Task Control Groups: shared cgroup subsystem group arrays
[linux-2.6/linux-2.6-openrd.git] / kernel / exit.c
blob44ff6147556a0299218a0519399f1ccfb9bed7f1
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cpuset.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
49 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu_context.h>
54 extern void sem_exit (void);
56 static void exit_mm(struct task_struct * tsk);
58 static void __unhash_process(struct task_struct *p)
60 nr_threads--;
61 detach_pid(p, PIDTYPE_PID);
62 if (thread_group_leader(p)) {
63 detach_pid(p, PIDTYPE_PGID);
64 detach_pid(p, PIDTYPE_SID);
66 list_del_rcu(&p->tasks);
67 __get_cpu_var(process_counts)--;
69 list_del_rcu(&p->thread_group);
70 remove_parent(p);
74 * This function expects the tasklist_lock write-locked.
76 static void __exit_signal(struct task_struct *tsk)
78 struct signal_struct *sig = tsk->signal;
79 struct sighand_struct *sighand;
81 BUG_ON(!sig);
82 BUG_ON(!atomic_read(&sig->count));
84 rcu_read_lock();
85 sighand = rcu_dereference(tsk->sighand);
86 spin_lock(&sighand->siglock);
88 posix_cpu_timers_exit(tsk);
89 if (atomic_dec_and_test(&sig->count))
90 posix_cpu_timers_exit_group(tsk);
91 else {
93 * If there is any task waiting for the group exit
94 * then notify it:
96 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
97 wake_up_process(sig->group_exit_task);
99 if (tsk == sig->curr_target)
100 sig->curr_target = next_thread(tsk);
102 * Accumulate here the counters for all threads but the
103 * group leader as they die, so they can be added into
104 * the process-wide totals when those are taken.
105 * The group leader stays around as a zombie as long
106 * as there are other threads. When it gets reaped,
107 * the exit.c code will add its counts into these totals.
108 * We won't ever get here for the group leader, since it
109 * will have been the last reference on the signal_struct.
111 sig->utime = cputime_add(sig->utime, tsk->utime);
112 sig->stime = cputime_add(sig->stime, tsk->stime);
113 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
114 sig->min_flt += tsk->min_flt;
115 sig->maj_flt += tsk->maj_flt;
116 sig->nvcsw += tsk->nvcsw;
117 sig->nivcsw += tsk->nivcsw;
118 sig->inblock += task_io_get_inblock(tsk);
119 sig->oublock += task_io_get_oublock(tsk);
120 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
121 sig = NULL; /* Marker for below. */
124 __unhash_process(tsk);
126 tsk->signal = NULL;
127 tsk->sighand = NULL;
128 spin_unlock(&sighand->siglock);
129 rcu_read_unlock();
131 __cleanup_sighand(sighand);
132 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
133 flush_sigqueue(&tsk->pending);
134 if (sig) {
135 flush_sigqueue(&sig->shared_pending);
136 taskstats_tgid_free(sig);
137 __cleanup_signal(sig);
141 static void delayed_put_task_struct(struct rcu_head *rhp)
143 put_task_struct(container_of(rhp, struct task_struct, rcu));
146 void release_task(struct task_struct * p)
148 struct task_struct *leader;
149 int zap_leader;
150 repeat:
151 atomic_dec(&p->user->processes);
152 write_lock_irq(&tasklist_lock);
153 ptrace_unlink(p);
154 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
155 __exit_signal(p);
158 * If we are the last non-leader member of the thread
159 * group, and the leader is zombie, then notify the
160 * group leader's parent process. (if it wants notification.)
162 zap_leader = 0;
163 leader = p->group_leader;
164 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
165 BUG_ON(leader->exit_signal == -1);
166 do_notify_parent(leader, leader->exit_signal);
168 * If we were the last child thread and the leader has
169 * exited already, and the leader's parent ignores SIGCHLD,
170 * then we are the one who should release the leader.
172 * do_notify_parent() will have marked it self-reaping in
173 * that case.
175 zap_leader = (leader->exit_signal == -1);
178 write_unlock_irq(&tasklist_lock);
179 proc_flush_task(p);
180 release_thread(p);
181 call_rcu(&p->rcu, delayed_put_task_struct);
183 p = leader;
184 if (unlikely(zap_leader))
185 goto repeat;
189 * This checks not only the pgrp, but falls back on the pid if no
190 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
191 * without this...
193 * The caller must hold rcu lock or the tasklist lock.
195 struct pid *session_of_pgrp(struct pid *pgrp)
197 struct task_struct *p;
198 struct pid *sid = NULL;
200 p = pid_task(pgrp, PIDTYPE_PGID);
201 if (p == NULL)
202 p = pid_task(pgrp, PIDTYPE_PID);
203 if (p != NULL)
204 sid = task_session(p);
206 return sid;
210 * Determine if a process group is "orphaned", according to the POSIX
211 * definition in 2.2.2.52. Orphaned process groups are not to be affected
212 * by terminal-generated stop signals. Newly orphaned process groups are
213 * to receive a SIGHUP and a SIGCONT.
215 * "I ask you, have you ever known what it is to be an orphan?"
217 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
219 struct task_struct *p;
220 int ret = 1;
222 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
223 if (p == ignored_task
224 || p->exit_state
225 || is_init(p->real_parent))
226 continue;
227 if (task_pgrp(p->real_parent) != pgrp &&
228 task_session(p->real_parent) == task_session(p)) {
229 ret = 0;
230 break;
232 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
233 return ret; /* (sighing) "Often!" */
236 int is_current_pgrp_orphaned(void)
238 int retval;
240 read_lock(&tasklist_lock);
241 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
242 read_unlock(&tasklist_lock);
244 return retval;
247 static int has_stopped_jobs(struct pid *pgrp)
249 int retval = 0;
250 struct task_struct *p;
252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 if (p->state != TASK_STOPPED)
254 continue;
255 retval = 1;
256 break;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 return retval;
262 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
264 * If a kernel thread is launched as a result of a system call, or if
265 * it ever exits, it should generally reparent itself to kthreadd so it
266 * isn't in the way of other processes and is correctly cleaned up on exit.
268 * The various task state such as scheduling policy and priority may have
269 * been inherited from a user process, so we reset them to sane values here.
271 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
273 static void reparent_to_kthreadd(void)
275 write_lock_irq(&tasklist_lock);
277 ptrace_unlink(current);
278 /* Reparent to init */
279 remove_parent(current);
280 current->real_parent = current->parent = kthreadd_task;
281 add_parent(current);
283 /* Set the exit signal to SIGCHLD so we signal init on exit */
284 current->exit_signal = SIGCHLD;
286 if (task_nice(current) < 0)
287 set_user_nice(current, 0);
288 /* cpus_allowed? */
289 /* rt_priority? */
290 /* signals? */
291 security_task_reparent_to_init(current);
292 memcpy(current->signal->rlim, init_task.signal->rlim,
293 sizeof(current->signal->rlim));
294 atomic_inc(&(INIT_USER->__count));
295 write_unlock_irq(&tasklist_lock);
296 switch_uid(INIT_USER);
299 void __set_special_pids(pid_t session, pid_t pgrp)
301 struct task_struct *curr = current->group_leader;
303 if (process_session(curr) != session) {
304 detach_pid(curr, PIDTYPE_SID);
305 set_signal_session(curr->signal, session);
306 attach_pid(curr, PIDTYPE_SID, find_pid(session));
308 if (process_group(curr) != pgrp) {
309 detach_pid(curr, PIDTYPE_PGID);
310 curr->signal->pgrp = pgrp;
311 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
315 static void set_special_pids(pid_t session, pid_t pgrp)
317 write_lock_irq(&tasklist_lock);
318 __set_special_pids(session, pgrp);
319 write_unlock_irq(&tasklist_lock);
323 * Let kernel threads use this to say that they
324 * allow a certain signal (since daemonize() will
325 * have disabled all of them by default).
327 int allow_signal(int sig)
329 if (!valid_signal(sig) || sig < 1)
330 return -EINVAL;
332 spin_lock_irq(&current->sighand->siglock);
333 sigdelset(&current->blocked, sig);
334 if (!current->mm) {
335 /* Kernel threads handle their own signals.
336 Let the signal code know it'll be handled, so
337 that they don't get converted to SIGKILL or
338 just silently dropped */
339 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
341 recalc_sigpending();
342 spin_unlock_irq(&current->sighand->siglock);
343 return 0;
346 EXPORT_SYMBOL(allow_signal);
348 int disallow_signal(int sig)
350 if (!valid_signal(sig) || sig < 1)
351 return -EINVAL;
353 spin_lock_irq(&current->sighand->siglock);
354 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
355 recalc_sigpending();
356 spin_unlock_irq(&current->sighand->siglock);
357 return 0;
360 EXPORT_SYMBOL(disallow_signal);
363 * Put all the gunge required to become a kernel thread without
364 * attached user resources in one place where it belongs.
367 void daemonize(const char *name, ...)
369 va_list args;
370 struct fs_struct *fs;
371 sigset_t blocked;
373 va_start(args, name);
374 vsnprintf(current->comm, sizeof(current->comm), name, args);
375 va_end(args);
378 * If we were started as result of loading a module, close all of the
379 * user space pages. We don't need them, and if we didn't close them
380 * they would be locked into memory.
382 exit_mm(current);
384 * We don't want to have TIF_FREEZE set if the system-wide hibernation
385 * or suspend transition begins right now.
387 current->flags |= PF_NOFREEZE;
389 set_special_pids(1, 1);
390 proc_clear_tty(current);
392 /* Block and flush all signals */
393 sigfillset(&blocked);
394 sigprocmask(SIG_BLOCK, &blocked, NULL);
395 flush_signals(current);
397 /* Become as one with the init task */
399 exit_fs(current); /* current->fs->count--; */
400 fs = init_task.fs;
401 current->fs = fs;
402 atomic_inc(&fs->count);
404 exit_task_namespaces(current);
405 current->nsproxy = init_task.nsproxy;
406 get_task_namespaces(current);
408 exit_files(current);
409 current->files = init_task.files;
410 atomic_inc(&current->files->count);
412 reparent_to_kthreadd();
415 EXPORT_SYMBOL(daemonize);
417 static void close_files(struct files_struct * files)
419 int i, j;
420 struct fdtable *fdt;
422 j = 0;
425 * It is safe to dereference the fd table without RCU or
426 * ->file_lock because this is the last reference to the
427 * files structure.
429 fdt = files_fdtable(files);
430 for (;;) {
431 unsigned long set;
432 i = j * __NFDBITS;
433 if (i >= fdt->max_fds)
434 break;
435 set = fdt->open_fds->fds_bits[j++];
436 while (set) {
437 if (set & 1) {
438 struct file * file = xchg(&fdt->fd[i], NULL);
439 if (file) {
440 filp_close(file, files);
441 cond_resched();
444 i++;
445 set >>= 1;
450 struct files_struct *get_files_struct(struct task_struct *task)
452 struct files_struct *files;
454 task_lock(task);
455 files = task->files;
456 if (files)
457 atomic_inc(&files->count);
458 task_unlock(task);
460 return files;
463 void fastcall put_files_struct(struct files_struct *files)
465 struct fdtable *fdt;
467 if (atomic_dec_and_test(&files->count)) {
468 close_files(files);
470 * Free the fd and fdset arrays if we expanded them.
471 * If the fdtable was embedded, pass files for freeing
472 * at the end of the RCU grace period. Otherwise,
473 * you can free files immediately.
475 fdt = files_fdtable(files);
476 if (fdt != &files->fdtab)
477 kmem_cache_free(files_cachep, files);
478 free_fdtable(fdt);
482 EXPORT_SYMBOL(put_files_struct);
484 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
486 struct files_struct *old;
488 old = tsk->files;
489 task_lock(tsk);
490 tsk->files = files;
491 task_unlock(tsk);
492 put_files_struct(old);
494 EXPORT_SYMBOL(reset_files_struct);
496 static inline void __exit_files(struct task_struct *tsk)
498 struct files_struct * files = tsk->files;
500 if (files) {
501 task_lock(tsk);
502 tsk->files = NULL;
503 task_unlock(tsk);
504 put_files_struct(files);
508 void exit_files(struct task_struct *tsk)
510 __exit_files(tsk);
513 static inline void __put_fs_struct(struct fs_struct *fs)
515 /* No need to hold fs->lock if we are killing it */
516 if (atomic_dec_and_test(&fs->count)) {
517 dput(fs->root);
518 mntput(fs->rootmnt);
519 dput(fs->pwd);
520 mntput(fs->pwdmnt);
521 if (fs->altroot) {
522 dput(fs->altroot);
523 mntput(fs->altrootmnt);
525 kmem_cache_free(fs_cachep, fs);
529 void put_fs_struct(struct fs_struct *fs)
531 __put_fs_struct(fs);
534 static inline void __exit_fs(struct task_struct *tsk)
536 struct fs_struct * fs = tsk->fs;
538 if (fs) {
539 task_lock(tsk);
540 tsk->fs = NULL;
541 task_unlock(tsk);
542 __put_fs_struct(fs);
546 void exit_fs(struct task_struct *tsk)
548 __exit_fs(tsk);
551 EXPORT_SYMBOL_GPL(exit_fs);
554 * Turn us into a lazy TLB process if we
555 * aren't already..
557 static void exit_mm(struct task_struct * tsk)
559 struct mm_struct *mm = tsk->mm;
561 mm_release(tsk, mm);
562 if (!mm)
563 return;
565 * Serialize with any possible pending coredump.
566 * We must hold mmap_sem around checking core_waiters
567 * and clearing tsk->mm. The core-inducing thread
568 * will increment core_waiters for each thread in the
569 * group with ->mm != NULL.
571 down_read(&mm->mmap_sem);
572 if (mm->core_waiters) {
573 up_read(&mm->mmap_sem);
574 down_write(&mm->mmap_sem);
575 if (!--mm->core_waiters)
576 complete(mm->core_startup_done);
577 up_write(&mm->mmap_sem);
579 wait_for_completion(&mm->core_done);
580 down_read(&mm->mmap_sem);
582 atomic_inc(&mm->mm_count);
583 BUG_ON(mm != tsk->active_mm);
584 /* more a memory barrier than a real lock */
585 task_lock(tsk);
586 tsk->mm = NULL;
587 up_read(&mm->mmap_sem);
588 enter_lazy_tlb(mm, current);
589 /* We don't want this task to be frozen prematurely */
590 clear_freeze_flag(tsk);
591 task_unlock(tsk);
592 mmput(mm);
595 static void
596 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
598 if (p->pdeath_signal)
599 /* We already hold the tasklist_lock here. */
600 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
602 /* Move the child from its dying parent to the new one. */
603 if (unlikely(traced)) {
604 /* Preserve ptrace links if someone else is tracing this child. */
605 list_del_init(&p->ptrace_list);
606 if (p->parent != p->real_parent)
607 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
608 } else {
609 /* If this child is being traced, then we're the one tracing it
610 * anyway, so let go of it.
612 p->ptrace = 0;
613 remove_parent(p);
614 p->parent = p->real_parent;
615 add_parent(p);
617 if (p->state == TASK_TRACED) {
619 * If it was at a trace stop, turn it into
620 * a normal stop since it's no longer being
621 * traced.
623 ptrace_untrace(p);
627 /* If this is a threaded reparent there is no need to
628 * notify anyone anything has happened.
630 if (p->real_parent->group_leader == father->group_leader)
631 return;
633 /* We don't want people slaying init. */
634 if (p->exit_signal != -1)
635 p->exit_signal = SIGCHLD;
637 /* If we'd notified the old parent about this child's death,
638 * also notify the new parent.
640 if (!traced && p->exit_state == EXIT_ZOMBIE &&
641 p->exit_signal != -1 && thread_group_empty(p))
642 do_notify_parent(p, p->exit_signal);
645 * process group orphan check
646 * Case ii: Our child is in a different pgrp
647 * than we are, and it was the only connection
648 * outside, so the child pgrp is now orphaned.
650 if ((task_pgrp(p) != task_pgrp(father)) &&
651 (task_session(p) == task_session(father))) {
652 struct pid *pgrp = task_pgrp(p);
654 if (will_become_orphaned_pgrp(pgrp, NULL) &&
655 has_stopped_jobs(pgrp)) {
656 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
657 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
663 * When we die, we re-parent all our children.
664 * Try to give them to another thread in our thread
665 * group, and if no such member exists, give it to
666 * the child reaper process (ie "init") in our pid
667 * space.
669 static void
670 forget_original_parent(struct task_struct *father, struct list_head *to_release)
672 struct task_struct *p, *reaper = father;
673 struct list_head *_p, *_n;
675 do {
676 reaper = next_thread(reaper);
677 if (reaper == father) {
678 reaper = child_reaper(father);
679 break;
681 } while (reaper->exit_state);
684 * There are only two places where our children can be:
686 * - in our child list
687 * - in our ptraced child list
689 * Search them and reparent children.
691 list_for_each_safe(_p, _n, &father->children) {
692 int ptrace;
693 p = list_entry(_p, struct task_struct, sibling);
695 ptrace = p->ptrace;
697 /* if father isn't the real parent, then ptrace must be enabled */
698 BUG_ON(father != p->real_parent && !ptrace);
700 if (father == p->real_parent) {
701 /* reparent with a reaper, real father it's us */
702 p->real_parent = reaper;
703 reparent_thread(p, father, 0);
704 } else {
705 /* reparent ptraced task to its real parent */
706 __ptrace_unlink (p);
707 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
708 thread_group_empty(p))
709 do_notify_parent(p, p->exit_signal);
713 * if the ptraced child is a zombie with exit_signal == -1
714 * we must collect it before we exit, or it will remain
715 * zombie forever since we prevented it from self-reap itself
716 * while it was being traced by us, to be able to see it in wait4.
718 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
719 list_add(&p->ptrace_list, to_release);
721 list_for_each_safe(_p, _n, &father->ptrace_children) {
722 p = list_entry(_p, struct task_struct, ptrace_list);
723 p->real_parent = reaper;
724 reparent_thread(p, father, 1);
729 * Send signals to all our closest relatives so that they know
730 * to properly mourn us..
732 static void exit_notify(struct task_struct *tsk)
734 int state;
735 struct task_struct *t;
736 struct list_head ptrace_dead, *_p, *_n;
737 struct pid *pgrp;
739 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
740 && !thread_group_empty(tsk)) {
742 * This occurs when there was a race between our exit
743 * syscall and a group signal choosing us as the one to
744 * wake up. It could be that we are the only thread
745 * alerted to check for pending signals, but another thread
746 * should be woken now to take the signal since we will not.
747 * Now we'll wake all the threads in the group just to make
748 * sure someone gets all the pending signals.
750 spin_lock_irq(&tsk->sighand->siglock);
751 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
752 if (!signal_pending(t) && !(t->flags & PF_EXITING))
753 recalc_sigpending_and_wake(t);
754 spin_unlock_irq(&tsk->sighand->siglock);
757 write_lock_irq(&tasklist_lock);
760 * This does two things:
762 * A. Make init inherit all the child processes
763 * B. Check to see if any process groups have become orphaned
764 * as a result of our exiting, and if they have any stopped
765 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
768 INIT_LIST_HEAD(&ptrace_dead);
769 forget_original_parent(tsk, &ptrace_dead);
770 BUG_ON(!list_empty(&tsk->children));
771 BUG_ON(!list_empty(&tsk->ptrace_children));
774 * Check to see if any process groups have become orphaned
775 * as a result of our exiting, and if they have any stopped
776 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
778 * Case i: Our father is in a different pgrp than we are
779 * and we were the only connection outside, so our pgrp
780 * is about to become orphaned.
782 t = tsk->real_parent;
784 pgrp = task_pgrp(tsk);
785 if ((task_pgrp(t) != pgrp) &&
786 (task_session(t) == task_session(tsk)) &&
787 will_become_orphaned_pgrp(pgrp, tsk) &&
788 has_stopped_jobs(pgrp)) {
789 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
790 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
793 /* Let father know we died
795 * Thread signals are configurable, but you aren't going to use
796 * that to send signals to arbitary processes.
797 * That stops right now.
799 * If the parent exec id doesn't match the exec id we saved
800 * when we started then we know the parent has changed security
801 * domain.
803 * If our self_exec id doesn't match our parent_exec_id then
804 * we have changed execution domain as these two values started
805 * the same after a fork.
807 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
808 ( tsk->parent_exec_id != t->self_exec_id ||
809 tsk->self_exec_id != tsk->parent_exec_id)
810 && !capable(CAP_KILL))
811 tsk->exit_signal = SIGCHLD;
814 /* If something other than our normal parent is ptracing us, then
815 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
816 * only has special meaning to our real parent.
818 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
819 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
820 do_notify_parent(tsk, signal);
821 } else if (tsk->ptrace) {
822 do_notify_parent(tsk, SIGCHLD);
825 state = EXIT_ZOMBIE;
826 if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
827 state = EXIT_DEAD;
828 tsk->exit_state = state;
830 if (thread_group_leader(tsk) &&
831 tsk->signal->notify_count < 0 &&
832 tsk->signal->group_exit_task)
833 wake_up_process(tsk->signal->group_exit_task);
835 write_unlock_irq(&tasklist_lock);
837 list_for_each_safe(_p, _n, &ptrace_dead) {
838 list_del_init(_p);
839 t = list_entry(_p, struct task_struct, ptrace_list);
840 release_task(t);
843 /* If the process is dead, release it - nobody will wait for it */
844 if (state == EXIT_DEAD)
845 release_task(tsk);
848 #ifdef CONFIG_DEBUG_STACK_USAGE
849 static void check_stack_usage(void)
851 static DEFINE_SPINLOCK(low_water_lock);
852 static int lowest_to_date = THREAD_SIZE;
853 unsigned long *n = end_of_stack(current);
854 unsigned long free;
856 while (*n == 0)
857 n++;
858 free = (unsigned long)n - (unsigned long)end_of_stack(current);
860 if (free >= lowest_to_date)
861 return;
863 spin_lock(&low_water_lock);
864 if (free < lowest_to_date) {
865 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
866 "left\n",
867 current->comm, free);
868 lowest_to_date = free;
870 spin_unlock(&low_water_lock);
872 #else
873 static inline void check_stack_usage(void) {}
874 #endif
876 static inline void exit_child_reaper(struct task_struct *tsk)
878 if (likely(tsk->group_leader != child_reaper(tsk)))
879 return;
881 panic("Attempted to kill init!");
884 fastcall NORET_TYPE void do_exit(long code)
886 struct task_struct *tsk = current;
887 int group_dead;
889 profile_task_exit(tsk);
891 WARN_ON(atomic_read(&tsk->fs_excl));
893 if (unlikely(in_interrupt()))
894 panic("Aiee, killing interrupt handler!");
895 if (unlikely(!tsk->pid))
896 panic("Attempted to kill the idle task!");
898 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
899 current->ptrace_message = code;
900 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
904 * We're taking recursive faults here in do_exit. Safest is to just
905 * leave this task alone and wait for reboot.
907 if (unlikely(tsk->flags & PF_EXITING)) {
908 printk(KERN_ALERT
909 "Fixing recursive fault but reboot is needed!\n");
911 * We can do this unlocked here. The futex code uses
912 * this flag just to verify whether the pi state
913 * cleanup has been done or not. In the worst case it
914 * loops once more. We pretend that the cleanup was
915 * done as there is no way to return. Either the
916 * OWNER_DIED bit is set by now or we push the blocked
917 * task into the wait for ever nirwana as well.
919 tsk->flags |= PF_EXITPIDONE;
920 if (tsk->io_context)
921 exit_io_context();
922 set_current_state(TASK_UNINTERRUPTIBLE);
923 schedule();
926 tsk->flags |= PF_EXITING;
928 * tsk->flags are checked in the futex code to protect against
929 * an exiting task cleaning up the robust pi futexes.
931 smp_mb();
932 spin_unlock_wait(&tsk->pi_lock);
934 if (unlikely(in_atomic()))
935 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
936 current->comm, current->pid,
937 preempt_count());
939 acct_update_integrals(tsk);
940 if (tsk->mm) {
941 update_hiwater_rss(tsk->mm);
942 update_hiwater_vm(tsk->mm);
944 group_dead = atomic_dec_and_test(&tsk->signal->live);
945 if (group_dead) {
946 exit_child_reaper(tsk);
947 hrtimer_cancel(&tsk->signal->real_timer);
948 exit_itimers(tsk->signal);
950 acct_collect(code, group_dead);
951 #ifdef CONFIG_FUTEX
952 if (unlikely(tsk->robust_list))
953 exit_robust_list(tsk);
954 #ifdef CONFIG_COMPAT
955 if (unlikely(tsk->compat_robust_list))
956 compat_exit_robust_list(tsk);
957 #endif
958 #endif
959 if (group_dead)
960 tty_audit_exit();
961 if (unlikely(tsk->audit_context))
962 audit_free(tsk);
964 tsk->exit_code = code;
965 taskstats_exit(tsk, group_dead);
967 exit_mm(tsk);
969 if (group_dead)
970 acct_process();
971 exit_sem(tsk);
972 __exit_files(tsk);
973 __exit_fs(tsk);
974 check_stack_usage();
975 exit_thread();
976 cpuset_exit(tsk);
977 cgroup_exit(tsk, 1);
978 exit_keys(tsk);
980 if (group_dead && tsk->signal->leader)
981 disassociate_ctty(1);
983 module_put(task_thread_info(tsk)->exec_domain->module);
984 if (tsk->binfmt)
985 module_put(tsk->binfmt->module);
987 proc_exit_connector(tsk);
988 exit_task_namespaces(tsk);
989 exit_notify(tsk);
990 #ifdef CONFIG_NUMA
991 mpol_free(tsk->mempolicy);
992 tsk->mempolicy = NULL;
993 #endif
994 #ifdef CONFIG_FUTEX
996 * This must happen late, after the PID is not
997 * hashed anymore:
999 if (unlikely(!list_empty(&tsk->pi_state_list)))
1000 exit_pi_state_list(tsk);
1001 if (unlikely(current->pi_state_cache))
1002 kfree(current->pi_state_cache);
1003 #endif
1005 * Make sure we are holding no locks:
1007 debug_check_no_locks_held(tsk);
1009 * We can do this unlocked here. The futex code uses this flag
1010 * just to verify whether the pi state cleanup has been done
1011 * or not. In the worst case it loops once more.
1013 tsk->flags |= PF_EXITPIDONE;
1015 if (tsk->io_context)
1016 exit_io_context();
1018 if (tsk->splice_pipe)
1019 __free_pipe_info(tsk->splice_pipe);
1021 preempt_disable();
1022 /* causes final put_task_struct in finish_task_switch(). */
1023 tsk->state = TASK_DEAD;
1025 schedule();
1026 BUG();
1027 /* Avoid "noreturn function does return". */
1028 for (;;)
1029 cpu_relax(); /* For when BUG is null */
1032 EXPORT_SYMBOL_GPL(do_exit);
1034 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1036 if (comp)
1037 complete(comp);
1039 do_exit(code);
1042 EXPORT_SYMBOL(complete_and_exit);
1044 asmlinkage long sys_exit(int error_code)
1046 do_exit((error_code&0xff)<<8);
1050 * Take down every thread in the group. This is called by fatal signals
1051 * as well as by sys_exit_group (below).
1053 NORET_TYPE void
1054 do_group_exit(int exit_code)
1056 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1058 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1059 exit_code = current->signal->group_exit_code;
1060 else if (!thread_group_empty(current)) {
1061 struct signal_struct *const sig = current->signal;
1062 struct sighand_struct *const sighand = current->sighand;
1063 spin_lock_irq(&sighand->siglock);
1064 if (sig->flags & SIGNAL_GROUP_EXIT)
1065 /* Another thread got here before we took the lock. */
1066 exit_code = sig->group_exit_code;
1067 else {
1068 sig->group_exit_code = exit_code;
1069 zap_other_threads(current);
1071 spin_unlock_irq(&sighand->siglock);
1074 do_exit(exit_code);
1075 /* NOTREACHED */
1079 * this kills every thread in the thread group. Note that any externally
1080 * wait4()-ing process will get the correct exit code - even if this
1081 * thread is not the thread group leader.
1083 asmlinkage void sys_exit_group(int error_code)
1085 do_group_exit((error_code & 0xff) << 8);
1088 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1090 int err;
1092 if (pid > 0) {
1093 if (p->pid != pid)
1094 return 0;
1095 } else if (!pid) {
1096 if (process_group(p) != process_group(current))
1097 return 0;
1098 } else if (pid != -1) {
1099 if (process_group(p) != -pid)
1100 return 0;
1104 * Do not consider detached threads that are
1105 * not ptraced:
1107 if (p->exit_signal == -1 && !p->ptrace)
1108 return 0;
1110 /* Wait for all children (clone and not) if __WALL is set;
1111 * otherwise, wait for clone children *only* if __WCLONE is
1112 * set; otherwise, wait for non-clone children *only*. (Note:
1113 * A "clone" child here is one that reports to its parent
1114 * using a signal other than SIGCHLD.) */
1115 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1116 && !(options & __WALL))
1117 return 0;
1119 * Do not consider thread group leaders that are
1120 * in a non-empty thread group:
1122 if (delay_group_leader(p))
1123 return 2;
1125 err = security_task_wait(p);
1126 if (err)
1127 return err;
1129 return 1;
1132 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1133 int why, int status,
1134 struct siginfo __user *infop,
1135 struct rusage __user *rusagep)
1137 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1139 put_task_struct(p);
1140 if (!retval)
1141 retval = put_user(SIGCHLD, &infop->si_signo);
1142 if (!retval)
1143 retval = put_user(0, &infop->si_errno);
1144 if (!retval)
1145 retval = put_user((short)why, &infop->si_code);
1146 if (!retval)
1147 retval = put_user(pid, &infop->si_pid);
1148 if (!retval)
1149 retval = put_user(uid, &infop->si_uid);
1150 if (!retval)
1151 retval = put_user(status, &infop->si_status);
1152 if (!retval)
1153 retval = pid;
1154 return retval;
1158 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1159 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1160 * the lock and this task is uninteresting. If we return nonzero, we have
1161 * released the lock and the system call should return.
1163 static int wait_task_zombie(struct task_struct *p, int noreap,
1164 struct siginfo __user *infop,
1165 int __user *stat_addr, struct rusage __user *ru)
1167 unsigned long state;
1168 int retval, status, traced;
1170 if (unlikely(noreap)) {
1171 pid_t pid = p->pid;
1172 uid_t uid = p->uid;
1173 int exit_code = p->exit_code;
1174 int why, status;
1176 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1177 return 0;
1178 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1179 return 0;
1180 get_task_struct(p);
1181 read_unlock(&tasklist_lock);
1182 if ((exit_code & 0x7f) == 0) {
1183 why = CLD_EXITED;
1184 status = exit_code >> 8;
1185 } else {
1186 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1187 status = exit_code & 0x7f;
1189 return wait_noreap_copyout(p, pid, uid, why,
1190 status, infop, ru);
1194 * Try to move the task's state to DEAD
1195 * only one thread is allowed to do this:
1197 state = xchg(&p->exit_state, EXIT_DEAD);
1198 if (state != EXIT_ZOMBIE) {
1199 BUG_ON(state != EXIT_DEAD);
1200 return 0;
1203 /* traced means p->ptrace, but not vice versa */
1204 traced = (p->real_parent != p->parent);
1206 if (likely(!traced)) {
1207 struct signal_struct *psig;
1208 struct signal_struct *sig;
1211 * The resource counters for the group leader are in its
1212 * own task_struct. Those for dead threads in the group
1213 * are in its signal_struct, as are those for the child
1214 * processes it has previously reaped. All these
1215 * accumulate in the parent's signal_struct c* fields.
1217 * We don't bother to take a lock here to protect these
1218 * p->signal fields, because they are only touched by
1219 * __exit_signal, which runs with tasklist_lock
1220 * write-locked anyway, and so is excluded here. We do
1221 * need to protect the access to p->parent->signal fields,
1222 * as other threads in the parent group can be right
1223 * here reaping other children at the same time.
1225 spin_lock_irq(&p->parent->sighand->siglock);
1226 psig = p->parent->signal;
1227 sig = p->signal;
1228 psig->cutime =
1229 cputime_add(psig->cutime,
1230 cputime_add(p->utime,
1231 cputime_add(sig->utime,
1232 sig->cutime)));
1233 psig->cstime =
1234 cputime_add(psig->cstime,
1235 cputime_add(p->stime,
1236 cputime_add(sig->stime,
1237 sig->cstime)));
1238 psig->cgtime =
1239 cputime_add(psig->cgtime,
1240 cputime_add(p->gtime,
1241 cputime_add(sig->gtime,
1242 sig->cgtime)));
1243 psig->cmin_flt +=
1244 p->min_flt + sig->min_flt + sig->cmin_flt;
1245 psig->cmaj_flt +=
1246 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1247 psig->cnvcsw +=
1248 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1249 psig->cnivcsw +=
1250 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1251 psig->cinblock +=
1252 task_io_get_inblock(p) +
1253 sig->inblock + sig->cinblock;
1254 psig->coublock +=
1255 task_io_get_oublock(p) +
1256 sig->oublock + sig->coublock;
1257 spin_unlock_irq(&p->parent->sighand->siglock);
1261 * Now we are sure this task is interesting, and no other
1262 * thread can reap it because we set its state to EXIT_DEAD.
1264 read_unlock(&tasklist_lock);
1266 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1267 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1268 ? p->signal->group_exit_code : p->exit_code;
1269 if (!retval && stat_addr)
1270 retval = put_user(status, stat_addr);
1271 if (!retval && infop)
1272 retval = put_user(SIGCHLD, &infop->si_signo);
1273 if (!retval && infop)
1274 retval = put_user(0, &infop->si_errno);
1275 if (!retval && infop) {
1276 int why;
1278 if ((status & 0x7f) == 0) {
1279 why = CLD_EXITED;
1280 status >>= 8;
1281 } else {
1282 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1283 status &= 0x7f;
1285 retval = put_user((short)why, &infop->si_code);
1286 if (!retval)
1287 retval = put_user(status, &infop->si_status);
1289 if (!retval && infop)
1290 retval = put_user(p->pid, &infop->si_pid);
1291 if (!retval && infop)
1292 retval = put_user(p->uid, &infop->si_uid);
1293 if (!retval)
1294 retval = p->pid;
1296 if (traced) {
1297 write_lock_irq(&tasklist_lock);
1298 /* We dropped tasklist, ptracer could die and untrace */
1299 ptrace_unlink(p);
1301 * If this is not a detached task, notify the parent.
1302 * If it's still not detached after that, don't release
1303 * it now.
1305 if (p->exit_signal != -1) {
1306 do_notify_parent(p, p->exit_signal);
1307 if (p->exit_signal != -1) {
1308 p->exit_state = EXIT_ZOMBIE;
1309 p = NULL;
1312 write_unlock_irq(&tasklist_lock);
1314 if (p != NULL)
1315 release_task(p);
1317 return retval;
1321 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1322 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1323 * the lock and this task is uninteresting. If we return nonzero, we have
1324 * released the lock and the system call should return.
1326 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1327 int noreap, struct siginfo __user *infop,
1328 int __user *stat_addr, struct rusage __user *ru)
1330 int retval, exit_code;
1332 if (!p->exit_code)
1333 return 0;
1334 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1335 p->signal->group_stop_count > 0)
1337 * A group stop is in progress and this is the group leader.
1338 * We won't report until all threads have stopped.
1340 return 0;
1343 * Now we are pretty sure this task is interesting.
1344 * Make sure it doesn't get reaped out from under us while we
1345 * give up the lock and then examine it below. We don't want to
1346 * keep holding onto the tasklist_lock while we call getrusage and
1347 * possibly take page faults for user memory.
1349 get_task_struct(p);
1350 read_unlock(&tasklist_lock);
1352 if (unlikely(noreap)) {
1353 pid_t pid = p->pid;
1354 uid_t uid = p->uid;
1355 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1357 exit_code = p->exit_code;
1358 if (unlikely(!exit_code) ||
1359 unlikely(p->state & TASK_TRACED))
1360 goto bail_ref;
1361 return wait_noreap_copyout(p, pid, uid,
1362 why, (exit_code << 8) | 0x7f,
1363 infop, ru);
1366 write_lock_irq(&tasklist_lock);
1369 * This uses xchg to be atomic with the thread resuming and setting
1370 * it. It must also be done with the write lock held to prevent a
1371 * race with the EXIT_ZOMBIE case.
1373 exit_code = xchg(&p->exit_code, 0);
1374 if (unlikely(p->exit_state)) {
1376 * The task resumed and then died. Let the next iteration
1377 * catch it in EXIT_ZOMBIE. Note that exit_code might
1378 * already be zero here if it resumed and did _exit(0).
1379 * The task itself is dead and won't touch exit_code again;
1380 * other processors in this function are locked out.
1382 p->exit_code = exit_code;
1383 exit_code = 0;
1385 if (unlikely(exit_code == 0)) {
1387 * Another thread in this function got to it first, or it
1388 * resumed, or it resumed and then died.
1390 write_unlock_irq(&tasklist_lock);
1391 bail_ref:
1392 put_task_struct(p);
1394 * We are returning to the wait loop without having successfully
1395 * removed the process and having released the lock. We cannot
1396 * continue, since the "p" task pointer is potentially stale.
1398 * Return -EAGAIN, and do_wait() will restart the loop from the
1399 * beginning. Do _not_ re-acquire the lock.
1401 return -EAGAIN;
1404 /* move to end of parent's list to avoid starvation */
1405 remove_parent(p);
1406 add_parent(p);
1408 write_unlock_irq(&tasklist_lock);
1410 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1411 if (!retval && stat_addr)
1412 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1413 if (!retval && infop)
1414 retval = put_user(SIGCHLD, &infop->si_signo);
1415 if (!retval && infop)
1416 retval = put_user(0, &infop->si_errno);
1417 if (!retval && infop)
1418 retval = put_user((short)((p->ptrace & PT_PTRACED)
1419 ? CLD_TRAPPED : CLD_STOPPED),
1420 &infop->si_code);
1421 if (!retval && infop)
1422 retval = put_user(exit_code, &infop->si_status);
1423 if (!retval && infop)
1424 retval = put_user(p->pid, &infop->si_pid);
1425 if (!retval && infop)
1426 retval = put_user(p->uid, &infop->si_uid);
1427 if (!retval)
1428 retval = p->pid;
1429 put_task_struct(p);
1431 BUG_ON(!retval);
1432 return retval;
1436 * Handle do_wait work for one task in a live, non-stopped state.
1437 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1438 * the lock and this task is uninteresting. If we return nonzero, we have
1439 * released the lock and the system call should return.
1441 static int wait_task_continued(struct task_struct *p, int noreap,
1442 struct siginfo __user *infop,
1443 int __user *stat_addr, struct rusage __user *ru)
1445 int retval;
1446 pid_t pid;
1447 uid_t uid;
1449 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1450 return 0;
1452 spin_lock_irq(&p->sighand->siglock);
1453 /* Re-check with the lock held. */
1454 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1455 spin_unlock_irq(&p->sighand->siglock);
1456 return 0;
1458 if (!noreap)
1459 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1460 spin_unlock_irq(&p->sighand->siglock);
1462 pid = p->pid;
1463 uid = p->uid;
1464 get_task_struct(p);
1465 read_unlock(&tasklist_lock);
1467 if (!infop) {
1468 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1469 put_task_struct(p);
1470 if (!retval && stat_addr)
1471 retval = put_user(0xffff, stat_addr);
1472 if (!retval)
1473 retval = p->pid;
1474 } else {
1475 retval = wait_noreap_copyout(p, pid, uid,
1476 CLD_CONTINUED, SIGCONT,
1477 infop, ru);
1478 BUG_ON(retval == 0);
1481 return retval;
1485 static inline int my_ptrace_child(struct task_struct *p)
1487 if (!(p->ptrace & PT_PTRACED))
1488 return 0;
1489 if (!(p->ptrace & PT_ATTACHED))
1490 return 1;
1492 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1493 * we are the attacher. If we are the real parent, this is a race
1494 * inside ptrace_attach. It is waiting for the tasklist_lock,
1495 * which we have to switch the parent links, but has already set
1496 * the flags in p->ptrace.
1498 return (p->parent != p->real_parent);
1501 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1502 int __user *stat_addr, struct rusage __user *ru)
1504 DECLARE_WAITQUEUE(wait, current);
1505 struct task_struct *tsk;
1506 int flag, retval;
1507 int allowed, denied;
1509 add_wait_queue(&current->signal->wait_chldexit,&wait);
1510 repeat:
1512 * We will set this flag if we see any child that might later
1513 * match our criteria, even if we are not able to reap it yet.
1515 flag = 0;
1516 allowed = denied = 0;
1517 current->state = TASK_INTERRUPTIBLE;
1518 read_lock(&tasklist_lock);
1519 tsk = current;
1520 do {
1521 struct task_struct *p;
1522 struct list_head *_p;
1523 int ret;
1525 list_for_each(_p,&tsk->children) {
1526 p = list_entry(_p, struct task_struct, sibling);
1528 ret = eligible_child(pid, options, p);
1529 if (!ret)
1530 continue;
1532 if (unlikely(ret < 0)) {
1533 denied = ret;
1534 continue;
1536 allowed = 1;
1538 switch (p->state) {
1539 case TASK_TRACED:
1541 * When we hit the race with PTRACE_ATTACH,
1542 * we will not report this child. But the
1543 * race means it has not yet been moved to
1544 * our ptrace_children list, so we need to
1545 * set the flag here to avoid a spurious ECHILD
1546 * when the race happens with the only child.
1548 flag = 1;
1549 if (!my_ptrace_child(p))
1550 continue;
1551 /*FALLTHROUGH*/
1552 case TASK_STOPPED:
1554 * It's stopped now, so it might later
1555 * continue, exit, or stop again.
1557 flag = 1;
1558 if (!(options & WUNTRACED) &&
1559 !my_ptrace_child(p))
1560 continue;
1561 retval = wait_task_stopped(p, ret == 2,
1562 (options & WNOWAIT),
1563 infop,
1564 stat_addr, ru);
1565 if (retval == -EAGAIN)
1566 goto repeat;
1567 if (retval != 0) /* He released the lock. */
1568 goto end;
1569 break;
1570 default:
1571 // case EXIT_DEAD:
1572 if (p->exit_state == EXIT_DEAD)
1573 continue;
1574 // case EXIT_ZOMBIE:
1575 if (p->exit_state == EXIT_ZOMBIE) {
1577 * Eligible but we cannot release
1578 * it yet:
1580 if (ret == 2)
1581 goto check_continued;
1582 if (!likely(options & WEXITED))
1583 continue;
1584 retval = wait_task_zombie(
1585 p, (options & WNOWAIT),
1586 infop, stat_addr, ru);
1587 /* He released the lock. */
1588 if (retval != 0)
1589 goto end;
1590 break;
1592 check_continued:
1594 * It's running now, so it might later
1595 * exit, stop, or stop and then continue.
1597 flag = 1;
1598 if (!unlikely(options & WCONTINUED))
1599 continue;
1600 retval = wait_task_continued(
1601 p, (options & WNOWAIT),
1602 infop, stat_addr, ru);
1603 if (retval != 0) /* He released the lock. */
1604 goto end;
1605 break;
1608 if (!flag) {
1609 list_for_each(_p, &tsk->ptrace_children) {
1610 p = list_entry(_p, struct task_struct,
1611 ptrace_list);
1612 if (!eligible_child(pid, options, p))
1613 continue;
1614 flag = 1;
1615 break;
1618 if (options & __WNOTHREAD)
1619 break;
1620 tsk = next_thread(tsk);
1621 BUG_ON(tsk->signal != current->signal);
1622 } while (tsk != current);
1624 read_unlock(&tasklist_lock);
1625 if (flag) {
1626 retval = 0;
1627 if (options & WNOHANG)
1628 goto end;
1629 retval = -ERESTARTSYS;
1630 if (signal_pending(current))
1631 goto end;
1632 schedule();
1633 goto repeat;
1635 retval = -ECHILD;
1636 if (unlikely(denied) && !allowed)
1637 retval = denied;
1638 end:
1639 current->state = TASK_RUNNING;
1640 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1641 if (infop) {
1642 if (retval > 0)
1643 retval = 0;
1644 else {
1646 * For a WNOHANG return, clear out all the fields
1647 * we would set so the user can easily tell the
1648 * difference.
1650 if (!retval)
1651 retval = put_user(0, &infop->si_signo);
1652 if (!retval)
1653 retval = put_user(0, &infop->si_errno);
1654 if (!retval)
1655 retval = put_user(0, &infop->si_code);
1656 if (!retval)
1657 retval = put_user(0, &infop->si_pid);
1658 if (!retval)
1659 retval = put_user(0, &infop->si_uid);
1660 if (!retval)
1661 retval = put_user(0, &infop->si_status);
1664 return retval;
1667 asmlinkage long sys_waitid(int which, pid_t pid,
1668 struct siginfo __user *infop, int options,
1669 struct rusage __user *ru)
1671 long ret;
1673 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1674 return -EINVAL;
1675 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1676 return -EINVAL;
1678 switch (which) {
1679 case P_ALL:
1680 pid = -1;
1681 break;
1682 case P_PID:
1683 if (pid <= 0)
1684 return -EINVAL;
1685 break;
1686 case P_PGID:
1687 if (pid <= 0)
1688 return -EINVAL;
1689 pid = -pid;
1690 break;
1691 default:
1692 return -EINVAL;
1695 ret = do_wait(pid, options, infop, NULL, ru);
1697 /* avoid REGPARM breakage on x86: */
1698 prevent_tail_call(ret);
1699 return ret;
1702 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1703 int options, struct rusage __user *ru)
1705 long ret;
1707 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1708 __WNOTHREAD|__WCLONE|__WALL))
1709 return -EINVAL;
1710 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1712 /* avoid REGPARM breakage on x86: */
1713 prevent_tail_call(ret);
1714 return ret;
1717 #ifdef __ARCH_WANT_SYS_WAITPID
1720 * sys_waitpid() remains for compatibility. waitpid() should be
1721 * implemented by calling sys_wait4() from libc.a.
1723 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1725 return sys_wait4(pid, stat_addr, options, NULL);
1728 #endif