2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
23 #include <asm/pgtable.h>
26 #include <linux/hugetlb.h>
29 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
30 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
31 unsigned long hugepages_treat_as_movable
;
33 static int max_hstate
;
34 unsigned int default_hstate_idx
;
35 struct hstate hstates
[HUGE_MAX_HSTATE
];
37 __initdata
LIST_HEAD(huge_boot_pages
);
39 /* for command line parsing */
40 static struct hstate
* __initdata parsed_hstate
;
41 static unsigned long __initdata default_hstate_max_huge_pages
;
42 static unsigned long __initdata default_hstate_size
;
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 static DEFINE_SPINLOCK(hugetlb_lock
);
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
61 * down_write(&mm->mmap_sem);
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
67 struct list_head link
;
72 static long region_add(struct list_head
*head
, long f
, long t
)
74 struct file_region
*rg
, *nrg
, *trg
;
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg
, head
, link
)
81 /* Round our left edge to the current segment if it encloses us. */
85 /* Check for and consume any regions we now overlap with. */
87 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
88 if (&rg
->link
== head
)
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
108 static long region_chg(struct list_head
*head
, long f
, long t
)
110 struct file_region
*rg
, *nrg
;
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg
, head
, link
)
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg
->link
== head
|| t
< rg
->from
) {
122 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
127 INIT_LIST_HEAD(&nrg
->link
);
128 list_add(&nrg
->link
, rg
->link
.prev
);
133 /* Round our left edge to the current segment if it encloses us. */
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
140 if (&rg
->link
== head
)
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
152 chg
-= rg
->to
- rg
->from
;
157 static long region_truncate(struct list_head
*head
, long end
)
159 struct file_region
*rg
, *trg
;
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg
, head
, link
)
166 if (&rg
->link
== head
)
169 /* If we are in the middle of a region then adjust it. */
170 if (end
> rg
->from
) {
173 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
178 if (&rg
->link
== head
)
180 chg
+= rg
->to
- rg
->from
;
187 static long region_count(struct list_head
*head
, long f
, long t
)
189 struct file_region
*rg
;
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg
, head
, link
) {
202 seg_from
= max(rg
->from
, f
);
203 seg_to
= min(rg
->to
, t
);
205 chg
+= seg_to
- seg_from
;
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
215 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
216 struct vm_area_struct
*vma
, unsigned long address
)
218 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
219 (vma
->vm_pgoff
>> huge_page_order(h
));
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
226 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
228 struct hstate
*hstate
;
230 if (!is_vm_hugetlb_page(vma
))
233 hstate
= hstate_vma(vma
);
235 return 1UL << (hstate
->order
+ PAGE_SHIFT
);
237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
240 * Return the page size being used by the MMU to back a VMA. In the majority
241 * of cases, the page size used by the kernel matches the MMU size. On
242 * architectures where it differs, an architecture-specific version of this
243 * function is required.
245 #ifndef vma_mmu_pagesize
246 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
248 return vma_kernel_pagesize(vma
);
253 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
254 * bits of the reservation map pointer, which are always clear due to
257 #define HPAGE_RESV_OWNER (1UL << 0)
258 #define HPAGE_RESV_UNMAPPED (1UL << 1)
259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
262 * These helpers are used to track how many pages are reserved for
263 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264 * is guaranteed to have their future faults succeed.
266 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267 * the reserve counters are updated with the hugetlb_lock held. It is safe
268 * to reset the VMA at fork() time as it is not in use yet and there is no
269 * chance of the global counters getting corrupted as a result of the values.
271 * The private mapping reservation is represented in a subtly different
272 * manner to a shared mapping. A shared mapping has a region map associated
273 * with the underlying file, this region map represents the backing file
274 * pages which have ever had a reservation assigned which this persists even
275 * after the page is instantiated. A private mapping has a region map
276 * associated with the original mmap which is attached to all VMAs which
277 * reference it, this region map represents those offsets which have consumed
278 * reservation ie. where pages have been instantiated.
280 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
282 return (unsigned long)vma
->vm_private_data
;
285 static void set_vma_private_data(struct vm_area_struct
*vma
,
288 vma
->vm_private_data
= (void *)value
;
293 struct list_head regions
;
296 static struct resv_map
*resv_map_alloc(void)
298 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
302 kref_init(&resv_map
->refs
);
303 INIT_LIST_HEAD(&resv_map
->regions
);
308 static void resv_map_release(struct kref
*ref
)
310 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
312 /* Clear out any active regions before we release the map. */
313 region_truncate(&resv_map
->regions
, 0);
317 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
319 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
320 if (!(vma
->vm_flags
& VM_MAYSHARE
))
321 return (struct resv_map
*)(get_vma_private_data(vma
) &
326 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
328 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
329 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
331 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
332 HPAGE_RESV_MASK
) | (unsigned long)map
);
335 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
337 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
338 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
340 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
343 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
345 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
347 return (get_vma_private_data(vma
) & flag
) != 0;
350 /* Decrement the reserved pages in the hugepage pool by one */
351 static void decrement_hugepage_resv_vma(struct hstate
*h
,
352 struct vm_area_struct
*vma
)
354 if (vma
->vm_flags
& VM_NORESERVE
)
357 if (vma
->vm_flags
& VM_MAYSHARE
) {
358 /* Shared mappings always use reserves */
359 h
->resv_huge_pages
--;
360 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
362 * Only the process that called mmap() has reserves for
365 h
->resv_huge_pages
--;
369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
372 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
373 if (!(vma
->vm_flags
& VM_MAYSHARE
))
374 vma
->vm_private_data
= (void *)0;
377 /* Returns true if the VMA has associated reserve pages */
378 static int vma_has_reserves(struct vm_area_struct
*vma
)
380 if (vma
->vm_flags
& VM_MAYSHARE
)
382 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
387 static void clear_gigantic_page(struct page
*page
,
388 unsigned long addr
, unsigned long sz
)
391 struct page
*p
= page
;
394 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++, p
= mem_map_next(p
, page
, i
)) {
396 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
399 static void clear_huge_page(struct page
*page
,
400 unsigned long addr
, unsigned long sz
)
404 if (unlikely(sz
> MAX_ORDER_NR_PAGES
)) {
405 clear_gigantic_page(page
, addr
, sz
);
410 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
412 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
416 static void copy_gigantic_page(struct page
*dst
, struct page
*src
,
417 unsigned long addr
, struct vm_area_struct
*vma
)
420 struct hstate
*h
= hstate_vma(vma
);
421 struct page
*dst_base
= dst
;
422 struct page
*src_base
= src
;
424 for (i
= 0; i
< pages_per_huge_page(h
); ) {
426 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
429 dst
= mem_map_next(dst
, dst_base
, i
);
430 src
= mem_map_next(src
, src_base
, i
);
433 static void copy_huge_page(struct page
*dst
, struct page
*src
,
434 unsigned long addr
, struct vm_area_struct
*vma
)
437 struct hstate
*h
= hstate_vma(vma
);
439 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
440 copy_gigantic_page(dst
, src
, addr
, vma
);
445 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
447 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
451 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
453 int nid
= page_to_nid(page
);
454 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
455 h
->free_huge_pages
++;
456 h
->free_huge_pages_node
[nid
]++;
459 static struct page
*dequeue_huge_page(struct hstate
*h
)
462 struct page
*page
= NULL
;
464 for (nid
= 0; nid
< MAX_NUMNODES
; ++nid
) {
465 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
466 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
468 list_del(&page
->lru
);
469 h
->free_huge_pages
--;
470 h
->free_huge_pages_node
[nid
]--;
477 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
478 struct vm_area_struct
*vma
,
479 unsigned long address
, int avoid_reserve
)
482 struct page
*page
= NULL
;
483 struct mempolicy
*mpol
;
484 nodemask_t
*nodemask
;
485 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
486 htlb_alloc_mask
, &mpol
, &nodemask
);
491 * A child process with MAP_PRIVATE mappings created by their parent
492 * have no page reserves. This check ensures that reservations are
493 * not "stolen". The child may still get SIGKILLed
495 if (!vma_has_reserves(vma
) &&
496 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
499 /* If reserves cannot be used, ensure enough pages are in the pool */
500 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
503 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
504 MAX_NR_ZONES
- 1, nodemask
) {
505 nid
= zone_to_nid(zone
);
506 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
) &&
507 !list_empty(&h
->hugepage_freelists
[nid
])) {
508 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
510 list_del(&page
->lru
);
511 h
->free_huge_pages
--;
512 h
->free_huge_pages_node
[nid
]--;
515 decrement_hugepage_resv_vma(h
, vma
);
524 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
528 VM_BUG_ON(h
->order
>= MAX_ORDER
);
531 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
532 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
533 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
534 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
535 1 << PG_private
| 1<< PG_writeback
);
537 set_compound_page_dtor(page
, NULL
);
538 set_page_refcounted(page
);
539 arch_release_hugepage(page
);
540 __free_pages(page
, huge_page_order(h
));
543 struct hstate
*size_to_hstate(unsigned long size
)
548 if (huge_page_size(h
) == size
)
554 static void free_huge_page(struct page
*page
)
557 * Can't pass hstate in here because it is called from the
558 * compound page destructor.
560 struct hstate
*h
= page_hstate(page
);
561 int nid
= page_to_nid(page
);
562 struct address_space
*mapping
;
564 mapping
= (struct address_space
*) page_private(page
);
565 set_page_private(page
, 0);
566 BUG_ON(page_count(page
));
567 INIT_LIST_HEAD(&page
->lru
);
569 spin_lock(&hugetlb_lock
);
570 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
571 update_and_free_page(h
, page
);
572 h
->surplus_huge_pages
--;
573 h
->surplus_huge_pages_node
[nid
]--;
575 enqueue_huge_page(h
, page
);
577 spin_unlock(&hugetlb_lock
);
579 hugetlb_put_quota(mapping
, 1);
582 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
584 set_compound_page_dtor(page
, free_huge_page
);
585 spin_lock(&hugetlb_lock
);
587 h
->nr_huge_pages_node
[nid
]++;
588 spin_unlock(&hugetlb_lock
);
589 put_page(page
); /* free it into the hugepage allocator */
592 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
595 int nr_pages
= 1 << order
;
596 struct page
*p
= page
+ 1;
598 /* we rely on prep_new_huge_page to set the destructor */
599 set_compound_order(page
, order
);
601 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
603 p
->first_page
= page
;
607 int PageHuge(struct page
*page
)
609 compound_page_dtor
*dtor
;
611 if (!PageCompound(page
))
614 page
= compound_head(page
);
615 dtor
= get_compound_page_dtor(page
);
617 return dtor
== free_huge_page
;
620 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
624 if (h
->order
>= MAX_ORDER
)
627 page
= alloc_pages_exact_node(nid
,
628 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
629 __GFP_REPEAT
|__GFP_NOWARN
,
632 if (arch_prepare_hugepage(page
)) {
633 __free_pages(page
, huge_page_order(h
));
636 prep_new_huge_page(h
, page
, nid
);
643 * Use a helper variable to find the next node and then
644 * copy it back to hugetlb_next_nid afterwards:
645 * otherwise there's a window in which a racer might
646 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
647 * But we don't need to use a spin_lock here: it really
648 * doesn't matter if occasionally a racer chooses the
649 * same nid as we do. Move nid forward in the mask even
650 * if we just successfully allocated a hugepage so that
651 * the next caller gets hugepages on the next node.
653 static int hstate_next_node(struct hstate
*h
)
656 next_nid
= next_node(h
->hugetlb_next_nid
, node_online_map
);
657 if (next_nid
== MAX_NUMNODES
)
658 next_nid
= first_node(node_online_map
);
659 h
->hugetlb_next_nid
= next_nid
;
663 static int alloc_fresh_huge_page(struct hstate
*h
)
670 start_nid
= h
->hugetlb_next_nid
;
673 page
= alloc_fresh_huge_page_node(h
, h
->hugetlb_next_nid
);
676 next_nid
= hstate_next_node(h
);
677 } while (!page
&& h
->hugetlb_next_nid
!= start_nid
);
680 count_vm_event(HTLB_BUDDY_PGALLOC
);
682 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
687 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
688 struct vm_area_struct
*vma
, unsigned long address
)
693 if (h
->order
>= MAX_ORDER
)
697 * Assume we will successfully allocate the surplus page to
698 * prevent racing processes from causing the surplus to exceed
701 * This however introduces a different race, where a process B
702 * tries to grow the static hugepage pool while alloc_pages() is
703 * called by process A. B will only examine the per-node
704 * counters in determining if surplus huge pages can be
705 * converted to normal huge pages in adjust_pool_surplus(). A
706 * won't be able to increment the per-node counter, until the
707 * lock is dropped by B, but B doesn't drop hugetlb_lock until
708 * no more huge pages can be converted from surplus to normal
709 * state (and doesn't try to convert again). Thus, we have a
710 * case where a surplus huge page exists, the pool is grown, and
711 * the surplus huge page still exists after, even though it
712 * should just have been converted to a normal huge page. This
713 * does not leak memory, though, as the hugepage will be freed
714 * once it is out of use. It also does not allow the counters to
715 * go out of whack in adjust_pool_surplus() as we don't modify
716 * the node values until we've gotten the hugepage and only the
717 * per-node value is checked there.
719 spin_lock(&hugetlb_lock
);
720 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
721 spin_unlock(&hugetlb_lock
);
725 h
->surplus_huge_pages
++;
727 spin_unlock(&hugetlb_lock
);
729 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
730 __GFP_REPEAT
|__GFP_NOWARN
,
733 if (page
&& arch_prepare_hugepage(page
)) {
734 __free_pages(page
, huge_page_order(h
));
738 spin_lock(&hugetlb_lock
);
741 * This page is now managed by the hugetlb allocator and has
742 * no users -- drop the buddy allocator's reference.
744 put_page_testzero(page
);
745 VM_BUG_ON(page_count(page
));
746 nid
= page_to_nid(page
);
747 set_compound_page_dtor(page
, free_huge_page
);
749 * We incremented the global counters already
751 h
->nr_huge_pages_node
[nid
]++;
752 h
->surplus_huge_pages_node
[nid
]++;
753 __count_vm_event(HTLB_BUDDY_PGALLOC
);
756 h
->surplus_huge_pages
--;
757 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
759 spin_unlock(&hugetlb_lock
);
765 * Increase the hugetlb pool such that it can accomodate a reservation
768 static int gather_surplus_pages(struct hstate
*h
, int delta
)
770 struct list_head surplus_list
;
771 struct page
*page
, *tmp
;
773 int needed
, allocated
;
775 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
777 h
->resv_huge_pages
+= delta
;
782 INIT_LIST_HEAD(&surplus_list
);
786 spin_unlock(&hugetlb_lock
);
787 for (i
= 0; i
< needed
; i
++) {
788 page
= alloc_buddy_huge_page(h
, NULL
, 0);
791 * We were not able to allocate enough pages to
792 * satisfy the entire reservation so we free what
793 * we've allocated so far.
795 spin_lock(&hugetlb_lock
);
800 list_add(&page
->lru
, &surplus_list
);
805 * After retaking hugetlb_lock, we need to recalculate 'needed'
806 * because either resv_huge_pages or free_huge_pages may have changed.
808 spin_lock(&hugetlb_lock
);
809 needed
= (h
->resv_huge_pages
+ delta
) -
810 (h
->free_huge_pages
+ allocated
);
815 * The surplus_list now contains _at_least_ the number of extra pages
816 * needed to accomodate the reservation. Add the appropriate number
817 * of pages to the hugetlb pool and free the extras back to the buddy
818 * allocator. Commit the entire reservation here to prevent another
819 * process from stealing the pages as they are added to the pool but
820 * before they are reserved.
823 h
->resv_huge_pages
+= delta
;
826 /* Free the needed pages to the hugetlb pool */
827 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
830 list_del(&page
->lru
);
831 enqueue_huge_page(h
, page
);
834 /* Free unnecessary surplus pages to the buddy allocator */
835 if (!list_empty(&surplus_list
)) {
836 spin_unlock(&hugetlb_lock
);
837 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
838 list_del(&page
->lru
);
840 * The page has a reference count of zero already, so
841 * call free_huge_page directly instead of using
842 * put_page. This must be done with hugetlb_lock
843 * unlocked which is safe because free_huge_page takes
844 * hugetlb_lock before deciding how to free the page.
846 free_huge_page(page
);
848 spin_lock(&hugetlb_lock
);
855 * When releasing a hugetlb pool reservation, any surplus pages that were
856 * allocated to satisfy the reservation must be explicitly freed if they were
859 static void return_unused_surplus_pages(struct hstate
*h
,
860 unsigned long unused_resv_pages
)
864 unsigned long nr_pages
;
867 * We want to release as many surplus pages as possible, spread
868 * evenly across all nodes. Iterate across all nodes until we
869 * can no longer free unreserved surplus pages. This occurs when
870 * the nodes with surplus pages have no free pages.
872 unsigned long remaining_iterations
= nr_online_nodes
;
874 /* Uncommit the reservation */
875 h
->resv_huge_pages
-= unused_resv_pages
;
877 /* Cannot return gigantic pages currently */
878 if (h
->order
>= MAX_ORDER
)
881 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
883 while (remaining_iterations
-- && nr_pages
) {
884 nid
= next_node(nid
, node_online_map
);
885 if (nid
== MAX_NUMNODES
)
886 nid
= first_node(node_online_map
);
888 if (!h
->surplus_huge_pages_node
[nid
])
891 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
892 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
894 list_del(&page
->lru
);
895 update_and_free_page(h
, page
);
896 h
->free_huge_pages
--;
897 h
->free_huge_pages_node
[nid
]--;
898 h
->surplus_huge_pages
--;
899 h
->surplus_huge_pages_node
[nid
]--;
901 remaining_iterations
= nr_online_nodes
;
907 * Determine if the huge page at addr within the vma has an associated
908 * reservation. Where it does not we will need to logically increase
909 * reservation and actually increase quota before an allocation can occur.
910 * Where any new reservation would be required the reservation change is
911 * prepared, but not committed. Once the page has been quota'd allocated
912 * an instantiated the change should be committed via vma_commit_reservation.
913 * No action is required on failure.
915 static long vma_needs_reservation(struct hstate
*h
,
916 struct vm_area_struct
*vma
, unsigned long addr
)
918 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
919 struct inode
*inode
= mapping
->host
;
921 if (vma
->vm_flags
& VM_MAYSHARE
) {
922 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
923 return region_chg(&inode
->i_mapping
->private_list
,
926 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
931 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
932 struct resv_map
*reservations
= vma_resv_map(vma
);
934 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
940 static void vma_commit_reservation(struct hstate
*h
,
941 struct vm_area_struct
*vma
, unsigned long addr
)
943 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
944 struct inode
*inode
= mapping
->host
;
946 if (vma
->vm_flags
& VM_MAYSHARE
) {
947 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
948 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
950 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
951 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
952 struct resv_map
*reservations
= vma_resv_map(vma
);
954 /* Mark this page used in the map. */
955 region_add(&reservations
->regions
, idx
, idx
+ 1);
959 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
960 unsigned long addr
, int avoid_reserve
)
962 struct hstate
*h
= hstate_vma(vma
);
964 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
965 struct inode
*inode
= mapping
->host
;
969 * Processes that did not create the mapping will have no reserves and
970 * will not have accounted against quota. Check that the quota can be
971 * made before satisfying the allocation
972 * MAP_NORESERVE mappings may also need pages and quota allocated
973 * if no reserve mapping overlaps.
975 chg
= vma_needs_reservation(h
, vma
, addr
);
979 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
980 return ERR_PTR(-ENOSPC
);
982 spin_lock(&hugetlb_lock
);
983 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
984 spin_unlock(&hugetlb_lock
);
987 page
= alloc_buddy_huge_page(h
, vma
, addr
);
989 hugetlb_put_quota(inode
->i_mapping
, chg
);
990 return ERR_PTR(-VM_FAULT_OOM
);
994 set_page_refcounted(page
);
995 set_page_private(page
, (unsigned long) mapping
);
997 vma_commit_reservation(h
, vma
, addr
);
1002 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1004 struct huge_bootmem_page
*m
;
1005 int nr_nodes
= nodes_weight(node_online_map
);
1010 addr
= __alloc_bootmem_node_nopanic(
1011 NODE_DATA(h
->hugetlb_next_nid
),
1012 huge_page_size(h
), huge_page_size(h
), 0);
1016 * Use the beginning of the huge page to store the
1017 * huge_bootmem_page struct (until gather_bootmem
1018 * puts them into the mem_map).
1023 hstate_next_node(h
);
1029 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1030 /* Put them into a private list first because mem_map is not up yet */
1031 list_add(&m
->list
, &huge_boot_pages
);
1036 static void prep_compound_huge_page(struct page
*page
, int order
)
1038 if (unlikely(order
> (MAX_ORDER
- 1)))
1039 prep_compound_gigantic_page(page
, order
);
1041 prep_compound_page(page
, order
);
1044 /* Put bootmem huge pages into the standard lists after mem_map is up */
1045 static void __init
gather_bootmem_prealloc(void)
1047 struct huge_bootmem_page
*m
;
1049 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1050 struct page
*page
= virt_to_page(m
);
1051 struct hstate
*h
= m
->hstate
;
1052 __ClearPageReserved(page
);
1053 WARN_ON(page_count(page
) != 1);
1054 prep_compound_huge_page(page
, h
->order
);
1055 prep_new_huge_page(h
, page
, page_to_nid(page
));
1059 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1063 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1064 if (h
->order
>= MAX_ORDER
) {
1065 if (!alloc_bootmem_huge_page(h
))
1067 } else if (!alloc_fresh_huge_page(h
))
1070 h
->max_huge_pages
= i
;
1073 static void __init
hugetlb_init_hstates(void)
1077 for_each_hstate(h
) {
1078 /* oversize hugepages were init'ed in early boot */
1079 if (h
->order
< MAX_ORDER
)
1080 hugetlb_hstate_alloc_pages(h
);
1084 static char * __init
memfmt(char *buf
, unsigned long n
)
1086 if (n
>= (1UL << 30))
1087 sprintf(buf
, "%lu GB", n
>> 30);
1088 else if (n
>= (1UL << 20))
1089 sprintf(buf
, "%lu MB", n
>> 20);
1091 sprintf(buf
, "%lu KB", n
>> 10);
1095 static void __init
report_hugepages(void)
1099 for_each_hstate(h
) {
1101 printk(KERN_INFO
"HugeTLB registered %s page size, "
1102 "pre-allocated %ld pages\n",
1103 memfmt(buf
, huge_page_size(h
)),
1104 h
->free_huge_pages
);
1108 #ifdef CONFIG_HIGHMEM
1109 static void try_to_free_low(struct hstate
*h
, unsigned long count
)
1113 if (h
->order
>= MAX_ORDER
)
1116 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
1117 struct page
*page
, *next
;
1118 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1119 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1120 if (count
>= h
->nr_huge_pages
)
1122 if (PageHighMem(page
))
1124 list_del(&page
->lru
);
1125 update_and_free_page(h
, page
);
1126 h
->free_huge_pages
--;
1127 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1132 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
)
1138 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1139 * balanced by operating on them in a round-robin fashion.
1140 * Returns 1 if an adjustment was made.
1142 static int adjust_pool_surplus(struct hstate
*h
, int delta
)
1144 static int prev_nid
;
1148 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1150 nid
= next_node(nid
, node_online_map
);
1151 if (nid
== MAX_NUMNODES
)
1152 nid
= first_node(node_online_map
);
1154 /* To shrink on this node, there must be a surplus page */
1155 if (delta
< 0 && !h
->surplus_huge_pages_node
[nid
])
1157 /* Surplus cannot exceed the total number of pages */
1158 if (delta
> 0 && h
->surplus_huge_pages_node
[nid
] >=
1159 h
->nr_huge_pages_node
[nid
])
1162 h
->surplus_huge_pages
+= delta
;
1163 h
->surplus_huge_pages_node
[nid
] += delta
;
1166 } while (nid
!= prev_nid
);
1172 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1173 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
)
1175 unsigned long min_count
, ret
;
1177 if (h
->order
>= MAX_ORDER
)
1178 return h
->max_huge_pages
;
1181 * Increase the pool size
1182 * First take pages out of surplus state. Then make up the
1183 * remaining difference by allocating fresh huge pages.
1185 * We might race with alloc_buddy_huge_page() here and be unable
1186 * to convert a surplus huge page to a normal huge page. That is
1187 * not critical, though, it just means the overall size of the
1188 * pool might be one hugepage larger than it needs to be, but
1189 * within all the constraints specified by the sysctls.
1191 spin_lock(&hugetlb_lock
);
1192 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1193 if (!adjust_pool_surplus(h
, -1))
1197 while (count
> persistent_huge_pages(h
)) {
1199 * If this allocation races such that we no longer need the
1200 * page, free_huge_page will handle it by freeing the page
1201 * and reducing the surplus.
1203 spin_unlock(&hugetlb_lock
);
1204 ret
= alloc_fresh_huge_page(h
);
1205 spin_lock(&hugetlb_lock
);
1212 * Decrease the pool size
1213 * First return free pages to the buddy allocator (being careful
1214 * to keep enough around to satisfy reservations). Then place
1215 * pages into surplus state as needed so the pool will shrink
1216 * to the desired size as pages become free.
1218 * By placing pages into the surplus state independent of the
1219 * overcommit value, we are allowing the surplus pool size to
1220 * exceed overcommit. There are few sane options here. Since
1221 * alloc_buddy_huge_page() is checking the global counter,
1222 * though, we'll note that we're not allowed to exceed surplus
1223 * and won't grow the pool anywhere else. Not until one of the
1224 * sysctls are changed, or the surplus pages go out of use.
1226 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1227 min_count
= max(count
, min_count
);
1228 try_to_free_low(h
, min_count
);
1229 while (min_count
< persistent_huge_pages(h
)) {
1230 struct page
*page
= dequeue_huge_page(h
);
1233 update_and_free_page(h
, page
);
1235 while (count
< persistent_huge_pages(h
)) {
1236 if (!adjust_pool_surplus(h
, 1))
1240 ret
= persistent_huge_pages(h
);
1241 spin_unlock(&hugetlb_lock
);
1245 #define HSTATE_ATTR_RO(_name) \
1246 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1248 #define HSTATE_ATTR(_name) \
1249 static struct kobj_attribute _name##_attr = \
1250 __ATTR(_name, 0644, _name##_show, _name##_store)
1252 static struct kobject
*hugepages_kobj
;
1253 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1255 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
)
1258 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1259 if (hstate_kobjs
[i
] == kobj
)
1265 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1266 struct kobj_attribute
*attr
, char *buf
)
1268 struct hstate
*h
= kobj_to_hstate(kobj
);
1269 return sprintf(buf
, "%lu\n", h
->nr_huge_pages
);
1271 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1272 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1275 unsigned long input
;
1276 struct hstate
*h
= kobj_to_hstate(kobj
);
1278 err
= strict_strtoul(buf
, 10, &input
);
1282 h
->max_huge_pages
= set_max_huge_pages(h
, input
);
1286 HSTATE_ATTR(nr_hugepages
);
1288 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1289 struct kobj_attribute
*attr
, char *buf
)
1291 struct hstate
*h
= kobj_to_hstate(kobj
);
1292 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1294 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1295 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1298 unsigned long input
;
1299 struct hstate
*h
= kobj_to_hstate(kobj
);
1301 err
= strict_strtoul(buf
, 10, &input
);
1305 spin_lock(&hugetlb_lock
);
1306 h
->nr_overcommit_huge_pages
= input
;
1307 spin_unlock(&hugetlb_lock
);
1311 HSTATE_ATTR(nr_overcommit_hugepages
);
1313 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1314 struct kobj_attribute
*attr
, char *buf
)
1316 struct hstate
*h
= kobj_to_hstate(kobj
);
1317 return sprintf(buf
, "%lu\n", h
->free_huge_pages
);
1319 HSTATE_ATTR_RO(free_hugepages
);
1321 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1322 struct kobj_attribute
*attr
, char *buf
)
1324 struct hstate
*h
= kobj_to_hstate(kobj
);
1325 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1327 HSTATE_ATTR_RO(resv_hugepages
);
1329 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1330 struct kobj_attribute
*attr
, char *buf
)
1332 struct hstate
*h
= kobj_to_hstate(kobj
);
1333 return sprintf(buf
, "%lu\n", h
->surplus_huge_pages
);
1335 HSTATE_ATTR_RO(surplus_hugepages
);
1337 static struct attribute
*hstate_attrs
[] = {
1338 &nr_hugepages_attr
.attr
,
1339 &nr_overcommit_hugepages_attr
.attr
,
1340 &free_hugepages_attr
.attr
,
1341 &resv_hugepages_attr
.attr
,
1342 &surplus_hugepages_attr
.attr
,
1346 static struct attribute_group hstate_attr_group
= {
1347 .attrs
= hstate_attrs
,
1350 static int __init
hugetlb_sysfs_add_hstate(struct hstate
*h
)
1354 hstate_kobjs
[h
- hstates
] = kobject_create_and_add(h
->name
,
1356 if (!hstate_kobjs
[h
- hstates
])
1359 retval
= sysfs_create_group(hstate_kobjs
[h
- hstates
],
1360 &hstate_attr_group
);
1362 kobject_put(hstate_kobjs
[h
- hstates
]);
1367 static void __init
hugetlb_sysfs_init(void)
1372 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1373 if (!hugepages_kobj
)
1376 for_each_hstate(h
) {
1377 err
= hugetlb_sysfs_add_hstate(h
);
1379 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1384 static void __exit
hugetlb_exit(void)
1388 for_each_hstate(h
) {
1389 kobject_put(hstate_kobjs
[h
- hstates
]);
1392 kobject_put(hugepages_kobj
);
1394 module_exit(hugetlb_exit
);
1396 static int __init
hugetlb_init(void)
1398 /* Some platform decide whether they support huge pages at boot
1399 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1400 * there is no such support
1402 if (HPAGE_SHIFT
== 0)
1405 if (!size_to_hstate(default_hstate_size
)) {
1406 default_hstate_size
= HPAGE_SIZE
;
1407 if (!size_to_hstate(default_hstate_size
))
1408 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1410 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1411 if (default_hstate_max_huge_pages
)
1412 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1414 hugetlb_init_hstates();
1416 gather_bootmem_prealloc();
1420 hugetlb_sysfs_init();
1424 module_init(hugetlb_init
);
1426 /* Should be called on processing a hugepagesz=... option */
1427 void __init
hugetlb_add_hstate(unsigned order
)
1432 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1433 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1436 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1438 h
= &hstates
[max_hstate
++];
1440 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1441 h
->nr_huge_pages
= 0;
1442 h
->free_huge_pages
= 0;
1443 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1444 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1445 h
->hugetlb_next_nid
= first_node(node_online_map
);
1446 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1447 huge_page_size(h
)/1024);
1452 static int __init
hugetlb_nrpages_setup(char *s
)
1455 static unsigned long *last_mhp
;
1458 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1459 * so this hugepages= parameter goes to the "default hstate".
1462 mhp
= &default_hstate_max_huge_pages
;
1464 mhp
= &parsed_hstate
->max_huge_pages
;
1466 if (mhp
== last_mhp
) {
1467 printk(KERN_WARNING
"hugepages= specified twice without "
1468 "interleaving hugepagesz=, ignoring\n");
1472 if (sscanf(s
, "%lu", mhp
) <= 0)
1476 * Global state is always initialized later in hugetlb_init.
1477 * But we need to allocate >= MAX_ORDER hstates here early to still
1478 * use the bootmem allocator.
1480 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1481 hugetlb_hstate_alloc_pages(parsed_hstate
);
1487 __setup("hugepages=", hugetlb_nrpages_setup
);
1489 static int __init
hugetlb_default_setup(char *s
)
1491 default_hstate_size
= memparse(s
, &s
);
1494 __setup("default_hugepagesz=", hugetlb_default_setup
);
1496 static unsigned int cpuset_mems_nr(unsigned int *array
)
1499 unsigned int nr
= 0;
1501 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1507 #ifdef CONFIG_SYSCTL
1508 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1509 struct file
*file
, void __user
*buffer
,
1510 size_t *length
, loff_t
*ppos
)
1512 struct hstate
*h
= &default_hstate
;
1516 tmp
= h
->max_huge_pages
;
1519 table
->maxlen
= sizeof(unsigned long);
1520 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1523 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
);
1528 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1529 struct file
*file
, void __user
*buffer
,
1530 size_t *length
, loff_t
*ppos
)
1532 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
1533 if (hugepages_treat_as_movable
)
1534 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1536 htlb_alloc_mask
= GFP_HIGHUSER
;
1540 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1541 struct file
*file
, void __user
*buffer
,
1542 size_t *length
, loff_t
*ppos
)
1544 struct hstate
*h
= &default_hstate
;
1548 tmp
= h
->nr_overcommit_huge_pages
;
1551 table
->maxlen
= sizeof(unsigned long);
1552 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1555 spin_lock(&hugetlb_lock
);
1556 h
->nr_overcommit_huge_pages
= tmp
;
1557 spin_unlock(&hugetlb_lock
);
1563 #endif /* CONFIG_SYSCTL */
1565 void hugetlb_report_meminfo(struct seq_file
*m
)
1567 struct hstate
*h
= &default_hstate
;
1569 "HugePages_Total: %5lu\n"
1570 "HugePages_Free: %5lu\n"
1571 "HugePages_Rsvd: %5lu\n"
1572 "HugePages_Surp: %5lu\n"
1573 "Hugepagesize: %8lu kB\n",
1577 h
->surplus_huge_pages
,
1578 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1581 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1583 struct hstate
*h
= &default_hstate
;
1585 "Node %d HugePages_Total: %5u\n"
1586 "Node %d HugePages_Free: %5u\n"
1587 "Node %d HugePages_Surp: %5u\n",
1588 nid
, h
->nr_huge_pages_node
[nid
],
1589 nid
, h
->free_huge_pages_node
[nid
],
1590 nid
, h
->surplus_huge_pages_node
[nid
]);
1593 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1594 unsigned long hugetlb_total_pages(void)
1596 struct hstate
*h
= &default_hstate
;
1597 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1600 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
1604 spin_lock(&hugetlb_lock
);
1606 * When cpuset is configured, it breaks the strict hugetlb page
1607 * reservation as the accounting is done on a global variable. Such
1608 * reservation is completely rubbish in the presence of cpuset because
1609 * the reservation is not checked against page availability for the
1610 * current cpuset. Application can still potentially OOM'ed by kernel
1611 * with lack of free htlb page in cpuset that the task is in.
1612 * Attempt to enforce strict accounting with cpuset is almost
1613 * impossible (or too ugly) because cpuset is too fluid that
1614 * task or memory node can be dynamically moved between cpusets.
1616 * The change of semantics for shared hugetlb mapping with cpuset is
1617 * undesirable. However, in order to preserve some of the semantics,
1618 * we fall back to check against current free page availability as
1619 * a best attempt and hopefully to minimize the impact of changing
1620 * semantics that cpuset has.
1623 if (gather_surplus_pages(h
, delta
) < 0)
1626 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
1627 return_unused_surplus_pages(h
, delta
);
1634 return_unused_surplus_pages(h
, (unsigned long) -delta
);
1637 spin_unlock(&hugetlb_lock
);
1641 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
1643 struct resv_map
*reservations
= vma_resv_map(vma
);
1646 * This new VMA should share its siblings reservation map if present.
1647 * The VMA will only ever have a valid reservation map pointer where
1648 * it is being copied for another still existing VMA. As that VMA
1649 * has a reference to the reservation map it cannot dissappear until
1650 * after this open call completes. It is therefore safe to take a
1651 * new reference here without additional locking.
1654 kref_get(&reservations
->refs
);
1657 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
1659 struct hstate
*h
= hstate_vma(vma
);
1660 struct resv_map
*reservations
= vma_resv_map(vma
);
1661 unsigned long reserve
;
1662 unsigned long start
;
1666 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
1667 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
1669 reserve
= (end
- start
) -
1670 region_count(&reservations
->regions
, start
, end
);
1672 kref_put(&reservations
->refs
, resv_map_release
);
1675 hugetlb_acct_memory(h
, -reserve
);
1676 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
1682 * We cannot handle pagefaults against hugetlb pages at all. They cause
1683 * handle_mm_fault() to try to instantiate regular-sized pages in the
1684 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1687 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1693 struct vm_operations_struct hugetlb_vm_ops
= {
1694 .fault
= hugetlb_vm_op_fault
,
1695 .open
= hugetlb_vm_op_open
,
1696 .close
= hugetlb_vm_op_close
,
1699 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
1706 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
1708 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
1710 entry
= pte_mkyoung(entry
);
1711 entry
= pte_mkhuge(entry
);
1716 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
1717 unsigned long address
, pte_t
*ptep
)
1721 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
1722 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
1723 update_mmu_cache(vma
, address
, entry
);
1728 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
1729 struct vm_area_struct
*vma
)
1731 pte_t
*src_pte
, *dst_pte
, entry
;
1732 struct page
*ptepage
;
1735 struct hstate
*h
= hstate_vma(vma
);
1736 unsigned long sz
= huge_page_size(h
);
1738 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
1740 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
1741 src_pte
= huge_pte_offset(src
, addr
);
1744 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
1748 /* If the pagetables are shared don't copy or take references */
1749 if (dst_pte
== src_pte
)
1752 spin_lock(&dst
->page_table_lock
);
1753 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
1754 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
1756 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
1757 entry
= huge_ptep_get(src_pte
);
1758 ptepage
= pte_page(entry
);
1760 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
1762 spin_unlock(&src
->page_table_lock
);
1763 spin_unlock(&dst
->page_table_lock
);
1771 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1772 unsigned long end
, struct page
*ref_page
)
1774 struct mm_struct
*mm
= vma
->vm_mm
;
1775 unsigned long address
;
1780 struct hstate
*h
= hstate_vma(vma
);
1781 unsigned long sz
= huge_page_size(h
);
1784 * A page gathering list, protected by per file i_mmap_lock. The
1785 * lock is used to avoid list corruption from multiple unmapping
1786 * of the same page since we are using page->lru.
1788 LIST_HEAD(page_list
);
1790 WARN_ON(!is_vm_hugetlb_page(vma
));
1791 BUG_ON(start
& ~huge_page_mask(h
));
1792 BUG_ON(end
& ~huge_page_mask(h
));
1794 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1795 spin_lock(&mm
->page_table_lock
);
1796 for (address
= start
; address
< end
; address
+= sz
) {
1797 ptep
= huge_pte_offset(mm
, address
);
1801 if (huge_pmd_unshare(mm
, &address
, ptep
))
1805 * If a reference page is supplied, it is because a specific
1806 * page is being unmapped, not a range. Ensure the page we
1807 * are about to unmap is the actual page of interest.
1810 pte
= huge_ptep_get(ptep
);
1811 if (huge_pte_none(pte
))
1813 page
= pte_page(pte
);
1814 if (page
!= ref_page
)
1818 * Mark the VMA as having unmapped its page so that
1819 * future faults in this VMA will fail rather than
1820 * looking like data was lost
1822 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
1825 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1826 if (huge_pte_none(pte
))
1829 page
= pte_page(pte
);
1831 set_page_dirty(page
);
1832 list_add(&page
->lru
, &page_list
);
1834 spin_unlock(&mm
->page_table_lock
);
1835 flush_tlb_range(vma
, start
, end
);
1836 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1837 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
1838 list_del(&page
->lru
);
1843 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1844 unsigned long end
, struct page
*ref_page
)
1846 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1847 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
1848 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1852 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1853 * mappping it owns the reserve page for. The intention is to unmap the page
1854 * from other VMAs and let the children be SIGKILLed if they are faulting the
1857 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1858 struct page
*page
, unsigned long address
)
1860 struct hstate
*h
= hstate_vma(vma
);
1861 struct vm_area_struct
*iter_vma
;
1862 struct address_space
*mapping
;
1863 struct prio_tree_iter iter
;
1867 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1868 * from page cache lookup which is in HPAGE_SIZE units.
1870 address
= address
& huge_page_mask(h
);
1871 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
1872 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
1873 mapping
= (struct address_space
*)page_private(page
);
1875 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1876 /* Do not unmap the current VMA */
1877 if (iter_vma
== vma
)
1881 * Unmap the page from other VMAs without their own reserves.
1882 * They get marked to be SIGKILLed if they fault in these
1883 * areas. This is because a future no-page fault on this VMA
1884 * could insert a zeroed page instead of the data existing
1885 * from the time of fork. This would look like data corruption
1887 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
1888 unmap_hugepage_range(iter_vma
,
1889 address
, address
+ huge_page_size(h
),
1896 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1897 unsigned long address
, pte_t
*ptep
, pte_t pte
,
1898 struct page
*pagecache_page
)
1900 struct hstate
*h
= hstate_vma(vma
);
1901 struct page
*old_page
, *new_page
;
1903 int outside_reserve
= 0;
1905 old_page
= pte_page(pte
);
1908 /* If no-one else is actually using this page, avoid the copy
1909 * and just make the page writable */
1910 avoidcopy
= (page_count(old_page
) == 1);
1912 set_huge_ptep_writable(vma
, address
, ptep
);
1917 * If the process that created a MAP_PRIVATE mapping is about to
1918 * perform a COW due to a shared page count, attempt to satisfy
1919 * the allocation without using the existing reserves. The pagecache
1920 * page is used to determine if the reserve at this address was
1921 * consumed or not. If reserves were used, a partial faulted mapping
1922 * at the time of fork() could consume its reserves on COW instead
1923 * of the full address range.
1925 if (!(vma
->vm_flags
& VM_MAYSHARE
) &&
1926 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
1927 old_page
!= pagecache_page
)
1928 outside_reserve
= 1;
1930 page_cache_get(old_page
);
1931 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
1933 if (IS_ERR(new_page
)) {
1934 page_cache_release(old_page
);
1937 * If a process owning a MAP_PRIVATE mapping fails to COW,
1938 * it is due to references held by a child and an insufficient
1939 * huge page pool. To guarantee the original mappers
1940 * reliability, unmap the page from child processes. The child
1941 * may get SIGKILLed if it later faults.
1943 if (outside_reserve
) {
1944 BUG_ON(huge_pte_none(pte
));
1945 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
1946 BUG_ON(page_count(old_page
) != 1);
1947 BUG_ON(huge_pte_none(pte
));
1948 goto retry_avoidcopy
;
1953 return -PTR_ERR(new_page
);
1956 spin_unlock(&mm
->page_table_lock
);
1957 copy_huge_page(new_page
, old_page
, address
, vma
);
1958 __SetPageUptodate(new_page
);
1959 spin_lock(&mm
->page_table_lock
);
1961 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
1962 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
1964 huge_ptep_clear_flush(vma
, address
, ptep
);
1965 set_huge_pte_at(mm
, address
, ptep
,
1966 make_huge_pte(vma
, new_page
, 1));
1967 /* Make the old page be freed below */
1968 new_page
= old_page
;
1970 page_cache_release(new_page
);
1971 page_cache_release(old_page
);
1975 /* Return the pagecache page at a given address within a VMA */
1976 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
1977 struct vm_area_struct
*vma
, unsigned long address
)
1979 struct address_space
*mapping
;
1982 mapping
= vma
->vm_file
->f_mapping
;
1983 idx
= vma_hugecache_offset(h
, vma
, address
);
1985 return find_lock_page(mapping
, idx
);
1988 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1989 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
1991 struct hstate
*h
= hstate_vma(vma
);
1992 int ret
= VM_FAULT_SIGBUS
;
1996 struct address_space
*mapping
;
2000 * Currently, we are forced to kill the process in the event the
2001 * original mapper has unmapped pages from the child due to a failed
2002 * COW. Warn that such a situation has occured as it may not be obvious
2004 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2006 "PID %d killed due to inadequate hugepage pool\n",
2011 mapping
= vma
->vm_file
->f_mapping
;
2012 idx
= vma_hugecache_offset(h
, vma
, address
);
2015 * Use page lock to guard against racing truncation
2016 * before we get page_table_lock.
2019 page
= find_lock_page(mapping
, idx
);
2021 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2024 page
= alloc_huge_page(vma
, address
, 0);
2026 ret
= -PTR_ERR(page
);
2029 clear_huge_page(page
, address
, huge_page_size(h
));
2030 __SetPageUptodate(page
);
2032 if (vma
->vm_flags
& VM_MAYSHARE
) {
2034 struct inode
*inode
= mapping
->host
;
2036 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2044 spin_lock(&inode
->i_lock
);
2045 inode
->i_blocks
+= blocks_per_huge_page(h
);
2046 spin_unlock(&inode
->i_lock
);
2052 * If we are going to COW a private mapping later, we examine the
2053 * pending reservations for this page now. This will ensure that
2054 * any allocations necessary to record that reservation occur outside
2057 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2058 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2060 goto backout_unlocked
;
2063 spin_lock(&mm
->page_table_lock
);
2064 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2069 if (!huge_pte_none(huge_ptep_get(ptep
)))
2072 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2073 && (vma
->vm_flags
& VM_SHARED
)));
2074 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2076 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2077 /* Optimization, do the COW without a second fault */
2078 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2081 spin_unlock(&mm
->page_table_lock
);
2087 spin_unlock(&mm
->page_table_lock
);
2094 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2095 unsigned long address
, unsigned int flags
)
2100 struct page
*pagecache_page
= NULL
;
2101 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2102 struct hstate
*h
= hstate_vma(vma
);
2104 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2106 return VM_FAULT_OOM
;
2109 * Serialize hugepage allocation and instantiation, so that we don't
2110 * get spurious allocation failures if two CPUs race to instantiate
2111 * the same page in the page cache.
2113 mutex_lock(&hugetlb_instantiation_mutex
);
2114 entry
= huge_ptep_get(ptep
);
2115 if (huge_pte_none(entry
)) {
2116 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2123 * If we are going to COW the mapping later, we examine the pending
2124 * reservations for this page now. This will ensure that any
2125 * allocations necessary to record that reservation occur outside the
2126 * spinlock. For private mappings, we also lookup the pagecache
2127 * page now as it is used to determine if a reservation has been
2130 if ((flags
& FAULT_FLAG_WRITE
) && !pte_write(entry
)) {
2131 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2136 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2137 pagecache_page
= hugetlbfs_pagecache_page(h
,
2141 spin_lock(&mm
->page_table_lock
);
2142 /* Check for a racing update before calling hugetlb_cow */
2143 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2144 goto out_page_table_lock
;
2147 if (flags
& FAULT_FLAG_WRITE
) {
2148 if (!pte_write(entry
)) {
2149 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2151 goto out_page_table_lock
;
2153 entry
= pte_mkdirty(entry
);
2155 entry
= pte_mkyoung(entry
);
2156 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2157 flags
& FAULT_FLAG_WRITE
))
2158 update_mmu_cache(vma
, address
, entry
);
2160 out_page_table_lock
:
2161 spin_unlock(&mm
->page_table_lock
);
2163 if (pagecache_page
) {
2164 unlock_page(pagecache_page
);
2165 put_page(pagecache_page
);
2169 mutex_unlock(&hugetlb_instantiation_mutex
);
2174 /* Can be overriden by architectures */
2175 __attribute__((weak
)) struct page
*
2176 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2177 pud_t
*pud
, int write
)
2183 static int huge_zeropage_ok(pte_t
*ptep
, int write
, int shared
)
2185 if (!ptep
|| write
|| shared
)
2188 return huge_pte_none(huge_ptep_get(ptep
));
2191 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2192 struct page
**pages
, struct vm_area_struct
**vmas
,
2193 unsigned long *position
, int *length
, int i
,
2196 unsigned long pfn_offset
;
2197 unsigned long vaddr
= *position
;
2198 int remainder
= *length
;
2199 struct hstate
*h
= hstate_vma(vma
);
2200 int zeropage_ok
= 0;
2201 int shared
= vma
->vm_flags
& VM_SHARED
;
2203 spin_lock(&mm
->page_table_lock
);
2204 while (vaddr
< vma
->vm_end
&& remainder
) {
2209 * Some archs (sparc64, sh*) have multiple pte_ts to
2210 * each hugepage. We have to make * sure we get the
2211 * first, for the page indexing below to work.
2213 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2214 if (huge_zeropage_ok(pte
, write
, shared
))
2218 (huge_pte_none(huge_ptep_get(pte
)) && !zeropage_ok
) ||
2219 (write
&& !pte_write(huge_ptep_get(pte
)))) {
2222 spin_unlock(&mm
->page_table_lock
);
2223 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
2224 spin_lock(&mm
->page_table_lock
);
2225 if (!(ret
& VM_FAULT_ERROR
))
2234 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2235 page
= pte_page(huge_ptep_get(pte
));
2239 pages
[i
] = ZERO_PAGE(0);
2241 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2252 if (vaddr
< vma
->vm_end
&& remainder
&&
2253 pfn_offset
< pages_per_huge_page(h
)) {
2255 * We use pfn_offset to avoid touching the pageframes
2256 * of this compound page.
2261 spin_unlock(&mm
->page_table_lock
);
2262 *length
= remainder
;
2268 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2269 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2271 struct mm_struct
*mm
= vma
->vm_mm
;
2272 unsigned long start
= address
;
2275 struct hstate
*h
= hstate_vma(vma
);
2277 BUG_ON(address
>= end
);
2278 flush_cache_range(vma
, address
, end
);
2280 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2281 spin_lock(&mm
->page_table_lock
);
2282 for (; address
< end
; address
+= huge_page_size(h
)) {
2283 ptep
= huge_pte_offset(mm
, address
);
2286 if (huge_pmd_unshare(mm
, &address
, ptep
))
2288 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2289 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2290 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2291 set_huge_pte_at(mm
, address
, ptep
, pte
);
2294 spin_unlock(&mm
->page_table_lock
);
2295 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2297 flush_tlb_range(vma
, start
, end
);
2300 int hugetlb_reserve_pages(struct inode
*inode
,
2302 struct vm_area_struct
*vma
,
2306 struct hstate
*h
= hstate_inode(inode
);
2309 * Only apply hugepage reservation if asked. At fault time, an
2310 * attempt will be made for VM_NORESERVE to allocate a page
2311 * and filesystem quota without using reserves
2313 if (acctflag
& VM_NORESERVE
)
2317 * Shared mappings base their reservation on the number of pages that
2318 * are already allocated on behalf of the file. Private mappings need
2319 * to reserve the full area even if read-only as mprotect() may be
2320 * called to make the mapping read-write. Assume !vma is a shm mapping
2322 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2323 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2325 struct resv_map
*resv_map
= resv_map_alloc();
2331 set_vma_resv_map(vma
, resv_map
);
2332 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2338 /* There must be enough filesystem quota for the mapping */
2339 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2343 * Check enough hugepages are available for the reservation.
2344 * Hand back the quota if there are not
2346 ret
= hugetlb_acct_memory(h
, chg
);
2348 hugetlb_put_quota(inode
->i_mapping
, chg
);
2353 * Account for the reservations made. Shared mappings record regions
2354 * that have reservations as they are shared by multiple VMAs.
2355 * When the last VMA disappears, the region map says how much
2356 * the reservation was and the page cache tells how much of
2357 * the reservation was consumed. Private mappings are per-VMA and
2358 * only the consumed reservations are tracked. When the VMA
2359 * disappears, the original reservation is the VMA size and the
2360 * consumed reservations are stored in the map. Hence, nothing
2361 * else has to be done for private mappings here
2363 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2364 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2368 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2370 struct hstate
*h
= hstate_inode(inode
);
2371 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2373 spin_lock(&inode
->i_lock
);
2374 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
2375 spin_unlock(&inode
->i_lock
);
2377 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2378 hugetlb_acct_memory(h
, -(chg
- freed
));