2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
8 * Version: $Id: route.c,v 1.103 2002/01/12 07:44:09 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Alan Cox, <gw4pts@gw4pts.ampr.org>
13 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
14 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
17 * Alan Cox : Verify area fixes.
18 * Alan Cox : cli() protects routing changes
19 * Rui Oliveira : ICMP routing table updates
20 * (rco@di.uminho.pt) Routing table insertion and update
21 * Linus Torvalds : Rewrote bits to be sensible
22 * Alan Cox : Added BSD route gw semantics
23 * Alan Cox : Super /proc >4K
24 * Alan Cox : MTU in route table
25 * Alan Cox : MSS actually. Also added the window
27 * Sam Lantinga : Fixed route matching in rt_del()
28 * Alan Cox : Routing cache support.
29 * Alan Cox : Removed compatibility cruft.
30 * Alan Cox : RTF_REJECT support.
31 * Alan Cox : TCP irtt support.
32 * Jonathan Naylor : Added Metric support.
33 * Miquel van Smoorenburg : BSD API fixes.
34 * Miquel van Smoorenburg : Metrics.
35 * Alan Cox : Use __u32 properly
36 * Alan Cox : Aligned routing errors more closely with BSD
37 * our system is still very different.
38 * Alan Cox : Faster /proc handling
39 * Alexey Kuznetsov : Massive rework to support tree based routing,
40 * routing caches and better behaviour.
42 * Olaf Erb : irtt wasn't being copied right.
43 * Bjorn Ekwall : Kerneld route support.
44 * Alan Cox : Multicast fixed (I hope)
45 * Pavel Krauz : Limited broadcast fixed
46 * Mike McLagan : Routing by source
47 * Alexey Kuznetsov : End of old history. Split to fib.c and
48 * route.c and rewritten from scratch.
49 * Andi Kleen : Load-limit warning messages.
50 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
51 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
52 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
53 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
58 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
59 * Ilia Sotnikov : Removed TOS from hash calculations
61 * This program is free software; you can redistribute it and/or
62 * modify it under the terms of the GNU General Public License
63 * as published by the Free Software Foundation; either version
64 * 2 of the License, or (at your option) any later version.
67 #include <linux/module.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <linux/bitops.h>
71 #include <linux/types.h>
72 #include <linux/kernel.h>
74 #include <linux/bootmem.h>
75 #include <linux/string.h>
76 #include <linux/socket.h>
77 #include <linux/sockios.h>
78 #include <linux/errno.h>
80 #include <linux/inet.h>
81 #include <linux/netdevice.h>
82 #include <linux/proc_fs.h>
83 #include <linux/init.h>
84 #include <linux/workqueue.h>
85 #include <linux/skbuff.h>
86 #include <linux/inetdevice.h>
87 #include <linux/igmp.h>
88 #include <linux/pkt_sched.h>
89 #include <linux/mroute.h>
90 #include <linux/netfilter_ipv4.h>
91 #include <linux/random.h>
92 #include <linux/jhash.h>
93 #include <linux/rcupdate.h>
94 #include <linux/times.h>
96 #include <net/net_namespace.h>
97 #include <net/protocol.h>
99 #include <net/route.h>
100 #include <net/inetpeer.h>
101 #include <net/sock.h>
102 #include <net/ip_fib.h>
105 #include <net/icmp.h>
106 #include <net/xfrm.h>
107 #include <net/netevent.h>
108 #include <net/rtnetlink.h>
110 #include <linux/sysctl.h>
113 #define RT_FL_TOS(oldflp) \
114 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
116 #define IP_MAX_MTU 0xFFF0
118 #define RT_GC_TIMEOUT (300*HZ)
120 static int ip_rt_max_size
;
121 static int ip_rt_gc_timeout
= RT_GC_TIMEOUT
;
122 static int ip_rt_gc_interval
= 60 * HZ
;
123 static int ip_rt_gc_min_interval
= HZ
/ 2;
124 static int ip_rt_redirect_number
= 9;
125 static int ip_rt_redirect_load
= HZ
/ 50;
126 static int ip_rt_redirect_silence
= ((HZ
/ 50) << (9 + 1));
127 static int ip_rt_error_cost
= HZ
;
128 static int ip_rt_error_burst
= 5 * HZ
;
129 static int ip_rt_gc_elasticity
= 8;
130 static int ip_rt_mtu_expires
= 10 * 60 * HZ
;
131 static int ip_rt_min_pmtu
= 512 + 20 + 20;
132 static int ip_rt_min_advmss
= 256;
133 static int ip_rt_secret_interval
= 10 * 60 * HZ
;
135 #define RTprint(a...) printk(KERN_DEBUG a)
137 static void rt_worker_func(struct work_struct
*work
);
138 static DECLARE_DELAYED_WORK(expires_work
, rt_worker_func
);
139 static struct timer_list rt_secret_timer
;
142 * Interface to generic destination cache.
145 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
);
146 static void ipv4_dst_destroy(struct dst_entry
*dst
);
147 static void ipv4_dst_ifdown(struct dst_entry
*dst
,
148 struct net_device
*dev
, int how
);
149 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
);
150 static void ipv4_link_failure(struct sk_buff
*skb
);
151 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
);
152 static int rt_garbage_collect(struct dst_ops
*ops
);
155 static struct dst_ops ipv4_dst_ops
= {
157 .protocol
= __constant_htons(ETH_P_IP
),
158 .gc
= rt_garbage_collect
,
159 .check
= ipv4_dst_check
,
160 .destroy
= ipv4_dst_destroy
,
161 .ifdown
= ipv4_dst_ifdown
,
162 .negative_advice
= ipv4_negative_advice
,
163 .link_failure
= ipv4_link_failure
,
164 .update_pmtu
= ip_rt_update_pmtu
,
165 .local_out
= ip_local_out
,
166 .entry_size
= sizeof(struct rtable
),
167 .entries
= ATOMIC_INIT(0),
170 #define ECN_OR_COST(class) TC_PRIO_##class
172 const __u8 ip_tos2prio
[16] = {
176 ECN_OR_COST(BESTEFFORT
),
182 ECN_OR_COST(INTERACTIVE
),
184 ECN_OR_COST(INTERACTIVE
),
185 TC_PRIO_INTERACTIVE_BULK
,
186 ECN_OR_COST(INTERACTIVE_BULK
),
187 TC_PRIO_INTERACTIVE_BULK
,
188 ECN_OR_COST(INTERACTIVE_BULK
)
196 /* The locking scheme is rather straight forward:
198 * 1) Read-Copy Update protects the buckets of the central route hash.
199 * 2) Only writers remove entries, and they hold the lock
200 * as they look at rtable reference counts.
201 * 3) Only readers acquire references to rtable entries,
202 * they do so with atomic increments and with the
206 struct rt_hash_bucket
{
207 struct rtable
*chain
;
209 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
210 defined(CONFIG_PROVE_LOCKING)
212 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
213 * The size of this table is a power of two and depends on the number of CPUS.
214 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
216 #ifdef CONFIG_LOCKDEP
217 # define RT_HASH_LOCK_SZ 256
220 # define RT_HASH_LOCK_SZ 4096
222 # define RT_HASH_LOCK_SZ 2048
224 # define RT_HASH_LOCK_SZ 1024
226 # define RT_HASH_LOCK_SZ 512
228 # define RT_HASH_LOCK_SZ 256
232 static spinlock_t
*rt_hash_locks
;
233 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
235 static __init
void rt_hash_lock_init(void)
239 rt_hash_locks
= kmalloc(sizeof(spinlock_t
) * RT_HASH_LOCK_SZ
,
242 panic("IP: failed to allocate rt_hash_locks\n");
244 for (i
= 0; i
< RT_HASH_LOCK_SZ
; i
++)
245 spin_lock_init(&rt_hash_locks
[i
]);
248 # define rt_hash_lock_addr(slot) NULL
250 static inline void rt_hash_lock_init(void)
255 static struct rt_hash_bucket
*rt_hash_table
;
256 static unsigned rt_hash_mask
;
257 static unsigned int rt_hash_log
;
258 static atomic_t rt_genid
;
260 static DEFINE_PER_CPU(struct rt_cache_stat
, rt_cache_stat
);
261 #define RT_CACHE_STAT_INC(field) \
262 (__raw_get_cpu_var(rt_cache_stat).field++)
264 static unsigned int rt_hash_code(u32 daddr
, u32 saddr
)
266 return jhash_2words(daddr
, saddr
, atomic_read(&rt_genid
))
270 #define rt_hash(daddr, saddr, idx) \
271 rt_hash_code((__force u32)(__be32)(daddr),\
272 (__force u32)(__be32)(saddr) ^ ((idx) << 5))
274 #ifdef CONFIG_PROC_FS
275 struct rt_cache_iter_state
{
280 static struct rtable
*rt_cache_get_first(struct rt_cache_iter_state
*st
)
282 struct rtable
*r
= NULL
;
284 for (st
->bucket
= rt_hash_mask
; st
->bucket
>= 0; --st
->bucket
) {
286 r
= rcu_dereference(rt_hash_table
[st
->bucket
].chain
);
288 if (r
->rt_genid
== st
->genid
)
290 r
= rcu_dereference(r
->u
.dst
.rt_next
);
292 rcu_read_unlock_bh();
297 static struct rtable
*rt_cache_get_next(struct rt_cache_iter_state
*st
, struct rtable
*r
)
299 r
= r
->u
.dst
.rt_next
;
301 rcu_read_unlock_bh();
302 if (--st
->bucket
< 0)
305 r
= rt_hash_table
[st
->bucket
].chain
;
307 return rcu_dereference(r
);
310 static struct rtable
*rt_cache_get_idx(struct rt_cache_iter_state
*st
, loff_t pos
)
312 struct rtable
*r
= rt_cache_get_first(st
);
315 while (pos
&& (r
= rt_cache_get_next(st
, r
))) {
316 if (r
->rt_genid
!= st
->genid
)
320 return pos
? NULL
: r
;
323 static void *rt_cache_seq_start(struct seq_file
*seq
, loff_t
*pos
)
325 struct rt_cache_iter_state
*st
= seq
->private;
328 return rt_cache_get_idx(st
, *pos
- 1);
329 st
->genid
= atomic_read(&rt_genid
);
330 return SEQ_START_TOKEN
;
333 static void *rt_cache_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
336 struct rt_cache_iter_state
*st
= seq
->private;
338 if (v
== SEQ_START_TOKEN
)
339 r
= rt_cache_get_first(st
);
341 r
= rt_cache_get_next(st
, v
);
346 static void rt_cache_seq_stop(struct seq_file
*seq
, void *v
)
348 if (v
&& v
!= SEQ_START_TOKEN
)
349 rcu_read_unlock_bh();
352 static int rt_cache_seq_show(struct seq_file
*seq
, void *v
)
354 if (v
== SEQ_START_TOKEN
)
355 seq_printf(seq
, "%-127s\n",
356 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
357 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
360 struct rtable
*r
= v
;
363 sprintf(temp
, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
364 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X",
365 r
->u
.dst
.dev
? r
->u
.dst
.dev
->name
: "*",
366 (unsigned long)r
->rt_dst
, (unsigned long)r
->rt_gateway
,
367 r
->rt_flags
, atomic_read(&r
->u
.dst
.__refcnt
),
368 r
->u
.dst
.__use
, 0, (unsigned long)r
->rt_src
,
369 (dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) ?
370 (int)dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) + 40 : 0),
371 dst_metric(&r
->u
.dst
, RTAX_WINDOW
),
372 (int)((dst_metric(&r
->u
.dst
, RTAX_RTT
) >> 3) +
373 dst_metric(&r
->u
.dst
, RTAX_RTTVAR
)),
375 r
->u
.dst
.hh
? atomic_read(&r
->u
.dst
.hh
->hh_refcnt
) : -1,
376 r
->u
.dst
.hh
? (r
->u
.dst
.hh
->hh_output
==
379 seq_printf(seq
, "%-127s\n", temp
);
384 static const struct seq_operations rt_cache_seq_ops
= {
385 .start
= rt_cache_seq_start
,
386 .next
= rt_cache_seq_next
,
387 .stop
= rt_cache_seq_stop
,
388 .show
= rt_cache_seq_show
,
391 static int rt_cache_seq_open(struct inode
*inode
, struct file
*file
)
393 return seq_open_private(file
, &rt_cache_seq_ops
,
394 sizeof(struct rt_cache_iter_state
));
397 static const struct file_operations rt_cache_seq_fops
= {
398 .owner
= THIS_MODULE
,
399 .open
= rt_cache_seq_open
,
402 .release
= seq_release_private
,
406 static void *rt_cpu_seq_start(struct seq_file
*seq
, loff_t
*pos
)
411 return SEQ_START_TOKEN
;
413 for (cpu
= *pos
-1; cpu
< NR_CPUS
; ++cpu
) {
414 if (!cpu_possible(cpu
))
417 return &per_cpu(rt_cache_stat
, cpu
);
422 static void *rt_cpu_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
426 for (cpu
= *pos
; cpu
< NR_CPUS
; ++cpu
) {
427 if (!cpu_possible(cpu
))
430 return &per_cpu(rt_cache_stat
, cpu
);
436 static void rt_cpu_seq_stop(struct seq_file
*seq
, void *v
)
441 static int rt_cpu_seq_show(struct seq_file
*seq
, void *v
)
443 struct rt_cache_stat
*st
= v
;
445 if (v
== SEQ_START_TOKEN
) {
446 seq_printf(seq
, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
450 seq_printf(seq
,"%08x %08x %08x %08x %08x %08x %08x %08x "
451 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
452 atomic_read(&ipv4_dst_ops
.entries
),
475 static const struct seq_operations rt_cpu_seq_ops
= {
476 .start
= rt_cpu_seq_start
,
477 .next
= rt_cpu_seq_next
,
478 .stop
= rt_cpu_seq_stop
,
479 .show
= rt_cpu_seq_show
,
483 static int rt_cpu_seq_open(struct inode
*inode
, struct file
*file
)
485 return seq_open(file
, &rt_cpu_seq_ops
);
488 static const struct file_operations rt_cpu_seq_fops
= {
489 .owner
= THIS_MODULE
,
490 .open
= rt_cpu_seq_open
,
493 .release
= seq_release
,
496 #ifdef CONFIG_NET_CLS_ROUTE
497 static int ip_rt_acct_read(char *buffer
, char **start
, off_t offset
,
498 int length
, int *eof
, void *data
)
502 if ((offset
& 3) || (length
& 3))
505 if (offset
>= sizeof(struct ip_rt_acct
) * 256) {
510 if (offset
+ length
>= sizeof(struct ip_rt_acct
) * 256) {
511 length
= sizeof(struct ip_rt_acct
) * 256 - offset
;
515 offset
/= sizeof(u32
);
518 u32
*dst
= (u32
*) buffer
;
521 memset(dst
, 0, length
);
523 for_each_possible_cpu(i
) {
527 src
= ((u32
*) per_cpu_ptr(ip_rt_acct
, i
)) + offset
;
528 for (j
= 0; j
< length
/4; j
++)
536 static __init
int ip_rt_proc_init(struct net
*net
)
538 struct proc_dir_entry
*pde
;
540 pde
= proc_net_fops_create(net
, "rt_cache", S_IRUGO
,
545 pde
= proc_create("rt_cache", S_IRUGO
,
546 net
->proc_net_stat
, &rt_cpu_seq_fops
);
550 #ifdef CONFIG_NET_CLS_ROUTE
551 pde
= create_proc_read_entry("rt_acct", 0, net
->proc_net
,
552 ip_rt_acct_read
, NULL
);
558 #ifdef CONFIG_NET_CLS_ROUTE
560 remove_proc_entry("rt_cache", net
->proc_net_stat
);
563 remove_proc_entry("rt_cache", net
->proc_net
);
568 static inline int ip_rt_proc_init(struct net
*net
)
572 #endif /* CONFIG_PROC_FS */
574 static __inline__
void rt_free(struct rtable
*rt
)
576 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
579 static __inline__
void rt_drop(struct rtable
*rt
)
582 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
585 static __inline__
int rt_fast_clean(struct rtable
*rth
)
587 /* Kill broadcast/multicast entries very aggresively, if they
588 collide in hash table with more useful entries */
589 return (rth
->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) &&
590 rth
->fl
.iif
&& rth
->u
.dst
.rt_next
;
593 static __inline__
int rt_valuable(struct rtable
*rth
)
595 return (rth
->rt_flags
& (RTCF_REDIRECTED
| RTCF_NOTIFY
)) ||
599 static int rt_may_expire(struct rtable
*rth
, unsigned long tmo1
, unsigned long tmo2
)
604 if (atomic_read(&rth
->u
.dst
.__refcnt
))
608 if (rth
->u
.dst
.expires
&&
609 time_after_eq(jiffies
, rth
->u
.dst
.expires
))
612 age
= jiffies
- rth
->u
.dst
.lastuse
;
614 if ((age
<= tmo1
&& !rt_fast_clean(rth
)) ||
615 (age
<= tmo2
&& rt_valuable(rth
)))
621 /* Bits of score are:
623 * 30: not quite useless
624 * 29..0: usage counter
626 static inline u32
rt_score(struct rtable
*rt
)
628 u32 score
= jiffies
- rt
->u
.dst
.lastuse
;
630 score
= ~score
& ~(3<<30);
636 !(rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
|RTCF_LOCAL
)))
642 static inline int compare_keys(struct flowi
*fl1
, struct flowi
*fl2
)
644 return ((__force u32
)((fl1
->nl_u
.ip4_u
.daddr
^ fl2
->nl_u
.ip4_u
.daddr
) |
645 (fl1
->nl_u
.ip4_u
.saddr
^ fl2
->nl_u
.ip4_u
.saddr
)) |
646 (fl1
->mark
^ fl2
->mark
) |
647 (*(u16
*)&fl1
->nl_u
.ip4_u
.tos
^
648 *(u16
*)&fl2
->nl_u
.ip4_u
.tos
) |
649 (fl1
->oif
^ fl2
->oif
) |
650 (fl1
->iif
^ fl2
->iif
)) == 0;
653 static inline int compare_netns(struct rtable
*rt1
, struct rtable
*rt2
)
655 return rt1
->u
.dst
.dev
->nd_net
== rt2
->u
.dst
.dev
->nd_net
;
659 * Perform a full scan of hash table and free all entries.
660 * Can be called by a softirq or a process.
661 * In the later case, we want to be reschedule if necessary
663 static void rt_do_flush(int process_context
)
666 struct rtable
*rth
, *next
;
668 for (i
= 0; i
<= rt_hash_mask
; i
++) {
669 if (process_context
&& need_resched())
671 rth
= rt_hash_table
[i
].chain
;
675 spin_lock_bh(rt_hash_lock_addr(i
));
676 rth
= rt_hash_table
[i
].chain
;
677 rt_hash_table
[i
].chain
= NULL
;
678 spin_unlock_bh(rt_hash_lock_addr(i
));
680 for (; rth
; rth
= next
) {
681 next
= rth
->u
.dst
.rt_next
;
687 static void rt_check_expire(void)
689 static unsigned int rover
;
690 unsigned int i
= rover
, goal
;
691 struct rtable
*rth
, **rthp
;
694 mult
= ((u64
)ip_rt_gc_interval
) << rt_hash_log
;
695 if (ip_rt_gc_timeout
> 1)
696 do_div(mult
, ip_rt_gc_timeout
);
697 goal
= (unsigned int)mult
;
698 if (goal
> rt_hash_mask
)
699 goal
= rt_hash_mask
+ 1;
700 for (; goal
> 0; goal
--) {
701 unsigned long tmo
= ip_rt_gc_timeout
;
703 i
= (i
+ 1) & rt_hash_mask
;
704 rthp
= &rt_hash_table
[i
].chain
;
711 spin_lock_bh(rt_hash_lock_addr(i
));
712 while ((rth
= *rthp
) != NULL
) {
713 if (rth
->rt_genid
!= atomic_read(&rt_genid
)) {
714 *rthp
= rth
->u
.dst
.rt_next
;
718 if (rth
->u
.dst
.expires
) {
719 /* Entry is expired even if it is in use */
720 if (time_before_eq(jiffies
, rth
->u
.dst
.expires
)) {
722 rthp
= &rth
->u
.dst
.rt_next
;
725 } else if (!rt_may_expire(rth
, tmo
, ip_rt_gc_timeout
)) {
727 rthp
= &rth
->u
.dst
.rt_next
;
731 /* Cleanup aged off entries. */
732 *rthp
= rth
->u
.dst
.rt_next
;
735 spin_unlock_bh(rt_hash_lock_addr(i
));
741 * rt_worker_func() is run in process context.
742 * we call rt_check_expire() to scan part of the hash table
744 static void rt_worker_func(struct work_struct
*work
)
747 schedule_delayed_work(&expires_work
, ip_rt_gc_interval
);
751 * Pertubation of rt_genid by a small quantity [1..256]
752 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
753 * many times (2^24) without giving recent rt_genid.
754 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
756 static void rt_cache_invalidate(void)
758 unsigned char shuffle
;
760 get_random_bytes(&shuffle
, sizeof(shuffle
));
761 atomic_add(shuffle
+ 1U, &rt_genid
);
765 * delay < 0 : invalidate cache (fast : entries will be deleted later)
766 * delay >= 0 : invalidate & flush cache (can be long)
768 void rt_cache_flush(int delay
)
770 rt_cache_invalidate();
772 rt_do_flush(!in_softirq());
776 * We change rt_genid and let gc do the cleanup
778 static void rt_secret_rebuild(unsigned long dummy
)
780 rt_cache_invalidate();
781 mod_timer(&rt_secret_timer
, jiffies
+ ip_rt_secret_interval
);
785 Short description of GC goals.
787 We want to build algorithm, which will keep routing cache
788 at some equilibrium point, when number of aged off entries
789 is kept approximately equal to newly generated ones.
791 Current expiration strength is variable "expire".
792 We try to adjust it dynamically, so that if networking
793 is idle expires is large enough to keep enough of warm entries,
794 and when load increases it reduces to limit cache size.
797 static int rt_garbage_collect(struct dst_ops
*ops
)
799 static unsigned long expire
= RT_GC_TIMEOUT
;
800 static unsigned long last_gc
;
802 static int equilibrium
;
803 struct rtable
*rth
, **rthp
;
804 unsigned long now
= jiffies
;
808 * Garbage collection is pretty expensive,
809 * do not make it too frequently.
812 RT_CACHE_STAT_INC(gc_total
);
814 if (now
- last_gc
< ip_rt_gc_min_interval
&&
815 atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
) {
816 RT_CACHE_STAT_INC(gc_ignored
);
820 /* Calculate number of entries, which we want to expire now. */
821 goal
= atomic_read(&ipv4_dst_ops
.entries
) -
822 (ip_rt_gc_elasticity
<< rt_hash_log
);
824 if (equilibrium
< ipv4_dst_ops
.gc_thresh
)
825 equilibrium
= ipv4_dst_ops
.gc_thresh
;
826 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
828 equilibrium
+= min_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
829 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
832 /* We are in dangerous area. Try to reduce cache really
835 goal
= max_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
836 equilibrium
= atomic_read(&ipv4_dst_ops
.entries
) - goal
;
839 if (now
- last_gc
>= ip_rt_gc_min_interval
)
850 for (i
= rt_hash_mask
, k
= rover
; i
>= 0; i
--) {
851 unsigned long tmo
= expire
;
853 k
= (k
+ 1) & rt_hash_mask
;
854 rthp
= &rt_hash_table
[k
].chain
;
855 spin_lock_bh(rt_hash_lock_addr(k
));
856 while ((rth
= *rthp
) != NULL
) {
857 if (rth
->rt_genid
== atomic_read(&rt_genid
) &&
858 !rt_may_expire(rth
, tmo
, expire
)) {
860 rthp
= &rth
->u
.dst
.rt_next
;
863 *rthp
= rth
->u
.dst
.rt_next
;
867 spin_unlock_bh(rt_hash_lock_addr(k
));
876 /* Goal is not achieved. We stop process if:
878 - if expire reduced to zero. Otherwise, expire is halfed.
879 - if table is not full.
880 - if we are called from interrupt.
881 - jiffies check is just fallback/debug loop breaker.
882 We will not spin here for long time in any case.
885 RT_CACHE_STAT_INC(gc_goal_miss
);
891 #if RT_CACHE_DEBUG >= 2
892 printk(KERN_DEBUG
"expire>> %u %d %d %d\n", expire
,
893 atomic_read(&ipv4_dst_ops
.entries
), goal
, i
);
896 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
898 } while (!in_softirq() && time_before_eq(jiffies
, now
));
900 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
903 printk(KERN_WARNING
"dst cache overflow\n");
904 RT_CACHE_STAT_INC(gc_dst_overflow
);
908 expire
+= ip_rt_gc_min_interval
;
909 if (expire
> ip_rt_gc_timeout
||
910 atomic_read(&ipv4_dst_ops
.entries
) < ipv4_dst_ops
.gc_thresh
)
911 expire
= ip_rt_gc_timeout
;
912 #if RT_CACHE_DEBUG >= 2
913 printk(KERN_DEBUG
"expire++ %u %d %d %d\n", expire
,
914 atomic_read(&ipv4_dst_ops
.entries
), goal
, rover
);
919 static int rt_intern_hash(unsigned hash
, struct rtable
*rt
, struct rtable
**rp
)
921 struct rtable
*rth
, **rthp
;
923 struct rtable
*cand
, **candp
;
926 int attempts
= !in_softirq();
935 rthp
= &rt_hash_table
[hash
].chain
;
937 spin_lock_bh(rt_hash_lock_addr(hash
));
938 while ((rth
= *rthp
) != NULL
) {
939 if (rth
->rt_genid
!= atomic_read(&rt_genid
)) {
940 *rthp
= rth
->u
.dst
.rt_next
;
944 if (compare_keys(&rth
->fl
, &rt
->fl
) && compare_netns(rth
, rt
)) {
946 *rthp
= rth
->u
.dst
.rt_next
;
948 * Since lookup is lockfree, the deletion
949 * must be visible to another weakly ordered CPU before
950 * the insertion at the start of the hash chain.
952 rcu_assign_pointer(rth
->u
.dst
.rt_next
,
953 rt_hash_table
[hash
].chain
);
955 * Since lookup is lockfree, the update writes
956 * must be ordered for consistency on SMP.
958 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rth
);
960 dst_use(&rth
->u
.dst
, now
);
961 spin_unlock_bh(rt_hash_lock_addr(hash
));
968 if (!atomic_read(&rth
->u
.dst
.__refcnt
)) {
969 u32 score
= rt_score(rth
);
971 if (score
<= min_score
) {
980 rthp
= &rth
->u
.dst
.rt_next
;
984 /* ip_rt_gc_elasticity used to be average length of chain
985 * length, when exceeded gc becomes really aggressive.
987 * The second limit is less certain. At the moment it allows
988 * only 2 entries per bucket. We will see.
990 if (chain_length
> ip_rt_gc_elasticity
) {
991 *candp
= cand
->u
.dst
.rt_next
;
996 /* Try to bind route to arp only if it is output
997 route or unicast forwarding path.
999 if (rt
->rt_type
== RTN_UNICAST
|| rt
->fl
.iif
== 0) {
1000 int err
= arp_bind_neighbour(&rt
->u
.dst
);
1002 spin_unlock_bh(rt_hash_lock_addr(hash
));
1004 if (err
!= -ENOBUFS
) {
1009 /* Neighbour tables are full and nothing
1010 can be released. Try to shrink route cache,
1011 it is most likely it holds some neighbour records.
1013 if (attempts
-- > 0) {
1014 int saved_elasticity
= ip_rt_gc_elasticity
;
1015 int saved_int
= ip_rt_gc_min_interval
;
1016 ip_rt_gc_elasticity
= 1;
1017 ip_rt_gc_min_interval
= 0;
1018 rt_garbage_collect(&ipv4_dst_ops
);
1019 ip_rt_gc_min_interval
= saved_int
;
1020 ip_rt_gc_elasticity
= saved_elasticity
;
1024 if (net_ratelimit())
1025 printk(KERN_WARNING
"Neighbour table overflow.\n");
1031 rt
->u
.dst
.rt_next
= rt_hash_table
[hash
].chain
;
1032 #if RT_CACHE_DEBUG >= 2
1033 if (rt
->u
.dst
.rt_next
) {
1035 printk(KERN_DEBUG
"rt_cache @%02x: %u.%u.%u.%u", hash
,
1036 NIPQUAD(rt
->rt_dst
));
1037 for (trt
= rt
->u
.dst
.rt_next
; trt
; trt
= trt
->u
.dst
.rt_next
)
1038 printk(" . %u.%u.%u.%u", NIPQUAD(trt
->rt_dst
));
1042 rt_hash_table
[hash
].chain
= rt
;
1043 spin_unlock_bh(rt_hash_lock_addr(hash
));
1048 void rt_bind_peer(struct rtable
*rt
, int create
)
1050 static DEFINE_SPINLOCK(rt_peer_lock
);
1051 struct inet_peer
*peer
;
1053 peer
= inet_getpeer(rt
->rt_dst
, create
);
1055 spin_lock_bh(&rt_peer_lock
);
1056 if (rt
->peer
== NULL
) {
1060 spin_unlock_bh(&rt_peer_lock
);
1066 * Peer allocation may fail only in serious out-of-memory conditions. However
1067 * we still can generate some output.
1068 * Random ID selection looks a bit dangerous because we have no chances to
1069 * select ID being unique in a reasonable period of time.
1070 * But broken packet identifier may be better than no packet at all.
1072 static void ip_select_fb_ident(struct iphdr
*iph
)
1074 static DEFINE_SPINLOCK(ip_fb_id_lock
);
1075 static u32 ip_fallback_id
;
1078 spin_lock_bh(&ip_fb_id_lock
);
1079 salt
= secure_ip_id((__force __be32
)ip_fallback_id
^ iph
->daddr
);
1080 iph
->id
= htons(salt
& 0xFFFF);
1081 ip_fallback_id
= salt
;
1082 spin_unlock_bh(&ip_fb_id_lock
);
1085 void __ip_select_ident(struct iphdr
*iph
, struct dst_entry
*dst
, int more
)
1087 struct rtable
*rt
= (struct rtable
*) dst
;
1090 if (rt
->peer
== NULL
)
1091 rt_bind_peer(rt
, 1);
1093 /* If peer is attached to destination, it is never detached,
1094 so that we need not to grab a lock to dereference it.
1097 iph
->id
= htons(inet_getid(rt
->peer
, more
));
1101 printk(KERN_DEBUG
"rt_bind_peer(0) @%p\n",
1102 __builtin_return_address(0));
1104 ip_select_fb_ident(iph
);
1107 static void rt_del(unsigned hash
, struct rtable
*rt
)
1109 struct rtable
**rthp
, *aux
;
1111 rthp
= &rt_hash_table
[hash
].chain
;
1112 spin_lock_bh(rt_hash_lock_addr(hash
));
1114 while ((aux
= *rthp
) != NULL
) {
1115 if (aux
== rt
|| (aux
->rt_genid
!= atomic_read(&rt_genid
))) {
1116 *rthp
= aux
->u
.dst
.rt_next
;
1120 rthp
= &aux
->u
.dst
.rt_next
;
1122 spin_unlock_bh(rt_hash_lock_addr(hash
));
1125 void ip_rt_redirect(__be32 old_gw
, __be32 daddr
, __be32 new_gw
,
1126 __be32 saddr
, struct net_device
*dev
)
1129 struct in_device
*in_dev
= in_dev_get(dev
);
1130 struct rtable
*rth
, **rthp
;
1131 __be32 skeys
[2] = { saddr
, 0 };
1132 int ikeys
[2] = { dev
->ifindex
, 0 };
1133 struct netevent_redirect netevent
;
1138 if (new_gw
== old_gw
|| !IN_DEV_RX_REDIRECTS(in_dev
)
1139 || ipv4_is_multicast(new_gw
) || ipv4_is_lbcast(new_gw
)
1140 || ipv4_is_zeronet(new_gw
))
1141 goto reject_redirect
;
1143 if (!IN_DEV_SHARED_MEDIA(in_dev
)) {
1144 if (!inet_addr_onlink(in_dev
, new_gw
, old_gw
))
1145 goto reject_redirect
;
1146 if (IN_DEV_SEC_REDIRECTS(in_dev
) && ip_fib_check_default(new_gw
, dev
))
1147 goto reject_redirect
;
1149 if (inet_addr_type(&init_net
, new_gw
) != RTN_UNICAST
)
1150 goto reject_redirect
;
1153 for (i
= 0; i
< 2; i
++) {
1154 for (k
= 0; k
< 2; k
++) {
1155 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
]);
1157 rthp
=&rt_hash_table
[hash
].chain
;
1160 while ((rth
= rcu_dereference(*rthp
)) != NULL
) {
1163 if (rth
->fl
.fl4_dst
!= daddr
||
1164 rth
->fl
.fl4_src
!= skeys
[i
] ||
1165 rth
->fl
.oif
!= ikeys
[k
] ||
1167 rth
->rt_genid
!= atomic_read(&rt_genid
)) {
1168 rthp
= &rth
->u
.dst
.rt_next
;
1172 if (rth
->rt_dst
!= daddr
||
1173 rth
->rt_src
!= saddr
||
1175 rth
->rt_gateway
!= old_gw
||
1176 rth
->u
.dst
.dev
!= dev
)
1179 dst_hold(&rth
->u
.dst
);
1182 rt
= dst_alloc(&ipv4_dst_ops
);
1189 /* Copy all the information. */
1191 INIT_RCU_HEAD(&rt
->u
.dst
.rcu_head
);
1192 rt
->u
.dst
.__use
= 1;
1193 atomic_set(&rt
->u
.dst
.__refcnt
, 1);
1194 rt
->u
.dst
.child
= NULL
;
1196 dev_hold(rt
->u
.dst
.dev
);
1198 in_dev_hold(rt
->idev
);
1199 rt
->u
.dst
.obsolete
= 0;
1200 rt
->u
.dst
.lastuse
= jiffies
;
1201 rt
->u
.dst
.path
= &rt
->u
.dst
;
1202 rt
->u
.dst
.neighbour
= NULL
;
1203 rt
->u
.dst
.hh
= NULL
;
1204 rt
->u
.dst
.xfrm
= NULL
;
1205 rt
->rt_genid
= atomic_read(&rt_genid
);
1206 rt
->rt_flags
|= RTCF_REDIRECTED
;
1208 /* Gateway is different ... */
1209 rt
->rt_gateway
= new_gw
;
1211 /* Redirect received -> path was valid */
1212 dst_confirm(&rth
->u
.dst
);
1215 atomic_inc(&rt
->peer
->refcnt
);
1217 if (arp_bind_neighbour(&rt
->u
.dst
) ||
1218 !(rt
->u
.dst
.neighbour
->nud_state
&
1220 if (rt
->u
.dst
.neighbour
)
1221 neigh_event_send(rt
->u
.dst
.neighbour
, NULL
);
1227 netevent
.old
= &rth
->u
.dst
;
1228 netevent
.new = &rt
->u
.dst
;
1229 call_netevent_notifiers(NETEVENT_REDIRECT
,
1233 if (!rt_intern_hash(hash
, rt
, &rt
))
1246 #ifdef CONFIG_IP_ROUTE_VERBOSE
1247 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
1248 printk(KERN_INFO
"Redirect from %u.%u.%u.%u on %s about "
1249 "%u.%u.%u.%u ignored.\n"
1250 " Advised path = %u.%u.%u.%u -> %u.%u.%u.%u\n",
1251 NIPQUAD(old_gw
), dev
->name
, NIPQUAD(new_gw
),
1252 NIPQUAD(saddr
), NIPQUAD(daddr
));
1257 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
)
1259 struct rtable
*rt
= (struct rtable
*)dst
;
1260 struct dst_entry
*ret
= dst
;
1263 if (dst
->obsolete
) {
1266 } else if ((rt
->rt_flags
& RTCF_REDIRECTED
) ||
1267 rt
->u
.dst
.expires
) {
1268 unsigned hash
= rt_hash(rt
->fl
.fl4_dst
, rt
->fl
.fl4_src
,
1270 #if RT_CACHE_DEBUG >= 1
1271 printk(KERN_DEBUG
"ipv4_negative_advice: redirect to "
1272 "%u.%u.%u.%u/%02x dropped\n",
1273 NIPQUAD(rt
->rt_dst
), rt
->fl
.fl4_tos
);
1284 * 1. The first ip_rt_redirect_number redirects are sent
1285 * with exponential backoff, then we stop sending them at all,
1286 * assuming that the host ignores our redirects.
1287 * 2. If we did not see packets requiring redirects
1288 * during ip_rt_redirect_silence, we assume that the host
1289 * forgot redirected route and start to send redirects again.
1291 * This algorithm is much cheaper and more intelligent than dumb load limiting
1294 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1295 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1298 void ip_rt_send_redirect(struct sk_buff
*skb
)
1300 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
1301 struct in_device
*in_dev
= in_dev_get(rt
->u
.dst
.dev
);
1306 if (!IN_DEV_TX_REDIRECTS(in_dev
))
1309 /* No redirected packets during ip_rt_redirect_silence;
1310 * reset the algorithm.
1312 if (time_after(jiffies
, rt
->u
.dst
.rate_last
+ ip_rt_redirect_silence
))
1313 rt
->u
.dst
.rate_tokens
= 0;
1315 /* Too many ignored redirects; do not send anything
1316 * set u.dst.rate_last to the last seen redirected packet.
1318 if (rt
->u
.dst
.rate_tokens
>= ip_rt_redirect_number
) {
1319 rt
->u
.dst
.rate_last
= jiffies
;
1323 /* Check for load limit; set rate_last to the latest sent
1326 if (rt
->u
.dst
.rate_tokens
== 0 ||
1328 (rt
->u
.dst
.rate_last
+
1329 (ip_rt_redirect_load
<< rt
->u
.dst
.rate_tokens
)))) {
1330 icmp_send(skb
, ICMP_REDIRECT
, ICMP_REDIR_HOST
, rt
->rt_gateway
);
1331 rt
->u
.dst
.rate_last
= jiffies
;
1332 ++rt
->u
.dst
.rate_tokens
;
1333 #ifdef CONFIG_IP_ROUTE_VERBOSE
1334 if (IN_DEV_LOG_MARTIANS(in_dev
) &&
1335 rt
->u
.dst
.rate_tokens
== ip_rt_redirect_number
&&
1337 printk(KERN_WARNING
"host %u.%u.%u.%u/if%d ignores "
1338 "redirects for %u.%u.%u.%u to %u.%u.%u.%u.\n",
1339 NIPQUAD(rt
->rt_src
), rt
->rt_iif
,
1340 NIPQUAD(rt
->rt_dst
), NIPQUAD(rt
->rt_gateway
));
1347 static int ip_error(struct sk_buff
*skb
)
1349 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
1353 switch (rt
->u
.dst
.error
) {
1358 code
= ICMP_HOST_UNREACH
;
1361 code
= ICMP_NET_UNREACH
;
1362 IP_INC_STATS_BH(IPSTATS_MIB_INNOROUTES
);
1365 code
= ICMP_PKT_FILTERED
;
1370 rt
->u
.dst
.rate_tokens
+= now
- rt
->u
.dst
.rate_last
;
1371 if (rt
->u
.dst
.rate_tokens
> ip_rt_error_burst
)
1372 rt
->u
.dst
.rate_tokens
= ip_rt_error_burst
;
1373 rt
->u
.dst
.rate_last
= now
;
1374 if (rt
->u
.dst
.rate_tokens
>= ip_rt_error_cost
) {
1375 rt
->u
.dst
.rate_tokens
-= ip_rt_error_cost
;
1376 icmp_send(skb
, ICMP_DEST_UNREACH
, code
, 0);
1379 out
: kfree_skb(skb
);
1384 * The last two values are not from the RFC but
1385 * are needed for AMPRnet AX.25 paths.
1388 static const unsigned short mtu_plateau
[] =
1389 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1391 static __inline__
unsigned short guess_mtu(unsigned short old_mtu
)
1395 for (i
= 0; i
< ARRAY_SIZE(mtu_plateau
); i
++)
1396 if (old_mtu
> mtu_plateau
[i
])
1397 return mtu_plateau
[i
];
1401 unsigned short ip_rt_frag_needed(struct net
*net
, struct iphdr
*iph
,
1402 unsigned short new_mtu
)
1405 unsigned short old_mtu
= ntohs(iph
->tot_len
);
1407 __be32 skeys
[2] = { iph
->saddr
, 0, };
1408 __be32 daddr
= iph
->daddr
;
1409 unsigned short est_mtu
= 0;
1411 if (ipv4_config
.no_pmtu_disc
)
1414 for (i
= 0; i
< 2; i
++) {
1415 unsigned hash
= rt_hash(daddr
, skeys
[i
], 0);
1418 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
1419 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
1420 if (rth
->fl
.fl4_dst
== daddr
&&
1421 rth
->fl
.fl4_src
== skeys
[i
] &&
1422 rth
->rt_dst
== daddr
&&
1423 rth
->rt_src
== iph
->saddr
&&
1425 !(dst_metric_locked(&rth
->u
.dst
, RTAX_MTU
)) &&
1426 rth
->u
.dst
.dev
->nd_net
== net
&&
1427 rth
->rt_genid
== atomic_read(&rt_genid
)) {
1428 unsigned short mtu
= new_mtu
;
1430 if (new_mtu
< 68 || new_mtu
>= old_mtu
) {
1432 /* BSD 4.2 compatibility hack :-( */
1434 old_mtu
>= rth
->u
.dst
.metrics
[RTAX_MTU
-1] &&
1435 old_mtu
>= 68 + (iph
->ihl
<< 2))
1436 old_mtu
-= iph
->ihl
<< 2;
1438 mtu
= guess_mtu(old_mtu
);
1440 if (mtu
<= rth
->u
.dst
.metrics
[RTAX_MTU
-1]) {
1441 if (mtu
< rth
->u
.dst
.metrics
[RTAX_MTU
-1]) {
1442 dst_confirm(&rth
->u
.dst
);
1443 if (mtu
< ip_rt_min_pmtu
) {
1444 mtu
= ip_rt_min_pmtu
;
1445 rth
->u
.dst
.metrics
[RTAX_LOCK
-1] |=
1448 rth
->u
.dst
.metrics
[RTAX_MTU
-1] = mtu
;
1449 dst_set_expires(&rth
->u
.dst
,
1458 return est_mtu
? : new_mtu
;
1461 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
1463 if (dst
->metrics
[RTAX_MTU
-1] > mtu
&& mtu
>= 68 &&
1464 !(dst_metric_locked(dst
, RTAX_MTU
))) {
1465 if (mtu
< ip_rt_min_pmtu
) {
1466 mtu
= ip_rt_min_pmtu
;
1467 dst
->metrics
[RTAX_LOCK
-1] |= (1 << RTAX_MTU
);
1469 dst
->metrics
[RTAX_MTU
-1] = mtu
;
1470 dst_set_expires(dst
, ip_rt_mtu_expires
);
1471 call_netevent_notifiers(NETEVENT_PMTU_UPDATE
, dst
);
1475 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
)
1480 static void ipv4_dst_destroy(struct dst_entry
*dst
)
1482 struct rtable
*rt
= (struct rtable
*) dst
;
1483 struct inet_peer
*peer
= rt
->peer
;
1484 struct in_device
*idev
= rt
->idev
;
1497 static void ipv4_dst_ifdown(struct dst_entry
*dst
, struct net_device
*dev
,
1500 struct rtable
*rt
= (struct rtable
*) dst
;
1501 struct in_device
*idev
= rt
->idev
;
1502 if (dev
!= dev
->nd_net
->loopback_dev
&& idev
&& idev
->dev
== dev
) {
1503 struct in_device
*loopback_idev
=
1504 in_dev_get(dev
->nd_net
->loopback_dev
);
1505 if (loopback_idev
) {
1506 rt
->idev
= loopback_idev
;
1512 static void ipv4_link_failure(struct sk_buff
*skb
)
1516 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_HOST_UNREACH
, 0);
1518 rt
= (struct rtable
*) skb
->dst
;
1520 dst_set_expires(&rt
->u
.dst
, 0);
1523 static int ip_rt_bug(struct sk_buff
*skb
)
1525 printk(KERN_DEBUG
"ip_rt_bug: %u.%u.%u.%u -> %u.%u.%u.%u, %s\n",
1526 NIPQUAD(ip_hdr(skb
)->saddr
), NIPQUAD(ip_hdr(skb
)->daddr
),
1527 skb
->dev
? skb
->dev
->name
: "?");
1533 We do not cache source address of outgoing interface,
1534 because it is used only by IP RR, TS and SRR options,
1535 so that it out of fast path.
1537 BTW remember: "addr" is allowed to be not aligned
1541 void ip_rt_get_source(u8
*addr
, struct rtable
*rt
)
1544 struct fib_result res
;
1546 if (rt
->fl
.iif
== 0)
1548 else if (fib_lookup(rt
->u
.dst
.dev
->nd_net
, &rt
->fl
, &res
) == 0) {
1549 src
= FIB_RES_PREFSRC(res
);
1552 src
= inet_select_addr(rt
->u
.dst
.dev
, rt
->rt_gateway
,
1554 memcpy(addr
, &src
, 4);
1557 #ifdef CONFIG_NET_CLS_ROUTE
1558 static void set_class_tag(struct rtable
*rt
, u32 tag
)
1560 if (!(rt
->u
.dst
.tclassid
& 0xFFFF))
1561 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF;
1562 if (!(rt
->u
.dst
.tclassid
& 0xFFFF0000))
1563 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF0000;
1567 static void rt_set_nexthop(struct rtable
*rt
, struct fib_result
*res
, u32 itag
)
1569 struct fib_info
*fi
= res
->fi
;
1572 if (FIB_RES_GW(*res
) &&
1573 FIB_RES_NH(*res
).nh_scope
== RT_SCOPE_LINK
)
1574 rt
->rt_gateway
= FIB_RES_GW(*res
);
1575 memcpy(rt
->u
.dst
.metrics
, fi
->fib_metrics
,
1576 sizeof(rt
->u
.dst
.metrics
));
1577 if (fi
->fib_mtu
== 0) {
1578 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = rt
->u
.dst
.dev
->mtu
;
1579 if (rt
->u
.dst
.metrics
[RTAX_LOCK
-1] & (1 << RTAX_MTU
) &&
1580 rt
->rt_gateway
!= rt
->rt_dst
&&
1581 rt
->u
.dst
.dev
->mtu
> 576)
1582 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = 576;
1584 #ifdef CONFIG_NET_CLS_ROUTE
1585 rt
->u
.dst
.tclassid
= FIB_RES_NH(*res
).nh_tclassid
;
1588 rt
->u
.dst
.metrics
[RTAX_MTU
-1]= rt
->u
.dst
.dev
->mtu
;
1590 if (rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] == 0)
1591 rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] = sysctl_ip_default_ttl
;
1592 if (rt
->u
.dst
.metrics
[RTAX_MTU
-1] > IP_MAX_MTU
)
1593 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = IP_MAX_MTU
;
1594 if (rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] == 0)
1595 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = max_t(unsigned int, rt
->u
.dst
.dev
->mtu
- 40,
1597 if (rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] > 65535 - 40)
1598 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = 65535 - 40;
1600 #ifdef CONFIG_NET_CLS_ROUTE
1601 #ifdef CONFIG_IP_MULTIPLE_TABLES
1602 set_class_tag(rt
, fib_rules_tclass(res
));
1604 set_class_tag(rt
, itag
);
1606 rt
->rt_type
= res
->type
;
1609 static int ip_route_input_mc(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1610 u8 tos
, struct net_device
*dev
, int our
)
1615 struct in_device
*in_dev
= in_dev_get(dev
);
1618 /* Primary sanity checks. */
1623 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
1624 ipv4_is_loopback(saddr
) || skb
->protocol
!= htons(ETH_P_IP
))
1627 if (ipv4_is_zeronet(saddr
)) {
1628 if (!ipv4_is_local_multicast(daddr
))
1630 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1631 } else if (fib_validate_source(saddr
, 0, tos
, 0,
1632 dev
, &spec_dst
, &itag
) < 0)
1635 rth
= dst_alloc(&ipv4_dst_ops
);
1639 rth
->u
.dst
.output
= ip_rt_bug
;
1641 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1642 rth
->u
.dst
.flags
= DST_HOST
;
1643 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1644 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1645 rth
->fl
.fl4_dst
= daddr
;
1646 rth
->rt_dst
= daddr
;
1647 rth
->fl
.fl4_tos
= tos
;
1648 rth
->fl
.mark
= skb
->mark
;
1649 rth
->fl
.fl4_src
= saddr
;
1650 rth
->rt_src
= saddr
;
1651 #ifdef CONFIG_NET_CLS_ROUTE
1652 rth
->u
.dst
.tclassid
= itag
;
1655 rth
->fl
.iif
= dev
->ifindex
;
1656 rth
->u
.dst
.dev
= init_net
.loopback_dev
;
1657 dev_hold(rth
->u
.dst
.dev
);
1658 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1660 rth
->rt_gateway
= daddr
;
1661 rth
->rt_spec_dst
= spec_dst
;
1662 rth
->rt_genid
= atomic_read(&rt_genid
);
1663 rth
->rt_flags
= RTCF_MULTICAST
;
1664 rth
->rt_type
= RTN_MULTICAST
;
1666 rth
->u
.dst
.input
= ip_local_deliver
;
1667 rth
->rt_flags
|= RTCF_LOCAL
;
1670 #ifdef CONFIG_IP_MROUTE
1671 if (!ipv4_is_local_multicast(daddr
) && IN_DEV_MFORWARD(in_dev
))
1672 rth
->u
.dst
.input
= ip_mr_input
;
1674 RT_CACHE_STAT_INC(in_slow_mc
);
1677 hash
= rt_hash(daddr
, saddr
, dev
->ifindex
);
1678 return rt_intern_hash(hash
, rth
, (struct rtable
**) &skb
->dst
);
1690 static void ip_handle_martian_source(struct net_device
*dev
,
1691 struct in_device
*in_dev
,
1692 struct sk_buff
*skb
,
1696 RT_CACHE_STAT_INC(in_martian_src
);
1697 #ifdef CONFIG_IP_ROUTE_VERBOSE
1698 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit()) {
1700 * RFC1812 recommendation, if source is martian,
1701 * the only hint is MAC header.
1703 printk(KERN_WARNING
"martian source %u.%u.%u.%u from "
1704 "%u.%u.%u.%u, on dev %s\n",
1705 NIPQUAD(daddr
), NIPQUAD(saddr
), dev
->name
);
1706 if (dev
->hard_header_len
&& skb_mac_header_was_set(skb
)) {
1708 const unsigned char *p
= skb_mac_header(skb
);
1709 printk(KERN_WARNING
"ll header: ");
1710 for (i
= 0; i
< dev
->hard_header_len
; i
++, p
++) {
1712 if (i
< (dev
->hard_header_len
- 1))
1721 static inline int __mkroute_input(struct sk_buff
*skb
,
1722 struct fib_result
* res
,
1723 struct in_device
*in_dev
,
1724 __be32 daddr
, __be32 saddr
, u32 tos
,
1725 struct rtable
**result
)
1730 struct in_device
*out_dev
;
1735 /* get a working reference to the output device */
1736 out_dev
= in_dev_get(FIB_RES_DEV(*res
));
1737 if (out_dev
== NULL
) {
1738 if (net_ratelimit())
1739 printk(KERN_CRIT
"Bug in ip_route_input" \
1740 "_slow(). Please, report\n");
1745 err
= fib_validate_source(saddr
, daddr
, tos
, FIB_RES_OIF(*res
),
1746 in_dev
->dev
, &spec_dst
, &itag
);
1748 ip_handle_martian_source(in_dev
->dev
, in_dev
, skb
, daddr
,
1756 flags
|= RTCF_DIRECTSRC
;
1758 if (out_dev
== in_dev
&& err
&& !(flags
& RTCF_MASQ
) &&
1759 (IN_DEV_SHARED_MEDIA(out_dev
) ||
1760 inet_addr_onlink(out_dev
, saddr
, FIB_RES_GW(*res
))))
1761 flags
|= RTCF_DOREDIRECT
;
1763 if (skb
->protocol
!= htons(ETH_P_IP
)) {
1764 /* Not IP (i.e. ARP). Do not create route, if it is
1765 * invalid for proxy arp. DNAT routes are always valid.
1767 if (out_dev
== in_dev
) {
1774 rth
= dst_alloc(&ipv4_dst_ops
);
1780 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1781 rth
->u
.dst
.flags
= DST_HOST
;
1782 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1783 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1784 if (IN_DEV_CONF_GET(out_dev
, NOXFRM
))
1785 rth
->u
.dst
.flags
|= DST_NOXFRM
;
1786 rth
->fl
.fl4_dst
= daddr
;
1787 rth
->rt_dst
= daddr
;
1788 rth
->fl
.fl4_tos
= tos
;
1789 rth
->fl
.mark
= skb
->mark
;
1790 rth
->fl
.fl4_src
= saddr
;
1791 rth
->rt_src
= saddr
;
1792 rth
->rt_gateway
= daddr
;
1794 rth
->fl
.iif
= in_dev
->dev
->ifindex
;
1795 rth
->u
.dst
.dev
= (out_dev
)->dev
;
1796 dev_hold(rth
->u
.dst
.dev
);
1797 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1799 rth
->rt_spec_dst
= spec_dst
;
1801 rth
->u
.dst
.input
= ip_forward
;
1802 rth
->u
.dst
.output
= ip_output
;
1803 rth
->rt_genid
= atomic_read(&rt_genid
);
1805 rt_set_nexthop(rth
, res
, itag
);
1807 rth
->rt_flags
= flags
;
1812 /* release the working reference to the output device */
1813 in_dev_put(out_dev
);
1817 static inline int ip_mkroute_input(struct sk_buff
*skb
,
1818 struct fib_result
* res
,
1819 const struct flowi
*fl
,
1820 struct in_device
*in_dev
,
1821 __be32 daddr
, __be32 saddr
, u32 tos
)
1823 struct rtable
* rth
= NULL
;
1827 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1828 if (res
->fi
&& res
->fi
->fib_nhs
> 1 && fl
->oif
== 0)
1829 fib_select_multipath(fl
, res
);
1832 /* create a routing cache entry */
1833 err
= __mkroute_input(skb
, res
, in_dev
, daddr
, saddr
, tos
, &rth
);
1837 /* put it into the cache */
1838 hash
= rt_hash(daddr
, saddr
, fl
->iif
);
1839 return rt_intern_hash(hash
, rth
, (struct rtable
**)&skb
->dst
);
1843 * NOTE. We drop all the packets that has local source
1844 * addresses, because every properly looped back packet
1845 * must have correct destination already attached by output routine.
1847 * Such approach solves two big problems:
1848 * 1. Not simplex devices are handled properly.
1849 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1852 static int ip_route_input_slow(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1853 u8 tos
, struct net_device
*dev
)
1855 struct fib_result res
;
1856 struct in_device
*in_dev
= in_dev_get(dev
);
1857 struct flowi fl
= { .nl_u
= { .ip4_u
=
1861 .scope
= RT_SCOPE_UNIVERSE
,
1864 .iif
= dev
->ifindex
};
1867 struct rtable
* rth
;
1872 struct net
* net
= dev
->nd_net
;
1874 /* IP on this device is disabled. */
1879 /* Check for the most weird martians, which can be not detected
1883 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
1884 ipv4_is_loopback(saddr
))
1885 goto martian_source
;
1887 if (daddr
== htonl(0xFFFFFFFF) || (saddr
== 0 && daddr
== 0))
1890 /* Accept zero addresses only to limited broadcast;
1891 * I even do not know to fix it or not. Waiting for complains :-)
1893 if (ipv4_is_zeronet(saddr
))
1894 goto martian_source
;
1896 if (ipv4_is_lbcast(daddr
) || ipv4_is_zeronet(daddr
) ||
1897 ipv4_is_loopback(daddr
))
1898 goto martian_destination
;
1901 * Now we are ready to route packet.
1903 if ((err
= fib_lookup(net
, &fl
, &res
)) != 0) {
1904 if (!IN_DEV_FORWARD(in_dev
))
1910 RT_CACHE_STAT_INC(in_slow_tot
);
1912 if (res
.type
== RTN_BROADCAST
)
1915 if (res
.type
== RTN_LOCAL
) {
1917 result
= fib_validate_source(saddr
, daddr
, tos
,
1918 net
->loopback_dev
->ifindex
,
1919 dev
, &spec_dst
, &itag
);
1921 goto martian_source
;
1923 flags
|= RTCF_DIRECTSRC
;
1928 if (!IN_DEV_FORWARD(in_dev
))
1930 if (res
.type
!= RTN_UNICAST
)
1931 goto martian_destination
;
1933 err
= ip_mkroute_input(skb
, &res
, &fl
, in_dev
, daddr
, saddr
, tos
);
1941 if (skb
->protocol
!= htons(ETH_P_IP
))
1944 if (ipv4_is_zeronet(saddr
))
1945 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1947 err
= fib_validate_source(saddr
, 0, tos
, 0, dev
, &spec_dst
,
1950 goto martian_source
;
1952 flags
|= RTCF_DIRECTSRC
;
1954 flags
|= RTCF_BROADCAST
;
1955 res
.type
= RTN_BROADCAST
;
1956 RT_CACHE_STAT_INC(in_brd
);
1959 rth
= dst_alloc(&ipv4_dst_ops
);
1963 rth
->u
.dst
.output
= ip_rt_bug
;
1964 rth
->rt_genid
= atomic_read(&rt_genid
);
1966 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1967 rth
->u
.dst
.flags
= DST_HOST
;
1968 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1969 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1970 rth
->fl
.fl4_dst
= daddr
;
1971 rth
->rt_dst
= daddr
;
1972 rth
->fl
.fl4_tos
= tos
;
1973 rth
->fl
.mark
= skb
->mark
;
1974 rth
->fl
.fl4_src
= saddr
;
1975 rth
->rt_src
= saddr
;
1976 #ifdef CONFIG_NET_CLS_ROUTE
1977 rth
->u
.dst
.tclassid
= itag
;
1980 rth
->fl
.iif
= dev
->ifindex
;
1981 rth
->u
.dst
.dev
= net
->loopback_dev
;
1982 dev_hold(rth
->u
.dst
.dev
);
1983 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1984 rth
->rt_gateway
= daddr
;
1985 rth
->rt_spec_dst
= spec_dst
;
1986 rth
->u
.dst
.input
= ip_local_deliver
;
1987 rth
->rt_flags
= flags
|RTCF_LOCAL
;
1988 if (res
.type
== RTN_UNREACHABLE
) {
1989 rth
->u
.dst
.input
= ip_error
;
1990 rth
->u
.dst
.error
= -err
;
1991 rth
->rt_flags
&= ~RTCF_LOCAL
;
1993 rth
->rt_type
= res
.type
;
1994 hash
= rt_hash(daddr
, saddr
, fl
.iif
);
1995 err
= rt_intern_hash(hash
, rth
, (struct rtable
**)&skb
->dst
);
1999 RT_CACHE_STAT_INC(in_no_route
);
2000 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_UNIVERSE
);
2001 res
.type
= RTN_UNREACHABLE
;
2007 * Do not cache martian addresses: they should be logged (RFC1812)
2009 martian_destination
:
2010 RT_CACHE_STAT_INC(in_martian_dst
);
2011 #ifdef CONFIG_IP_ROUTE_VERBOSE
2012 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
2013 printk(KERN_WARNING
"martian destination %u.%u.%u.%u from "
2014 "%u.%u.%u.%u, dev %s\n",
2015 NIPQUAD(daddr
), NIPQUAD(saddr
), dev
->name
);
2019 err
= -EHOSTUNREACH
;
2031 ip_handle_martian_source(dev
, in_dev
, skb
, daddr
, saddr
);
2035 int ip_route_input(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2036 u8 tos
, struct net_device
*dev
)
2038 struct rtable
* rth
;
2040 int iif
= dev
->ifindex
;
2044 tos
&= IPTOS_RT_MASK
;
2045 hash
= rt_hash(daddr
, saddr
, iif
);
2048 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2049 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2050 if (rth
->fl
.fl4_dst
== daddr
&&
2051 rth
->fl
.fl4_src
== saddr
&&
2052 rth
->fl
.iif
== iif
&&
2054 rth
->fl
.mark
== skb
->mark
&&
2055 rth
->fl
.fl4_tos
== tos
&&
2056 rth
->u
.dst
.dev
->nd_net
== net
&&
2057 rth
->rt_genid
== atomic_read(&rt_genid
)) {
2058 dst_use(&rth
->u
.dst
, jiffies
);
2059 RT_CACHE_STAT_INC(in_hit
);
2061 skb
->dst
= (struct dst_entry
*)rth
;
2064 RT_CACHE_STAT_INC(in_hlist_search
);
2068 /* Multicast recognition logic is moved from route cache to here.
2069 The problem was that too many Ethernet cards have broken/missing
2070 hardware multicast filters :-( As result the host on multicasting
2071 network acquires a lot of useless route cache entries, sort of
2072 SDR messages from all the world. Now we try to get rid of them.
2073 Really, provided software IP multicast filter is organized
2074 reasonably (at least, hashed), it does not result in a slowdown
2075 comparing with route cache reject entries.
2076 Note, that multicast routers are not affected, because
2077 route cache entry is created eventually.
2079 if (ipv4_is_multicast(daddr
)) {
2080 struct in_device
*in_dev
;
2083 if ((in_dev
= __in_dev_get_rcu(dev
)) != NULL
) {
2084 int our
= ip_check_mc(in_dev
, daddr
, saddr
,
2085 ip_hdr(skb
)->protocol
);
2087 #ifdef CONFIG_IP_MROUTE
2088 || (!ipv4_is_local_multicast(daddr
) &&
2089 IN_DEV_MFORWARD(in_dev
))
2093 return ip_route_input_mc(skb
, daddr
, saddr
,
2100 return ip_route_input_slow(skb
, daddr
, saddr
, tos
, dev
);
2103 static inline int __mkroute_output(struct rtable
**result
,
2104 struct fib_result
* res
,
2105 const struct flowi
*fl
,
2106 const struct flowi
*oldflp
,
2107 struct net_device
*dev_out
,
2111 struct in_device
*in_dev
;
2112 u32 tos
= RT_FL_TOS(oldflp
);
2115 if (ipv4_is_loopback(fl
->fl4_src
) && !(dev_out
->flags
&IFF_LOOPBACK
))
2118 if (fl
->fl4_dst
== htonl(0xFFFFFFFF))
2119 res
->type
= RTN_BROADCAST
;
2120 else if (ipv4_is_multicast(fl
->fl4_dst
))
2121 res
->type
= RTN_MULTICAST
;
2122 else if (ipv4_is_lbcast(fl
->fl4_dst
) || ipv4_is_zeronet(fl
->fl4_dst
))
2125 if (dev_out
->flags
& IFF_LOOPBACK
)
2126 flags
|= RTCF_LOCAL
;
2128 /* get work reference to inet device */
2129 in_dev
= in_dev_get(dev_out
);
2133 if (res
->type
== RTN_BROADCAST
) {
2134 flags
|= RTCF_BROADCAST
| RTCF_LOCAL
;
2136 fib_info_put(res
->fi
);
2139 } else if (res
->type
== RTN_MULTICAST
) {
2140 flags
|= RTCF_MULTICAST
|RTCF_LOCAL
;
2141 if (!ip_check_mc(in_dev
, oldflp
->fl4_dst
, oldflp
->fl4_src
,
2143 flags
&= ~RTCF_LOCAL
;
2144 /* If multicast route do not exist use
2145 default one, but do not gateway in this case.
2148 if (res
->fi
&& res
->prefixlen
< 4) {
2149 fib_info_put(res
->fi
);
2155 rth
= dst_alloc(&ipv4_dst_ops
);
2161 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2162 rth
->u
.dst
.flags
= DST_HOST
;
2163 if (IN_DEV_CONF_GET(in_dev
, NOXFRM
))
2164 rth
->u
.dst
.flags
|= DST_NOXFRM
;
2165 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2166 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2168 rth
->fl
.fl4_dst
= oldflp
->fl4_dst
;
2169 rth
->fl
.fl4_tos
= tos
;
2170 rth
->fl
.fl4_src
= oldflp
->fl4_src
;
2171 rth
->fl
.oif
= oldflp
->oif
;
2172 rth
->fl
.mark
= oldflp
->mark
;
2173 rth
->rt_dst
= fl
->fl4_dst
;
2174 rth
->rt_src
= fl
->fl4_src
;
2175 rth
->rt_iif
= oldflp
->oif
? : dev_out
->ifindex
;
2176 /* get references to the devices that are to be hold by the routing
2178 rth
->u
.dst
.dev
= dev_out
;
2180 rth
->idev
= in_dev_get(dev_out
);
2181 rth
->rt_gateway
= fl
->fl4_dst
;
2182 rth
->rt_spec_dst
= fl
->fl4_src
;
2184 rth
->u
.dst
.output
=ip_output
;
2185 rth
->rt_genid
= atomic_read(&rt_genid
);
2187 RT_CACHE_STAT_INC(out_slow_tot
);
2189 if (flags
& RTCF_LOCAL
) {
2190 rth
->u
.dst
.input
= ip_local_deliver
;
2191 rth
->rt_spec_dst
= fl
->fl4_dst
;
2193 if (flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) {
2194 rth
->rt_spec_dst
= fl
->fl4_src
;
2195 if (flags
& RTCF_LOCAL
&&
2196 !(dev_out
->flags
& IFF_LOOPBACK
)) {
2197 rth
->u
.dst
.output
= ip_mc_output
;
2198 RT_CACHE_STAT_INC(out_slow_mc
);
2200 #ifdef CONFIG_IP_MROUTE
2201 if (res
->type
== RTN_MULTICAST
) {
2202 if (IN_DEV_MFORWARD(in_dev
) &&
2203 !ipv4_is_local_multicast(oldflp
->fl4_dst
)) {
2204 rth
->u
.dst
.input
= ip_mr_input
;
2205 rth
->u
.dst
.output
= ip_mc_output
;
2211 rt_set_nexthop(rth
, res
, 0);
2213 rth
->rt_flags
= flags
;
2217 /* release work reference to inet device */
2223 static inline int ip_mkroute_output(struct rtable
**rp
,
2224 struct fib_result
* res
,
2225 const struct flowi
*fl
,
2226 const struct flowi
*oldflp
,
2227 struct net_device
*dev_out
,
2230 struct rtable
*rth
= NULL
;
2231 int err
= __mkroute_output(&rth
, res
, fl
, oldflp
, dev_out
, flags
);
2234 hash
= rt_hash(oldflp
->fl4_dst
, oldflp
->fl4_src
, oldflp
->oif
);
2235 err
= rt_intern_hash(hash
, rth
, rp
);
2242 * Major route resolver routine.
2245 static int ip_route_output_slow(struct net
*net
, struct rtable
**rp
,
2246 const struct flowi
*oldflp
)
2248 u32 tos
= RT_FL_TOS(oldflp
);
2249 struct flowi fl
= { .nl_u
= { .ip4_u
=
2250 { .daddr
= oldflp
->fl4_dst
,
2251 .saddr
= oldflp
->fl4_src
,
2252 .tos
= tos
& IPTOS_RT_MASK
,
2253 .scope
= ((tos
& RTO_ONLINK
) ?
2257 .mark
= oldflp
->mark
,
2258 .iif
= net
->loopback_dev
->ifindex
,
2259 .oif
= oldflp
->oif
};
2260 struct fib_result res
;
2262 struct net_device
*dev_out
= NULL
;
2268 #ifdef CONFIG_IP_MULTIPLE_TABLES
2272 if (oldflp
->fl4_src
) {
2274 if (ipv4_is_multicast(oldflp
->fl4_src
) ||
2275 ipv4_is_lbcast(oldflp
->fl4_src
) ||
2276 ipv4_is_zeronet(oldflp
->fl4_src
))
2279 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2280 dev_out
= ip_dev_find(net
, oldflp
->fl4_src
);
2281 if (dev_out
== NULL
)
2284 /* I removed check for oif == dev_out->oif here.
2285 It was wrong for two reasons:
2286 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2287 is assigned to multiple interfaces.
2288 2. Moreover, we are allowed to send packets with saddr
2289 of another iface. --ANK
2292 if (oldflp
->oif
== 0
2293 && (ipv4_is_multicast(oldflp
->fl4_dst
) ||
2294 oldflp
->fl4_dst
== htonl(0xFFFFFFFF))) {
2295 /* Special hack: user can direct multicasts
2296 and limited broadcast via necessary interface
2297 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2298 This hack is not just for fun, it allows
2299 vic,vat and friends to work.
2300 They bind socket to loopback, set ttl to zero
2301 and expect that it will work.
2302 From the viewpoint of routing cache they are broken,
2303 because we are not allowed to build multicast path
2304 with loopback source addr (look, routing cache
2305 cannot know, that ttl is zero, so that packet
2306 will not leave this host and route is valid).
2307 Luckily, this hack is good workaround.
2310 fl
.oif
= dev_out
->ifindex
;
2320 dev_out
= dev_get_by_index(net
, oldflp
->oif
);
2322 if (dev_out
== NULL
)
2325 /* RACE: Check return value of inet_select_addr instead. */
2326 if (__in_dev_get_rtnl(dev_out
) == NULL
) {
2328 goto out
; /* Wrong error code */
2331 if (ipv4_is_local_multicast(oldflp
->fl4_dst
) ||
2332 oldflp
->fl4_dst
== htonl(0xFFFFFFFF)) {
2334 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2339 if (ipv4_is_multicast(oldflp
->fl4_dst
))
2340 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2342 else if (!oldflp
->fl4_dst
)
2343 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2349 fl
.fl4_dst
= fl
.fl4_src
;
2351 fl
.fl4_dst
= fl
.fl4_src
= htonl(INADDR_LOOPBACK
);
2354 dev_out
= net
->loopback_dev
;
2356 fl
.oif
= net
->loopback_dev
->ifindex
;
2357 res
.type
= RTN_LOCAL
;
2358 flags
|= RTCF_LOCAL
;
2362 if (fib_lookup(net
, &fl
, &res
)) {
2365 /* Apparently, routing tables are wrong. Assume,
2366 that the destination is on link.
2369 Because we are allowed to send to iface
2370 even if it has NO routes and NO assigned
2371 addresses. When oif is specified, routing
2372 tables are looked up with only one purpose:
2373 to catch if destination is gatewayed, rather than
2374 direct. Moreover, if MSG_DONTROUTE is set,
2375 we send packet, ignoring both routing tables
2376 and ifaddr state. --ANK
2379 We could make it even if oif is unknown,
2380 likely IPv6, but we do not.
2383 if (fl
.fl4_src
== 0)
2384 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2386 res
.type
= RTN_UNICAST
;
2396 if (res
.type
== RTN_LOCAL
) {
2398 fl
.fl4_src
= fl
.fl4_dst
;
2401 dev_out
= net
->loopback_dev
;
2403 fl
.oif
= dev_out
->ifindex
;
2405 fib_info_put(res
.fi
);
2407 flags
|= RTCF_LOCAL
;
2411 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2412 if (res
.fi
->fib_nhs
> 1 && fl
.oif
== 0)
2413 fib_select_multipath(&fl
, &res
);
2416 if (!res
.prefixlen
&& res
.type
== RTN_UNICAST
&& !fl
.oif
)
2417 fib_select_default(net
, &fl
, &res
);
2420 fl
.fl4_src
= FIB_RES_PREFSRC(res
);
2424 dev_out
= FIB_RES_DEV(res
);
2426 fl
.oif
= dev_out
->ifindex
;
2430 err
= ip_mkroute_output(rp
, &res
, &fl
, oldflp
, dev_out
, flags
);
2440 int __ip_route_output_key(struct net
*net
, struct rtable
**rp
,
2441 const struct flowi
*flp
)
2446 hash
= rt_hash(flp
->fl4_dst
, flp
->fl4_src
, flp
->oif
);
2449 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2450 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2451 if (rth
->fl
.fl4_dst
== flp
->fl4_dst
&&
2452 rth
->fl
.fl4_src
== flp
->fl4_src
&&
2454 rth
->fl
.oif
== flp
->oif
&&
2455 rth
->fl
.mark
== flp
->mark
&&
2456 !((rth
->fl
.fl4_tos
^ flp
->fl4_tos
) &
2457 (IPTOS_RT_MASK
| RTO_ONLINK
)) &&
2458 rth
->u
.dst
.dev
->nd_net
== net
&&
2459 rth
->rt_genid
== atomic_read(&rt_genid
)) {
2460 dst_use(&rth
->u
.dst
, jiffies
);
2461 RT_CACHE_STAT_INC(out_hit
);
2462 rcu_read_unlock_bh();
2466 RT_CACHE_STAT_INC(out_hlist_search
);
2468 rcu_read_unlock_bh();
2470 return ip_route_output_slow(net
, rp
, flp
);
2473 EXPORT_SYMBOL_GPL(__ip_route_output_key
);
2475 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
2479 static struct dst_ops ipv4_dst_blackhole_ops
= {
2481 .protocol
= __constant_htons(ETH_P_IP
),
2482 .destroy
= ipv4_dst_destroy
,
2483 .check
= ipv4_dst_check
,
2484 .update_pmtu
= ipv4_rt_blackhole_update_pmtu
,
2485 .entry_size
= sizeof(struct rtable
),
2486 .entries
= ATOMIC_INIT(0),
2490 static int ipv4_dst_blackhole(struct rtable
**rp
, struct flowi
*flp
, struct sock
*sk
)
2492 struct rtable
*ort
= *rp
;
2493 struct rtable
*rt
= (struct rtable
*)
2494 dst_alloc(&ipv4_dst_blackhole_ops
);
2497 struct dst_entry
*new = &rt
->u
.dst
;
2499 atomic_set(&new->__refcnt
, 1);
2501 new->input
= dst_discard
;
2502 new->output
= dst_discard
;
2503 memcpy(new->metrics
, ort
->u
.dst
.metrics
, RTAX_MAX
*sizeof(u32
));
2505 new->dev
= ort
->u
.dst
.dev
;
2511 rt
->idev
= ort
->idev
;
2513 in_dev_hold(rt
->idev
);
2514 rt
->rt_genid
= atomic_read(&rt_genid
);
2515 rt
->rt_flags
= ort
->rt_flags
;
2516 rt
->rt_type
= ort
->rt_type
;
2517 rt
->rt_dst
= ort
->rt_dst
;
2518 rt
->rt_src
= ort
->rt_src
;
2519 rt
->rt_iif
= ort
->rt_iif
;
2520 rt
->rt_gateway
= ort
->rt_gateway
;
2521 rt
->rt_spec_dst
= ort
->rt_spec_dst
;
2522 rt
->peer
= ort
->peer
;
2524 atomic_inc(&rt
->peer
->refcnt
);
2529 dst_release(&(*rp
)->u
.dst
);
2531 return (rt
? 0 : -ENOMEM
);
2534 int ip_route_output_flow(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
,
2535 struct sock
*sk
, int flags
)
2539 if ((err
= __ip_route_output_key(net
, rp
, flp
)) != 0)
2544 flp
->fl4_src
= (*rp
)->rt_src
;
2546 flp
->fl4_dst
= (*rp
)->rt_dst
;
2547 err
= __xfrm_lookup((struct dst_entry
**)rp
, flp
, sk
,
2548 flags
? XFRM_LOOKUP_WAIT
: 0);
2549 if (err
== -EREMOTE
)
2550 err
= ipv4_dst_blackhole(rp
, flp
, sk
);
2558 EXPORT_SYMBOL_GPL(ip_route_output_flow
);
2560 int ip_route_output_key(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
)
2562 return ip_route_output_flow(net
, rp
, flp
, NULL
, 0);
2565 static int rt_fill_info(struct sk_buff
*skb
, u32 pid
, u32 seq
, int event
,
2566 int nowait
, unsigned int flags
)
2568 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
2570 struct nlmsghdr
*nlh
;
2572 u32 id
= 0, ts
= 0, tsage
= 0, error
;
2574 nlh
= nlmsg_put(skb
, pid
, seq
, event
, sizeof(*r
), flags
);
2578 r
= nlmsg_data(nlh
);
2579 r
->rtm_family
= AF_INET
;
2580 r
->rtm_dst_len
= 32;
2582 r
->rtm_tos
= rt
->fl
.fl4_tos
;
2583 r
->rtm_table
= RT_TABLE_MAIN
;
2584 NLA_PUT_U32(skb
, RTA_TABLE
, RT_TABLE_MAIN
);
2585 r
->rtm_type
= rt
->rt_type
;
2586 r
->rtm_scope
= RT_SCOPE_UNIVERSE
;
2587 r
->rtm_protocol
= RTPROT_UNSPEC
;
2588 r
->rtm_flags
= (rt
->rt_flags
& ~0xFFFF) | RTM_F_CLONED
;
2589 if (rt
->rt_flags
& RTCF_NOTIFY
)
2590 r
->rtm_flags
|= RTM_F_NOTIFY
;
2592 NLA_PUT_BE32(skb
, RTA_DST
, rt
->rt_dst
);
2594 if (rt
->fl
.fl4_src
) {
2595 r
->rtm_src_len
= 32;
2596 NLA_PUT_BE32(skb
, RTA_SRC
, rt
->fl
.fl4_src
);
2599 NLA_PUT_U32(skb
, RTA_OIF
, rt
->u
.dst
.dev
->ifindex
);
2600 #ifdef CONFIG_NET_CLS_ROUTE
2601 if (rt
->u
.dst
.tclassid
)
2602 NLA_PUT_U32(skb
, RTA_FLOW
, rt
->u
.dst
.tclassid
);
2605 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_spec_dst
);
2606 else if (rt
->rt_src
!= rt
->fl
.fl4_src
)
2607 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_src
);
2609 if (rt
->rt_dst
!= rt
->rt_gateway
)
2610 NLA_PUT_BE32(skb
, RTA_GATEWAY
, rt
->rt_gateway
);
2612 if (rtnetlink_put_metrics(skb
, rt
->u
.dst
.metrics
) < 0)
2613 goto nla_put_failure
;
2615 error
= rt
->u
.dst
.error
;
2616 expires
= rt
->u
.dst
.expires
? rt
->u
.dst
.expires
- jiffies
: 0;
2618 id
= rt
->peer
->ip_id_count
;
2619 if (rt
->peer
->tcp_ts_stamp
) {
2620 ts
= rt
->peer
->tcp_ts
;
2621 tsage
= get_seconds() - rt
->peer
->tcp_ts_stamp
;
2626 #ifdef CONFIG_IP_MROUTE
2627 __be32 dst
= rt
->rt_dst
;
2629 if (ipv4_is_multicast(dst
) && !ipv4_is_local_multicast(dst
) &&
2630 IPV4_DEVCONF_ALL(&init_net
, MC_FORWARDING
)) {
2631 int err
= ipmr_get_route(skb
, r
, nowait
);
2636 goto nla_put_failure
;
2638 if (err
== -EMSGSIZE
)
2639 goto nla_put_failure
;
2645 NLA_PUT_U32(skb
, RTA_IIF
, rt
->fl
.iif
);
2648 if (rtnl_put_cacheinfo(skb
, &rt
->u
.dst
, id
, ts
, tsage
,
2649 expires
, error
) < 0)
2650 goto nla_put_failure
;
2652 return nlmsg_end(skb
, nlh
);
2655 nlmsg_cancel(skb
, nlh
);
2659 static int inet_rtm_getroute(struct sk_buff
*in_skb
, struct nlmsghdr
* nlh
, void *arg
)
2661 struct net
*net
= in_skb
->sk
->sk_net
;
2663 struct nlattr
*tb
[RTA_MAX
+1];
2664 struct rtable
*rt
= NULL
;
2669 struct sk_buff
*skb
;
2671 if (net
!= &init_net
)
2674 err
= nlmsg_parse(nlh
, sizeof(*rtm
), tb
, RTA_MAX
, rtm_ipv4_policy
);
2678 rtm
= nlmsg_data(nlh
);
2680 skb
= alloc_skb(NLMSG_GOODSIZE
, GFP_KERNEL
);
2686 /* Reserve room for dummy headers, this skb can pass
2687 through good chunk of routing engine.
2689 skb_reset_mac_header(skb
);
2690 skb_reset_network_header(skb
);
2692 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2693 ip_hdr(skb
)->protocol
= IPPROTO_ICMP
;
2694 skb_reserve(skb
, MAX_HEADER
+ sizeof(struct iphdr
));
2696 src
= tb
[RTA_SRC
] ? nla_get_be32(tb
[RTA_SRC
]) : 0;
2697 dst
= tb
[RTA_DST
] ? nla_get_be32(tb
[RTA_DST
]) : 0;
2698 iif
= tb
[RTA_IIF
] ? nla_get_u32(tb
[RTA_IIF
]) : 0;
2701 struct net_device
*dev
;
2703 dev
= __dev_get_by_index(&init_net
, iif
);
2709 skb
->protocol
= htons(ETH_P_IP
);
2712 err
= ip_route_input(skb
, dst
, src
, rtm
->rtm_tos
, dev
);
2715 rt
= (struct rtable
*) skb
->dst
;
2716 if (err
== 0 && rt
->u
.dst
.error
)
2717 err
= -rt
->u
.dst
.error
;
2724 .tos
= rtm
->rtm_tos
,
2727 .oif
= tb
[RTA_OIF
] ? nla_get_u32(tb
[RTA_OIF
]) : 0,
2729 err
= ip_route_output_key(&init_net
, &rt
, &fl
);
2735 skb
->dst
= &rt
->u
.dst
;
2736 if (rtm
->rtm_flags
& RTM_F_NOTIFY
)
2737 rt
->rt_flags
|= RTCF_NOTIFY
;
2739 err
= rt_fill_info(skb
, NETLINK_CB(in_skb
).pid
, nlh
->nlmsg_seq
,
2740 RTM_NEWROUTE
, 0, 0);
2744 err
= rtnl_unicast(skb
, &init_net
, NETLINK_CB(in_skb
).pid
);
2753 int ip_rt_dump(struct sk_buff
*skb
, struct netlink_callback
*cb
)
2762 s_idx
= idx
= cb
->args
[1];
2763 for (h
= s_h
; h
<= rt_hash_mask
; h
++) {
2765 for (rt
= rcu_dereference(rt_hash_table
[h
].chain
), idx
= 0; rt
;
2766 rt
= rcu_dereference(rt
->u
.dst
.rt_next
), idx
++) {
2769 if (rt
->rt_genid
!= atomic_read(&rt_genid
))
2771 skb
->dst
= dst_clone(&rt
->u
.dst
);
2772 if (rt_fill_info(skb
, NETLINK_CB(cb
->skb
).pid
,
2773 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
2774 1, NLM_F_MULTI
) <= 0) {
2775 dst_release(xchg(&skb
->dst
, NULL
));
2776 rcu_read_unlock_bh();
2779 dst_release(xchg(&skb
->dst
, NULL
));
2781 rcu_read_unlock_bh();
2791 void ip_rt_multicast_event(struct in_device
*in_dev
)
2796 #ifdef CONFIG_SYSCTL
2797 static int flush_delay
;
2799 static int ipv4_sysctl_rtcache_flush(ctl_table
*ctl
, int write
,
2800 struct file
*filp
, void __user
*buffer
,
2801 size_t *lenp
, loff_t
*ppos
)
2804 proc_dointvec(ctl
, write
, filp
, buffer
, lenp
, ppos
);
2805 rt_cache_flush(flush_delay
);
2812 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table
*table
,
2815 void __user
*oldval
,
2816 size_t __user
*oldlenp
,
2817 void __user
*newval
,
2821 if (newlen
!= sizeof(int))
2823 if (get_user(delay
, (int __user
*)newval
))
2825 rt_cache_flush(delay
);
2829 ctl_table ipv4_route_table
[] = {
2831 .ctl_name
= NET_IPV4_ROUTE_FLUSH
,
2832 .procname
= "flush",
2833 .data
= &flush_delay
,
2834 .maxlen
= sizeof(int),
2836 .proc_handler
= &ipv4_sysctl_rtcache_flush
,
2837 .strategy
= &ipv4_sysctl_rtcache_flush_strategy
,
2840 .ctl_name
= NET_IPV4_ROUTE_GC_THRESH
,
2841 .procname
= "gc_thresh",
2842 .data
= &ipv4_dst_ops
.gc_thresh
,
2843 .maxlen
= sizeof(int),
2845 .proc_handler
= &proc_dointvec
,
2848 .ctl_name
= NET_IPV4_ROUTE_MAX_SIZE
,
2849 .procname
= "max_size",
2850 .data
= &ip_rt_max_size
,
2851 .maxlen
= sizeof(int),
2853 .proc_handler
= &proc_dointvec
,
2856 /* Deprecated. Use gc_min_interval_ms */
2858 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL
,
2859 .procname
= "gc_min_interval",
2860 .data
= &ip_rt_gc_min_interval
,
2861 .maxlen
= sizeof(int),
2863 .proc_handler
= &proc_dointvec_jiffies
,
2864 .strategy
= &sysctl_jiffies
,
2867 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS
,
2868 .procname
= "gc_min_interval_ms",
2869 .data
= &ip_rt_gc_min_interval
,
2870 .maxlen
= sizeof(int),
2872 .proc_handler
= &proc_dointvec_ms_jiffies
,
2873 .strategy
= &sysctl_ms_jiffies
,
2876 .ctl_name
= NET_IPV4_ROUTE_GC_TIMEOUT
,
2877 .procname
= "gc_timeout",
2878 .data
= &ip_rt_gc_timeout
,
2879 .maxlen
= sizeof(int),
2881 .proc_handler
= &proc_dointvec_jiffies
,
2882 .strategy
= &sysctl_jiffies
,
2885 .ctl_name
= NET_IPV4_ROUTE_GC_INTERVAL
,
2886 .procname
= "gc_interval",
2887 .data
= &ip_rt_gc_interval
,
2888 .maxlen
= sizeof(int),
2890 .proc_handler
= &proc_dointvec_jiffies
,
2891 .strategy
= &sysctl_jiffies
,
2894 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_LOAD
,
2895 .procname
= "redirect_load",
2896 .data
= &ip_rt_redirect_load
,
2897 .maxlen
= sizeof(int),
2899 .proc_handler
= &proc_dointvec
,
2902 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_NUMBER
,
2903 .procname
= "redirect_number",
2904 .data
= &ip_rt_redirect_number
,
2905 .maxlen
= sizeof(int),
2907 .proc_handler
= &proc_dointvec
,
2910 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_SILENCE
,
2911 .procname
= "redirect_silence",
2912 .data
= &ip_rt_redirect_silence
,
2913 .maxlen
= sizeof(int),
2915 .proc_handler
= &proc_dointvec
,
2918 .ctl_name
= NET_IPV4_ROUTE_ERROR_COST
,
2919 .procname
= "error_cost",
2920 .data
= &ip_rt_error_cost
,
2921 .maxlen
= sizeof(int),
2923 .proc_handler
= &proc_dointvec
,
2926 .ctl_name
= NET_IPV4_ROUTE_ERROR_BURST
,
2927 .procname
= "error_burst",
2928 .data
= &ip_rt_error_burst
,
2929 .maxlen
= sizeof(int),
2931 .proc_handler
= &proc_dointvec
,
2934 .ctl_name
= NET_IPV4_ROUTE_GC_ELASTICITY
,
2935 .procname
= "gc_elasticity",
2936 .data
= &ip_rt_gc_elasticity
,
2937 .maxlen
= sizeof(int),
2939 .proc_handler
= &proc_dointvec
,
2942 .ctl_name
= NET_IPV4_ROUTE_MTU_EXPIRES
,
2943 .procname
= "mtu_expires",
2944 .data
= &ip_rt_mtu_expires
,
2945 .maxlen
= sizeof(int),
2947 .proc_handler
= &proc_dointvec_jiffies
,
2948 .strategy
= &sysctl_jiffies
,
2951 .ctl_name
= NET_IPV4_ROUTE_MIN_PMTU
,
2952 .procname
= "min_pmtu",
2953 .data
= &ip_rt_min_pmtu
,
2954 .maxlen
= sizeof(int),
2956 .proc_handler
= &proc_dointvec
,
2959 .ctl_name
= NET_IPV4_ROUTE_MIN_ADVMSS
,
2960 .procname
= "min_adv_mss",
2961 .data
= &ip_rt_min_advmss
,
2962 .maxlen
= sizeof(int),
2964 .proc_handler
= &proc_dointvec
,
2967 .ctl_name
= NET_IPV4_ROUTE_SECRET_INTERVAL
,
2968 .procname
= "secret_interval",
2969 .data
= &ip_rt_secret_interval
,
2970 .maxlen
= sizeof(int),
2972 .proc_handler
= &proc_dointvec_jiffies
,
2973 .strategy
= &sysctl_jiffies
,
2979 #ifdef CONFIG_NET_CLS_ROUTE
2980 struct ip_rt_acct
*ip_rt_acct __read_mostly
;
2981 #endif /* CONFIG_NET_CLS_ROUTE */
2983 static __initdata
unsigned long rhash_entries
;
2984 static int __init
set_rhash_entries(char *str
)
2988 rhash_entries
= simple_strtoul(str
, &str
, 0);
2991 __setup("rhash_entries=", set_rhash_entries
);
2993 int __init
ip_rt_init(void)
2997 atomic_set(&rt_genid
, (int) ((num_physpages
^ (num_physpages
>>8)) ^
2998 (jiffies
^ (jiffies
>> 7))));
3000 #ifdef CONFIG_NET_CLS_ROUTE
3001 ip_rt_acct
= __alloc_percpu(256 * sizeof(struct ip_rt_acct
));
3003 panic("IP: failed to allocate ip_rt_acct\n");
3006 ipv4_dst_ops
.kmem_cachep
=
3007 kmem_cache_create("ip_dst_cache", sizeof(struct rtable
), 0,
3008 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3010 ipv4_dst_blackhole_ops
.kmem_cachep
= ipv4_dst_ops
.kmem_cachep
;
3012 rt_hash_table
= (struct rt_hash_bucket
*)
3013 alloc_large_system_hash("IP route cache",
3014 sizeof(struct rt_hash_bucket
),
3016 (num_physpages
>= 128 * 1024) ?
3022 memset(rt_hash_table
, 0, (rt_hash_mask
+ 1) * sizeof(struct rt_hash_bucket
));
3023 rt_hash_lock_init();
3025 ipv4_dst_ops
.gc_thresh
= (rt_hash_mask
+ 1);
3026 ip_rt_max_size
= (rt_hash_mask
+ 1) * 16;
3031 setup_timer(&rt_secret_timer
, rt_secret_rebuild
, 0);
3033 /* All the timers, started at system startup tend
3034 to synchronize. Perturb it a bit.
3036 schedule_delayed_work(&expires_work
,
3037 net_random() % ip_rt_gc_interval
+ ip_rt_gc_interval
);
3039 rt_secret_timer
.expires
= jiffies
+ net_random() % ip_rt_secret_interval
+
3040 ip_rt_secret_interval
;
3041 add_timer(&rt_secret_timer
);
3043 if (ip_rt_proc_init(&init_net
))
3044 printk(KERN_ERR
"Unable to create route proc files\n");
3049 rtnl_register(PF_INET
, RTM_GETROUTE
, inet_rtm_getroute
, NULL
);
3054 EXPORT_SYMBOL(__ip_select_ident
);
3055 EXPORT_SYMBOL(ip_route_input
);
3056 EXPORT_SYMBOL(ip_route_output_key
);