Staging: hv: coding style fixes for blkvsc_drv.c
[linux-2.6/linux-2.6-openrd.git] / mm / hugetlb.c
blobb16d636347771016cf8433ccc4a3807bec8ede4e
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
26 #include <linux/hugetlb.h>
27 #include "internal.h"
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
37 __initdata LIST_HEAD(huge_boot_pages);
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 static DEFINE_SPINLOCK(hugetlb_lock);
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
66 struct file_region {
67 struct list_head link;
68 long from;
69 long to;
72 static long region_add(struct list_head *head, long f, long t)
74 struct file_region *rg, *nrg, *trg;
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
108 static long region_chg(struct list_head *head, long f, long t)
110 struct file_region *rg, *nrg;
111 long chg = 0;
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
130 return t - f;
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
152 chg -= rg->to - rg->from;
154 return chg;
157 static long region_truncate(struct list_head *head, long end)
159 struct file_region *rg, *trg;
160 long chg = 0;
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
184 return chg;
187 static long region_count(struct list_head *head, long f, long t)
189 struct file_region *rg;
190 long chg = 0;
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
205 chg += seg_to - seg_from;
208 return chg;
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228 struct hstate *hstate;
230 if (!is_vm_hugetlb_page(vma))
231 return PAGE_SIZE;
233 hstate = hstate_vma(vma);
235 return 1UL << (hstate->order + PAGE_SHIFT);
237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
240 * Return the page size being used by the MMU to back a VMA. In the majority
241 * of cases, the page size used by the kernel matches the MMU size. On
242 * architectures where it differs, an architecture-specific version of this
243 * function is required.
245 #ifndef vma_mmu_pagesize
246 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248 return vma_kernel_pagesize(vma);
250 #endif
253 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
254 * bits of the reservation map pointer, which are always clear due to
255 * alignment.
257 #define HPAGE_RESV_OWNER (1UL << 0)
258 #define HPAGE_RESV_UNMAPPED (1UL << 1)
259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
262 * These helpers are used to track how many pages are reserved for
263 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264 * is guaranteed to have their future faults succeed.
266 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267 * the reserve counters are updated with the hugetlb_lock held. It is safe
268 * to reset the VMA at fork() time as it is not in use yet and there is no
269 * chance of the global counters getting corrupted as a result of the values.
271 * The private mapping reservation is represented in a subtly different
272 * manner to a shared mapping. A shared mapping has a region map associated
273 * with the underlying file, this region map represents the backing file
274 * pages which have ever had a reservation assigned which this persists even
275 * after the page is instantiated. A private mapping has a region map
276 * associated with the original mmap which is attached to all VMAs which
277 * reference it, this region map represents those offsets which have consumed
278 * reservation ie. where pages have been instantiated.
280 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282 return (unsigned long)vma->vm_private_data;
285 static void set_vma_private_data(struct vm_area_struct *vma,
286 unsigned long value)
288 vma->vm_private_data = (void *)value;
291 struct resv_map {
292 struct kref refs;
293 struct list_head regions;
296 static struct resv_map *resv_map_alloc(void)
298 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299 if (!resv_map)
300 return NULL;
302 kref_init(&resv_map->refs);
303 INIT_LIST_HEAD(&resv_map->regions);
305 return resv_map;
308 static void resv_map_release(struct kref *ref)
310 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312 /* Clear out any active regions before we release the map. */
313 region_truncate(&resv_map->regions, 0);
314 kfree(resv_map);
317 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
319 VM_BUG_ON(!is_vm_hugetlb_page(vma));
320 if (!(vma->vm_flags & VM_MAYSHARE))
321 return (struct resv_map *)(get_vma_private_data(vma) &
322 ~HPAGE_RESV_MASK);
323 return NULL;
326 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
328 VM_BUG_ON(!is_vm_hugetlb_page(vma));
329 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
331 set_vma_private_data(vma, (get_vma_private_data(vma) &
332 HPAGE_RESV_MASK) | (unsigned long)map);
335 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337 VM_BUG_ON(!is_vm_hugetlb_page(vma));
338 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
343 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345 VM_BUG_ON(!is_vm_hugetlb_page(vma));
347 return (get_vma_private_data(vma) & flag) != 0;
350 /* Decrement the reserved pages in the hugepage pool by one */
351 static void decrement_hugepage_resv_vma(struct hstate *h,
352 struct vm_area_struct *vma)
354 if (vma->vm_flags & VM_NORESERVE)
355 return;
357 if (vma->vm_flags & VM_MAYSHARE) {
358 /* Shared mappings always use reserves */
359 h->resv_huge_pages--;
360 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
362 * Only the process that called mmap() has reserves for
363 * private mappings.
365 h->resv_huge_pages--;
369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372 VM_BUG_ON(!is_vm_hugetlb_page(vma));
373 if (!(vma->vm_flags & VM_MAYSHARE))
374 vma->vm_private_data = (void *)0;
377 /* Returns true if the VMA has associated reserve pages */
378 static int vma_has_reserves(struct vm_area_struct *vma)
380 if (vma->vm_flags & VM_MAYSHARE)
381 return 1;
382 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383 return 1;
384 return 0;
387 static void clear_gigantic_page(struct page *page,
388 unsigned long addr, unsigned long sz)
390 int i;
391 struct page *p = page;
393 might_sleep();
394 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395 cond_resched();
396 clear_user_highpage(p, addr + i * PAGE_SIZE);
399 static void clear_huge_page(struct page *page,
400 unsigned long addr, unsigned long sz)
402 int i;
404 if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
405 clear_gigantic_page(page, addr, sz);
406 return;
409 might_sleep();
410 for (i = 0; i < sz/PAGE_SIZE; i++) {
411 cond_resched();
412 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
416 static void copy_gigantic_page(struct page *dst, struct page *src,
417 unsigned long addr, struct vm_area_struct *vma)
419 int i;
420 struct hstate *h = hstate_vma(vma);
421 struct page *dst_base = dst;
422 struct page *src_base = src;
423 might_sleep();
424 for (i = 0; i < pages_per_huge_page(h); ) {
425 cond_resched();
426 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428 i++;
429 dst = mem_map_next(dst, dst_base, i);
430 src = mem_map_next(src, src_base, i);
433 static void copy_huge_page(struct page *dst, struct page *src,
434 unsigned long addr, struct vm_area_struct *vma)
436 int i;
437 struct hstate *h = hstate_vma(vma);
439 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440 copy_gigantic_page(dst, src, addr, vma);
441 return;
444 might_sleep();
445 for (i = 0; i < pages_per_huge_page(h); i++) {
446 cond_resched();
447 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
451 static void enqueue_huge_page(struct hstate *h, struct page *page)
453 int nid = page_to_nid(page);
454 list_add(&page->lru, &h->hugepage_freelists[nid]);
455 h->free_huge_pages++;
456 h->free_huge_pages_node[nid]++;
459 static struct page *dequeue_huge_page(struct hstate *h)
461 int nid;
462 struct page *page = NULL;
464 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
465 if (!list_empty(&h->hugepage_freelists[nid])) {
466 page = list_entry(h->hugepage_freelists[nid].next,
467 struct page, lru);
468 list_del(&page->lru);
469 h->free_huge_pages--;
470 h->free_huge_pages_node[nid]--;
471 break;
474 return page;
477 static struct page *dequeue_huge_page_vma(struct hstate *h,
478 struct vm_area_struct *vma,
479 unsigned long address, int avoid_reserve)
481 int nid;
482 struct page *page = NULL;
483 struct mempolicy *mpol;
484 nodemask_t *nodemask;
485 struct zonelist *zonelist = huge_zonelist(vma, address,
486 htlb_alloc_mask, &mpol, &nodemask);
487 struct zone *zone;
488 struct zoneref *z;
491 * A child process with MAP_PRIVATE mappings created by their parent
492 * have no page reserves. This check ensures that reservations are
493 * not "stolen". The child may still get SIGKILLed
495 if (!vma_has_reserves(vma) &&
496 h->free_huge_pages - h->resv_huge_pages == 0)
497 return NULL;
499 /* If reserves cannot be used, ensure enough pages are in the pool */
500 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
501 return NULL;
503 for_each_zone_zonelist_nodemask(zone, z, zonelist,
504 MAX_NR_ZONES - 1, nodemask) {
505 nid = zone_to_nid(zone);
506 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
507 !list_empty(&h->hugepage_freelists[nid])) {
508 page = list_entry(h->hugepage_freelists[nid].next,
509 struct page, lru);
510 list_del(&page->lru);
511 h->free_huge_pages--;
512 h->free_huge_pages_node[nid]--;
514 if (!avoid_reserve)
515 decrement_hugepage_resv_vma(h, vma);
517 break;
520 mpol_cond_put(mpol);
521 return page;
524 static void update_and_free_page(struct hstate *h, struct page *page)
526 int i;
528 VM_BUG_ON(h->order >= MAX_ORDER);
530 h->nr_huge_pages--;
531 h->nr_huge_pages_node[page_to_nid(page)]--;
532 for (i = 0; i < pages_per_huge_page(h); i++) {
533 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
534 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
535 1 << PG_private | 1<< PG_writeback);
537 set_compound_page_dtor(page, NULL);
538 set_page_refcounted(page);
539 arch_release_hugepage(page);
540 __free_pages(page, huge_page_order(h));
543 struct hstate *size_to_hstate(unsigned long size)
545 struct hstate *h;
547 for_each_hstate(h) {
548 if (huge_page_size(h) == size)
549 return h;
551 return NULL;
554 static void free_huge_page(struct page *page)
557 * Can't pass hstate in here because it is called from the
558 * compound page destructor.
560 struct hstate *h = page_hstate(page);
561 int nid = page_to_nid(page);
562 struct address_space *mapping;
564 mapping = (struct address_space *) page_private(page);
565 set_page_private(page, 0);
566 BUG_ON(page_count(page));
567 INIT_LIST_HEAD(&page->lru);
569 spin_lock(&hugetlb_lock);
570 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
571 update_and_free_page(h, page);
572 h->surplus_huge_pages--;
573 h->surplus_huge_pages_node[nid]--;
574 } else {
575 enqueue_huge_page(h, page);
577 spin_unlock(&hugetlb_lock);
578 if (mapping)
579 hugetlb_put_quota(mapping, 1);
582 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
584 set_compound_page_dtor(page, free_huge_page);
585 spin_lock(&hugetlb_lock);
586 h->nr_huge_pages++;
587 h->nr_huge_pages_node[nid]++;
588 spin_unlock(&hugetlb_lock);
589 put_page(page); /* free it into the hugepage allocator */
592 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
594 int i;
595 int nr_pages = 1 << order;
596 struct page *p = page + 1;
598 /* we rely on prep_new_huge_page to set the destructor */
599 set_compound_order(page, order);
600 __SetPageHead(page);
601 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
602 __SetPageTail(p);
603 p->first_page = page;
607 int PageHuge(struct page *page)
609 compound_page_dtor *dtor;
611 if (!PageCompound(page))
612 return 0;
614 page = compound_head(page);
615 dtor = get_compound_page_dtor(page);
617 return dtor == free_huge_page;
620 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
622 struct page *page;
624 if (h->order >= MAX_ORDER)
625 return NULL;
627 page = alloc_pages_exact_node(nid,
628 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
629 __GFP_REPEAT|__GFP_NOWARN,
630 huge_page_order(h));
631 if (page) {
632 if (arch_prepare_hugepage(page)) {
633 __free_pages(page, huge_page_order(h));
634 return NULL;
636 prep_new_huge_page(h, page, nid);
639 return page;
643 * Use a helper variable to find the next node and then
644 * copy it back to hugetlb_next_nid afterwards:
645 * otherwise there's a window in which a racer might
646 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
647 * But we don't need to use a spin_lock here: it really
648 * doesn't matter if occasionally a racer chooses the
649 * same nid as we do. Move nid forward in the mask even
650 * if we just successfully allocated a hugepage so that
651 * the next caller gets hugepages on the next node.
653 static int hstate_next_node(struct hstate *h)
655 int next_nid;
656 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
657 if (next_nid == MAX_NUMNODES)
658 next_nid = first_node(node_online_map);
659 h->hugetlb_next_nid = next_nid;
660 return next_nid;
663 static int alloc_fresh_huge_page(struct hstate *h)
665 struct page *page;
666 int start_nid;
667 int next_nid;
668 int ret = 0;
670 start_nid = h->hugetlb_next_nid;
672 do {
673 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
674 if (page)
675 ret = 1;
676 next_nid = hstate_next_node(h);
677 } while (!page && h->hugetlb_next_nid != start_nid);
679 if (ret)
680 count_vm_event(HTLB_BUDDY_PGALLOC);
681 else
682 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
684 return ret;
687 static struct page *alloc_buddy_huge_page(struct hstate *h,
688 struct vm_area_struct *vma, unsigned long address)
690 struct page *page;
691 unsigned int nid;
693 if (h->order >= MAX_ORDER)
694 return NULL;
697 * Assume we will successfully allocate the surplus page to
698 * prevent racing processes from causing the surplus to exceed
699 * overcommit
701 * This however introduces a different race, where a process B
702 * tries to grow the static hugepage pool while alloc_pages() is
703 * called by process A. B will only examine the per-node
704 * counters in determining if surplus huge pages can be
705 * converted to normal huge pages in adjust_pool_surplus(). A
706 * won't be able to increment the per-node counter, until the
707 * lock is dropped by B, but B doesn't drop hugetlb_lock until
708 * no more huge pages can be converted from surplus to normal
709 * state (and doesn't try to convert again). Thus, we have a
710 * case where a surplus huge page exists, the pool is grown, and
711 * the surplus huge page still exists after, even though it
712 * should just have been converted to a normal huge page. This
713 * does not leak memory, though, as the hugepage will be freed
714 * once it is out of use. It also does not allow the counters to
715 * go out of whack in adjust_pool_surplus() as we don't modify
716 * the node values until we've gotten the hugepage and only the
717 * per-node value is checked there.
719 spin_lock(&hugetlb_lock);
720 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
721 spin_unlock(&hugetlb_lock);
722 return NULL;
723 } else {
724 h->nr_huge_pages++;
725 h->surplus_huge_pages++;
727 spin_unlock(&hugetlb_lock);
729 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
730 __GFP_REPEAT|__GFP_NOWARN,
731 huge_page_order(h));
733 if (page && arch_prepare_hugepage(page)) {
734 __free_pages(page, huge_page_order(h));
735 return NULL;
738 spin_lock(&hugetlb_lock);
739 if (page) {
741 * This page is now managed by the hugetlb allocator and has
742 * no users -- drop the buddy allocator's reference.
744 put_page_testzero(page);
745 VM_BUG_ON(page_count(page));
746 nid = page_to_nid(page);
747 set_compound_page_dtor(page, free_huge_page);
749 * We incremented the global counters already
751 h->nr_huge_pages_node[nid]++;
752 h->surplus_huge_pages_node[nid]++;
753 __count_vm_event(HTLB_BUDDY_PGALLOC);
754 } else {
755 h->nr_huge_pages--;
756 h->surplus_huge_pages--;
757 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
759 spin_unlock(&hugetlb_lock);
761 return page;
765 * Increase the hugetlb pool such that it can accomodate a reservation
766 * of size 'delta'.
768 static int gather_surplus_pages(struct hstate *h, int delta)
770 struct list_head surplus_list;
771 struct page *page, *tmp;
772 int ret, i;
773 int needed, allocated;
775 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
776 if (needed <= 0) {
777 h->resv_huge_pages += delta;
778 return 0;
781 allocated = 0;
782 INIT_LIST_HEAD(&surplus_list);
784 ret = -ENOMEM;
785 retry:
786 spin_unlock(&hugetlb_lock);
787 for (i = 0; i < needed; i++) {
788 page = alloc_buddy_huge_page(h, NULL, 0);
789 if (!page) {
791 * We were not able to allocate enough pages to
792 * satisfy the entire reservation so we free what
793 * we've allocated so far.
795 spin_lock(&hugetlb_lock);
796 needed = 0;
797 goto free;
800 list_add(&page->lru, &surplus_list);
802 allocated += needed;
805 * After retaking hugetlb_lock, we need to recalculate 'needed'
806 * because either resv_huge_pages or free_huge_pages may have changed.
808 spin_lock(&hugetlb_lock);
809 needed = (h->resv_huge_pages + delta) -
810 (h->free_huge_pages + allocated);
811 if (needed > 0)
812 goto retry;
815 * The surplus_list now contains _at_least_ the number of extra pages
816 * needed to accomodate the reservation. Add the appropriate number
817 * of pages to the hugetlb pool and free the extras back to the buddy
818 * allocator. Commit the entire reservation here to prevent another
819 * process from stealing the pages as they are added to the pool but
820 * before they are reserved.
822 needed += allocated;
823 h->resv_huge_pages += delta;
824 ret = 0;
825 free:
826 /* Free the needed pages to the hugetlb pool */
827 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
828 if ((--needed) < 0)
829 break;
830 list_del(&page->lru);
831 enqueue_huge_page(h, page);
834 /* Free unnecessary surplus pages to the buddy allocator */
835 if (!list_empty(&surplus_list)) {
836 spin_unlock(&hugetlb_lock);
837 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
838 list_del(&page->lru);
840 * The page has a reference count of zero already, so
841 * call free_huge_page directly instead of using
842 * put_page. This must be done with hugetlb_lock
843 * unlocked which is safe because free_huge_page takes
844 * hugetlb_lock before deciding how to free the page.
846 free_huge_page(page);
848 spin_lock(&hugetlb_lock);
851 return ret;
855 * When releasing a hugetlb pool reservation, any surplus pages that were
856 * allocated to satisfy the reservation must be explicitly freed if they were
857 * never used.
859 static void return_unused_surplus_pages(struct hstate *h,
860 unsigned long unused_resv_pages)
862 static int nid = -1;
863 struct page *page;
864 unsigned long nr_pages;
867 * We want to release as many surplus pages as possible, spread
868 * evenly across all nodes. Iterate across all nodes until we
869 * can no longer free unreserved surplus pages. This occurs when
870 * the nodes with surplus pages have no free pages.
872 unsigned long remaining_iterations = nr_online_nodes;
874 /* Uncommit the reservation */
875 h->resv_huge_pages -= unused_resv_pages;
877 /* Cannot return gigantic pages currently */
878 if (h->order >= MAX_ORDER)
879 return;
881 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
883 while (remaining_iterations-- && nr_pages) {
884 nid = next_node(nid, node_online_map);
885 if (nid == MAX_NUMNODES)
886 nid = first_node(node_online_map);
888 if (!h->surplus_huge_pages_node[nid])
889 continue;
891 if (!list_empty(&h->hugepage_freelists[nid])) {
892 page = list_entry(h->hugepage_freelists[nid].next,
893 struct page, lru);
894 list_del(&page->lru);
895 update_and_free_page(h, page);
896 h->free_huge_pages--;
897 h->free_huge_pages_node[nid]--;
898 h->surplus_huge_pages--;
899 h->surplus_huge_pages_node[nid]--;
900 nr_pages--;
901 remaining_iterations = nr_online_nodes;
907 * Determine if the huge page at addr within the vma has an associated
908 * reservation. Where it does not we will need to logically increase
909 * reservation and actually increase quota before an allocation can occur.
910 * Where any new reservation would be required the reservation change is
911 * prepared, but not committed. Once the page has been quota'd allocated
912 * an instantiated the change should be committed via vma_commit_reservation.
913 * No action is required on failure.
915 static long vma_needs_reservation(struct hstate *h,
916 struct vm_area_struct *vma, unsigned long addr)
918 struct address_space *mapping = vma->vm_file->f_mapping;
919 struct inode *inode = mapping->host;
921 if (vma->vm_flags & VM_MAYSHARE) {
922 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
923 return region_chg(&inode->i_mapping->private_list,
924 idx, idx + 1);
926 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
927 return 1;
929 } else {
930 long err;
931 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
932 struct resv_map *reservations = vma_resv_map(vma);
934 err = region_chg(&reservations->regions, idx, idx + 1);
935 if (err < 0)
936 return err;
937 return 0;
940 static void vma_commit_reservation(struct hstate *h,
941 struct vm_area_struct *vma, unsigned long addr)
943 struct address_space *mapping = vma->vm_file->f_mapping;
944 struct inode *inode = mapping->host;
946 if (vma->vm_flags & VM_MAYSHARE) {
947 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
948 region_add(&inode->i_mapping->private_list, idx, idx + 1);
950 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
951 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
952 struct resv_map *reservations = vma_resv_map(vma);
954 /* Mark this page used in the map. */
955 region_add(&reservations->regions, idx, idx + 1);
959 static struct page *alloc_huge_page(struct vm_area_struct *vma,
960 unsigned long addr, int avoid_reserve)
962 struct hstate *h = hstate_vma(vma);
963 struct page *page;
964 struct address_space *mapping = vma->vm_file->f_mapping;
965 struct inode *inode = mapping->host;
966 long chg;
969 * Processes that did not create the mapping will have no reserves and
970 * will not have accounted against quota. Check that the quota can be
971 * made before satisfying the allocation
972 * MAP_NORESERVE mappings may also need pages and quota allocated
973 * if no reserve mapping overlaps.
975 chg = vma_needs_reservation(h, vma, addr);
976 if (chg < 0)
977 return ERR_PTR(chg);
978 if (chg)
979 if (hugetlb_get_quota(inode->i_mapping, chg))
980 return ERR_PTR(-ENOSPC);
982 spin_lock(&hugetlb_lock);
983 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
984 spin_unlock(&hugetlb_lock);
986 if (!page) {
987 page = alloc_buddy_huge_page(h, vma, addr);
988 if (!page) {
989 hugetlb_put_quota(inode->i_mapping, chg);
990 return ERR_PTR(-VM_FAULT_OOM);
994 set_page_refcounted(page);
995 set_page_private(page, (unsigned long) mapping);
997 vma_commit_reservation(h, vma, addr);
999 return page;
1002 int __weak alloc_bootmem_huge_page(struct hstate *h)
1004 struct huge_bootmem_page *m;
1005 int nr_nodes = nodes_weight(node_online_map);
1007 while (nr_nodes) {
1008 void *addr;
1010 addr = __alloc_bootmem_node_nopanic(
1011 NODE_DATA(h->hugetlb_next_nid),
1012 huge_page_size(h), huge_page_size(h), 0);
1014 if (addr) {
1016 * Use the beginning of the huge page to store the
1017 * huge_bootmem_page struct (until gather_bootmem
1018 * puts them into the mem_map).
1020 m = addr;
1021 goto found;
1023 hstate_next_node(h);
1024 nr_nodes--;
1026 return 0;
1028 found:
1029 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1030 /* Put them into a private list first because mem_map is not up yet */
1031 list_add(&m->list, &huge_boot_pages);
1032 m->hstate = h;
1033 return 1;
1036 static void prep_compound_huge_page(struct page *page, int order)
1038 if (unlikely(order > (MAX_ORDER - 1)))
1039 prep_compound_gigantic_page(page, order);
1040 else
1041 prep_compound_page(page, order);
1044 /* Put bootmem huge pages into the standard lists after mem_map is up */
1045 static void __init gather_bootmem_prealloc(void)
1047 struct huge_bootmem_page *m;
1049 list_for_each_entry(m, &huge_boot_pages, list) {
1050 struct page *page = virt_to_page(m);
1051 struct hstate *h = m->hstate;
1052 __ClearPageReserved(page);
1053 WARN_ON(page_count(page) != 1);
1054 prep_compound_huge_page(page, h->order);
1055 prep_new_huge_page(h, page, page_to_nid(page));
1059 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1061 unsigned long i;
1063 for (i = 0; i < h->max_huge_pages; ++i) {
1064 if (h->order >= MAX_ORDER) {
1065 if (!alloc_bootmem_huge_page(h))
1066 break;
1067 } else if (!alloc_fresh_huge_page(h))
1068 break;
1070 h->max_huge_pages = i;
1073 static void __init hugetlb_init_hstates(void)
1075 struct hstate *h;
1077 for_each_hstate(h) {
1078 /* oversize hugepages were init'ed in early boot */
1079 if (h->order < MAX_ORDER)
1080 hugetlb_hstate_alloc_pages(h);
1084 static char * __init memfmt(char *buf, unsigned long n)
1086 if (n >= (1UL << 30))
1087 sprintf(buf, "%lu GB", n >> 30);
1088 else if (n >= (1UL << 20))
1089 sprintf(buf, "%lu MB", n >> 20);
1090 else
1091 sprintf(buf, "%lu KB", n >> 10);
1092 return buf;
1095 static void __init report_hugepages(void)
1097 struct hstate *h;
1099 for_each_hstate(h) {
1100 char buf[32];
1101 printk(KERN_INFO "HugeTLB registered %s page size, "
1102 "pre-allocated %ld pages\n",
1103 memfmt(buf, huge_page_size(h)),
1104 h->free_huge_pages);
1108 #ifdef CONFIG_HIGHMEM
1109 static void try_to_free_low(struct hstate *h, unsigned long count)
1111 int i;
1113 if (h->order >= MAX_ORDER)
1114 return;
1116 for (i = 0; i < MAX_NUMNODES; ++i) {
1117 struct page *page, *next;
1118 struct list_head *freel = &h->hugepage_freelists[i];
1119 list_for_each_entry_safe(page, next, freel, lru) {
1120 if (count >= h->nr_huge_pages)
1121 return;
1122 if (PageHighMem(page))
1123 continue;
1124 list_del(&page->lru);
1125 update_and_free_page(h, page);
1126 h->free_huge_pages--;
1127 h->free_huge_pages_node[page_to_nid(page)]--;
1131 #else
1132 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1135 #endif
1138 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1139 * balanced by operating on them in a round-robin fashion.
1140 * Returns 1 if an adjustment was made.
1142 static int adjust_pool_surplus(struct hstate *h, int delta)
1144 static int prev_nid;
1145 int nid = prev_nid;
1146 int ret = 0;
1148 VM_BUG_ON(delta != -1 && delta != 1);
1149 do {
1150 nid = next_node(nid, node_online_map);
1151 if (nid == MAX_NUMNODES)
1152 nid = first_node(node_online_map);
1154 /* To shrink on this node, there must be a surplus page */
1155 if (delta < 0 && !h->surplus_huge_pages_node[nid])
1156 continue;
1157 /* Surplus cannot exceed the total number of pages */
1158 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
1159 h->nr_huge_pages_node[nid])
1160 continue;
1162 h->surplus_huge_pages += delta;
1163 h->surplus_huge_pages_node[nid] += delta;
1164 ret = 1;
1165 break;
1166 } while (nid != prev_nid);
1168 prev_nid = nid;
1169 return ret;
1172 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1173 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1175 unsigned long min_count, ret;
1177 if (h->order >= MAX_ORDER)
1178 return h->max_huge_pages;
1181 * Increase the pool size
1182 * First take pages out of surplus state. Then make up the
1183 * remaining difference by allocating fresh huge pages.
1185 * We might race with alloc_buddy_huge_page() here and be unable
1186 * to convert a surplus huge page to a normal huge page. That is
1187 * not critical, though, it just means the overall size of the
1188 * pool might be one hugepage larger than it needs to be, but
1189 * within all the constraints specified by the sysctls.
1191 spin_lock(&hugetlb_lock);
1192 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1193 if (!adjust_pool_surplus(h, -1))
1194 break;
1197 while (count > persistent_huge_pages(h)) {
1199 * If this allocation races such that we no longer need the
1200 * page, free_huge_page will handle it by freeing the page
1201 * and reducing the surplus.
1203 spin_unlock(&hugetlb_lock);
1204 ret = alloc_fresh_huge_page(h);
1205 spin_lock(&hugetlb_lock);
1206 if (!ret)
1207 goto out;
1212 * Decrease the pool size
1213 * First return free pages to the buddy allocator (being careful
1214 * to keep enough around to satisfy reservations). Then place
1215 * pages into surplus state as needed so the pool will shrink
1216 * to the desired size as pages become free.
1218 * By placing pages into the surplus state independent of the
1219 * overcommit value, we are allowing the surplus pool size to
1220 * exceed overcommit. There are few sane options here. Since
1221 * alloc_buddy_huge_page() is checking the global counter,
1222 * though, we'll note that we're not allowed to exceed surplus
1223 * and won't grow the pool anywhere else. Not until one of the
1224 * sysctls are changed, or the surplus pages go out of use.
1226 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1227 min_count = max(count, min_count);
1228 try_to_free_low(h, min_count);
1229 while (min_count < persistent_huge_pages(h)) {
1230 struct page *page = dequeue_huge_page(h);
1231 if (!page)
1232 break;
1233 update_and_free_page(h, page);
1235 while (count < persistent_huge_pages(h)) {
1236 if (!adjust_pool_surplus(h, 1))
1237 break;
1239 out:
1240 ret = persistent_huge_pages(h);
1241 spin_unlock(&hugetlb_lock);
1242 return ret;
1245 #define HSTATE_ATTR_RO(_name) \
1246 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1248 #define HSTATE_ATTR(_name) \
1249 static struct kobj_attribute _name##_attr = \
1250 __ATTR(_name, 0644, _name##_show, _name##_store)
1252 static struct kobject *hugepages_kobj;
1253 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1255 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1257 int i;
1258 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1259 if (hstate_kobjs[i] == kobj)
1260 return &hstates[i];
1261 BUG();
1262 return NULL;
1265 static ssize_t nr_hugepages_show(struct kobject *kobj,
1266 struct kobj_attribute *attr, char *buf)
1268 struct hstate *h = kobj_to_hstate(kobj);
1269 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1271 static ssize_t nr_hugepages_store(struct kobject *kobj,
1272 struct kobj_attribute *attr, const char *buf, size_t count)
1274 int err;
1275 unsigned long input;
1276 struct hstate *h = kobj_to_hstate(kobj);
1278 err = strict_strtoul(buf, 10, &input);
1279 if (err)
1280 return 0;
1282 h->max_huge_pages = set_max_huge_pages(h, input);
1284 return count;
1286 HSTATE_ATTR(nr_hugepages);
1288 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1289 struct kobj_attribute *attr, char *buf)
1291 struct hstate *h = kobj_to_hstate(kobj);
1292 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1294 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1295 struct kobj_attribute *attr, const char *buf, size_t count)
1297 int err;
1298 unsigned long input;
1299 struct hstate *h = kobj_to_hstate(kobj);
1301 err = strict_strtoul(buf, 10, &input);
1302 if (err)
1303 return 0;
1305 spin_lock(&hugetlb_lock);
1306 h->nr_overcommit_huge_pages = input;
1307 spin_unlock(&hugetlb_lock);
1309 return count;
1311 HSTATE_ATTR(nr_overcommit_hugepages);
1313 static ssize_t free_hugepages_show(struct kobject *kobj,
1314 struct kobj_attribute *attr, char *buf)
1316 struct hstate *h = kobj_to_hstate(kobj);
1317 return sprintf(buf, "%lu\n", h->free_huge_pages);
1319 HSTATE_ATTR_RO(free_hugepages);
1321 static ssize_t resv_hugepages_show(struct kobject *kobj,
1322 struct kobj_attribute *attr, char *buf)
1324 struct hstate *h = kobj_to_hstate(kobj);
1325 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1327 HSTATE_ATTR_RO(resv_hugepages);
1329 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1330 struct kobj_attribute *attr, char *buf)
1332 struct hstate *h = kobj_to_hstate(kobj);
1333 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1335 HSTATE_ATTR_RO(surplus_hugepages);
1337 static struct attribute *hstate_attrs[] = {
1338 &nr_hugepages_attr.attr,
1339 &nr_overcommit_hugepages_attr.attr,
1340 &free_hugepages_attr.attr,
1341 &resv_hugepages_attr.attr,
1342 &surplus_hugepages_attr.attr,
1343 NULL,
1346 static struct attribute_group hstate_attr_group = {
1347 .attrs = hstate_attrs,
1350 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1352 int retval;
1354 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1355 hugepages_kobj);
1356 if (!hstate_kobjs[h - hstates])
1357 return -ENOMEM;
1359 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1360 &hstate_attr_group);
1361 if (retval)
1362 kobject_put(hstate_kobjs[h - hstates]);
1364 return retval;
1367 static void __init hugetlb_sysfs_init(void)
1369 struct hstate *h;
1370 int err;
1372 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1373 if (!hugepages_kobj)
1374 return;
1376 for_each_hstate(h) {
1377 err = hugetlb_sysfs_add_hstate(h);
1378 if (err)
1379 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1380 h->name);
1384 static void __exit hugetlb_exit(void)
1386 struct hstate *h;
1388 for_each_hstate(h) {
1389 kobject_put(hstate_kobjs[h - hstates]);
1392 kobject_put(hugepages_kobj);
1394 module_exit(hugetlb_exit);
1396 static int __init hugetlb_init(void)
1398 /* Some platform decide whether they support huge pages at boot
1399 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1400 * there is no such support
1402 if (HPAGE_SHIFT == 0)
1403 return 0;
1405 if (!size_to_hstate(default_hstate_size)) {
1406 default_hstate_size = HPAGE_SIZE;
1407 if (!size_to_hstate(default_hstate_size))
1408 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1410 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1411 if (default_hstate_max_huge_pages)
1412 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1414 hugetlb_init_hstates();
1416 gather_bootmem_prealloc();
1418 report_hugepages();
1420 hugetlb_sysfs_init();
1422 return 0;
1424 module_init(hugetlb_init);
1426 /* Should be called on processing a hugepagesz=... option */
1427 void __init hugetlb_add_hstate(unsigned order)
1429 struct hstate *h;
1430 unsigned long i;
1432 if (size_to_hstate(PAGE_SIZE << order)) {
1433 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1434 return;
1436 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1437 BUG_ON(order == 0);
1438 h = &hstates[max_hstate++];
1439 h->order = order;
1440 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1441 h->nr_huge_pages = 0;
1442 h->free_huge_pages = 0;
1443 for (i = 0; i < MAX_NUMNODES; ++i)
1444 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1445 h->hugetlb_next_nid = first_node(node_online_map);
1446 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1447 huge_page_size(h)/1024);
1449 parsed_hstate = h;
1452 static int __init hugetlb_nrpages_setup(char *s)
1454 unsigned long *mhp;
1455 static unsigned long *last_mhp;
1458 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1459 * so this hugepages= parameter goes to the "default hstate".
1461 if (!max_hstate)
1462 mhp = &default_hstate_max_huge_pages;
1463 else
1464 mhp = &parsed_hstate->max_huge_pages;
1466 if (mhp == last_mhp) {
1467 printk(KERN_WARNING "hugepages= specified twice without "
1468 "interleaving hugepagesz=, ignoring\n");
1469 return 1;
1472 if (sscanf(s, "%lu", mhp) <= 0)
1473 *mhp = 0;
1476 * Global state is always initialized later in hugetlb_init.
1477 * But we need to allocate >= MAX_ORDER hstates here early to still
1478 * use the bootmem allocator.
1480 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1481 hugetlb_hstate_alloc_pages(parsed_hstate);
1483 last_mhp = mhp;
1485 return 1;
1487 __setup("hugepages=", hugetlb_nrpages_setup);
1489 static int __init hugetlb_default_setup(char *s)
1491 default_hstate_size = memparse(s, &s);
1492 return 1;
1494 __setup("default_hugepagesz=", hugetlb_default_setup);
1496 static unsigned int cpuset_mems_nr(unsigned int *array)
1498 int node;
1499 unsigned int nr = 0;
1501 for_each_node_mask(node, cpuset_current_mems_allowed)
1502 nr += array[node];
1504 return nr;
1507 #ifdef CONFIG_SYSCTL
1508 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1509 struct file *file, void __user *buffer,
1510 size_t *length, loff_t *ppos)
1512 struct hstate *h = &default_hstate;
1513 unsigned long tmp;
1515 if (!write)
1516 tmp = h->max_huge_pages;
1518 table->data = &tmp;
1519 table->maxlen = sizeof(unsigned long);
1520 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1522 if (write)
1523 h->max_huge_pages = set_max_huge_pages(h, tmp);
1525 return 0;
1528 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1529 struct file *file, void __user *buffer,
1530 size_t *length, loff_t *ppos)
1532 proc_dointvec(table, write, file, buffer, length, ppos);
1533 if (hugepages_treat_as_movable)
1534 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1535 else
1536 htlb_alloc_mask = GFP_HIGHUSER;
1537 return 0;
1540 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1541 struct file *file, void __user *buffer,
1542 size_t *length, loff_t *ppos)
1544 struct hstate *h = &default_hstate;
1545 unsigned long tmp;
1547 if (!write)
1548 tmp = h->nr_overcommit_huge_pages;
1550 table->data = &tmp;
1551 table->maxlen = sizeof(unsigned long);
1552 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1554 if (write) {
1555 spin_lock(&hugetlb_lock);
1556 h->nr_overcommit_huge_pages = tmp;
1557 spin_unlock(&hugetlb_lock);
1560 return 0;
1563 #endif /* CONFIG_SYSCTL */
1565 void hugetlb_report_meminfo(struct seq_file *m)
1567 struct hstate *h = &default_hstate;
1568 seq_printf(m,
1569 "HugePages_Total: %5lu\n"
1570 "HugePages_Free: %5lu\n"
1571 "HugePages_Rsvd: %5lu\n"
1572 "HugePages_Surp: %5lu\n"
1573 "Hugepagesize: %8lu kB\n",
1574 h->nr_huge_pages,
1575 h->free_huge_pages,
1576 h->resv_huge_pages,
1577 h->surplus_huge_pages,
1578 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1581 int hugetlb_report_node_meminfo(int nid, char *buf)
1583 struct hstate *h = &default_hstate;
1584 return sprintf(buf,
1585 "Node %d HugePages_Total: %5u\n"
1586 "Node %d HugePages_Free: %5u\n"
1587 "Node %d HugePages_Surp: %5u\n",
1588 nid, h->nr_huge_pages_node[nid],
1589 nid, h->free_huge_pages_node[nid],
1590 nid, h->surplus_huge_pages_node[nid]);
1593 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1594 unsigned long hugetlb_total_pages(void)
1596 struct hstate *h = &default_hstate;
1597 return h->nr_huge_pages * pages_per_huge_page(h);
1600 static int hugetlb_acct_memory(struct hstate *h, long delta)
1602 int ret = -ENOMEM;
1604 spin_lock(&hugetlb_lock);
1606 * When cpuset is configured, it breaks the strict hugetlb page
1607 * reservation as the accounting is done on a global variable. Such
1608 * reservation is completely rubbish in the presence of cpuset because
1609 * the reservation is not checked against page availability for the
1610 * current cpuset. Application can still potentially OOM'ed by kernel
1611 * with lack of free htlb page in cpuset that the task is in.
1612 * Attempt to enforce strict accounting with cpuset is almost
1613 * impossible (or too ugly) because cpuset is too fluid that
1614 * task or memory node can be dynamically moved between cpusets.
1616 * The change of semantics for shared hugetlb mapping with cpuset is
1617 * undesirable. However, in order to preserve some of the semantics,
1618 * we fall back to check against current free page availability as
1619 * a best attempt and hopefully to minimize the impact of changing
1620 * semantics that cpuset has.
1622 if (delta > 0) {
1623 if (gather_surplus_pages(h, delta) < 0)
1624 goto out;
1626 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1627 return_unused_surplus_pages(h, delta);
1628 goto out;
1632 ret = 0;
1633 if (delta < 0)
1634 return_unused_surplus_pages(h, (unsigned long) -delta);
1636 out:
1637 spin_unlock(&hugetlb_lock);
1638 return ret;
1641 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1643 struct resv_map *reservations = vma_resv_map(vma);
1646 * This new VMA should share its siblings reservation map if present.
1647 * The VMA will only ever have a valid reservation map pointer where
1648 * it is being copied for another still existing VMA. As that VMA
1649 * has a reference to the reservation map it cannot dissappear until
1650 * after this open call completes. It is therefore safe to take a
1651 * new reference here without additional locking.
1653 if (reservations)
1654 kref_get(&reservations->refs);
1657 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1659 struct hstate *h = hstate_vma(vma);
1660 struct resv_map *reservations = vma_resv_map(vma);
1661 unsigned long reserve;
1662 unsigned long start;
1663 unsigned long end;
1665 if (reservations) {
1666 start = vma_hugecache_offset(h, vma, vma->vm_start);
1667 end = vma_hugecache_offset(h, vma, vma->vm_end);
1669 reserve = (end - start) -
1670 region_count(&reservations->regions, start, end);
1672 kref_put(&reservations->refs, resv_map_release);
1674 if (reserve) {
1675 hugetlb_acct_memory(h, -reserve);
1676 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1682 * We cannot handle pagefaults against hugetlb pages at all. They cause
1683 * handle_mm_fault() to try to instantiate regular-sized pages in the
1684 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1685 * this far.
1687 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1689 BUG();
1690 return 0;
1693 struct vm_operations_struct hugetlb_vm_ops = {
1694 .fault = hugetlb_vm_op_fault,
1695 .open = hugetlb_vm_op_open,
1696 .close = hugetlb_vm_op_close,
1699 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1700 int writable)
1702 pte_t entry;
1704 if (writable) {
1705 entry =
1706 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1707 } else {
1708 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1710 entry = pte_mkyoung(entry);
1711 entry = pte_mkhuge(entry);
1713 return entry;
1716 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1717 unsigned long address, pte_t *ptep)
1719 pte_t entry;
1721 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1722 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1723 update_mmu_cache(vma, address, entry);
1728 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1729 struct vm_area_struct *vma)
1731 pte_t *src_pte, *dst_pte, entry;
1732 struct page *ptepage;
1733 unsigned long addr;
1734 int cow;
1735 struct hstate *h = hstate_vma(vma);
1736 unsigned long sz = huge_page_size(h);
1738 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1740 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1741 src_pte = huge_pte_offset(src, addr);
1742 if (!src_pte)
1743 continue;
1744 dst_pte = huge_pte_alloc(dst, addr, sz);
1745 if (!dst_pte)
1746 goto nomem;
1748 /* If the pagetables are shared don't copy or take references */
1749 if (dst_pte == src_pte)
1750 continue;
1752 spin_lock(&dst->page_table_lock);
1753 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1754 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1755 if (cow)
1756 huge_ptep_set_wrprotect(src, addr, src_pte);
1757 entry = huge_ptep_get(src_pte);
1758 ptepage = pte_page(entry);
1759 get_page(ptepage);
1760 set_huge_pte_at(dst, addr, dst_pte, entry);
1762 spin_unlock(&src->page_table_lock);
1763 spin_unlock(&dst->page_table_lock);
1765 return 0;
1767 nomem:
1768 return -ENOMEM;
1771 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1772 unsigned long end, struct page *ref_page)
1774 struct mm_struct *mm = vma->vm_mm;
1775 unsigned long address;
1776 pte_t *ptep;
1777 pte_t pte;
1778 struct page *page;
1779 struct page *tmp;
1780 struct hstate *h = hstate_vma(vma);
1781 unsigned long sz = huge_page_size(h);
1784 * A page gathering list, protected by per file i_mmap_lock. The
1785 * lock is used to avoid list corruption from multiple unmapping
1786 * of the same page since we are using page->lru.
1788 LIST_HEAD(page_list);
1790 WARN_ON(!is_vm_hugetlb_page(vma));
1791 BUG_ON(start & ~huge_page_mask(h));
1792 BUG_ON(end & ~huge_page_mask(h));
1794 mmu_notifier_invalidate_range_start(mm, start, end);
1795 spin_lock(&mm->page_table_lock);
1796 for (address = start; address < end; address += sz) {
1797 ptep = huge_pte_offset(mm, address);
1798 if (!ptep)
1799 continue;
1801 if (huge_pmd_unshare(mm, &address, ptep))
1802 continue;
1805 * If a reference page is supplied, it is because a specific
1806 * page is being unmapped, not a range. Ensure the page we
1807 * are about to unmap is the actual page of interest.
1809 if (ref_page) {
1810 pte = huge_ptep_get(ptep);
1811 if (huge_pte_none(pte))
1812 continue;
1813 page = pte_page(pte);
1814 if (page != ref_page)
1815 continue;
1818 * Mark the VMA as having unmapped its page so that
1819 * future faults in this VMA will fail rather than
1820 * looking like data was lost
1822 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1825 pte = huge_ptep_get_and_clear(mm, address, ptep);
1826 if (huge_pte_none(pte))
1827 continue;
1829 page = pte_page(pte);
1830 if (pte_dirty(pte))
1831 set_page_dirty(page);
1832 list_add(&page->lru, &page_list);
1834 spin_unlock(&mm->page_table_lock);
1835 flush_tlb_range(vma, start, end);
1836 mmu_notifier_invalidate_range_end(mm, start, end);
1837 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1838 list_del(&page->lru);
1839 put_page(page);
1843 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1844 unsigned long end, struct page *ref_page)
1846 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1847 __unmap_hugepage_range(vma, start, end, ref_page);
1848 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1852 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1853 * mappping it owns the reserve page for. The intention is to unmap the page
1854 * from other VMAs and let the children be SIGKILLed if they are faulting the
1855 * same region.
1857 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1858 struct page *page, unsigned long address)
1860 struct hstate *h = hstate_vma(vma);
1861 struct vm_area_struct *iter_vma;
1862 struct address_space *mapping;
1863 struct prio_tree_iter iter;
1864 pgoff_t pgoff;
1867 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1868 * from page cache lookup which is in HPAGE_SIZE units.
1870 address = address & huge_page_mask(h);
1871 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1872 + (vma->vm_pgoff >> PAGE_SHIFT);
1873 mapping = (struct address_space *)page_private(page);
1875 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1876 /* Do not unmap the current VMA */
1877 if (iter_vma == vma)
1878 continue;
1881 * Unmap the page from other VMAs without their own reserves.
1882 * They get marked to be SIGKILLed if they fault in these
1883 * areas. This is because a future no-page fault on this VMA
1884 * could insert a zeroed page instead of the data existing
1885 * from the time of fork. This would look like data corruption
1887 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1888 unmap_hugepage_range(iter_vma,
1889 address, address + huge_page_size(h),
1890 page);
1893 return 1;
1896 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1897 unsigned long address, pte_t *ptep, pte_t pte,
1898 struct page *pagecache_page)
1900 struct hstate *h = hstate_vma(vma);
1901 struct page *old_page, *new_page;
1902 int avoidcopy;
1903 int outside_reserve = 0;
1905 old_page = pte_page(pte);
1907 retry_avoidcopy:
1908 /* If no-one else is actually using this page, avoid the copy
1909 * and just make the page writable */
1910 avoidcopy = (page_count(old_page) == 1);
1911 if (avoidcopy) {
1912 set_huge_ptep_writable(vma, address, ptep);
1913 return 0;
1917 * If the process that created a MAP_PRIVATE mapping is about to
1918 * perform a COW due to a shared page count, attempt to satisfy
1919 * the allocation without using the existing reserves. The pagecache
1920 * page is used to determine if the reserve at this address was
1921 * consumed or not. If reserves were used, a partial faulted mapping
1922 * at the time of fork() could consume its reserves on COW instead
1923 * of the full address range.
1925 if (!(vma->vm_flags & VM_MAYSHARE) &&
1926 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1927 old_page != pagecache_page)
1928 outside_reserve = 1;
1930 page_cache_get(old_page);
1931 new_page = alloc_huge_page(vma, address, outside_reserve);
1933 if (IS_ERR(new_page)) {
1934 page_cache_release(old_page);
1937 * If a process owning a MAP_PRIVATE mapping fails to COW,
1938 * it is due to references held by a child and an insufficient
1939 * huge page pool. To guarantee the original mappers
1940 * reliability, unmap the page from child processes. The child
1941 * may get SIGKILLed if it later faults.
1943 if (outside_reserve) {
1944 BUG_ON(huge_pte_none(pte));
1945 if (unmap_ref_private(mm, vma, old_page, address)) {
1946 BUG_ON(page_count(old_page) != 1);
1947 BUG_ON(huge_pte_none(pte));
1948 goto retry_avoidcopy;
1950 WARN_ON_ONCE(1);
1953 return -PTR_ERR(new_page);
1956 spin_unlock(&mm->page_table_lock);
1957 copy_huge_page(new_page, old_page, address, vma);
1958 __SetPageUptodate(new_page);
1959 spin_lock(&mm->page_table_lock);
1961 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1962 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1963 /* Break COW */
1964 huge_ptep_clear_flush(vma, address, ptep);
1965 set_huge_pte_at(mm, address, ptep,
1966 make_huge_pte(vma, new_page, 1));
1967 /* Make the old page be freed below */
1968 new_page = old_page;
1970 page_cache_release(new_page);
1971 page_cache_release(old_page);
1972 return 0;
1975 /* Return the pagecache page at a given address within a VMA */
1976 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1977 struct vm_area_struct *vma, unsigned long address)
1979 struct address_space *mapping;
1980 pgoff_t idx;
1982 mapping = vma->vm_file->f_mapping;
1983 idx = vma_hugecache_offset(h, vma, address);
1985 return find_lock_page(mapping, idx);
1988 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1989 unsigned long address, pte_t *ptep, unsigned int flags)
1991 struct hstate *h = hstate_vma(vma);
1992 int ret = VM_FAULT_SIGBUS;
1993 pgoff_t idx;
1994 unsigned long size;
1995 struct page *page;
1996 struct address_space *mapping;
1997 pte_t new_pte;
2000 * Currently, we are forced to kill the process in the event the
2001 * original mapper has unmapped pages from the child due to a failed
2002 * COW. Warn that such a situation has occured as it may not be obvious
2004 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2005 printk(KERN_WARNING
2006 "PID %d killed due to inadequate hugepage pool\n",
2007 current->pid);
2008 return ret;
2011 mapping = vma->vm_file->f_mapping;
2012 idx = vma_hugecache_offset(h, vma, address);
2015 * Use page lock to guard against racing truncation
2016 * before we get page_table_lock.
2018 retry:
2019 page = find_lock_page(mapping, idx);
2020 if (!page) {
2021 size = i_size_read(mapping->host) >> huge_page_shift(h);
2022 if (idx >= size)
2023 goto out;
2024 page = alloc_huge_page(vma, address, 0);
2025 if (IS_ERR(page)) {
2026 ret = -PTR_ERR(page);
2027 goto out;
2029 clear_huge_page(page, address, huge_page_size(h));
2030 __SetPageUptodate(page);
2032 if (vma->vm_flags & VM_MAYSHARE) {
2033 int err;
2034 struct inode *inode = mapping->host;
2036 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2037 if (err) {
2038 put_page(page);
2039 if (err == -EEXIST)
2040 goto retry;
2041 goto out;
2044 spin_lock(&inode->i_lock);
2045 inode->i_blocks += blocks_per_huge_page(h);
2046 spin_unlock(&inode->i_lock);
2047 } else
2048 lock_page(page);
2052 * If we are going to COW a private mapping later, we examine the
2053 * pending reservations for this page now. This will ensure that
2054 * any allocations necessary to record that reservation occur outside
2055 * the spinlock.
2057 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2058 if (vma_needs_reservation(h, vma, address) < 0) {
2059 ret = VM_FAULT_OOM;
2060 goto backout_unlocked;
2063 spin_lock(&mm->page_table_lock);
2064 size = i_size_read(mapping->host) >> huge_page_shift(h);
2065 if (idx >= size)
2066 goto backout;
2068 ret = 0;
2069 if (!huge_pte_none(huge_ptep_get(ptep)))
2070 goto backout;
2072 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2073 && (vma->vm_flags & VM_SHARED)));
2074 set_huge_pte_at(mm, address, ptep, new_pte);
2076 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2077 /* Optimization, do the COW without a second fault */
2078 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2081 spin_unlock(&mm->page_table_lock);
2082 unlock_page(page);
2083 out:
2084 return ret;
2086 backout:
2087 spin_unlock(&mm->page_table_lock);
2088 backout_unlocked:
2089 unlock_page(page);
2090 put_page(page);
2091 goto out;
2094 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2095 unsigned long address, unsigned int flags)
2097 pte_t *ptep;
2098 pte_t entry;
2099 int ret;
2100 struct page *pagecache_page = NULL;
2101 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2102 struct hstate *h = hstate_vma(vma);
2104 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2105 if (!ptep)
2106 return VM_FAULT_OOM;
2109 * Serialize hugepage allocation and instantiation, so that we don't
2110 * get spurious allocation failures if two CPUs race to instantiate
2111 * the same page in the page cache.
2113 mutex_lock(&hugetlb_instantiation_mutex);
2114 entry = huge_ptep_get(ptep);
2115 if (huge_pte_none(entry)) {
2116 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2117 goto out_mutex;
2120 ret = 0;
2123 * If we are going to COW the mapping later, we examine the pending
2124 * reservations for this page now. This will ensure that any
2125 * allocations necessary to record that reservation occur outside the
2126 * spinlock. For private mappings, we also lookup the pagecache
2127 * page now as it is used to determine if a reservation has been
2128 * consumed.
2130 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2131 if (vma_needs_reservation(h, vma, address) < 0) {
2132 ret = VM_FAULT_OOM;
2133 goto out_mutex;
2136 if (!(vma->vm_flags & VM_MAYSHARE))
2137 pagecache_page = hugetlbfs_pagecache_page(h,
2138 vma, address);
2141 spin_lock(&mm->page_table_lock);
2142 /* Check for a racing update before calling hugetlb_cow */
2143 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2144 goto out_page_table_lock;
2147 if (flags & FAULT_FLAG_WRITE) {
2148 if (!pte_write(entry)) {
2149 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2150 pagecache_page);
2151 goto out_page_table_lock;
2153 entry = pte_mkdirty(entry);
2155 entry = pte_mkyoung(entry);
2156 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2157 flags & FAULT_FLAG_WRITE))
2158 update_mmu_cache(vma, address, entry);
2160 out_page_table_lock:
2161 spin_unlock(&mm->page_table_lock);
2163 if (pagecache_page) {
2164 unlock_page(pagecache_page);
2165 put_page(pagecache_page);
2168 out_mutex:
2169 mutex_unlock(&hugetlb_instantiation_mutex);
2171 return ret;
2174 /* Can be overriden by architectures */
2175 __attribute__((weak)) struct page *
2176 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2177 pud_t *pud, int write)
2179 BUG();
2180 return NULL;
2183 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2185 if (!ptep || write || shared)
2186 return 0;
2187 else
2188 return huge_pte_none(huge_ptep_get(ptep));
2191 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2192 struct page **pages, struct vm_area_struct **vmas,
2193 unsigned long *position, int *length, int i,
2194 int write)
2196 unsigned long pfn_offset;
2197 unsigned long vaddr = *position;
2198 int remainder = *length;
2199 struct hstate *h = hstate_vma(vma);
2200 int zeropage_ok = 0;
2201 int shared = vma->vm_flags & VM_SHARED;
2203 spin_lock(&mm->page_table_lock);
2204 while (vaddr < vma->vm_end && remainder) {
2205 pte_t *pte;
2206 struct page *page;
2209 * Some archs (sparc64, sh*) have multiple pte_ts to
2210 * each hugepage. We have to make * sure we get the
2211 * first, for the page indexing below to work.
2213 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2214 if (huge_zeropage_ok(pte, write, shared))
2215 zeropage_ok = 1;
2217 if (!pte ||
2218 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2219 (write && !pte_write(huge_ptep_get(pte)))) {
2220 int ret;
2222 spin_unlock(&mm->page_table_lock);
2223 ret = hugetlb_fault(mm, vma, vaddr, write);
2224 spin_lock(&mm->page_table_lock);
2225 if (!(ret & VM_FAULT_ERROR))
2226 continue;
2228 remainder = 0;
2229 if (!i)
2230 i = -EFAULT;
2231 break;
2234 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2235 page = pte_page(huge_ptep_get(pte));
2236 same_page:
2237 if (pages) {
2238 if (zeropage_ok)
2239 pages[i] = ZERO_PAGE(0);
2240 else
2241 pages[i] = mem_map_offset(page, pfn_offset);
2242 get_page(pages[i]);
2245 if (vmas)
2246 vmas[i] = vma;
2248 vaddr += PAGE_SIZE;
2249 ++pfn_offset;
2250 --remainder;
2251 ++i;
2252 if (vaddr < vma->vm_end && remainder &&
2253 pfn_offset < pages_per_huge_page(h)) {
2255 * We use pfn_offset to avoid touching the pageframes
2256 * of this compound page.
2258 goto same_page;
2261 spin_unlock(&mm->page_table_lock);
2262 *length = remainder;
2263 *position = vaddr;
2265 return i;
2268 void hugetlb_change_protection(struct vm_area_struct *vma,
2269 unsigned long address, unsigned long end, pgprot_t newprot)
2271 struct mm_struct *mm = vma->vm_mm;
2272 unsigned long start = address;
2273 pte_t *ptep;
2274 pte_t pte;
2275 struct hstate *h = hstate_vma(vma);
2277 BUG_ON(address >= end);
2278 flush_cache_range(vma, address, end);
2280 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2281 spin_lock(&mm->page_table_lock);
2282 for (; address < end; address += huge_page_size(h)) {
2283 ptep = huge_pte_offset(mm, address);
2284 if (!ptep)
2285 continue;
2286 if (huge_pmd_unshare(mm, &address, ptep))
2287 continue;
2288 if (!huge_pte_none(huge_ptep_get(ptep))) {
2289 pte = huge_ptep_get_and_clear(mm, address, ptep);
2290 pte = pte_mkhuge(pte_modify(pte, newprot));
2291 set_huge_pte_at(mm, address, ptep, pte);
2294 spin_unlock(&mm->page_table_lock);
2295 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2297 flush_tlb_range(vma, start, end);
2300 int hugetlb_reserve_pages(struct inode *inode,
2301 long from, long to,
2302 struct vm_area_struct *vma,
2303 int acctflag)
2305 long ret, chg;
2306 struct hstate *h = hstate_inode(inode);
2309 * Only apply hugepage reservation if asked. At fault time, an
2310 * attempt will be made for VM_NORESERVE to allocate a page
2311 * and filesystem quota without using reserves
2313 if (acctflag & VM_NORESERVE)
2314 return 0;
2317 * Shared mappings base their reservation on the number of pages that
2318 * are already allocated on behalf of the file. Private mappings need
2319 * to reserve the full area even if read-only as mprotect() may be
2320 * called to make the mapping read-write. Assume !vma is a shm mapping
2322 if (!vma || vma->vm_flags & VM_MAYSHARE)
2323 chg = region_chg(&inode->i_mapping->private_list, from, to);
2324 else {
2325 struct resv_map *resv_map = resv_map_alloc();
2326 if (!resv_map)
2327 return -ENOMEM;
2329 chg = to - from;
2331 set_vma_resv_map(vma, resv_map);
2332 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2335 if (chg < 0)
2336 return chg;
2338 /* There must be enough filesystem quota for the mapping */
2339 if (hugetlb_get_quota(inode->i_mapping, chg))
2340 return -ENOSPC;
2343 * Check enough hugepages are available for the reservation.
2344 * Hand back the quota if there are not
2346 ret = hugetlb_acct_memory(h, chg);
2347 if (ret < 0) {
2348 hugetlb_put_quota(inode->i_mapping, chg);
2349 return ret;
2353 * Account for the reservations made. Shared mappings record regions
2354 * that have reservations as they are shared by multiple VMAs.
2355 * When the last VMA disappears, the region map says how much
2356 * the reservation was and the page cache tells how much of
2357 * the reservation was consumed. Private mappings are per-VMA and
2358 * only the consumed reservations are tracked. When the VMA
2359 * disappears, the original reservation is the VMA size and the
2360 * consumed reservations are stored in the map. Hence, nothing
2361 * else has to be done for private mappings here
2363 if (!vma || vma->vm_flags & VM_MAYSHARE)
2364 region_add(&inode->i_mapping->private_list, from, to);
2365 return 0;
2368 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2370 struct hstate *h = hstate_inode(inode);
2371 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2373 spin_lock(&inode->i_lock);
2374 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2375 spin_unlock(&inode->i_lock);
2377 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2378 hugetlb_acct_memory(h, -(chg - freed));