 /* Recreate pwr table for this channel using pwr steps */
1130 chan_pcal_info->pwr[c][0] += chan_pcal_info->pwr_i[c] * 2;
1131 chan_pcal_info->pwr[c][1] += chan_pcal_info->pwr[c][0];
1132 chan_pcal_info->pwr[c][2] += chan_pcal_info->pwr[c][1];
1133 chan_pcal_info->pwr[c][3] += chan_pcal_info->pwr[c][2];
1134 if (chan_pcal_info->pwr[c][3] == chan_pcal_info->pwr[c][2])
1135 chan_pcal_info->pwr[c][3] = 0;
1137 /* Recreate pddac table for this channel using pddac steps */
1138 chan_pcal_info->pddac[c][0] += chan_pcal_info->pddac_i[c];
1139 chan_pcal_info->pddac[c][1] += chan_pcal_info->pddac[c][0];
1140 chan_pcal_info->pddac[c][2] += chan_pcal_info->pddac[c][1];
1141 chan_pcal_info->pddac[c][3] += chan_pcal_info->pddac[c][2];
1142 if (chan_pcal_info->pddac[c][3] == chan_pcal_info->pddac[c][2])
1143 chan_pcal_info->pddac[c][3] = 0;
1147 return 0;
1151 * Read per rate target power (this is the maximum tx power
1152 * supported by the card). This info is used when setting
1153 * tx power, no matter the channel.
1155 * This also works for v5 EEPROMs.
1157 static int ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1159 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1160 struct ath5k_rate_pcal_info *rate_pcal_info;
1161 u16 *rate_target_pwr_num;
1162 u32 offset;
1163 u16 val;
1164 int ret, i;
1166 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1167 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1168 switch (mode) {
1169 case AR5K_EEPROM_MODE_11A:
1170 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1171 rate_pcal_info = ee->ee_rate_tpwr_a;
1172 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1173 break;
1174 case AR5K_EEPROM_MODE_11B:
1175 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1176 rate_pcal_info = ee->ee_rate_tpwr_b;
1177 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1178 break;
1179 case AR5K_EEPROM_MODE_11G:
1180 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1181 rate_pcal_info = ee->ee_rate_tpwr_g;
1182 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1183 break;
1184 default:
1185 return -EINVAL;
1188 /* Different freq mask for older eeproms (<= v3.2) */
1189 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1190 for (i = 0; i < (*rate_target_pwr_num); i++) {
1191 AR5K_EEPROM_READ(offset++, val);
1192 rate_pcal_info[i].freq =
1193 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1195 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1196 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1198 AR5K_EEPROM_READ(offset++, val);
1200 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1201 val == 0) {
1202 (*rate_target_pwr_num) = i;
1203 break;
1206 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1207 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1208 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1210 } else {
1211 for (i = 0; i < (*rate_target_pwr_num); i++) {
1212 AR5K_EEPROM_READ(offset++, val);
1213 rate_pcal_info[i].freq =
1214 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1216 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1217 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1219 AR5K_EEPROM_READ(offset++, val);
1221 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1222 val == 0) {
1223 (*rate_target_pwr_num) = i;
1224 break;
1227 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1228 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1229 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1233 return 0;
1237 * Read per channel calibration info from EEPROM
1239 * This info is used to calibrate the baseband power table. Imagine
1240 * that for each channel there is a power curve that's hw specific
1241 * (depends on amplifier etc) and we try to "correct" this curve using
1242 * offests we pass on to phy chip (baseband -> before amplifier) so that
1243 * it can use accurate power values when setting tx power (takes amplifier's
1244 * performance on each channel into account).
1246 * EEPROM provides us with the offsets for some pre-calibrated channels
1247 * and we have to interpolate to create the full table for these channels and
1248 * also the table for any channel.
1250 static int
1251 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1253 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1254 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1255 int mode;
1256 int err;
1258 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1259 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1260 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1261 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1262 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1263 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1264 else
1265 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1267 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
1268 err = read_pcal(ah, mode);
1269 if (err)
1270 return err;
1272 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1273 if (err < 0)
1274 return err;
1277 return 0;
1280 /* Read conformance test limits used for regulatory control */
1281 static int
1282 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1284 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1285 struct ath5k_edge_power *rep;
1286 unsigned int fmask, pmask;
1287 unsigned int ctl_mode;
1288 int ret, i, j;
1289 u32 offset;
1290 u16 val;
1292 pmask = AR5K_EEPROM_POWER_M;
1293 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1294 offset = AR5K_EEPROM_CTL(ee->ee_version);
1295 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1296 for (i = 0; i < ee->ee_ctls; i += 2) {
1297 AR5K_EEPROM_READ(offset++, val);
1298 ee->ee_ctl[i] = (val >> 8) & 0xff;
1299 ee->ee_ctl[i + 1] = val & 0xff;
1302 offset = AR5K_EEPROM_GROUP8_OFFSET;
1303 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1304 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1305 AR5K_EEPROM_GROUP5_OFFSET;
1306 else
1307 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1309 rep = ee->ee_ctl_pwr;
1310 for(i = 0; i < ee->ee_ctls; i++) {
1311 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1312 case AR5K_CTL_11A:
1313 case AR5K_CTL_TURBO:
1314 ctl_mode = AR5K_EEPROM_MODE_11A;
1315 break;
1316 default:
1317 ctl_mode = AR5K_EEPROM_MODE_11G;
1318 break;
1320 if (ee->ee_ctl[i] == 0) {
1321 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1322 offset += 8;
1323 else
1324 offset += 7;
1325 rep += AR5K_EEPROM_N_EDGES;
1326 continue;
1328 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1329 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1330 AR5K_EEPROM_READ(offset++, val);
1331 rep[j].freq = (val >> 8) & fmask;
1332 rep[j + 1].freq = val & fmask;
1334 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1335 AR5K_EEPROM_READ(offset++, val);
1336 rep[j].edge = (val >> 8) & pmask;
1337 rep[j].flag = (val >> 14) & 1;
1338 rep[j + 1].edge = val & pmask;
1339 rep[j + 1].flag = (val >> 6) & 1;
1341 } else {
1342 AR5K_EEPROM_READ(offset++, val);
1343 rep[0].freq = (val >> 9) & fmask;
1344 rep[1].freq = (val >> 2) & fmask;
1345 rep[2].freq = (val << 5) & fmask;
1347 AR5K_EEPROM_READ(offset++, val);
1348 rep[2].freq |= (val >> 11) & 0x1f;
1349 rep[3].freq = (val >> 4) & fmask;
1350 rep[4].freq = (val << 3) & fmask;
1352 AR5K_EEPROM_READ(offset++, val);
1353 rep[4].freq |= (val >> 13) & 0x7;
1354 rep[5].freq = (val >> 6) & fmask;
1355 rep[6].freq = (val << 1) & fmask;
1357 AR5K_EEPROM_READ(offset++, val);
1358 rep[6].freq |= (val >> 15) & 0x1;
1359 rep[7].freq = (val >> 8) & fmask;
1361 rep[0].edge = (val >> 2) & pmask;
1362 rep[1].edge = (val << 4) & pmask;
1364 AR5K_EEPROM_READ(offset++, val);
1365 rep[1].edge |= (val >> 12) & 0xf;
1366 rep[2].edge = (val >> 6) & pmask;
1367 rep[3].edge = val & pmask;
1369 AR5K_EEPROM_READ(offset++, val);
1370 rep[4].edge = (val >> 10) & pmask;
1371 rep[5].edge = (val >> 4) & pmask;
1372 rep[6].edge = (val << 2) & pmask;
1374 AR5K_EEPROM_READ(offset++, val);
1375 rep[6].edge |= (val >> 14) & 0x3;
1376 rep[7].edge = (val >> 8) & pmask;
1378 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1379 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1380 rep[j].freq, ctl_mode);
1382 rep += AR5K_EEPROM_N_EDGES;
1385 return 0;
1390 * Initialize eeprom power tables
1393 ath5k_eeprom_init(struct ath5k_hw *ah)
1395 int err;
1397 err = ath5k_eeprom_init_header(ah);
1398 if (err < 0)
1399 return err;
1401 err = ath5k_eeprom_init_modes(ah);
1402 if (err < 0)
1403 return err;
1405 err = ath5k_eeprom_read_pcal_info(ah);
1406 if (err < 0)
1407 return err;
1409 err = ath5k_eeprom_read_ctl_info(ah);
1410 if (err < 0)
1411 return err;
1413 return 0;
1417 * Read the MAC address from eeprom
1419 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1421 u8 mac_d[ETH_ALEN] = {};
1422 u32 total, offset;
1423 u16 data;
1424 int octet, ret;
1426 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1427 if (ret)
1428 return ret;
1430 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1431 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1432 if (ret)
1433 return ret;
1435 total += data;
1436 mac_d[octet + 1] = data & 0xff;
1437 mac_d[octet] = data >> 8;
1438 octet += 2;
1441 if (!total || total == 3 * 0xffff)
1442 return -EINVAL;
1444 memcpy(mac, mac_d, ETH_ALEN);
1446 return 0;
1449 bool ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
1451 u16 data;
1453 ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data);
1455 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data)
1456 return true;
1457 else
1458 return false;