Merge git://git.kernel.org/pub/scm/linux/kernel/git/agk/linux-2.6-dm
[linux-2.6/linux-2.6-openrd.git] / include / linux / skbuff.h
blobae836fded53001fe98301472752e850546fe3989
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X) \
42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48 /* A. Checksumming of received packets by device.
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
59 * COMPLETE: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use COMPLETE,
63 * not UNNECESSARY.
65 * PARTIAL: identical to the case for output below. This may occur
66 * on a packet received directly from another Linux OS, e.g.,
67 * a virtualised Linux kernel on the same host. The packet can
68 * be treated in the same way as UNNECESSARY except that on
69 * output (i.e., forwarding) the checksum must be filled in
70 * by the OS or the hardware.
72 * B. Checksumming on output.
74 * NONE: skb is checksummed by protocol or csum is not required.
76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
77 * from skb->csum_start to the end and to record the checksum
78 * at skb->csum_start + skb->csum_offset.
80 * Device must show its capabilities in dev->features, set
81 * at device setup time.
82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
83 * everything.
84 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86 * TCP/UDP over IPv4. Sigh. Vendors like this
87 * way by an unknown reason. Though, see comment above
88 * about CHECKSUM_UNNECESSARY. 8)
89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
91 * Any questions? No questions, good. --ANK
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 atomic_t use;
102 #endif
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 atomic_t use;
107 struct net_device *physindev;
108 struct net_device *physoutdev;
109 unsigned int mask;
110 unsigned long data[32 / sizeof(unsigned long)];
112 #endif
114 struct sk_buff_head {
115 /* These two members must be first. */
116 struct sk_buff *next;
117 struct sk_buff *prev;
119 __u32 qlen;
120 spinlock_t lock;
123 struct sk_buff;
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
128 typedef struct skb_frag_struct skb_frag_t;
130 struct skb_frag_struct {
131 struct page *page;
132 __u32 page_offset;
133 __u32 size;
136 #define HAVE_HW_TIME_STAMP
139 * struct skb_shared_hwtstamps - hardware time stamps
140 * @hwtstamp: hardware time stamp transformed into duration
141 * since arbitrary point in time
142 * @syststamp: hwtstamp transformed to system time base
144 * Software time stamps generated by ktime_get_real() are stored in
145 * skb->tstamp. The relation between the different kinds of time
146 * stamps is as follows:
148 * syststamp and tstamp can be compared against each other in
149 * arbitrary combinations. The accuracy of a
150 * syststamp/tstamp/"syststamp from other device" comparison is
151 * limited by the accuracy of the transformation into system time
152 * base. This depends on the device driver and its underlying
153 * hardware.
155 * hwtstamps can only be compared against other hwtstamps from
156 * the same device.
158 * This structure is attached to packets as part of the
159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
161 struct skb_shared_hwtstamps {
162 ktime_t hwtstamp;
163 ktime_t syststamp;
167 * struct skb_shared_tx - instructions for time stamping of outgoing packets
168 * @hardware: generate hardware time stamp
169 * @software: generate software time stamp
170 * @in_progress: device driver is going to provide
171 * hardware time stamp
172 * @flags: all shared_tx flags
174 * These flags are attached to packets as part of the
175 * &skb_shared_info. Use skb_tx() to get a pointer.
177 union skb_shared_tx {
178 struct {
179 __u8 hardware:1,
180 software:1,
181 in_progress:1;
183 __u8 flags;
186 /* This data is invariant across clones and lives at
187 * the end of the header data, ie. at skb->end.
189 struct skb_shared_info {
190 atomic_t dataref;
191 unsigned short nr_frags;
192 unsigned short gso_size;
193 #ifdef CONFIG_HAS_DMA
194 dma_addr_t dma_head;
195 #endif
196 /* Warning: this field is not always filled in (UFO)! */
197 unsigned short gso_segs;
198 unsigned short gso_type;
199 __be32 ip6_frag_id;
200 union skb_shared_tx tx_flags;
201 struct sk_buff *frag_list;
202 struct skb_shared_hwtstamps hwtstamps;
203 skb_frag_t frags[MAX_SKB_FRAGS];
204 #ifdef CONFIG_HAS_DMA
205 dma_addr_t dma_maps[MAX_SKB_FRAGS];
206 #endif
207 /* Intermediate layers must ensure that destructor_arg
208 * remains valid until skb destructor */
209 void * destructor_arg;
212 /* We divide dataref into two halves. The higher 16 bits hold references
213 * to the payload part of skb->data. The lower 16 bits hold references to
214 * the entire skb->data. A clone of a headerless skb holds the length of
215 * the header in skb->hdr_len.
217 * All users must obey the rule that the skb->data reference count must be
218 * greater than or equal to the payload reference count.
220 * Holding a reference to the payload part means that the user does not
221 * care about modifications to the header part of skb->data.
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
227 enum {
228 SKB_FCLONE_UNAVAILABLE,
229 SKB_FCLONE_ORIG,
230 SKB_FCLONE_CLONE,
233 enum {
234 SKB_GSO_TCPV4 = 1 << 0,
235 SKB_GSO_UDP = 1 << 1,
237 /* This indicates the skb is from an untrusted source. */
238 SKB_GSO_DODGY = 1 << 2,
240 /* This indicates the tcp segment has CWR set. */
241 SKB_GSO_TCP_ECN = 1 << 3,
243 SKB_GSO_TCPV6 = 1 << 4,
245 SKB_GSO_FCOE = 1 << 5,
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
258 /**
259 * struct sk_buff - socket buffer
260 * @next: Next buffer in list
261 * @prev: Previous buffer in list
262 * @sk: Socket we are owned by
263 * @tstamp: Time we arrived
264 * @dev: Device we arrived on/are leaving by
265 * @transport_header: Transport layer header
266 * @network_header: Network layer header
267 * @mac_header: Link layer header
268 * @_skb_dst: destination entry
269 * @sp: the security path, used for xfrm
270 * @cb: Control buffer. Free for use by every layer. Put private vars here
271 * @len: Length of actual data
272 * @data_len: Data length
273 * @mac_len: Length of link layer header
274 * @hdr_len: writable header length of cloned skb
275 * @csum: Checksum (must include start/offset pair)
276 * @csum_start: Offset from skb->head where checksumming should start
277 * @csum_offset: Offset from csum_start where checksum should be stored
278 * @local_df: allow local fragmentation
279 * @cloned: Head may be cloned (check refcnt to be sure)
280 * @nohdr: Payload reference only, must not modify header
281 * @pkt_type: Packet class
282 * @fclone: skbuff clone status
283 * @ip_summed: Driver fed us an IP checksum
284 * @priority: Packet queueing priority
285 * @users: User count - see {datagram,tcp}.c
286 * @protocol: Packet protocol from driver
287 * @truesize: Buffer size
288 * @head: Head of buffer
289 * @data: Data head pointer
290 * @tail: Tail pointer
291 * @end: End pointer
292 * @destructor: Destruct function
293 * @mark: Generic packet mark
294 * @nfct: Associated connection, if any
295 * @ipvs_property: skbuff is owned by ipvs
296 * @peeked: this packet has been seen already, so stats have been
297 * done for it, don't do them again
298 * @nf_trace: netfilter packet trace flag
299 * @nfctinfo: Relationship of this skb to the connection
300 * @nfct_reasm: netfilter conntrack re-assembly pointer
301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302 * @skb_iif: ifindex of device we arrived on
303 * @queue_mapping: Queue mapping for multiqueue devices
304 * @tc_index: Traffic control index
305 * @tc_verd: traffic control verdict
306 * @ndisc_nodetype: router type (from link layer)
307 * @dma_cookie: a cookie to one of several possible DMA operations
308 * done by skb DMA functions
309 * @secmark: security marking
310 * @vlan_tci: vlan tag control information
313 struct sk_buff {
314 /* These two members must be first. */
315 struct sk_buff *next;
316 struct sk_buff *prev;
318 struct sock *sk;
319 ktime_t tstamp;
320 struct net_device *dev;
322 unsigned long _skb_dst;
323 #ifdef CONFIG_XFRM
324 struct sec_path *sp;
325 #endif
327 * This is the control buffer. It is free to use for every
328 * layer. Please put your private variables there. If you
329 * want to keep them across layers you have to do a skb_clone()
330 * first. This is owned by whoever has the skb queued ATM.
332 char cb[48];
334 unsigned int len,
335 data_len;
336 __u16 mac_len,
337 hdr_len;
338 union {
339 __wsum csum;
340 struct {
341 __u16 csum_start;
342 __u16 csum_offset;
345 __u32 priority;
346 kmemcheck_bitfield_begin(flags1);
347 __u8 local_df:1,
348 cloned:1,
349 ip_summed:2,
350 nohdr:1,
351 nfctinfo:3;
352 __u8 pkt_type:3,
353 fclone:2,
354 ipvs_property:1,
355 peeked:1,
356 nf_trace:1;
357 __be16 protocol:16;
358 kmemcheck_bitfield_end(flags1);
360 void (*destructor)(struct sk_buff *skb);
361 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
362 struct nf_conntrack *nfct;
363 struct sk_buff *nfct_reasm;
364 #endif
365 #ifdef CONFIG_BRIDGE_NETFILTER
366 struct nf_bridge_info *nf_bridge;
367 #endif
369 int skb_iif;
370 #ifdef CONFIG_NET_SCHED
371 __u16 tc_index; /* traffic control index */
372 #ifdef CONFIG_NET_CLS_ACT
373 __u16 tc_verd; /* traffic control verdict */
374 #endif
375 #endif
377 kmemcheck_bitfield_begin(flags2);
378 __u16 queue_mapping:16;
379 #ifdef CONFIG_IPV6_NDISC_NODETYPE
380 __u8 ndisc_nodetype:2;
381 #endif
382 kmemcheck_bitfield_end(flags2);
384 /* 0/14 bit hole */
386 #ifdef CONFIG_NET_DMA
387 dma_cookie_t dma_cookie;
388 #endif
389 #ifdef CONFIG_NETWORK_SECMARK
390 __u32 secmark;
391 #endif
392 union {
393 __u32 mark;
394 __u32 dropcount;
397 __u16 vlan_tci;
399 sk_buff_data_t transport_header;
400 sk_buff_data_t network_header;
401 sk_buff_data_t mac_header;
402 /* These elements must be at the end, see alloc_skb() for details. */
403 sk_buff_data_t tail;
404 sk_buff_data_t end;
405 unsigned char *head,
406 *data;
407 unsigned int truesize;
408 atomic_t users;
411 #ifdef __KERNEL__
413 * Handling routines are only of interest to the kernel
415 #include <linux/slab.h>
417 #include <asm/system.h>
419 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
421 return (struct dst_entry *)skb->_skb_dst;
424 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
426 skb->_skb_dst = (unsigned long)dst;
429 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
431 return (struct rtable *)skb_dst(skb);
434 extern void kfree_skb(struct sk_buff *skb);
435 extern void consume_skb(struct sk_buff *skb);
436 extern void __kfree_skb(struct sk_buff *skb);
437 extern struct sk_buff *__alloc_skb(unsigned int size,
438 gfp_t priority, int fclone, int node);
439 static inline struct sk_buff *alloc_skb(unsigned int size,
440 gfp_t priority)
442 return __alloc_skb(size, priority, 0, -1);
445 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
446 gfp_t priority)
448 return __alloc_skb(size, priority, 1, -1);
451 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
453 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
454 extern struct sk_buff *skb_clone(struct sk_buff *skb,
455 gfp_t priority);
456 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
457 gfp_t priority);
458 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
459 gfp_t gfp_mask);
460 extern int pskb_expand_head(struct sk_buff *skb,
461 int nhead, int ntail,
462 gfp_t gfp_mask);
463 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
464 unsigned int headroom);
465 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
466 int newheadroom, int newtailroom,
467 gfp_t priority);
468 extern int skb_to_sgvec(struct sk_buff *skb,
469 struct scatterlist *sg, int offset,
470 int len);
471 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
472 struct sk_buff **trailer);
473 extern int skb_pad(struct sk_buff *skb, int pad);
474 #define dev_kfree_skb(a) consume_skb(a)
475 #define dev_consume_skb(a) kfree_skb_clean(a)
476 extern void skb_over_panic(struct sk_buff *skb, int len,
477 void *here);
478 extern void skb_under_panic(struct sk_buff *skb, int len,
479 void *here);
481 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
482 int getfrag(void *from, char *to, int offset,
483 int len,int odd, struct sk_buff *skb),
484 void *from, int length);
486 struct skb_seq_state {
487 __u32 lower_offset;
488 __u32 upper_offset;
489 __u32 frag_idx;
490 __u32 stepped_offset;
491 struct sk_buff *root_skb;
492 struct sk_buff *cur_skb;
493 __u8 *frag_data;
496 extern void skb_prepare_seq_read(struct sk_buff *skb,
497 unsigned int from, unsigned int to,
498 struct skb_seq_state *st);
499 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
500 struct skb_seq_state *st);
501 extern void skb_abort_seq_read(struct skb_seq_state *st);
503 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
504 unsigned int to, struct ts_config *config,
505 struct ts_state *state);
507 #ifdef NET_SKBUFF_DATA_USES_OFFSET
508 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
510 return skb->head + skb->end;
512 #else
513 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
515 return skb->end;
517 #endif
519 /* Internal */
520 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
522 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
524 return &skb_shinfo(skb)->hwtstamps;
527 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
529 return &skb_shinfo(skb)->tx_flags;
533 * skb_queue_empty - check if a queue is empty
534 * @list: queue head
536 * Returns true if the queue is empty, false otherwise.
538 static inline int skb_queue_empty(const struct sk_buff_head *list)
540 return list->next == (struct sk_buff *)list;
544 * skb_queue_is_last - check if skb is the last entry in the queue
545 * @list: queue head
546 * @skb: buffer
548 * Returns true if @skb is the last buffer on the list.
550 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
551 const struct sk_buff *skb)
553 return (skb->next == (struct sk_buff *) list);
557 * skb_queue_is_first - check if skb is the first entry in the queue
558 * @list: queue head
559 * @skb: buffer
561 * Returns true if @skb is the first buffer on the list.
563 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
564 const struct sk_buff *skb)
566 return (skb->prev == (struct sk_buff *) list);
570 * skb_queue_next - return the next packet in the queue
571 * @list: queue head
572 * @skb: current buffer
574 * Return the next packet in @list after @skb. It is only valid to
575 * call this if skb_queue_is_last() evaluates to false.
577 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
578 const struct sk_buff *skb)
580 /* This BUG_ON may seem severe, but if we just return then we
581 * are going to dereference garbage.
583 BUG_ON(skb_queue_is_last(list, skb));
584 return skb->next;
588 * skb_queue_prev - return the prev packet in the queue
589 * @list: queue head
590 * @skb: current buffer
592 * Return the prev packet in @list before @skb. It is only valid to
593 * call this if skb_queue_is_first() evaluates to false.
595 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
596 const struct sk_buff *skb)
598 /* This BUG_ON may seem severe, but if we just return then we
599 * are going to dereference garbage.
601 BUG_ON(skb_queue_is_first(list, skb));
602 return skb->prev;
606 * skb_get - reference buffer
607 * @skb: buffer to reference
609 * Makes another reference to a socket buffer and returns a pointer
610 * to the buffer.
612 static inline struct sk_buff *skb_get(struct sk_buff *skb)
614 atomic_inc(&skb->users);
615 return skb;
619 * If users == 1, we are the only owner and are can avoid redundant
620 * atomic change.
624 * skb_cloned - is the buffer a clone
625 * @skb: buffer to check
627 * Returns true if the buffer was generated with skb_clone() and is
628 * one of multiple shared copies of the buffer. Cloned buffers are
629 * shared data so must not be written to under normal circumstances.
631 static inline int skb_cloned(const struct sk_buff *skb)
633 return skb->cloned &&
634 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
638 * skb_header_cloned - is the header a clone
639 * @skb: buffer to check
641 * Returns true if modifying the header part of the buffer requires
642 * the data to be copied.
644 static inline int skb_header_cloned(const struct sk_buff *skb)
646 int dataref;
648 if (!skb->cloned)
649 return 0;
651 dataref = atomic_read(&skb_shinfo(skb)->dataref);
652 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
653 return dataref != 1;
657 * skb_header_release - release reference to header
658 * @skb: buffer to operate on
660 * Drop a reference to the header part of the buffer. This is done
661 * by acquiring a payload reference. You must not read from the header
662 * part of skb->data after this.
664 static inline void skb_header_release(struct sk_buff *skb)
666 BUG_ON(skb->nohdr);
667 skb->nohdr = 1;
668 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
672 * skb_shared - is the buffer shared
673 * @skb: buffer to check
675 * Returns true if more than one person has a reference to this
676 * buffer.
678 static inline int skb_shared(const struct sk_buff *skb)
680 return atomic_read(&skb->users) != 1;
684 * skb_share_check - check if buffer is shared and if so clone it
685 * @skb: buffer to check
686 * @pri: priority for memory allocation
688 * If the buffer is shared the buffer is cloned and the old copy
689 * drops a reference. A new clone with a single reference is returned.
690 * If the buffer is not shared the original buffer is returned. When
691 * being called from interrupt status or with spinlocks held pri must
692 * be GFP_ATOMIC.
694 * NULL is returned on a memory allocation failure.
696 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
697 gfp_t pri)
699 might_sleep_if(pri & __GFP_WAIT);
700 if (skb_shared(skb)) {
701 struct sk_buff *nskb = skb_clone(skb, pri);
702 kfree_skb(skb);
703 skb = nskb;
705 return skb;
709 * Copy shared buffers into a new sk_buff. We effectively do COW on
710 * packets to handle cases where we have a local reader and forward
711 * and a couple of other messy ones. The normal one is tcpdumping
712 * a packet thats being forwarded.
716 * skb_unshare - make a copy of a shared buffer
717 * @skb: buffer to check
718 * @pri: priority for memory allocation
720 * If the socket buffer is a clone then this function creates a new
721 * copy of the data, drops a reference count on the old copy and returns
722 * the new copy with the reference count at 1. If the buffer is not a clone
723 * the original buffer is returned. When called with a spinlock held or
724 * from interrupt state @pri must be %GFP_ATOMIC
726 * %NULL is returned on a memory allocation failure.
728 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
729 gfp_t pri)
731 might_sleep_if(pri & __GFP_WAIT);
732 if (skb_cloned(skb)) {
733 struct sk_buff *nskb = skb_copy(skb, pri);
734 kfree_skb(skb); /* Free our shared copy */
735 skb = nskb;
737 return skb;
741 * skb_peek
742 * @list_: list to peek at
744 * Peek an &sk_buff. Unlike most other operations you _MUST_
745 * be careful with this one. A peek leaves the buffer on the
746 * list and someone else may run off with it. You must hold
747 * the appropriate locks or have a private queue to do this.
749 * Returns %NULL for an empty list or a pointer to the head element.
750 * The reference count is not incremented and the reference is therefore
751 * volatile. Use with caution.
753 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
755 struct sk_buff *list = ((struct sk_buff *)list_)->next;
756 if (list == (struct sk_buff *)list_)
757 list = NULL;
758 return list;
762 * skb_peek_tail
763 * @list_: list to peek at
765 * Peek an &sk_buff. Unlike most other operations you _MUST_
766 * be careful with this one. A peek leaves the buffer on the
767 * list and someone else may run off with it. You must hold
768 * the appropriate locks or have a private queue to do this.
770 * Returns %NULL for an empty list or a pointer to the tail element.
771 * The reference count is not incremented and the reference is therefore
772 * volatile. Use with caution.
774 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
776 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
777 if (list == (struct sk_buff *)list_)
778 list = NULL;
779 return list;
783 * skb_queue_len - get queue length
784 * @list_: list to measure
786 * Return the length of an &sk_buff queue.
788 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
790 return list_->qlen;
794 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
795 * @list: queue to initialize
797 * This initializes only the list and queue length aspects of
798 * an sk_buff_head object. This allows to initialize the list
799 * aspects of an sk_buff_head without reinitializing things like
800 * the spinlock. It can also be used for on-stack sk_buff_head
801 * objects where the spinlock is known to not be used.
803 static inline void __skb_queue_head_init(struct sk_buff_head *list)
805 list->prev = list->next = (struct sk_buff *)list;
806 list->qlen = 0;
810 * This function creates a split out lock class for each invocation;
811 * this is needed for now since a whole lot of users of the skb-queue
812 * infrastructure in drivers have different locking usage (in hardirq)
813 * than the networking core (in softirq only). In the long run either the
814 * network layer or drivers should need annotation to consolidate the
815 * main types of usage into 3 classes.
817 static inline void skb_queue_head_init(struct sk_buff_head *list)
819 spin_lock_init(&list->lock);
820 __skb_queue_head_init(list);
823 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
824 struct lock_class_key *class)
826 skb_queue_head_init(list);
827 lockdep_set_class(&list->lock, class);
831 * Insert an sk_buff on a list.
833 * The "__skb_xxxx()" functions are the non-atomic ones that
834 * can only be called with interrupts disabled.
836 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
837 static inline void __skb_insert(struct sk_buff *newsk,
838 struct sk_buff *prev, struct sk_buff *next,
839 struct sk_buff_head *list)
841 newsk->next = next;
842 newsk->prev = prev;
843 next->prev = prev->next = newsk;
844 list->qlen++;
847 static inline void __skb_queue_splice(const struct sk_buff_head *list,
848 struct sk_buff *prev,
849 struct sk_buff *next)
851 struct sk_buff *first = list->next;
852 struct sk_buff *last = list->prev;
854 first->prev = prev;
855 prev->next = first;
857 last->next = next;
858 next->prev = last;
862 * skb_queue_splice - join two skb lists, this is designed for stacks
863 * @list: the new list to add
864 * @head: the place to add it in the first list
866 static inline void skb_queue_splice(const struct sk_buff_head *list,
867 struct sk_buff_head *head)
869 if (!skb_queue_empty(list)) {
870 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
871 head->qlen += list->qlen;
876 * skb_queue_splice - join two skb lists and reinitialise the emptied list
877 * @list: the new list to add
878 * @head: the place to add it in the first list
880 * The list at @list is reinitialised
882 static inline void skb_queue_splice_init(struct sk_buff_head *list,
883 struct sk_buff_head *head)
885 if (!skb_queue_empty(list)) {
886 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
887 head->qlen += list->qlen;
888 __skb_queue_head_init(list);
893 * skb_queue_splice_tail - join two skb lists, each list being a queue
894 * @list: the new list to add
895 * @head: the place to add it in the first list
897 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
898 struct sk_buff_head *head)
900 if (!skb_queue_empty(list)) {
901 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
902 head->qlen += list->qlen;
907 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
908 * @list: the new list to add
909 * @head: the place to add it in the first list
911 * Each of the lists is a queue.
912 * The list at @list is reinitialised
914 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
915 struct sk_buff_head *head)
917 if (!skb_queue_empty(list)) {
918 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
919 head->qlen += list->qlen;
920 __skb_queue_head_init(list);
925 * __skb_queue_after - queue a buffer at the list head
926 * @list: list to use
927 * @prev: place after this buffer
928 * @newsk: buffer to queue
930 * Queue a buffer int the middle of a list. This function takes no locks
931 * and you must therefore hold required locks before calling it.
933 * A buffer cannot be placed on two lists at the same time.
935 static inline void __skb_queue_after(struct sk_buff_head *list,
936 struct sk_buff *prev,
937 struct sk_buff *newsk)
939 __skb_insert(newsk, prev, prev->next, list);
942 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
943 struct sk_buff_head *list);
945 static inline void __skb_queue_before(struct sk_buff_head *list,
946 struct sk_buff *next,
947 struct sk_buff *newsk)
949 __skb_insert(newsk, next->prev, next, list);
953 * __skb_queue_head - queue a buffer at the list head
954 * @list: list to use
955 * @newsk: buffer to queue
957 * Queue a buffer at the start of a list. This function takes no locks
958 * and you must therefore hold required locks before calling it.
960 * A buffer cannot be placed on two lists at the same time.
962 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
963 static inline void __skb_queue_head(struct sk_buff_head *list,
964 struct sk_buff *newsk)
966 __skb_queue_after(list, (struct sk_buff *)list, newsk);
970 * __skb_queue_tail - queue a buffer at the list tail
971 * @list: list to use
972 * @newsk: buffer to queue
974 * Queue a buffer at the end of a list. This function takes no locks
975 * and you must therefore hold required locks before calling it.
977 * A buffer cannot be placed on two lists at the same time.
979 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
980 static inline void __skb_queue_tail(struct sk_buff_head *list,
981 struct sk_buff *newsk)
983 __skb_queue_before(list, (struct sk_buff *)list, newsk);
987 * remove sk_buff from list. _Must_ be called atomically, and with
988 * the list known..
990 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
991 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
993 struct sk_buff *next, *prev;
995 list->qlen--;
996 next = skb->next;
997 prev = skb->prev;
998 skb->next = skb->prev = NULL;
999 next->prev = prev;
1000 prev->next = next;
1004 * __skb_dequeue - remove from the head of the queue
1005 * @list: list to dequeue from
1007 * Remove the head of the list. This function does not take any locks
1008 * so must be used with appropriate locks held only. The head item is
1009 * returned or %NULL if the list is empty.
1011 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1012 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1014 struct sk_buff *skb = skb_peek(list);
1015 if (skb)
1016 __skb_unlink(skb, list);
1017 return skb;
1021 * __skb_dequeue_tail - remove from the tail of the queue
1022 * @list: list to dequeue from
1024 * Remove the tail of the list. This function does not take any locks
1025 * so must be used with appropriate locks held only. The tail item is
1026 * returned or %NULL if the list is empty.
1028 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1029 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1031 struct sk_buff *skb = skb_peek_tail(list);
1032 if (skb)
1033 __skb_unlink(skb, list);
1034 return skb;
1038 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1040 return skb->data_len;
1043 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1045 return skb->len - skb->data_len;
1048 static inline int skb_pagelen(const struct sk_buff *skb)
1050 int i, len = 0;
1052 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1053 len += skb_shinfo(skb)->frags[i].size;
1054 return len + skb_headlen(skb);
1057 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1058 struct page *page, int off, int size)
1060 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1062 frag->page = page;
1063 frag->page_offset = off;
1064 frag->size = size;
1065 skb_shinfo(skb)->nr_frags = i + 1;
1068 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1069 int off, int size);
1071 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1072 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb))
1073 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1075 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1076 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1078 return skb->head + skb->tail;
1081 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1083 skb->tail = skb->data - skb->head;
1086 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1088 skb_reset_tail_pointer(skb);
1089 skb->tail += offset;
1091 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1092 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1094 return skb->tail;
1097 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1099 skb->tail = skb->data;
1102 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1104 skb->tail = skb->data + offset;
1107 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1110 * Add data to an sk_buff
1112 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1113 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1115 unsigned char *tmp = skb_tail_pointer(skb);
1116 SKB_LINEAR_ASSERT(skb);
1117 skb->tail += len;
1118 skb->len += len;
1119 return tmp;
1122 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1123 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1125 skb->data -= len;
1126 skb->len += len;
1127 return skb->data;
1130 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1131 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1133 skb->len -= len;
1134 BUG_ON(skb->len < skb->data_len);
1135 return skb->data += len;
1138 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1140 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1142 if (len > skb_headlen(skb) &&
1143 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1144 return NULL;
1145 skb->len -= len;
1146 return skb->data += len;
1149 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1151 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1154 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1156 if (likely(len <= skb_headlen(skb)))
1157 return 1;
1158 if (unlikely(len > skb->len))
1159 return 0;
1160 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1164 * skb_headroom - bytes at buffer head
1165 * @skb: buffer to check
1167 * Return the number of bytes of free space at the head of an &sk_buff.
1169 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1171 return skb->data - skb->head;
1175 * skb_tailroom - bytes at buffer end
1176 * @skb: buffer to check
1178 * Return the number of bytes of free space at the tail of an sk_buff
1180 static inline int skb_tailroom(const struct sk_buff *skb)
1182 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1186 * skb_reserve - adjust headroom
1187 * @skb: buffer to alter
1188 * @len: bytes to move
1190 * Increase the headroom of an empty &sk_buff by reducing the tail
1191 * room. This is only allowed for an empty buffer.
1193 static inline void skb_reserve(struct sk_buff *skb, int len)
1195 skb->data += len;
1196 skb->tail += len;
1199 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1200 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1202 return skb->head + skb->transport_header;
1205 static inline void skb_reset_transport_header(struct sk_buff *skb)
1207 skb->transport_header = skb->data - skb->head;
1210 static inline void skb_set_transport_header(struct sk_buff *skb,
1211 const int offset)
1213 skb_reset_transport_header(skb);
1214 skb->transport_header += offset;
1217 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1219 return skb->head + skb->network_header;
1222 static inline void skb_reset_network_header(struct sk_buff *skb)
1224 skb->network_header = skb->data - skb->head;
1227 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1229 skb_reset_network_header(skb);
1230 skb->network_header += offset;
1233 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1235 return skb->head + skb->mac_header;
1238 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1240 return skb->mac_header != ~0U;
1243 static inline void skb_reset_mac_header(struct sk_buff *skb)
1245 skb->mac_header = skb->data - skb->head;
1248 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1250 skb_reset_mac_header(skb);
1251 skb->mac_header += offset;
1254 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1256 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1258 return skb->transport_header;
1261 static inline void skb_reset_transport_header(struct sk_buff *skb)
1263 skb->transport_header = skb->data;
1266 static inline void skb_set_transport_header(struct sk_buff *skb,
1267 const int offset)
1269 skb->transport_header = skb->data + offset;
1272 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1274 return skb->network_header;
1277 static inline void skb_reset_network_header(struct sk_buff *skb)
1279 skb->network_header = skb->data;
1282 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1284 skb->network_header = skb->data + offset;
1287 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1289 return skb->mac_header;
1292 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1294 return skb->mac_header != NULL;
1297 static inline void skb_reset_mac_header(struct sk_buff *skb)
1299 skb->mac_header = skb->data;
1302 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1304 skb->mac_header = skb->data + offset;
1306 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1308 static inline int skb_transport_offset(const struct sk_buff *skb)
1310 return skb_transport_header(skb) - skb->data;
1313 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1315 return skb->transport_header - skb->network_header;
1318 static inline int skb_network_offset(const struct sk_buff *skb)
1320 return skb_network_header(skb) - skb->data;
1324 * CPUs often take a performance hit when accessing unaligned memory
1325 * locations. The actual performance hit varies, it can be small if the
1326 * hardware handles it or large if we have to take an exception and fix it
1327 * in software.
1329 * Since an ethernet header is 14 bytes network drivers often end up with
1330 * the IP header at an unaligned offset. The IP header can be aligned by
1331 * shifting the start of the packet by 2 bytes. Drivers should do this
1332 * with:
1334 * skb_reserve(skb, NET_IP_ALIGN);
1336 * The downside to this alignment of the IP header is that the DMA is now
1337 * unaligned. On some architectures the cost of an unaligned DMA is high
1338 * and this cost outweighs the gains made by aligning the IP header.
1340 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1341 * to be overridden.
1343 #ifndef NET_IP_ALIGN
1344 #define NET_IP_ALIGN 2
1345 #endif
1348 * The networking layer reserves some headroom in skb data (via
1349 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1350 * the header has to grow. In the default case, if the header has to grow
1351 * 32 bytes or less we avoid the reallocation.
1353 * Unfortunately this headroom changes the DMA alignment of the resulting
1354 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1355 * on some architectures. An architecture can override this value,
1356 * perhaps setting it to a cacheline in size (since that will maintain
1357 * cacheline alignment of the DMA). It must be a power of 2.
1359 * Various parts of the networking layer expect at least 32 bytes of
1360 * headroom, you should not reduce this.
1362 #ifndef NET_SKB_PAD
1363 #define NET_SKB_PAD 32
1364 #endif
1366 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1368 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1370 if (unlikely(skb->data_len)) {
1371 WARN_ON(1);
1372 return;
1374 skb->len = len;
1375 skb_set_tail_pointer(skb, len);
1378 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1380 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1382 if (skb->data_len)
1383 return ___pskb_trim(skb, len);
1384 __skb_trim(skb, len);
1385 return 0;
1388 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1390 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1394 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1395 * @skb: buffer to alter
1396 * @len: new length
1398 * This is identical to pskb_trim except that the caller knows that
1399 * the skb is not cloned so we should never get an error due to out-
1400 * of-memory.
1402 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1404 int err = pskb_trim(skb, len);
1405 BUG_ON(err);
1409 * skb_orphan - orphan a buffer
1410 * @skb: buffer to orphan
1412 * If a buffer currently has an owner then we call the owner's
1413 * destructor function and make the @skb unowned. The buffer continues
1414 * to exist but is no longer charged to its former owner.
1416 static inline void skb_orphan(struct sk_buff *skb)
1418 if (skb->destructor)
1419 skb->destructor(skb);
1420 skb->destructor = NULL;
1421 skb->sk = NULL;
1425 * __skb_queue_purge - empty a list
1426 * @list: list to empty
1428 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1429 * the list and one reference dropped. This function does not take the
1430 * list lock and the caller must hold the relevant locks to use it.
1432 extern void skb_queue_purge(struct sk_buff_head *list);
1433 static inline void __skb_queue_purge(struct sk_buff_head *list)
1435 struct sk_buff *skb;
1436 while ((skb = __skb_dequeue(list)) != NULL)
1437 kfree_skb(skb);
1441 * __dev_alloc_skb - allocate an skbuff for receiving
1442 * @length: length to allocate
1443 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1445 * Allocate a new &sk_buff and assign it a usage count of one. The
1446 * buffer has unspecified headroom built in. Users should allocate
1447 * the headroom they think they need without accounting for the
1448 * built in space. The built in space is used for optimisations.
1450 * %NULL is returned if there is no free memory.
1452 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1453 gfp_t gfp_mask)
1455 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1456 if (likely(skb))
1457 skb_reserve(skb, NET_SKB_PAD);
1458 return skb;
1461 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1463 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1464 unsigned int length, gfp_t gfp_mask);
1467 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1468 * @dev: network device to receive on
1469 * @length: length to allocate
1471 * Allocate a new &sk_buff and assign it a usage count of one. The
1472 * buffer has unspecified headroom built in. Users should allocate
1473 * the headroom they think they need without accounting for the
1474 * built in space. The built in space is used for optimisations.
1476 * %NULL is returned if there is no free memory. Although this function
1477 * allocates memory it can be called from an interrupt.
1479 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1480 unsigned int length)
1482 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1485 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1486 unsigned int length)
1488 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1490 if (NET_IP_ALIGN && skb)
1491 skb_reserve(skb, NET_IP_ALIGN);
1492 return skb;
1495 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1498 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1499 * @dev: network device to receive on
1501 * Allocate a new page node local to the specified device.
1503 * %NULL is returned if there is no free memory.
1505 static inline struct page *netdev_alloc_page(struct net_device *dev)
1507 return __netdev_alloc_page(dev, GFP_ATOMIC);
1510 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1512 __free_page(page);
1516 * skb_clone_writable - is the header of a clone writable
1517 * @skb: buffer to check
1518 * @len: length up to which to write
1520 * Returns true if modifying the header part of the cloned buffer
1521 * does not requires the data to be copied.
1523 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1525 return !skb_header_cloned(skb) &&
1526 skb_headroom(skb) + len <= skb->hdr_len;
1529 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1530 int cloned)
1532 int delta = 0;
1534 if (headroom < NET_SKB_PAD)
1535 headroom = NET_SKB_PAD;
1536 if (headroom > skb_headroom(skb))
1537 delta = headroom - skb_headroom(skb);
1539 if (delta || cloned)
1540 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1541 GFP_ATOMIC);
1542 return 0;
1546 * skb_cow - copy header of skb when it is required
1547 * @skb: buffer to cow
1548 * @headroom: needed headroom
1550 * If the skb passed lacks sufficient headroom or its data part
1551 * is shared, data is reallocated. If reallocation fails, an error
1552 * is returned and original skb is not changed.
1554 * The result is skb with writable area skb->head...skb->tail
1555 * and at least @headroom of space at head.
1557 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1559 return __skb_cow(skb, headroom, skb_cloned(skb));
1563 * skb_cow_head - skb_cow but only making the head writable
1564 * @skb: buffer to cow
1565 * @headroom: needed headroom
1567 * This function is identical to skb_cow except that we replace the
1568 * skb_cloned check by skb_header_cloned. It should be used when
1569 * you only need to push on some header and do not need to modify
1570 * the data.
1572 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1574 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1578 * skb_padto - pad an skbuff up to a minimal size
1579 * @skb: buffer to pad
1580 * @len: minimal length
1582 * Pads up a buffer to ensure the trailing bytes exist and are
1583 * blanked. If the buffer already contains sufficient data it
1584 * is untouched. Otherwise it is extended. Returns zero on
1585 * success. The skb is freed on error.
1588 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1590 unsigned int size = skb->len;
1591 if (likely(size >= len))
1592 return 0;
1593 return skb_pad(skb, len - size);
1596 static inline int skb_add_data(struct sk_buff *skb,
1597 char __user *from, int copy)
1599 const int off = skb->len;
1601 if (skb->ip_summed == CHECKSUM_NONE) {
1602 int err = 0;
1603 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1604 copy, 0, &err);
1605 if (!err) {
1606 skb->csum = csum_block_add(skb->csum, csum, off);
1607 return 0;
1609 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1610 return 0;
1612 __skb_trim(skb, off);
1613 return -EFAULT;
1616 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1617 struct page *page, int off)
1619 if (i) {
1620 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1622 return page == frag->page &&
1623 off == frag->page_offset + frag->size;
1625 return 0;
1628 static inline int __skb_linearize(struct sk_buff *skb)
1630 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1634 * skb_linearize - convert paged skb to linear one
1635 * @skb: buffer to linarize
1637 * If there is no free memory -ENOMEM is returned, otherwise zero
1638 * is returned and the old skb data released.
1640 static inline int skb_linearize(struct sk_buff *skb)
1642 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1646 * skb_linearize_cow - make sure skb is linear and writable
1647 * @skb: buffer to process
1649 * If there is no free memory -ENOMEM is returned, otherwise zero
1650 * is returned and the old skb data released.
1652 static inline int skb_linearize_cow(struct sk_buff *skb)
1654 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1655 __skb_linearize(skb) : 0;
1659 * skb_postpull_rcsum - update checksum for received skb after pull
1660 * @skb: buffer to update
1661 * @start: start of data before pull
1662 * @len: length of data pulled
1664 * After doing a pull on a received packet, you need to call this to
1665 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1666 * CHECKSUM_NONE so that it can be recomputed from scratch.
1669 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1670 const void *start, unsigned int len)
1672 if (skb->ip_summed == CHECKSUM_COMPLETE)
1673 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1676 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1679 * pskb_trim_rcsum - trim received skb and update checksum
1680 * @skb: buffer to trim
1681 * @len: new length
1683 * This is exactly the same as pskb_trim except that it ensures the
1684 * checksum of received packets are still valid after the operation.
1687 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1689 if (likely(len >= skb->len))
1690 return 0;
1691 if (skb->ip_summed == CHECKSUM_COMPLETE)
1692 skb->ip_summed = CHECKSUM_NONE;
1693 return __pskb_trim(skb, len);
1696 #define skb_queue_walk(queue, skb) \
1697 for (skb = (queue)->next; \
1698 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1699 skb = skb->next)
1701 #define skb_queue_walk_safe(queue, skb, tmp) \
1702 for (skb = (queue)->next, tmp = skb->next; \
1703 skb != (struct sk_buff *)(queue); \
1704 skb = tmp, tmp = skb->next)
1706 #define skb_queue_walk_from(queue, skb) \
1707 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1708 skb = skb->next)
1710 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1711 for (tmp = skb->next; \
1712 skb != (struct sk_buff *)(queue); \
1713 skb = tmp, tmp = skb->next)
1715 #define skb_queue_reverse_walk(queue, skb) \
1716 for (skb = (queue)->prev; \
1717 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1718 skb = skb->prev)
1721 static inline bool skb_has_frags(const struct sk_buff *skb)
1723 return skb_shinfo(skb)->frag_list != NULL;
1726 static inline void skb_frag_list_init(struct sk_buff *skb)
1728 skb_shinfo(skb)->frag_list = NULL;
1731 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1733 frag->next = skb_shinfo(skb)->frag_list;
1734 skb_shinfo(skb)->frag_list = frag;
1737 #define skb_walk_frags(skb, iter) \
1738 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1740 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1741 int *peeked, int *err);
1742 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1743 int noblock, int *err);
1744 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1745 struct poll_table_struct *wait);
1746 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1747 int offset, struct iovec *to,
1748 int size);
1749 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1750 int hlen,
1751 struct iovec *iov);
1752 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1753 int offset,
1754 const struct iovec *from,
1755 int from_offset,
1756 int len);
1757 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
1758 int offset,
1759 const struct iovec *to,
1760 int to_offset,
1761 int size);
1762 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1763 extern void skb_free_datagram_locked(struct sock *sk,
1764 struct sk_buff *skb);
1765 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1766 unsigned int flags);
1767 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1768 int len, __wsum csum);
1769 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1770 void *to, int len);
1771 extern int skb_store_bits(struct sk_buff *skb, int offset,
1772 const void *from, int len);
1773 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1774 int offset, u8 *to, int len,
1775 __wsum csum);
1776 extern int skb_splice_bits(struct sk_buff *skb,
1777 unsigned int offset,
1778 struct pipe_inode_info *pipe,
1779 unsigned int len,
1780 unsigned int flags);
1781 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1782 extern void skb_split(struct sk_buff *skb,
1783 struct sk_buff *skb1, const u32 len);
1784 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1785 int shiftlen);
1787 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1789 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1790 int len, void *buffer)
1792 int hlen = skb_headlen(skb);
1794 if (hlen - offset >= len)
1795 return skb->data + offset;
1797 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1798 return NULL;
1800 return buffer;
1803 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1804 void *to,
1805 const unsigned int len)
1807 memcpy(to, skb->data, len);
1810 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1811 const int offset, void *to,
1812 const unsigned int len)
1814 memcpy(to, skb->data + offset, len);
1817 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1818 const void *from,
1819 const unsigned int len)
1821 memcpy(skb->data, from, len);
1824 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1825 const int offset,
1826 const void *from,
1827 const unsigned int len)
1829 memcpy(skb->data + offset, from, len);
1832 extern void skb_init(void);
1834 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1836 return skb->tstamp;
1840 * skb_get_timestamp - get timestamp from a skb
1841 * @skb: skb to get stamp from
1842 * @stamp: pointer to struct timeval to store stamp in
1844 * Timestamps are stored in the skb as offsets to a base timestamp.
1845 * This function converts the offset back to a struct timeval and stores
1846 * it in stamp.
1848 static inline void skb_get_timestamp(const struct sk_buff *skb,
1849 struct timeval *stamp)
1851 *stamp = ktime_to_timeval(skb->tstamp);
1854 static inline void skb_get_timestampns(const struct sk_buff *skb,
1855 struct timespec *stamp)
1857 *stamp = ktime_to_timespec(skb->tstamp);
1860 static inline void __net_timestamp(struct sk_buff *skb)
1862 skb->tstamp = ktime_get_real();
1865 static inline ktime_t net_timedelta(ktime_t t)
1867 return ktime_sub(ktime_get_real(), t);
1870 static inline ktime_t net_invalid_timestamp(void)
1872 return ktime_set(0, 0);
1876 * skb_tstamp_tx - queue clone of skb with send time stamps
1877 * @orig_skb: the original outgoing packet
1878 * @hwtstamps: hardware time stamps, may be NULL if not available
1880 * If the skb has a socket associated, then this function clones the
1881 * skb (thus sharing the actual data and optional structures), stores
1882 * the optional hardware time stamping information (if non NULL) or
1883 * generates a software time stamp (otherwise), then queues the clone
1884 * to the error queue of the socket. Errors are silently ignored.
1886 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1887 struct skb_shared_hwtstamps *hwtstamps);
1889 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1890 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1892 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1894 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1898 * skb_checksum_complete - Calculate checksum of an entire packet
1899 * @skb: packet to process
1901 * This function calculates the checksum over the entire packet plus
1902 * the value of skb->csum. The latter can be used to supply the
1903 * checksum of a pseudo header as used by TCP/UDP. It returns the
1904 * checksum.
1906 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1907 * this function can be used to verify that checksum on received
1908 * packets. In that case the function should return zero if the
1909 * checksum is correct. In particular, this function will return zero
1910 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1911 * hardware has already verified the correctness of the checksum.
1913 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1915 return skb_csum_unnecessary(skb) ?
1916 0 : __skb_checksum_complete(skb);
1919 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1920 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1921 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1923 if (nfct && atomic_dec_and_test(&nfct->use))
1924 nf_conntrack_destroy(nfct);
1926 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1928 if (nfct)
1929 atomic_inc(&nfct->use);
1931 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1933 if (skb)
1934 atomic_inc(&skb->users);
1936 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1938 if (skb)
1939 kfree_skb(skb);
1941 #endif
1942 #ifdef CONFIG_BRIDGE_NETFILTER
1943 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1945 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1946 kfree(nf_bridge);
1948 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1950 if (nf_bridge)
1951 atomic_inc(&nf_bridge->use);
1953 #endif /* CONFIG_BRIDGE_NETFILTER */
1954 static inline void nf_reset(struct sk_buff *skb)
1956 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1957 nf_conntrack_put(skb->nfct);
1958 skb->nfct = NULL;
1959 nf_conntrack_put_reasm(skb->nfct_reasm);
1960 skb->nfct_reasm = NULL;
1961 #endif
1962 #ifdef CONFIG_BRIDGE_NETFILTER
1963 nf_bridge_put(skb->nf_bridge);
1964 skb->nf_bridge = NULL;
1965 #endif
1968 /* Note: This doesn't put any conntrack and bridge info in dst. */
1969 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1971 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1972 dst->nfct = src->nfct;
1973 nf_conntrack_get(src->nfct);
1974 dst->nfctinfo = src->nfctinfo;
1975 dst->nfct_reasm = src->nfct_reasm;
1976 nf_conntrack_get_reasm(src->nfct_reasm);
1977 #endif
1978 #ifdef CONFIG_BRIDGE_NETFILTER
1979 dst->nf_bridge = src->nf_bridge;
1980 nf_bridge_get(src->nf_bridge);
1981 #endif
1984 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1986 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1987 nf_conntrack_put(dst->nfct);
1988 nf_conntrack_put_reasm(dst->nfct_reasm);
1989 #endif
1990 #ifdef CONFIG_BRIDGE_NETFILTER
1991 nf_bridge_put(dst->nf_bridge);
1992 #endif
1993 __nf_copy(dst, src);
1996 #ifdef CONFIG_NETWORK_SECMARK
1997 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1999 to->secmark = from->secmark;
2002 static inline void skb_init_secmark(struct sk_buff *skb)
2004 skb->secmark = 0;
2006 #else
2007 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2010 static inline void skb_init_secmark(struct sk_buff *skb)
2012 #endif
2014 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2016 skb->queue_mapping = queue_mapping;
2019 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2021 return skb->queue_mapping;
2024 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2026 to->queue_mapping = from->queue_mapping;
2029 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2031 skb->queue_mapping = rx_queue + 1;
2034 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2036 return skb->queue_mapping - 1;
2039 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2041 return (skb->queue_mapping != 0);
2044 extern u16 skb_tx_hash(const struct net_device *dev,
2045 const struct sk_buff *skb);
2047 #ifdef CONFIG_XFRM
2048 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2050 return skb->sp;
2052 #else
2053 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2055 return NULL;
2057 #endif
2059 static inline int skb_is_gso(const struct sk_buff *skb)
2061 return skb_shinfo(skb)->gso_size;
2064 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2066 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2069 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2071 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2073 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2074 * wanted then gso_type will be set. */
2075 struct skb_shared_info *shinfo = skb_shinfo(skb);
2076 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2077 __skb_warn_lro_forwarding(skb);
2078 return true;
2080 return false;
2083 static inline void skb_forward_csum(struct sk_buff *skb)
2085 /* Unfortunately we don't support this one. Any brave souls? */
2086 if (skb->ip_summed == CHECKSUM_COMPLETE)
2087 skb->ip_summed = CHECKSUM_NONE;
2090 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2091 #endif /* __KERNEL__ */
2092 #endif /* _LINUX_SKBUFF_H */