3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
118 #include <asm/cacheflush.h>
119 #include <asm/tlbflush.h>
120 #include <asm/page.h>
123 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
124 * 0 for faster, smaller code (especially in the critical paths).
126 * STATS - 1 to collect stats for /proc/slabinfo.
127 * 0 for faster, smaller code (especially in the critical paths).
129 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
132 #ifdef CONFIG_DEBUG_SLAB
135 #define FORCED_DEBUG 1
139 #define FORCED_DEBUG 0
142 /* Shouldn't this be in a header file somewhere? */
143 #define BYTES_PER_WORD sizeof(void *)
144 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
174 /* Legal flag mask for kmem_cache_create(). */
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
182 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
184 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
186 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
187 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
188 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
194 * Bufctl's are used for linking objs within a slab
197 * This implementation relies on "struct page" for locating the cache &
198 * slab an object belongs to.
199 * This allows the bufctl structure to be small (one int), but limits
200 * the number of objects a slab (not a cache) can contain when off-slab
201 * bufctls are used. The limit is the size of the largest general cache
202 * that does not use off-slab slabs.
203 * For 32bit archs with 4 kB pages, is this 56.
204 * This is not serious, as it is only for large objects, when it is unwise
205 * to have too many per slab.
206 * Note: This limit can be raised by introducing a general cache whose size
207 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
210 typedef unsigned int kmem_bufctl_t
;
211 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
212 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
213 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
214 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
224 struct list_head list
;
225 unsigned long colouroff
;
226 void *s_mem
; /* including colour offset */
227 unsigned int inuse
; /* num of objs active in slab */
229 unsigned short nodeid
;
235 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
236 * arrange for kmem_freepages to be called via RCU. This is useful if
237 * we need to approach a kernel structure obliquely, from its address
238 * obtained without the usual locking. We can lock the structure to
239 * stabilize it and check it's still at the given address, only if we
240 * can be sure that the memory has not been meanwhile reused for some
241 * other kind of object (which our subsystem's lock might corrupt).
243 * rcu_read_lock before reading the address, then rcu_read_unlock after
244 * taking the spinlock within the structure expected at that address.
246 * We assume struct slab_rcu can overlay struct slab when destroying.
249 struct rcu_head head
;
250 struct kmem_cache
*cachep
;
258 * - LIFO ordering, to hand out cache-warm objects from _alloc
259 * - reduce the number of linked list operations
260 * - reduce spinlock operations
262 * The limit is stored in the per-cpu structure to reduce the data cache
269 unsigned int batchcount
;
270 unsigned int touched
;
273 * Must have this definition in here for the proper
274 * alignment of array_cache. Also simplifies accessing
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
283 #define BOOT_CPUCACHE_ENTRIES 1
284 struct arraycache_init
{
285 struct array_cache cache
;
286 void *entries
[BOOT_CPUCACHE_ENTRIES
];
290 * The slab lists for all objects.
293 struct list_head slabs_partial
; /* partial list first, better asm code */
294 struct list_head slabs_full
;
295 struct list_head slabs_free
;
296 unsigned long free_objects
;
297 unsigned int free_limit
;
298 unsigned int colour_next
; /* Per-node cache coloring */
299 spinlock_t list_lock
;
300 struct array_cache
*shared
; /* shared per node */
301 struct array_cache
**alien
; /* on other nodes */
302 unsigned long next_reap
; /* updated without locking */
303 int free_touched
; /* updated without locking */
307 * Need this for bootstrapping a per node allocator.
309 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
310 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
311 #define CACHE_CACHE 0
312 #define SIZE_AC MAX_NUMNODES
313 #define SIZE_L3 (2 * MAX_NUMNODES)
315 static int drain_freelist(struct kmem_cache
*cache
,
316 struct kmem_list3
*l3
, int tofree
);
317 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
319 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
320 static void cache_reap(struct work_struct
*unused
);
323 * This function must be completely optimized away if a constant is passed to
324 * it. Mostly the same as what is in linux/slab.h except it returns an index.
326 static __always_inline
int index_of(const size_t size
)
328 extern void __bad_size(void);
330 if (__builtin_constant_p(size
)) {
338 #include <linux/kmalloc_sizes.h>
346 static int slab_early_init
= 1;
348 #define INDEX_AC index_of(sizeof(struct arraycache_init))
349 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
351 static void kmem_list3_init(struct kmem_list3
*parent
)
353 INIT_LIST_HEAD(&parent
->slabs_full
);
354 INIT_LIST_HEAD(&parent
->slabs_partial
);
355 INIT_LIST_HEAD(&parent
->slabs_free
);
356 parent
->shared
= NULL
;
357 parent
->alien
= NULL
;
358 parent
->colour_next
= 0;
359 spin_lock_init(&parent
->list_lock
);
360 parent
->free_objects
= 0;
361 parent
->free_touched
= 0;
364 #define MAKE_LIST(cachep, listp, slab, nodeid) \
366 INIT_LIST_HEAD(listp); \
367 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
370 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
372 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
374 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
384 /* 1) per-cpu data, touched during every alloc/free */
385 struct array_cache
*array
[NR_CPUS
];
386 /* 2) Cache tunables. Protected by cache_chain_mutex */
387 unsigned int batchcount
;
391 unsigned int buffer_size
;
392 u32 reciprocal_buffer_size
;
393 /* 3) touched by every alloc & free from the backend */
395 unsigned int flags
; /* constant flags */
396 unsigned int num
; /* # of objs per slab */
398 /* 4) cache_grow/shrink */
399 /* order of pgs per slab (2^n) */
400 unsigned int gfporder
;
402 /* force GFP flags, e.g. GFP_DMA */
405 size_t colour
; /* cache colouring range */
406 unsigned int colour_off
; /* colour offset */
407 struct kmem_cache
*slabp_cache
;
408 unsigned int slab_size
;
409 unsigned int dflags
; /* dynamic flags */
411 /* constructor func */
412 void (*ctor
)(void *obj
);
414 /* 5) cache creation/removal */
416 struct list_head next
;
420 unsigned long num_active
;
421 unsigned long num_allocations
;
422 unsigned long high_mark
;
424 unsigned long reaped
;
425 unsigned long errors
;
426 unsigned long max_freeable
;
427 unsigned long node_allocs
;
428 unsigned long node_frees
;
429 unsigned long node_overflow
;
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
446 * We put nodelists[] at the end of kmem_cache, because we want to size
447 * this array to nr_node_ids slots instead of MAX_NUMNODES
448 * (see kmem_cache_init())
449 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
450 * is statically defined, so we reserve the max number of nodes.
452 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
454 * Do not add fields after nodelists[]
458 #define CFLGS_OFF_SLAB (0x80000000UL)
459 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461 #define BATCHREFILL_LIMIT 16
463 * Optimization question: fewer reaps means less probability for unnessary
464 * cpucache drain/refill cycles.
466 * OTOH the cpuarrays can contain lots of objects,
467 * which could lock up otherwise freeable slabs.
469 #define REAPTIMEOUT_CPUC (2*HZ)
470 #define REAPTIMEOUT_LIST3 (4*HZ)
473 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
474 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
475 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
476 #define STATS_INC_GROWN(x) ((x)->grown++)
477 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
478 #define STATS_SET_HIGH(x) \
480 if ((x)->num_active > (x)->high_mark) \
481 (x)->high_mark = (x)->num_active; \
483 #define STATS_INC_ERR(x) ((x)->errors++)
484 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
485 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
486 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
487 #define STATS_SET_FREEABLE(x, i) \
489 if ((x)->max_freeable < i) \
490 (x)->max_freeable = i; \
492 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
493 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
494 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
495 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497 #define STATS_INC_ACTIVE(x) do { } while (0)
498 #define STATS_DEC_ACTIVE(x) do { } while (0)
499 #define STATS_INC_ALLOCED(x) do { } while (0)
500 #define STATS_INC_GROWN(x) do { } while (0)
501 #define STATS_ADD_REAPED(x,y) do { } while (0)
502 #define STATS_SET_HIGH(x) do { } while (0)
503 #define STATS_INC_ERR(x) do { } while (0)
504 #define STATS_INC_NODEALLOCS(x) do { } while (0)
505 #define STATS_INC_NODEFREES(x) do { } while (0)
506 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
507 #define STATS_SET_FREEABLE(x, i) do { } while (0)
508 #define STATS_INC_ALLOCHIT(x) do { } while (0)
509 #define STATS_INC_ALLOCMISS(x) do { } while (0)
510 #define STATS_INC_FREEHIT(x) do { } while (0)
511 #define STATS_INC_FREEMISS(x) do { } while (0)
517 * memory layout of objects:
519 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
520 * the end of an object is aligned with the end of the real
521 * allocation. Catches writes behind the end of the allocation.
522 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
524 * cachep->obj_offset: The real object.
525 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
526 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
527 * [BYTES_PER_WORD long]
529 static int obj_offset(struct kmem_cache
*cachep
)
531 return cachep
->obj_offset
;
534 static int obj_size(struct kmem_cache
*cachep
)
536 return cachep
->obj_size
;
539 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
541 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
542 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
543 sizeof(unsigned long long));
546 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
548 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
549 if (cachep
->flags
& SLAB_STORE_USER
)
550 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
551 sizeof(unsigned long long) -
553 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
554 sizeof(unsigned long long));
557 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
559 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
560 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
565 #define obj_offset(x) 0
566 #define obj_size(cachep) (cachep->buffer_size)
567 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
568 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
569 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
573 #ifdef CONFIG_KMEMTRACE
574 size_t slab_buffer_size(struct kmem_cache
*cachep
)
576 return cachep
->buffer_size
;
578 EXPORT_SYMBOL(slab_buffer_size
);
582 * Do not go above this order unless 0 objects fit into the slab.
584 #define BREAK_GFP_ORDER_HI 1
585 #define BREAK_GFP_ORDER_LO 0
586 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
589 * Functions for storing/retrieving the cachep and or slab from the page
590 * allocator. These are used to find the slab an obj belongs to. With kfree(),
591 * these are used to find the cache which an obj belongs to.
593 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
595 page
->lru
.next
= (struct list_head
*)cache
;
598 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
600 page
= compound_head(page
);
601 BUG_ON(!PageSlab(page
));
602 return (struct kmem_cache
*)page
->lru
.next
;
605 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
607 page
->lru
.prev
= (struct list_head
*)slab
;
610 static inline struct slab
*page_get_slab(struct page
*page
)
612 BUG_ON(!PageSlab(page
));
613 return (struct slab
*)page
->lru
.prev
;
616 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
618 struct page
*page
= virt_to_head_page(obj
);
619 return page_get_cache(page
);
622 static inline struct slab
*virt_to_slab(const void *obj
)
624 struct page
*page
= virt_to_head_page(obj
);
625 return page_get_slab(page
);
628 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
631 return slab
->s_mem
+ cache
->buffer_size
* idx
;
635 * We want to avoid an expensive divide : (offset / cache->buffer_size)
636 * Using the fact that buffer_size is a constant for a particular cache,
637 * we can replace (offset / cache->buffer_size) by
638 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
640 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
641 const struct slab
*slab
, void *obj
)
643 u32 offset
= (obj
- slab
->s_mem
);
644 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
648 * These are the default caches for kmalloc. Custom caches can have other sizes.
650 struct cache_sizes malloc_sizes
[] = {
651 #define CACHE(x) { .cs_size = (x) },
652 #include <linux/kmalloc_sizes.h>
656 EXPORT_SYMBOL(malloc_sizes
);
658 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
664 static struct cache_names __initdata cache_names
[] = {
665 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
666 #include <linux/kmalloc_sizes.h>
671 static struct arraycache_init initarray_cache __initdata
=
672 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
673 static struct arraycache_init initarray_generic
=
674 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
676 /* internal cache of cache description objs */
677 static struct kmem_cache cache_cache
= {
679 .limit
= BOOT_CPUCACHE_ENTRIES
,
681 .buffer_size
= sizeof(struct kmem_cache
),
682 .name
= "kmem_cache",
685 #define BAD_ALIEN_MAGIC 0x01020304ul
687 #ifdef CONFIG_LOCKDEP
690 * Slab sometimes uses the kmalloc slabs to store the slab headers
691 * for other slabs "off slab".
692 * The locking for this is tricky in that it nests within the locks
693 * of all other slabs in a few places; to deal with this special
694 * locking we put on-slab caches into a separate lock-class.
696 * We set lock class for alien array caches which are up during init.
697 * The lock annotation will be lost if all cpus of a node goes down and
698 * then comes back up during hotplug
700 static struct lock_class_key on_slab_l3_key
;
701 static struct lock_class_key on_slab_alc_key
;
703 static inline void init_lock_keys(void)
707 struct cache_sizes
*s
= malloc_sizes
;
709 while (s
->cs_size
!= ULONG_MAX
) {
711 struct array_cache
**alc
;
713 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
714 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
716 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
719 * FIXME: This check for BAD_ALIEN_MAGIC
720 * should go away when common slab code is taught to
721 * work even without alien caches.
722 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
723 * for alloc_alien_cache,
725 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
729 lockdep_set_class(&alc
[r
]->lock
,
737 static inline void init_lock_keys(void)
743 * Guard access to the cache-chain.
745 static DEFINE_MUTEX(cache_chain_mutex
);
746 static struct list_head cache_chain
;
749 * chicken and egg problem: delay the per-cpu array allocation
750 * until the general caches are up.
760 * used by boot code to determine if it can use slab based allocator
762 int slab_is_available(void)
764 return g_cpucache_up
== FULL
;
767 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
769 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
771 return cachep
->array
[smp_processor_id()];
774 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
777 struct cache_sizes
*csizep
= malloc_sizes
;
780 /* This happens if someone tries to call
781 * kmem_cache_create(), or __kmalloc(), before
782 * the generic caches are initialized.
784 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
787 return ZERO_SIZE_PTR
;
789 while (size
> csizep
->cs_size
)
793 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
794 * has cs_{dma,}cachep==NULL. Thus no special case
795 * for large kmalloc calls required.
797 #ifdef CONFIG_ZONE_DMA
798 if (unlikely(gfpflags
& GFP_DMA
))
799 return csizep
->cs_dmacachep
;
801 return csizep
->cs_cachep
;
804 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
806 return __find_general_cachep(size
, gfpflags
);
809 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
811 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
815 * Calculate the number of objects and left-over bytes for a given buffer size.
817 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
818 size_t align
, int flags
, size_t *left_over
,
823 size_t slab_size
= PAGE_SIZE
<< gfporder
;
826 * The slab management structure can be either off the slab or
827 * on it. For the latter case, the memory allocated for a
831 * - One kmem_bufctl_t for each object
832 * - Padding to respect alignment of @align
833 * - @buffer_size bytes for each object
835 * If the slab management structure is off the slab, then the
836 * alignment will already be calculated into the size. Because
837 * the slabs are all pages aligned, the objects will be at the
838 * correct alignment when allocated.
840 if (flags
& CFLGS_OFF_SLAB
) {
842 nr_objs
= slab_size
/ buffer_size
;
844 if (nr_objs
> SLAB_LIMIT
)
845 nr_objs
= SLAB_LIMIT
;
848 * Ignore padding for the initial guess. The padding
849 * is at most @align-1 bytes, and @buffer_size is at
850 * least @align. In the worst case, this result will
851 * be one greater than the number of objects that fit
852 * into the memory allocation when taking the padding
855 nr_objs
= (slab_size
- sizeof(struct slab
)) /
856 (buffer_size
+ sizeof(kmem_bufctl_t
));
859 * This calculated number will be either the right
860 * amount, or one greater than what we want.
862 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
866 if (nr_objs
> SLAB_LIMIT
)
867 nr_objs
= SLAB_LIMIT
;
869 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
872 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
875 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
877 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
880 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
881 function
, cachep
->name
, msg
);
886 * By default on NUMA we use alien caches to stage the freeing of
887 * objects allocated from other nodes. This causes massive memory
888 * inefficiencies when using fake NUMA setup to split memory into a
889 * large number of small nodes, so it can be disabled on the command
893 static int use_alien_caches __read_mostly
= 1;
894 static int numa_platform __read_mostly
= 1;
895 static int __init
noaliencache_setup(char *s
)
897 use_alien_caches
= 0;
900 __setup("noaliencache", noaliencache_setup
);
904 * Special reaping functions for NUMA systems called from cache_reap().
905 * These take care of doing round robin flushing of alien caches (containing
906 * objects freed on different nodes from which they were allocated) and the
907 * flushing of remote pcps by calling drain_node_pages.
909 static DEFINE_PER_CPU(unsigned long, reap_node
);
911 static void init_reap_node(int cpu
)
915 node
= next_node(cpu_to_node(cpu
), node_online_map
);
916 if (node
== MAX_NUMNODES
)
917 node
= first_node(node_online_map
);
919 per_cpu(reap_node
, cpu
) = node
;
922 static void next_reap_node(void)
924 int node
= __get_cpu_var(reap_node
);
926 node
= next_node(node
, node_online_map
);
927 if (unlikely(node
>= MAX_NUMNODES
))
928 node
= first_node(node_online_map
);
929 __get_cpu_var(reap_node
) = node
;
933 #define init_reap_node(cpu) do { } while (0)
934 #define next_reap_node(void) do { } while (0)
938 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
939 * via the workqueue/eventd.
940 * Add the CPU number into the expiration time to minimize the possibility of
941 * the CPUs getting into lockstep and contending for the global cache chain
944 static void __cpuinit
start_cpu_timer(int cpu
)
946 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
949 * When this gets called from do_initcalls via cpucache_init(),
950 * init_workqueues() has already run, so keventd will be setup
953 if (keventd_up() && reap_work
->work
.func
== NULL
) {
955 INIT_DELAYED_WORK(reap_work
, cache_reap
);
956 schedule_delayed_work_on(cpu
, reap_work
,
957 __round_jiffies_relative(HZ
, cpu
));
961 static struct array_cache
*alloc_arraycache(int node
, int entries
,
962 int batchcount
, gfp_t gfp
)
964 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
965 struct array_cache
*nc
= NULL
;
967 nc
= kmalloc_node(memsize
, gfp
, node
);
969 * The array_cache structures contain pointers to free object.
970 * However, when such objects are allocated or transfered to another
971 * cache the pointers are not cleared and they could be counted as
972 * valid references during a kmemleak scan. Therefore, kmemleak must
973 * not scan such objects.
975 kmemleak_no_scan(nc
);
979 nc
->batchcount
= batchcount
;
981 spin_lock_init(&nc
->lock
);
987 * Transfer objects in one arraycache to another.
988 * Locking must be handled by the caller.
990 * Return the number of entries transferred.
992 static int transfer_objects(struct array_cache
*to
,
993 struct array_cache
*from
, unsigned int max
)
995 /* Figure out how many entries to transfer */
996 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
1001 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
1002 sizeof(void *) *nr
);
1012 #define drain_alien_cache(cachep, alien) do { } while (0)
1013 #define reap_alien(cachep, l3) do { } while (0)
1015 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1017 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1020 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1024 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1029 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1035 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1036 gfp_t flags
, int nodeid
)
1041 #else /* CONFIG_NUMA */
1043 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1044 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1046 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1048 struct array_cache
**ac_ptr
;
1049 int memsize
= sizeof(void *) * nr_node_ids
;
1054 ac_ptr
= kmalloc_node(memsize
, gfp
, node
);
1057 if (i
== node
|| !node_online(i
)) {
1061 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
1063 for (i
--; i
>= 0; i
--)
1073 static void free_alien_cache(struct array_cache
**ac_ptr
)
1084 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1085 struct array_cache
*ac
, int node
)
1087 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1090 spin_lock(&rl3
->list_lock
);
1092 * Stuff objects into the remote nodes shared array first.
1093 * That way we could avoid the overhead of putting the objects
1094 * into the free lists and getting them back later.
1097 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1099 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1101 spin_unlock(&rl3
->list_lock
);
1106 * Called from cache_reap() to regularly drain alien caches round robin.
1108 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1110 int node
= __get_cpu_var(reap_node
);
1113 struct array_cache
*ac
= l3
->alien
[node
];
1115 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1116 __drain_alien_cache(cachep
, ac
, node
);
1117 spin_unlock_irq(&ac
->lock
);
1122 static void drain_alien_cache(struct kmem_cache
*cachep
,
1123 struct array_cache
**alien
)
1126 struct array_cache
*ac
;
1127 unsigned long flags
;
1129 for_each_online_node(i
) {
1132 spin_lock_irqsave(&ac
->lock
, flags
);
1133 __drain_alien_cache(cachep
, ac
, i
);
1134 spin_unlock_irqrestore(&ac
->lock
, flags
);
1139 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1141 struct slab
*slabp
= virt_to_slab(objp
);
1142 int nodeid
= slabp
->nodeid
;
1143 struct kmem_list3
*l3
;
1144 struct array_cache
*alien
= NULL
;
1147 node
= numa_node_id();
1150 * Make sure we are not freeing a object from another node to the array
1151 * cache on this cpu.
1153 if (likely(slabp
->nodeid
== node
))
1156 l3
= cachep
->nodelists
[node
];
1157 STATS_INC_NODEFREES(cachep
);
1158 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1159 alien
= l3
->alien
[nodeid
];
1160 spin_lock(&alien
->lock
);
1161 if (unlikely(alien
->avail
== alien
->limit
)) {
1162 STATS_INC_ACOVERFLOW(cachep
);
1163 __drain_alien_cache(cachep
, alien
, nodeid
);
1165 alien
->entry
[alien
->avail
++] = objp
;
1166 spin_unlock(&alien
->lock
);
1168 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1169 free_block(cachep
, &objp
, 1, nodeid
);
1170 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1176 static void __cpuinit
cpuup_canceled(long cpu
)
1178 struct kmem_cache
*cachep
;
1179 struct kmem_list3
*l3
= NULL
;
1180 int node
= cpu_to_node(cpu
);
1181 const struct cpumask
*mask
= cpumask_of_node(node
);
1183 list_for_each_entry(cachep
, &cache_chain
, next
) {
1184 struct array_cache
*nc
;
1185 struct array_cache
*shared
;
1186 struct array_cache
**alien
;
1188 /* cpu is dead; no one can alloc from it. */
1189 nc
= cachep
->array
[cpu
];
1190 cachep
->array
[cpu
] = NULL
;
1191 l3
= cachep
->nodelists
[node
];
1194 goto free_array_cache
;
1196 spin_lock_irq(&l3
->list_lock
);
1198 /* Free limit for this kmem_list3 */
1199 l3
->free_limit
-= cachep
->batchcount
;
1201 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1203 if (!cpus_empty(*mask
)) {
1204 spin_unlock_irq(&l3
->list_lock
);
1205 goto free_array_cache
;
1208 shared
= l3
->shared
;
1210 free_block(cachep
, shared
->entry
,
1211 shared
->avail
, node
);
1218 spin_unlock_irq(&l3
->list_lock
);
1222 drain_alien_cache(cachep
, alien
);
1223 free_alien_cache(alien
);
1229 * In the previous loop, all the objects were freed to
1230 * the respective cache's slabs, now we can go ahead and
1231 * shrink each nodelist to its limit.
1233 list_for_each_entry(cachep
, &cache_chain
, next
) {
1234 l3
= cachep
->nodelists
[node
];
1237 drain_freelist(cachep
, l3
, l3
->free_objects
);
1241 static int __cpuinit
cpuup_prepare(long cpu
)
1243 struct kmem_cache
*cachep
;
1244 struct kmem_list3
*l3
= NULL
;
1245 int node
= cpu_to_node(cpu
);
1246 const int memsize
= sizeof(struct kmem_list3
);
1249 * We need to do this right in the beginning since
1250 * alloc_arraycache's are going to use this list.
1251 * kmalloc_node allows us to add the slab to the right
1252 * kmem_list3 and not this cpu's kmem_list3
1255 list_for_each_entry(cachep
, &cache_chain
, next
) {
1257 * Set up the size64 kmemlist for cpu before we can
1258 * begin anything. Make sure some other cpu on this
1259 * node has not already allocated this
1261 if (!cachep
->nodelists
[node
]) {
1262 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1265 kmem_list3_init(l3
);
1266 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1267 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1270 * The l3s don't come and go as CPUs come and
1271 * go. cache_chain_mutex is sufficient
1274 cachep
->nodelists
[node
] = l3
;
1277 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1278 cachep
->nodelists
[node
]->free_limit
=
1279 (1 + nr_cpus_node(node
)) *
1280 cachep
->batchcount
+ cachep
->num
;
1281 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1285 * Now we can go ahead with allocating the shared arrays and
1288 list_for_each_entry(cachep
, &cache_chain
, next
) {
1289 struct array_cache
*nc
;
1290 struct array_cache
*shared
= NULL
;
1291 struct array_cache
**alien
= NULL
;
1293 nc
= alloc_arraycache(node
, cachep
->limit
,
1294 cachep
->batchcount
, GFP_KERNEL
);
1297 if (cachep
->shared
) {
1298 shared
= alloc_arraycache(node
,
1299 cachep
->shared
* cachep
->batchcount
,
1300 0xbaadf00d, GFP_KERNEL
);
1306 if (use_alien_caches
) {
1307 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1314 cachep
->array
[cpu
] = nc
;
1315 l3
= cachep
->nodelists
[node
];
1318 spin_lock_irq(&l3
->list_lock
);
1321 * We are serialised from CPU_DEAD or
1322 * CPU_UP_CANCELLED by the cpucontrol lock
1324 l3
->shared
= shared
;
1333 spin_unlock_irq(&l3
->list_lock
);
1335 free_alien_cache(alien
);
1339 cpuup_canceled(cpu
);
1343 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1344 unsigned long action
, void *hcpu
)
1346 long cpu
= (long)hcpu
;
1350 case CPU_UP_PREPARE
:
1351 case CPU_UP_PREPARE_FROZEN
:
1352 mutex_lock(&cache_chain_mutex
);
1353 err
= cpuup_prepare(cpu
);
1354 mutex_unlock(&cache_chain_mutex
);
1357 case CPU_ONLINE_FROZEN
:
1358 start_cpu_timer(cpu
);
1360 #ifdef CONFIG_HOTPLUG_CPU
1361 case CPU_DOWN_PREPARE
:
1362 case CPU_DOWN_PREPARE_FROZEN
:
1364 * Shutdown cache reaper. Note that the cache_chain_mutex is
1365 * held so that if cache_reap() is invoked it cannot do
1366 * anything expensive but will only modify reap_work
1367 * and reschedule the timer.
1369 cancel_rearming_delayed_work(&per_cpu(reap_work
, cpu
));
1370 /* Now the cache_reaper is guaranteed to be not running. */
1371 per_cpu(reap_work
, cpu
).work
.func
= NULL
;
1373 case CPU_DOWN_FAILED
:
1374 case CPU_DOWN_FAILED_FROZEN
:
1375 start_cpu_timer(cpu
);
1378 case CPU_DEAD_FROZEN
:
1380 * Even if all the cpus of a node are down, we don't free the
1381 * kmem_list3 of any cache. This to avoid a race between
1382 * cpu_down, and a kmalloc allocation from another cpu for
1383 * memory from the node of the cpu going down. The list3
1384 * structure is usually allocated from kmem_cache_create() and
1385 * gets destroyed at kmem_cache_destroy().
1389 case CPU_UP_CANCELED
:
1390 case CPU_UP_CANCELED_FROZEN
:
1391 mutex_lock(&cache_chain_mutex
);
1392 cpuup_canceled(cpu
);
1393 mutex_unlock(&cache_chain_mutex
);
1396 return err
? NOTIFY_BAD
: NOTIFY_OK
;
1399 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1400 &cpuup_callback
, NULL
, 0
1404 * swap the static kmem_list3 with kmalloced memory
1406 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1409 struct kmem_list3
*ptr
;
1411 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1414 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1416 * Do not assume that spinlocks can be initialized via memcpy:
1418 spin_lock_init(&ptr
->list_lock
);
1420 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1421 cachep
->nodelists
[nodeid
] = ptr
;
1425 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1426 * size of kmem_list3.
1428 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1432 for_each_online_node(node
) {
1433 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1434 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1436 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1441 * Initialisation. Called after the page allocator have been initialised and
1442 * before smp_init().
1444 void __init
kmem_cache_init(void)
1447 struct cache_sizes
*sizes
;
1448 struct cache_names
*names
;
1453 if (num_possible_nodes() == 1) {
1454 use_alien_caches
= 0;
1458 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1459 kmem_list3_init(&initkmem_list3
[i
]);
1460 if (i
< MAX_NUMNODES
)
1461 cache_cache
.nodelists
[i
] = NULL
;
1463 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1466 * Fragmentation resistance on low memory - only use bigger
1467 * page orders on machines with more than 32MB of memory.
1469 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1470 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1472 /* Bootstrap is tricky, because several objects are allocated
1473 * from caches that do not exist yet:
1474 * 1) initialize the cache_cache cache: it contains the struct
1475 * kmem_cache structures of all caches, except cache_cache itself:
1476 * cache_cache is statically allocated.
1477 * Initially an __init data area is used for the head array and the
1478 * kmem_list3 structures, it's replaced with a kmalloc allocated
1479 * array at the end of the bootstrap.
1480 * 2) Create the first kmalloc cache.
1481 * The struct kmem_cache for the new cache is allocated normally.
1482 * An __init data area is used for the head array.
1483 * 3) Create the remaining kmalloc caches, with minimally sized
1485 * 4) Replace the __init data head arrays for cache_cache and the first
1486 * kmalloc cache with kmalloc allocated arrays.
1487 * 5) Replace the __init data for kmem_list3 for cache_cache and
1488 * the other cache's with kmalloc allocated memory.
1489 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1492 node
= numa_node_id();
1494 /* 1) create the cache_cache */
1495 INIT_LIST_HEAD(&cache_chain
);
1496 list_add(&cache_cache
.next
, &cache_chain
);
1497 cache_cache
.colour_off
= cache_line_size();
1498 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1499 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1502 * struct kmem_cache size depends on nr_node_ids, which
1503 * can be less than MAX_NUMNODES.
1505 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1506 nr_node_ids
* sizeof(struct kmem_list3
*);
1508 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1510 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1512 cache_cache
.reciprocal_buffer_size
=
1513 reciprocal_value(cache_cache
.buffer_size
);
1515 for (order
= 0; order
< MAX_ORDER
; order
++) {
1516 cache_estimate(order
, cache_cache
.buffer_size
,
1517 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1518 if (cache_cache
.num
)
1521 BUG_ON(!cache_cache
.num
);
1522 cache_cache
.gfporder
= order
;
1523 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1524 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1525 sizeof(struct slab
), cache_line_size());
1527 /* 2+3) create the kmalloc caches */
1528 sizes
= malloc_sizes
;
1529 names
= cache_names
;
1532 * Initialize the caches that provide memory for the array cache and the
1533 * kmem_list3 structures first. Without this, further allocations will
1537 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1538 sizes
[INDEX_AC
].cs_size
,
1539 ARCH_KMALLOC_MINALIGN
,
1540 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1543 if (INDEX_AC
!= INDEX_L3
) {
1544 sizes
[INDEX_L3
].cs_cachep
=
1545 kmem_cache_create(names
[INDEX_L3
].name
,
1546 sizes
[INDEX_L3
].cs_size
,
1547 ARCH_KMALLOC_MINALIGN
,
1548 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1552 slab_early_init
= 0;
1554 while (sizes
->cs_size
!= ULONG_MAX
) {
1556 * For performance, all the general caches are L1 aligned.
1557 * This should be particularly beneficial on SMP boxes, as it
1558 * eliminates "false sharing".
1559 * Note for systems short on memory removing the alignment will
1560 * allow tighter packing of the smaller caches.
1562 if (!sizes
->cs_cachep
) {
1563 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1565 ARCH_KMALLOC_MINALIGN
,
1566 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1569 #ifdef CONFIG_ZONE_DMA
1570 sizes
->cs_dmacachep
= kmem_cache_create(
1573 ARCH_KMALLOC_MINALIGN
,
1574 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1581 /* 4) Replace the bootstrap head arrays */
1583 struct array_cache
*ptr
;
1585 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1587 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1588 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1589 sizeof(struct arraycache_init
));
1591 * Do not assume that spinlocks can be initialized via memcpy:
1593 spin_lock_init(&ptr
->lock
);
1595 cache_cache
.array
[smp_processor_id()] = ptr
;
1597 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1599 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1600 != &initarray_generic
.cache
);
1601 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1602 sizeof(struct arraycache_init
));
1604 * Do not assume that spinlocks can be initialized via memcpy:
1606 spin_lock_init(&ptr
->lock
);
1608 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1611 /* 5) Replace the bootstrap kmem_list3's */
1615 for_each_online_node(nid
) {
1616 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1618 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1619 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1621 if (INDEX_AC
!= INDEX_L3
) {
1622 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1623 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1628 /* 6) resize the head arrays to their final sizes */
1630 struct kmem_cache
*cachep
;
1631 mutex_lock(&cache_chain_mutex
);
1632 list_for_each_entry(cachep
, &cache_chain
, next
)
1633 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1635 mutex_unlock(&cache_chain_mutex
);
1638 /* Annotate slab for lockdep -- annotate the malloc caches */
1643 g_cpucache_up
= FULL
;
1646 * Register a cpu startup notifier callback that initializes
1647 * cpu_cache_get for all new cpus
1649 register_cpu_notifier(&cpucache_notifier
);
1652 * The reap timers are started later, with a module init call: That part
1653 * of the kernel is not yet operational.
1657 static int __init
cpucache_init(void)
1662 * Register the timers that return unneeded pages to the page allocator
1664 for_each_online_cpu(cpu
)
1665 start_cpu_timer(cpu
);
1668 __initcall(cpucache_init
);
1671 * Interface to system's page allocator. No need to hold the cache-lock.
1673 * If we requested dmaable memory, we will get it. Even if we
1674 * did not request dmaable memory, we might get it, but that
1675 * would be relatively rare and ignorable.
1677 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1685 * Nommu uses slab's for process anonymous memory allocations, and thus
1686 * requires __GFP_COMP to properly refcount higher order allocations
1688 flags
|= __GFP_COMP
;
1691 flags
|= cachep
->gfpflags
;
1692 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1693 flags
|= __GFP_RECLAIMABLE
;
1695 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1699 nr_pages
= (1 << cachep
->gfporder
);
1700 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1701 add_zone_page_state(page_zone(page
),
1702 NR_SLAB_RECLAIMABLE
, nr_pages
);
1704 add_zone_page_state(page_zone(page
),
1705 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1706 for (i
= 0; i
< nr_pages
; i
++)
1707 __SetPageSlab(page
+ i
);
1708 return page_address(page
);
1712 * Interface to system's page release.
1714 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1716 unsigned long i
= (1 << cachep
->gfporder
);
1717 struct page
*page
= virt_to_page(addr
);
1718 const unsigned long nr_freed
= i
;
1720 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1721 sub_zone_page_state(page_zone(page
),
1722 NR_SLAB_RECLAIMABLE
, nr_freed
);
1724 sub_zone_page_state(page_zone(page
),
1725 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1727 BUG_ON(!PageSlab(page
));
1728 __ClearPageSlab(page
);
1731 if (current
->reclaim_state
)
1732 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1733 free_pages((unsigned long)addr
, cachep
->gfporder
);
1736 static void kmem_rcu_free(struct rcu_head
*head
)
1738 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1739 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1741 kmem_freepages(cachep
, slab_rcu
->addr
);
1742 if (OFF_SLAB(cachep
))
1743 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1748 #ifdef CONFIG_DEBUG_PAGEALLOC
1749 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1750 unsigned long caller
)
1752 int size
= obj_size(cachep
);
1754 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1756 if (size
< 5 * sizeof(unsigned long))
1759 *addr
++ = 0x12345678;
1761 *addr
++ = smp_processor_id();
1762 size
-= 3 * sizeof(unsigned long);
1764 unsigned long *sptr
= &caller
;
1765 unsigned long svalue
;
1767 while (!kstack_end(sptr
)) {
1769 if (kernel_text_address(svalue
)) {
1771 size
-= sizeof(unsigned long);
1772 if (size
<= sizeof(unsigned long))
1778 *addr
++ = 0x87654321;
1782 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1784 int size
= obj_size(cachep
);
1785 addr
= &((char *)addr
)[obj_offset(cachep
)];
1787 memset(addr
, val
, size
);
1788 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1791 static void dump_line(char *data
, int offset
, int limit
)
1794 unsigned char error
= 0;
1797 printk(KERN_ERR
"%03x:", offset
);
1798 for (i
= 0; i
< limit
; i
++) {
1799 if (data
[offset
+ i
] != POISON_FREE
) {
1800 error
= data
[offset
+ i
];
1803 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1807 if (bad_count
== 1) {
1808 error
^= POISON_FREE
;
1809 if (!(error
& (error
- 1))) {
1810 printk(KERN_ERR
"Single bit error detected. Probably "
1813 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1816 printk(KERN_ERR
"Run a memory test tool.\n");
1825 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1830 if (cachep
->flags
& SLAB_RED_ZONE
) {
1831 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1832 *dbg_redzone1(cachep
, objp
),
1833 *dbg_redzone2(cachep
, objp
));
1836 if (cachep
->flags
& SLAB_STORE_USER
) {
1837 printk(KERN_ERR
"Last user: [<%p>]",
1838 *dbg_userword(cachep
, objp
));
1839 print_symbol("(%s)",
1840 (unsigned long)*dbg_userword(cachep
, objp
));
1843 realobj
= (char *)objp
+ obj_offset(cachep
);
1844 size
= obj_size(cachep
);
1845 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1848 if (i
+ limit
> size
)
1850 dump_line(realobj
, i
, limit
);
1854 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1860 realobj
= (char *)objp
+ obj_offset(cachep
);
1861 size
= obj_size(cachep
);
1863 for (i
= 0; i
< size
; i
++) {
1864 char exp
= POISON_FREE
;
1867 if (realobj
[i
] != exp
) {
1873 "Slab corruption: %s start=%p, len=%d\n",
1874 cachep
->name
, realobj
, size
);
1875 print_objinfo(cachep
, objp
, 0);
1877 /* Hexdump the affected line */
1880 if (i
+ limit
> size
)
1882 dump_line(realobj
, i
, limit
);
1885 /* Limit to 5 lines */
1891 /* Print some data about the neighboring objects, if they
1894 struct slab
*slabp
= virt_to_slab(objp
);
1897 objnr
= obj_to_index(cachep
, slabp
, objp
);
1899 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1900 realobj
= (char *)objp
+ obj_offset(cachep
);
1901 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1903 print_objinfo(cachep
, objp
, 2);
1905 if (objnr
+ 1 < cachep
->num
) {
1906 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1907 realobj
= (char *)objp
+ obj_offset(cachep
);
1908 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1910 print_objinfo(cachep
, objp
, 2);
1917 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1920 for (i
= 0; i
< cachep
->num
; i
++) {
1921 void *objp
= index_to_obj(cachep
, slabp
, i
);
1923 if (cachep
->flags
& SLAB_POISON
) {
1924 #ifdef CONFIG_DEBUG_PAGEALLOC
1925 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1927 kernel_map_pages(virt_to_page(objp
),
1928 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1930 check_poison_obj(cachep
, objp
);
1932 check_poison_obj(cachep
, objp
);
1935 if (cachep
->flags
& SLAB_RED_ZONE
) {
1936 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1937 slab_error(cachep
, "start of a freed object "
1939 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1940 slab_error(cachep
, "end of a freed object "
1946 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1952 * slab_destroy - destroy and release all objects in a slab
1953 * @cachep: cache pointer being destroyed
1954 * @slabp: slab pointer being destroyed
1956 * Destroy all the objs in a slab, and release the mem back to the system.
1957 * Before calling the slab must have been unlinked from the cache. The
1958 * cache-lock is not held/needed.
1960 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1962 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1964 slab_destroy_debugcheck(cachep
, slabp
);
1965 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1966 struct slab_rcu
*slab_rcu
;
1968 slab_rcu
= (struct slab_rcu
*)slabp
;
1969 slab_rcu
->cachep
= cachep
;
1970 slab_rcu
->addr
= addr
;
1971 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1973 kmem_freepages(cachep
, addr
);
1974 if (OFF_SLAB(cachep
))
1975 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1979 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1982 struct kmem_list3
*l3
;
1984 for_each_online_cpu(i
)
1985 kfree(cachep
->array
[i
]);
1987 /* NUMA: free the list3 structures */
1988 for_each_online_node(i
) {
1989 l3
= cachep
->nodelists
[i
];
1992 free_alien_cache(l3
->alien
);
1996 kmem_cache_free(&cache_cache
, cachep
);
2001 * calculate_slab_order - calculate size (page order) of slabs
2002 * @cachep: pointer to the cache that is being created
2003 * @size: size of objects to be created in this cache.
2004 * @align: required alignment for the objects.
2005 * @flags: slab allocation flags
2007 * Also calculates the number of objects per slab.
2009 * This could be made much more intelligent. For now, try to avoid using
2010 * high order pages for slabs. When the gfp() functions are more friendly
2011 * towards high-order requests, this should be changed.
2013 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2014 size_t size
, size_t align
, unsigned long flags
)
2016 unsigned long offslab_limit
;
2017 size_t left_over
= 0;
2020 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2024 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2028 if (flags
& CFLGS_OFF_SLAB
) {
2030 * Max number of objs-per-slab for caches which
2031 * use off-slab slabs. Needed to avoid a possible
2032 * looping condition in cache_grow().
2034 offslab_limit
= size
- sizeof(struct slab
);
2035 offslab_limit
/= sizeof(kmem_bufctl_t
);
2037 if (num
> offslab_limit
)
2041 /* Found something acceptable - save it away */
2043 cachep
->gfporder
= gfporder
;
2044 left_over
= remainder
;
2047 * A VFS-reclaimable slab tends to have most allocations
2048 * as GFP_NOFS and we really don't want to have to be allocating
2049 * higher-order pages when we are unable to shrink dcache.
2051 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2055 * Large number of objects is good, but very large slabs are
2056 * currently bad for the gfp()s.
2058 if (gfporder
>= slab_break_gfp_order
)
2062 * Acceptable internal fragmentation?
2064 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2070 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2072 if (g_cpucache_up
== FULL
)
2073 return enable_cpucache(cachep
, gfp
);
2075 if (g_cpucache_up
== NONE
) {
2077 * Note: the first kmem_cache_create must create the cache
2078 * that's used by kmalloc(24), otherwise the creation of
2079 * further caches will BUG().
2081 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2084 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2085 * the first cache, then we need to set up all its list3s,
2086 * otherwise the creation of further caches will BUG().
2088 set_up_list3s(cachep
, SIZE_AC
);
2089 if (INDEX_AC
== INDEX_L3
)
2090 g_cpucache_up
= PARTIAL_L3
;
2092 g_cpucache_up
= PARTIAL_AC
;
2094 cachep
->array
[smp_processor_id()] =
2095 kmalloc(sizeof(struct arraycache_init
), gfp
);
2097 if (g_cpucache_up
== PARTIAL_AC
) {
2098 set_up_list3s(cachep
, SIZE_L3
);
2099 g_cpucache_up
= PARTIAL_L3
;
2102 for_each_online_node(node
) {
2103 cachep
->nodelists
[node
] =
2104 kmalloc_node(sizeof(struct kmem_list3
),
2106 BUG_ON(!cachep
->nodelists
[node
]);
2107 kmem_list3_init(cachep
->nodelists
[node
]);
2111 cachep
->nodelists
[numa_node_id()]->next_reap
=
2112 jiffies
+ REAPTIMEOUT_LIST3
+
2113 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2115 cpu_cache_get(cachep
)->avail
= 0;
2116 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2117 cpu_cache_get(cachep
)->batchcount
= 1;
2118 cpu_cache_get(cachep
)->touched
= 0;
2119 cachep
->batchcount
= 1;
2120 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2125 * kmem_cache_create - Create a cache.
2126 * @name: A string which is used in /proc/slabinfo to identify this cache.
2127 * @size: The size of objects to be created in this cache.
2128 * @align: The required alignment for the objects.
2129 * @flags: SLAB flags
2130 * @ctor: A constructor for the objects.
2132 * Returns a ptr to the cache on success, NULL on failure.
2133 * Cannot be called within a int, but can be interrupted.
2134 * The @ctor is run when new pages are allocated by the cache.
2136 * @name must be valid until the cache is destroyed. This implies that
2137 * the module calling this has to destroy the cache before getting unloaded.
2138 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2139 * therefore applications must manage it themselves.
2143 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2144 * to catch references to uninitialised memory.
2146 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2147 * for buffer overruns.
2149 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2150 * cacheline. This can be beneficial if you're counting cycles as closely
2154 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2155 unsigned long flags
, void (*ctor
)(void *))
2157 size_t left_over
, slab_size
, ralign
;
2158 struct kmem_cache
*cachep
= NULL
, *pc
;
2162 * Sanity checks... these are all serious usage bugs.
2164 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2165 size
> KMALLOC_MAX_SIZE
) {
2166 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2172 * We use cache_chain_mutex to ensure a consistent view of
2173 * cpu_online_mask as well. Please see cpuup_callback
2175 if (slab_is_available()) {
2177 mutex_lock(&cache_chain_mutex
);
2180 list_for_each_entry(pc
, &cache_chain
, next
) {
2185 * This happens when the module gets unloaded and doesn't
2186 * destroy its slab cache and no-one else reuses the vmalloc
2187 * area of the module. Print a warning.
2189 res
= probe_kernel_address(pc
->name
, tmp
);
2192 "SLAB: cache with size %d has lost its name\n",
2197 if (!strcmp(pc
->name
, name
)) {
2199 "kmem_cache_create: duplicate cache %s\n", name
);
2206 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2209 * Enable redzoning and last user accounting, except for caches with
2210 * large objects, if the increased size would increase the object size
2211 * above the next power of two: caches with object sizes just above a
2212 * power of two have a significant amount of internal fragmentation.
2214 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2215 2 * sizeof(unsigned long long)))
2216 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2217 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2218 flags
|= SLAB_POISON
;
2220 if (flags
& SLAB_DESTROY_BY_RCU
)
2221 BUG_ON(flags
& SLAB_POISON
);
2224 * Always checks flags, a caller might be expecting debug support which
2227 BUG_ON(flags
& ~CREATE_MASK
);
2230 * Check that size is in terms of words. This is needed to avoid
2231 * unaligned accesses for some archs when redzoning is used, and makes
2232 * sure any on-slab bufctl's are also correctly aligned.
2234 if (size
& (BYTES_PER_WORD
- 1)) {
2235 size
+= (BYTES_PER_WORD
- 1);
2236 size
&= ~(BYTES_PER_WORD
- 1);
2239 /* calculate the final buffer alignment: */
2241 /* 1) arch recommendation: can be overridden for debug */
2242 if (flags
& SLAB_HWCACHE_ALIGN
) {
2244 * Default alignment: as specified by the arch code. Except if
2245 * an object is really small, then squeeze multiple objects into
2248 ralign
= cache_line_size();
2249 while (size
<= ralign
/ 2)
2252 ralign
= BYTES_PER_WORD
;
2256 * Redzoning and user store require word alignment or possibly larger.
2257 * Note this will be overridden by architecture or caller mandated
2258 * alignment if either is greater than BYTES_PER_WORD.
2260 if (flags
& SLAB_STORE_USER
)
2261 ralign
= BYTES_PER_WORD
;
2263 if (flags
& SLAB_RED_ZONE
) {
2264 ralign
= REDZONE_ALIGN
;
2265 /* If redzoning, ensure that the second redzone is suitably
2266 * aligned, by adjusting the object size accordingly. */
2267 size
+= REDZONE_ALIGN
- 1;
2268 size
&= ~(REDZONE_ALIGN
- 1);
2271 /* 2) arch mandated alignment */
2272 if (ralign
< ARCH_SLAB_MINALIGN
) {
2273 ralign
= ARCH_SLAB_MINALIGN
;
2275 /* 3) caller mandated alignment */
2276 if (ralign
< align
) {
2279 /* disable debug if necessary */
2280 if (ralign
> __alignof__(unsigned long long))
2281 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2287 if (slab_is_available())
2292 /* Get cache's description obj. */
2293 cachep
= kmem_cache_zalloc(&cache_cache
, gfp
);
2298 cachep
->obj_size
= size
;
2301 * Both debugging options require word-alignment which is calculated
2304 if (flags
& SLAB_RED_ZONE
) {
2305 /* add space for red zone words */
2306 cachep
->obj_offset
+= sizeof(unsigned long long);
2307 size
+= 2 * sizeof(unsigned long long);
2309 if (flags
& SLAB_STORE_USER
) {
2310 /* user store requires one word storage behind the end of
2311 * the real object. But if the second red zone needs to be
2312 * aligned to 64 bits, we must allow that much space.
2314 if (flags
& SLAB_RED_ZONE
)
2315 size
+= REDZONE_ALIGN
;
2317 size
+= BYTES_PER_WORD
;
2319 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2320 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2321 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2322 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2329 * Determine if the slab management is 'on' or 'off' slab.
2330 * (bootstrapping cannot cope with offslab caches so don't do
2333 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2335 * Size is large, assume best to place the slab management obj
2336 * off-slab (should allow better packing of objs).
2338 flags
|= CFLGS_OFF_SLAB
;
2340 size
= ALIGN(size
, align
);
2342 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2346 "kmem_cache_create: couldn't create cache %s.\n", name
);
2347 kmem_cache_free(&cache_cache
, cachep
);
2351 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2352 + sizeof(struct slab
), align
);
2355 * If the slab has been placed off-slab, and we have enough space then
2356 * move it on-slab. This is at the expense of any extra colouring.
2358 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2359 flags
&= ~CFLGS_OFF_SLAB
;
2360 left_over
-= slab_size
;
2363 if (flags
& CFLGS_OFF_SLAB
) {
2364 /* really off slab. No need for manual alignment */
2366 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2369 cachep
->colour_off
= cache_line_size();
2370 /* Offset must be a multiple of the alignment. */
2371 if (cachep
->colour_off
< align
)
2372 cachep
->colour_off
= align
;
2373 cachep
->colour
= left_over
/ cachep
->colour_off
;
2374 cachep
->slab_size
= slab_size
;
2375 cachep
->flags
= flags
;
2376 cachep
->gfpflags
= 0;
2377 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2378 cachep
->gfpflags
|= GFP_DMA
;
2379 cachep
->buffer_size
= size
;
2380 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2382 if (flags
& CFLGS_OFF_SLAB
) {
2383 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2385 * This is a possibility for one of the malloc_sizes caches.
2386 * But since we go off slab only for object size greater than
2387 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2388 * this should not happen at all.
2389 * But leave a BUG_ON for some lucky dude.
2391 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2393 cachep
->ctor
= ctor
;
2394 cachep
->name
= name
;
2396 if (setup_cpu_cache(cachep
, gfp
)) {
2397 __kmem_cache_destroy(cachep
);
2402 /* cache setup completed, link it into the list */
2403 list_add(&cachep
->next
, &cache_chain
);
2405 if (!cachep
&& (flags
& SLAB_PANIC
))
2406 panic("kmem_cache_create(): failed to create slab `%s'\n",
2408 if (slab_is_available()) {
2409 mutex_unlock(&cache_chain_mutex
);
2414 EXPORT_SYMBOL(kmem_cache_create
);
2417 static void check_irq_off(void)
2419 BUG_ON(!irqs_disabled());
2422 static void check_irq_on(void)
2424 BUG_ON(irqs_disabled());
2427 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2431 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2435 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2439 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2444 #define check_irq_off() do { } while(0)
2445 #define check_irq_on() do { } while(0)
2446 #define check_spinlock_acquired(x) do { } while(0)
2447 #define check_spinlock_acquired_node(x, y) do { } while(0)
2450 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2451 struct array_cache
*ac
,
2452 int force
, int node
);
2454 static void do_drain(void *arg
)
2456 struct kmem_cache
*cachep
= arg
;
2457 struct array_cache
*ac
;
2458 int node
= numa_node_id();
2461 ac
= cpu_cache_get(cachep
);
2462 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2463 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2464 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2468 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2470 struct kmem_list3
*l3
;
2473 on_each_cpu(do_drain
, cachep
, 1);
2475 for_each_online_node(node
) {
2476 l3
= cachep
->nodelists
[node
];
2477 if (l3
&& l3
->alien
)
2478 drain_alien_cache(cachep
, l3
->alien
);
2481 for_each_online_node(node
) {
2482 l3
= cachep
->nodelists
[node
];
2484 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2489 * Remove slabs from the list of free slabs.
2490 * Specify the number of slabs to drain in tofree.
2492 * Returns the actual number of slabs released.
2494 static int drain_freelist(struct kmem_cache
*cache
,
2495 struct kmem_list3
*l3
, int tofree
)
2497 struct list_head
*p
;
2502 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2504 spin_lock_irq(&l3
->list_lock
);
2505 p
= l3
->slabs_free
.prev
;
2506 if (p
== &l3
->slabs_free
) {
2507 spin_unlock_irq(&l3
->list_lock
);
2511 slabp
= list_entry(p
, struct slab
, list
);
2513 BUG_ON(slabp
->inuse
);
2515 list_del(&slabp
->list
);
2517 * Safe to drop the lock. The slab is no longer linked
2520 l3
->free_objects
-= cache
->num
;
2521 spin_unlock_irq(&l3
->list_lock
);
2522 slab_destroy(cache
, slabp
);
2529 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2530 static int __cache_shrink(struct kmem_cache
*cachep
)
2533 struct kmem_list3
*l3
;
2535 drain_cpu_caches(cachep
);
2538 for_each_online_node(i
) {
2539 l3
= cachep
->nodelists
[i
];
2543 drain_freelist(cachep
, l3
, l3
->free_objects
);
2545 ret
+= !list_empty(&l3
->slabs_full
) ||
2546 !list_empty(&l3
->slabs_partial
);
2548 return (ret
? 1 : 0);
2552 * kmem_cache_shrink - Shrink a cache.
2553 * @cachep: The cache to shrink.
2555 * Releases as many slabs as possible for a cache.
2556 * To help debugging, a zero exit status indicates all slabs were released.
2558 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2561 BUG_ON(!cachep
|| in_interrupt());
2564 mutex_lock(&cache_chain_mutex
);
2565 ret
= __cache_shrink(cachep
);
2566 mutex_unlock(&cache_chain_mutex
);
2570 EXPORT_SYMBOL(kmem_cache_shrink
);
2573 * kmem_cache_destroy - delete a cache
2574 * @cachep: the cache to destroy
2576 * Remove a &struct kmem_cache object from the slab cache.
2578 * It is expected this function will be called by a module when it is
2579 * unloaded. This will remove the cache completely, and avoid a duplicate
2580 * cache being allocated each time a module is loaded and unloaded, if the
2581 * module doesn't have persistent in-kernel storage across loads and unloads.
2583 * The cache must be empty before calling this function.
2585 * The caller must guarantee that noone will allocate memory from the cache
2586 * during the kmem_cache_destroy().
2588 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2590 BUG_ON(!cachep
|| in_interrupt());
2592 /* Find the cache in the chain of caches. */
2594 mutex_lock(&cache_chain_mutex
);
2596 * the chain is never empty, cache_cache is never destroyed
2598 list_del(&cachep
->next
);
2599 if (__cache_shrink(cachep
)) {
2600 slab_error(cachep
, "Can't free all objects");
2601 list_add(&cachep
->next
, &cache_chain
);
2602 mutex_unlock(&cache_chain_mutex
);
2607 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2610 __kmem_cache_destroy(cachep
);
2611 mutex_unlock(&cache_chain_mutex
);
2614 EXPORT_SYMBOL(kmem_cache_destroy
);
2617 * Get the memory for a slab management obj.
2618 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2619 * always come from malloc_sizes caches. The slab descriptor cannot
2620 * come from the same cache which is getting created because,
2621 * when we are searching for an appropriate cache for these
2622 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2623 * If we are creating a malloc_sizes cache here it would not be visible to
2624 * kmem_find_general_cachep till the initialization is complete.
2625 * Hence we cannot have slabp_cache same as the original cache.
2627 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2628 int colour_off
, gfp_t local_flags
,
2633 if (OFF_SLAB(cachep
)) {
2634 /* Slab management obj is off-slab. */
2635 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2636 local_flags
, nodeid
);
2638 * If the first object in the slab is leaked (it's allocated
2639 * but no one has a reference to it), we want to make sure
2640 * kmemleak does not treat the ->s_mem pointer as a reference
2641 * to the object. Otherwise we will not report the leak.
2643 kmemleak_scan_area(slabp
, offsetof(struct slab
, list
),
2644 sizeof(struct list_head
), local_flags
);
2648 slabp
= objp
+ colour_off
;
2649 colour_off
+= cachep
->slab_size
;
2652 slabp
->colouroff
= colour_off
;
2653 slabp
->s_mem
= objp
+ colour_off
;
2654 slabp
->nodeid
= nodeid
;
2659 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2661 return (kmem_bufctl_t
*) (slabp
+ 1);
2664 static void cache_init_objs(struct kmem_cache
*cachep
,
2669 for (i
= 0; i
< cachep
->num
; i
++) {
2670 void *objp
= index_to_obj(cachep
, slabp
, i
);
2672 /* need to poison the objs? */
2673 if (cachep
->flags
& SLAB_POISON
)
2674 poison_obj(cachep
, objp
, POISON_FREE
);
2675 if (cachep
->flags
& SLAB_STORE_USER
)
2676 *dbg_userword(cachep
, objp
) = NULL
;
2678 if (cachep
->flags
& SLAB_RED_ZONE
) {
2679 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2680 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2683 * Constructors are not allowed to allocate memory from the same
2684 * cache which they are a constructor for. Otherwise, deadlock.
2685 * They must also be threaded.
2687 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2688 cachep
->ctor(objp
+ obj_offset(cachep
));
2690 if (cachep
->flags
& SLAB_RED_ZONE
) {
2691 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2692 slab_error(cachep
, "constructor overwrote the"
2693 " end of an object");
2694 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2695 slab_error(cachep
, "constructor overwrote the"
2696 " start of an object");
2698 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2699 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2700 kernel_map_pages(virt_to_page(objp
),
2701 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2706 slab_bufctl(slabp
)[i
] = i
+ 1;
2708 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2711 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2713 if (CONFIG_ZONE_DMA_FLAG
) {
2714 if (flags
& GFP_DMA
)
2715 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2717 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2721 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2724 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2728 next
= slab_bufctl(slabp
)[slabp
->free
];
2730 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2731 WARN_ON(slabp
->nodeid
!= nodeid
);
2738 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2739 void *objp
, int nodeid
)
2741 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2744 /* Verify that the slab belongs to the intended node */
2745 WARN_ON(slabp
->nodeid
!= nodeid
);
2747 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2748 printk(KERN_ERR
"slab: double free detected in cache "
2749 "'%s', objp %p\n", cachep
->name
, objp
);
2753 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2754 slabp
->free
= objnr
;
2759 * Map pages beginning at addr to the given cache and slab. This is required
2760 * for the slab allocator to be able to lookup the cache and slab of a
2761 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2763 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2769 page
= virt_to_page(addr
);
2772 if (likely(!PageCompound(page
)))
2773 nr_pages
<<= cache
->gfporder
;
2776 page_set_cache(page
, cache
);
2777 page_set_slab(page
, slab
);
2779 } while (--nr_pages
);
2783 * Grow (by 1) the number of slabs within a cache. This is called by
2784 * kmem_cache_alloc() when there are no active objs left in a cache.
2786 static int cache_grow(struct kmem_cache
*cachep
,
2787 gfp_t flags
, int nodeid
, void *objp
)
2792 struct kmem_list3
*l3
;
2795 * Be lazy and only check for valid flags here, keeping it out of the
2796 * critical path in kmem_cache_alloc().
2798 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2799 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2801 /* Take the l3 list lock to change the colour_next on this node */
2803 l3
= cachep
->nodelists
[nodeid
];
2804 spin_lock(&l3
->list_lock
);
2806 /* Get colour for the slab, and cal the next value. */
2807 offset
= l3
->colour_next
;
2809 if (l3
->colour_next
>= cachep
->colour
)
2810 l3
->colour_next
= 0;
2811 spin_unlock(&l3
->list_lock
);
2813 offset
*= cachep
->colour_off
;
2815 if (local_flags
& __GFP_WAIT
)
2819 * The test for missing atomic flag is performed here, rather than
2820 * the more obvious place, simply to reduce the critical path length
2821 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2822 * will eventually be caught here (where it matters).
2824 kmem_flagcheck(cachep
, flags
);
2827 * Get mem for the objs. Attempt to allocate a physical page from
2831 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2835 /* Get slab management. */
2836 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2837 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2841 slab_map_pages(cachep
, slabp
, objp
);
2843 cache_init_objs(cachep
, slabp
);
2845 if (local_flags
& __GFP_WAIT
)
2846 local_irq_disable();
2848 spin_lock(&l3
->list_lock
);
2850 /* Make slab active. */
2851 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2852 STATS_INC_GROWN(cachep
);
2853 l3
->free_objects
+= cachep
->num
;
2854 spin_unlock(&l3
->list_lock
);
2857 kmem_freepages(cachep
, objp
);
2859 if (local_flags
& __GFP_WAIT
)
2860 local_irq_disable();
2867 * Perform extra freeing checks:
2868 * - detect bad pointers.
2869 * - POISON/RED_ZONE checking
2871 static void kfree_debugcheck(const void *objp
)
2873 if (!virt_addr_valid(objp
)) {
2874 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2875 (unsigned long)objp
);
2880 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2882 unsigned long long redzone1
, redzone2
;
2884 redzone1
= *dbg_redzone1(cache
, obj
);
2885 redzone2
= *dbg_redzone2(cache
, obj
);
2890 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2893 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2894 slab_error(cache
, "double free detected");
2896 slab_error(cache
, "memory outside object was overwritten");
2898 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2899 obj
, redzone1
, redzone2
);
2902 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2909 BUG_ON(virt_to_cache(objp
) != cachep
);
2911 objp
-= obj_offset(cachep
);
2912 kfree_debugcheck(objp
);
2913 page
= virt_to_head_page(objp
);
2915 slabp
= page_get_slab(page
);
2917 if (cachep
->flags
& SLAB_RED_ZONE
) {
2918 verify_redzone_free(cachep
, objp
);
2919 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2920 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2922 if (cachep
->flags
& SLAB_STORE_USER
)
2923 *dbg_userword(cachep
, objp
) = caller
;
2925 objnr
= obj_to_index(cachep
, slabp
, objp
);
2927 BUG_ON(objnr
>= cachep
->num
);
2928 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2930 #ifdef CONFIG_DEBUG_SLAB_LEAK
2931 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2933 if (cachep
->flags
& SLAB_POISON
) {
2934 #ifdef CONFIG_DEBUG_PAGEALLOC
2935 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2936 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2937 kernel_map_pages(virt_to_page(objp
),
2938 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2940 poison_obj(cachep
, objp
, POISON_FREE
);
2943 poison_obj(cachep
, objp
, POISON_FREE
);
2949 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2954 /* Check slab's freelist to see if this obj is there. */
2955 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2957 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2960 if (entries
!= cachep
->num
- slabp
->inuse
) {
2962 printk(KERN_ERR
"slab: Internal list corruption detected in "
2963 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2964 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2966 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2969 printk("\n%03x:", i
);
2970 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2977 #define kfree_debugcheck(x) do { } while(0)
2978 #define cache_free_debugcheck(x,objp,z) (objp)
2979 #define check_slabp(x,y) do { } while(0)
2982 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2985 struct kmem_list3
*l3
;
2986 struct array_cache
*ac
;
2991 node
= numa_node_id();
2992 ac
= cpu_cache_get(cachep
);
2993 batchcount
= ac
->batchcount
;
2994 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2996 * If there was little recent activity on this cache, then
2997 * perform only a partial refill. Otherwise we could generate
3000 batchcount
= BATCHREFILL_LIMIT
;
3002 l3
= cachep
->nodelists
[node
];
3004 BUG_ON(ac
->avail
> 0 || !l3
);
3005 spin_lock(&l3
->list_lock
);
3007 /* See if we can refill from the shared array */
3008 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
3011 while (batchcount
> 0) {
3012 struct list_head
*entry
;
3014 /* Get slab alloc is to come from. */
3015 entry
= l3
->slabs_partial
.next
;
3016 if (entry
== &l3
->slabs_partial
) {
3017 l3
->free_touched
= 1;
3018 entry
= l3
->slabs_free
.next
;
3019 if (entry
== &l3
->slabs_free
)
3023 slabp
= list_entry(entry
, struct slab
, list
);
3024 check_slabp(cachep
, slabp
);
3025 check_spinlock_acquired(cachep
);
3028 * The slab was either on partial or free list so
3029 * there must be at least one object available for
3032 BUG_ON(slabp
->inuse
>= cachep
->num
);
3034 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3035 STATS_INC_ALLOCED(cachep
);
3036 STATS_INC_ACTIVE(cachep
);
3037 STATS_SET_HIGH(cachep
);
3039 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3042 check_slabp(cachep
, slabp
);
3044 /* move slabp to correct slabp list: */
3045 list_del(&slabp
->list
);
3046 if (slabp
->free
== BUFCTL_END
)
3047 list_add(&slabp
->list
, &l3
->slabs_full
);
3049 list_add(&slabp
->list
, &l3
->slabs_partial
);
3053 l3
->free_objects
-= ac
->avail
;
3055 spin_unlock(&l3
->list_lock
);
3057 if (unlikely(!ac
->avail
)) {
3059 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3061 /* cache_grow can reenable interrupts, then ac could change. */
3062 ac
= cpu_cache_get(cachep
);
3063 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3066 if (!ac
->avail
) /* objects refilled by interrupt? */
3070 return ac
->entry
[--ac
->avail
];
3073 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3076 might_sleep_if(flags
& __GFP_WAIT
);
3078 kmem_flagcheck(cachep
, flags
);
3083 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3084 gfp_t flags
, void *objp
, void *caller
)
3088 if (cachep
->flags
& SLAB_POISON
) {
3089 #ifdef CONFIG_DEBUG_PAGEALLOC
3090 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3091 kernel_map_pages(virt_to_page(objp
),
3092 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3094 check_poison_obj(cachep
, objp
);
3096 check_poison_obj(cachep
, objp
);
3098 poison_obj(cachep
, objp
, POISON_INUSE
);
3100 if (cachep
->flags
& SLAB_STORE_USER
)
3101 *dbg_userword(cachep
, objp
) = caller
;
3103 if (cachep
->flags
& SLAB_RED_ZONE
) {
3104 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3105 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3106 slab_error(cachep
, "double free, or memory outside"
3107 " object was overwritten");
3109 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3110 objp
, *dbg_redzone1(cachep
, objp
),
3111 *dbg_redzone2(cachep
, objp
));
3113 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3114 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3116 #ifdef CONFIG_DEBUG_SLAB_LEAK
3121 slabp
= page_get_slab(virt_to_head_page(objp
));
3122 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3123 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3126 objp
+= obj_offset(cachep
);
3127 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3129 #if ARCH_SLAB_MINALIGN
3130 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3131 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3132 objp
, ARCH_SLAB_MINALIGN
);
3138 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3141 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3143 if (cachep
== &cache_cache
)
3146 return should_failslab(obj_size(cachep
), flags
);
3149 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3152 struct array_cache
*ac
;
3156 ac
= cpu_cache_get(cachep
);
3157 if (likely(ac
->avail
)) {
3158 STATS_INC_ALLOCHIT(cachep
);
3160 objp
= ac
->entry
[--ac
->avail
];
3162 STATS_INC_ALLOCMISS(cachep
);
3163 objp
= cache_alloc_refill(cachep
, flags
);
3166 * To avoid a false negative, if an object that is in one of the
3167 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3168 * treat the array pointers as a reference to the object.
3170 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3176 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3178 * If we are in_interrupt, then process context, including cpusets and
3179 * mempolicy, may not apply and should not be used for allocation policy.
3181 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3183 int nid_alloc
, nid_here
;
3185 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3187 nid_alloc
= nid_here
= numa_node_id();
3188 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3189 nid_alloc
= cpuset_mem_spread_node();
3190 else if (current
->mempolicy
)
3191 nid_alloc
= slab_node(current
->mempolicy
);
3192 if (nid_alloc
!= nid_here
)
3193 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3198 * Fallback function if there was no memory available and no objects on a
3199 * certain node and fall back is permitted. First we scan all the
3200 * available nodelists for available objects. If that fails then we
3201 * perform an allocation without specifying a node. This allows the page
3202 * allocator to do its reclaim / fallback magic. We then insert the
3203 * slab into the proper nodelist and then allocate from it.
3205 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3207 struct zonelist
*zonelist
;
3211 enum zone_type high_zoneidx
= gfp_zone(flags
);
3215 if (flags
& __GFP_THISNODE
)
3218 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3219 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3223 * Look through allowed nodes for objects available
3224 * from existing per node queues.
3226 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3227 nid
= zone_to_nid(zone
);
3229 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3230 cache
->nodelists
[nid
] &&
3231 cache
->nodelists
[nid
]->free_objects
) {
3232 obj
= ____cache_alloc_node(cache
,
3233 flags
| GFP_THISNODE
, nid
);
3241 * This allocation will be performed within the constraints
3242 * of the current cpuset / memory policy requirements.
3243 * We may trigger various forms of reclaim on the allowed
3244 * set and go into memory reserves if necessary.
3246 if (local_flags
& __GFP_WAIT
)
3248 kmem_flagcheck(cache
, flags
);
3249 obj
= kmem_getpages(cache
, local_flags
, -1);
3250 if (local_flags
& __GFP_WAIT
)
3251 local_irq_disable();
3254 * Insert into the appropriate per node queues
3256 nid
= page_to_nid(virt_to_page(obj
));
3257 if (cache_grow(cache
, flags
, nid
, obj
)) {
3258 obj
= ____cache_alloc_node(cache
,
3259 flags
| GFP_THISNODE
, nid
);
3262 * Another processor may allocate the
3263 * objects in the slab since we are
3264 * not holding any locks.
3268 /* cache_grow already freed obj */
3277 * A interface to enable slab creation on nodeid
3279 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3282 struct list_head
*entry
;
3284 struct kmem_list3
*l3
;
3288 l3
= cachep
->nodelists
[nodeid
];
3293 spin_lock(&l3
->list_lock
);
3294 entry
= l3
->slabs_partial
.next
;
3295 if (entry
== &l3
->slabs_partial
) {
3296 l3
->free_touched
= 1;
3297 entry
= l3
->slabs_free
.next
;
3298 if (entry
== &l3
->slabs_free
)
3302 slabp
= list_entry(entry
, struct slab
, list
);
3303 check_spinlock_acquired_node(cachep
, nodeid
);
3304 check_slabp(cachep
, slabp
);
3306 STATS_INC_NODEALLOCS(cachep
);
3307 STATS_INC_ACTIVE(cachep
);
3308 STATS_SET_HIGH(cachep
);
3310 BUG_ON(slabp
->inuse
== cachep
->num
);
3312 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3313 check_slabp(cachep
, slabp
);
3315 /* move slabp to correct slabp list: */
3316 list_del(&slabp
->list
);
3318 if (slabp
->free
== BUFCTL_END
)
3319 list_add(&slabp
->list
, &l3
->slabs_full
);
3321 list_add(&slabp
->list
, &l3
->slabs_partial
);
3323 spin_unlock(&l3
->list_lock
);
3327 spin_unlock(&l3
->list_lock
);
3328 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3332 return fallback_alloc(cachep
, flags
);
3339 * kmem_cache_alloc_node - Allocate an object on the specified node
3340 * @cachep: The cache to allocate from.
3341 * @flags: See kmalloc().
3342 * @nodeid: node number of the target node.
3343 * @caller: return address of caller, used for debug information
3345 * Identical to kmem_cache_alloc but it will allocate memory on the given
3346 * node, which can improve the performance for cpu bound structures.
3348 * Fallback to other node is possible if __GFP_THISNODE is not set.
3350 static __always_inline
void *
3351 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3354 unsigned long save_flags
;
3357 lockdep_trace_alloc(flags
);
3359 if (slab_should_failslab(cachep
, flags
))
3362 cache_alloc_debugcheck_before(cachep
, flags
);
3363 local_irq_save(save_flags
);
3365 if (unlikely(nodeid
== -1))
3366 nodeid
= numa_node_id();
3368 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3369 /* Node not bootstrapped yet */
3370 ptr
= fallback_alloc(cachep
, flags
);
3374 if (nodeid
== numa_node_id()) {
3376 * Use the locally cached objects if possible.
3377 * However ____cache_alloc does not allow fallback
3378 * to other nodes. It may fail while we still have
3379 * objects on other nodes available.
3381 ptr
= ____cache_alloc(cachep
, flags
);
3385 /* ___cache_alloc_node can fall back to other nodes */
3386 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3388 local_irq_restore(save_flags
);
3389 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3390 kmemleak_alloc_recursive(ptr
, obj_size(cachep
), 1, cachep
->flags
,
3393 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3394 memset(ptr
, 0, obj_size(cachep
));
3399 static __always_inline
void *
3400 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3404 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3405 objp
= alternate_node_alloc(cache
, flags
);
3409 objp
= ____cache_alloc(cache
, flags
);
3412 * We may just have run out of memory on the local node.
3413 * ____cache_alloc_node() knows how to locate memory on other nodes
3416 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3423 static __always_inline
void *
3424 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3426 return ____cache_alloc(cachep
, flags
);
3429 #endif /* CONFIG_NUMA */
3431 static __always_inline
void *
3432 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3434 unsigned long save_flags
;
3437 lockdep_trace_alloc(flags
);
3439 if (slab_should_failslab(cachep
, flags
))
3442 cache_alloc_debugcheck_before(cachep
, flags
);
3443 local_irq_save(save_flags
);
3444 objp
= __do_cache_alloc(cachep
, flags
);
3445 local_irq_restore(save_flags
);
3446 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3447 kmemleak_alloc_recursive(objp
, obj_size(cachep
), 1, cachep
->flags
,
3451 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3452 memset(objp
, 0, obj_size(cachep
));
3458 * Caller needs to acquire correct kmem_list's list_lock
3460 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3464 struct kmem_list3
*l3
;
3466 for (i
= 0; i
< nr_objects
; i
++) {
3467 void *objp
= objpp
[i
];
3470 slabp
= virt_to_slab(objp
);
3471 l3
= cachep
->nodelists
[node
];
3472 list_del(&slabp
->list
);
3473 check_spinlock_acquired_node(cachep
, node
);
3474 check_slabp(cachep
, slabp
);
3475 slab_put_obj(cachep
, slabp
, objp
, node
);
3476 STATS_DEC_ACTIVE(cachep
);
3478 check_slabp(cachep
, slabp
);
3480 /* fixup slab chains */
3481 if (slabp
->inuse
== 0) {
3482 if (l3
->free_objects
> l3
->free_limit
) {
3483 l3
->free_objects
-= cachep
->num
;
3484 /* No need to drop any previously held
3485 * lock here, even if we have a off-slab slab
3486 * descriptor it is guaranteed to come from
3487 * a different cache, refer to comments before
3490 slab_destroy(cachep
, slabp
);
3492 list_add(&slabp
->list
, &l3
->slabs_free
);
3495 /* Unconditionally move a slab to the end of the
3496 * partial list on free - maximum time for the
3497 * other objects to be freed, too.
3499 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3504 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3507 struct kmem_list3
*l3
;
3508 int node
= numa_node_id();
3510 batchcount
= ac
->batchcount
;
3512 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3515 l3
= cachep
->nodelists
[node
];
3516 spin_lock(&l3
->list_lock
);
3518 struct array_cache
*shared_array
= l3
->shared
;
3519 int max
= shared_array
->limit
- shared_array
->avail
;
3521 if (batchcount
> max
)
3523 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3524 ac
->entry
, sizeof(void *) * batchcount
);
3525 shared_array
->avail
+= batchcount
;
3530 free_block(cachep
, ac
->entry
, batchcount
, node
);
3535 struct list_head
*p
;
3537 p
= l3
->slabs_free
.next
;
3538 while (p
!= &(l3
->slabs_free
)) {
3541 slabp
= list_entry(p
, struct slab
, list
);
3542 BUG_ON(slabp
->inuse
);
3547 STATS_SET_FREEABLE(cachep
, i
);
3550 spin_unlock(&l3
->list_lock
);
3551 ac
->avail
-= batchcount
;
3552 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3556 * Release an obj back to its cache. If the obj has a constructed state, it must
3557 * be in this state _before_ it is released. Called with disabled ints.
3559 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3561 struct array_cache
*ac
= cpu_cache_get(cachep
);
3564 kmemleak_free_recursive(objp
, cachep
->flags
);
3565 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3568 * Skip calling cache_free_alien() when the platform is not numa.
3569 * This will avoid cache misses that happen while accessing slabp (which
3570 * is per page memory reference) to get nodeid. Instead use a global
3571 * variable to skip the call, which is mostly likely to be present in
3574 if (numa_platform
&& cache_free_alien(cachep
, objp
))
3577 if (likely(ac
->avail
< ac
->limit
)) {
3578 STATS_INC_FREEHIT(cachep
);
3579 ac
->entry
[ac
->avail
++] = objp
;
3582 STATS_INC_FREEMISS(cachep
);
3583 cache_flusharray(cachep
, ac
);
3584 ac
->entry
[ac
->avail
++] = objp
;
3589 * kmem_cache_alloc - Allocate an object
3590 * @cachep: The cache to allocate from.
3591 * @flags: See kmalloc().
3593 * Allocate an object from this cache. The flags are only relevant
3594 * if the cache has no available objects.
3596 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3598 void *ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3600 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3601 obj_size(cachep
), cachep
->buffer_size
, flags
);
3605 EXPORT_SYMBOL(kmem_cache_alloc
);
3607 #ifdef CONFIG_KMEMTRACE
3608 void *kmem_cache_alloc_notrace(struct kmem_cache
*cachep
, gfp_t flags
)
3610 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3612 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
3616 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3617 * @cachep: the cache we're checking against
3618 * @ptr: pointer to validate
3620 * This verifies that the untrusted pointer looks sane;
3621 * it is _not_ a guarantee that the pointer is actually
3622 * part of the slab cache in question, but it at least
3623 * validates that the pointer can be dereferenced and
3624 * looks half-way sane.
3626 * Currently only used for dentry validation.
3628 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3630 unsigned long addr
= (unsigned long)ptr
;
3631 unsigned long min_addr
= PAGE_OFFSET
;
3632 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3633 unsigned long size
= cachep
->buffer_size
;
3636 if (unlikely(addr
< min_addr
))
3638 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3640 if (unlikely(addr
& align_mask
))
3642 if (unlikely(!kern_addr_valid(addr
)))
3644 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3646 page
= virt_to_page(ptr
);
3647 if (unlikely(!PageSlab(page
)))
3649 if (unlikely(page_get_cache(page
) != cachep
))
3657 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3659 void *ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3660 __builtin_return_address(0));
3662 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3663 obj_size(cachep
), cachep
->buffer_size
,
3668 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3670 #ifdef CONFIG_KMEMTRACE
3671 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*cachep
,
3675 return __cache_alloc_node(cachep
, flags
, nodeid
,
3676 __builtin_return_address(0));
3678 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
3681 static __always_inline
void *
3682 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3684 struct kmem_cache
*cachep
;
3687 cachep
= kmem_find_general_cachep(size
, flags
);
3688 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3690 ret
= kmem_cache_alloc_node_notrace(cachep
, flags
, node
);
3692 trace_kmalloc_node((unsigned long) caller
, ret
,
3693 size
, cachep
->buffer_size
, flags
, node
);
3698 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3699 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3701 return __do_kmalloc_node(size
, flags
, node
,
3702 __builtin_return_address(0));
3704 EXPORT_SYMBOL(__kmalloc_node
);
3706 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3707 int node
, unsigned long caller
)
3709 return __do_kmalloc_node(size
, flags
, node
, (void *)caller
);
3711 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3713 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3715 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3717 EXPORT_SYMBOL(__kmalloc_node
);
3718 #endif /* CONFIG_DEBUG_SLAB */
3719 #endif /* CONFIG_NUMA */
3722 * __do_kmalloc - allocate memory
3723 * @size: how many bytes of memory are required.
3724 * @flags: the type of memory to allocate (see kmalloc).
3725 * @caller: function caller for debug tracking of the caller
3727 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3730 struct kmem_cache
*cachep
;
3733 /* If you want to save a few bytes .text space: replace
3735 * Then kmalloc uses the uninlined functions instead of the inline
3738 cachep
= __find_general_cachep(size
, flags
);
3739 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3741 ret
= __cache_alloc(cachep
, flags
, caller
);
3743 trace_kmalloc((unsigned long) caller
, ret
,
3744 size
, cachep
->buffer_size
, flags
);
3750 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3751 void *__kmalloc(size_t size
, gfp_t flags
)
3753 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3755 EXPORT_SYMBOL(__kmalloc
);
3757 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3759 return __do_kmalloc(size
, flags
, (void *)caller
);
3761 EXPORT_SYMBOL(__kmalloc_track_caller
);
3764 void *__kmalloc(size_t size
, gfp_t flags
)
3766 return __do_kmalloc(size
, flags
, NULL
);
3768 EXPORT_SYMBOL(__kmalloc
);
3772 * kmem_cache_free - Deallocate an object
3773 * @cachep: The cache the allocation was from.
3774 * @objp: The previously allocated object.
3776 * Free an object which was previously allocated from this
3779 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3781 unsigned long flags
;
3783 local_irq_save(flags
);
3784 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3785 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3786 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3787 __cache_free(cachep
, objp
);
3788 local_irq_restore(flags
);
3790 trace_kmem_cache_free(_RET_IP_
, objp
);
3792 EXPORT_SYMBOL(kmem_cache_free
);
3795 * kfree - free previously allocated memory
3796 * @objp: pointer returned by kmalloc.
3798 * If @objp is NULL, no operation is performed.
3800 * Don't free memory not originally allocated by kmalloc()
3801 * or you will run into trouble.
3803 void kfree(const void *objp
)
3805 struct kmem_cache
*c
;
3806 unsigned long flags
;
3808 trace_kfree(_RET_IP_
, objp
);
3810 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3812 local_irq_save(flags
);
3813 kfree_debugcheck(objp
);
3814 c
= virt_to_cache(objp
);
3815 debug_check_no_locks_freed(objp
, obj_size(c
));
3816 debug_check_no_obj_freed(objp
, obj_size(c
));
3817 __cache_free(c
, (void *)objp
);
3818 local_irq_restore(flags
);
3820 EXPORT_SYMBOL(kfree
);
3822 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3824 return obj_size(cachep
);
3826 EXPORT_SYMBOL(kmem_cache_size
);
3828 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3830 return cachep
->name
;
3832 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3835 * This initializes kmem_list3 or resizes various caches for all nodes.
3837 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3840 struct kmem_list3
*l3
;
3841 struct array_cache
*new_shared
;
3842 struct array_cache
**new_alien
= NULL
;
3844 for_each_online_node(node
) {
3846 if (use_alien_caches
) {
3847 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3853 if (cachep
->shared
) {
3854 new_shared
= alloc_arraycache(node
,
3855 cachep
->shared
*cachep
->batchcount
,
3858 free_alien_cache(new_alien
);
3863 l3
= cachep
->nodelists
[node
];
3865 struct array_cache
*shared
= l3
->shared
;
3867 spin_lock_irq(&l3
->list_lock
);
3870 free_block(cachep
, shared
->entry
,
3871 shared
->avail
, node
);
3873 l3
->shared
= new_shared
;
3875 l3
->alien
= new_alien
;
3878 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3879 cachep
->batchcount
+ cachep
->num
;
3880 spin_unlock_irq(&l3
->list_lock
);
3882 free_alien_cache(new_alien
);
3885 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
3887 free_alien_cache(new_alien
);
3892 kmem_list3_init(l3
);
3893 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3894 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3895 l3
->shared
= new_shared
;
3896 l3
->alien
= new_alien
;
3897 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3898 cachep
->batchcount
+ cachep
->num
;
3899 cachep
->nodelists
[node
] = l3
;
3904 if (!cachep
->next
.next
) {
3905 /* Cache is not active yet. Roll back what we did */
3908 if (cachep
->nodelists
[node
]) {
3909 l3
= cachep
->nodelists
[node
];
3912 free_alien_cache(l3
->alien
);
3914 cachep
->nodelists
[node
] = NULL
;
3922 struct ccupdate_struct
{
3923 struct kmem_cache
*cachep
;
3924 struct array_cache
*new[NR_CPUS
];
3927 static void do_ccupdate_local(void *info
)
3929 struct ccupdate_struct
*new = info
;
3930 struct array_cache
*old
;
3933 old
= cpu_cache_get(new->cachep
);
3935 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3936 new->new[smp_processor_id()] = old
;
3939 /* Always called with the cache_chain_mutex held */
3940 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3941 int batchcount
, int shared
, gfp_t gfp
)
3943 struct ccupdate_struct
*new;
3946 new = kzalloc(sizeof(*new), gfp
);
3950 for_each_online_cpu(i
) {
3951 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3954 for (i
--; i
>= 0; i
--)
3960 new->cachep
= cachep
;
3962 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
3965 cachep
->batchcount
= batchcount
;
3966 cachep
->limit
= limit
;
3967 cachep
->shared
= shared
;
3969 for_each_online_cpu(i
) {
3970 struct array_cache
*ccold
= new->new[i
];
3973 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3974 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3975 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3979 return alloc_kmemlist(cachep
, gfp
);
3982 /* Called with cache_chain_mutex held always */
3983 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
3989 * The head array serves three purposes:
3990 * - create a LIFO ordering, i.e. return objects that are cache-warm
3991 * - reduce the number of spinlock operations.
3992 * - reduce the number of linked list operations on the slab and
3993 * bufctl chains: array operations are cheaper.
3994 * The numbers are guessed, we should auto-tune as described by
3997 if (cachep
->buffer_size
> 131072)
3999 else if (cachep
->buffer_size
> PAGE_SIZE
)
4001 else if (cachep
->buffer_size
> 1024)
4003 else if (cachep
->buffer_size
> 256)
4009 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4010 * allocation behaviour: Most allocs on one cpu, most free operations
4011 * on another cpu. For these cases, an efficient object passing between
4012 * cpus is necessary. This is provided by a shared array. The array
4013 * replaces Bonwick's magazine layer.
4014 * On uniprocessor, it's functionally equivalent (but less efficient)
4015 * to a larger limit. Thus disabled by default.
4018 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4023 * With debugging enabled, large batchcount lead to excessively long
4024 * periods with disabled local interrupts. Limit the batchcount
4029 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4031 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4032 cachep
->name
, -err
);
4037 * Drain an array if it contains any elements taking the l3 lock only if
4038 * necessary. Note that the l3 listlock also protects the array_cache
4039 * if drain_array() is used on the shared array.
4041 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4042 struct array_cache
*ac
, int force
, int node
)
4046 if (!ac
|| !ac
->avail
)
4048 if (ac
->touched
&& !force
) {
4051 spin_lock_irq(&l3
->list_lock
);
4053 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4054 if (tofree
> ac
->avail
)
4055 tofree
= (ac
->avail
+ 1) / 2;
4056 free_block(cachep
, ac
->entry
, tofree
, node
);
4057 ac
->avail
-= tofree
;
4058 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4059 sizeof(void *) * ac
->avail
);
4061 spin_unlock_irq(&l3
->list_lock
);
4066 * cache_reap - Reclaim memory from caches.
4067 * @w: work descriptor
4069 * Called from workqueue/eventd every few seconds.
4071 * - clear the per-cpu caches for this CPU.
4072 * - return freeable pages to the main free memory pool.
4074 * If we cannot acquire the cache chain mutex then just give up - we'll try
4075 * again on the next iteration.
4077 static void cache_reap(struct work_struct
*w
)
4079 struct kmem_cache
*searchp
;
4080 struct kmem_list3
*l3
;
4081 int node
= numa_node_id();
4082 struct delayed_work
*work
= to_delayed_work(w
);
4084 if (!mutex_trylock(&cache_chain_mutex
))
4085 /* Give up. Setup the next iteration. */
4088 list_for_each_entry(searchp
, &cache_chain
, next
) {
4092 * We only take the l3 lock if absolutely necessary and we
4093 * have established with reasonable certainty that
4094 * we can do some work if the lock was obtained.
4096 l3
= searchp
->nodelists
[node
];
4098 reap_alien(searchp
, l3
);
4100 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4103 * These are racy checks but it does not matter
4104 * if we skip one check or scan twice.
4106 if (time_after(l3
->next_reap
, jiffies
))
4109 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4111 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4113 if (l3
->free_touched
)
4114 l3
->free_touched
= 0;
4118 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4119 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4120 STATS_ADD_REAPED(searchp
, freed
);
4126 mutex_unlock(&cache_chain_mutex
);
4129 /* Set up the next iteration */
4130 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4133 #ifdef CONFIG_SLABINFO
4135 static void print_slabinfo_header(struct seq_file
*m
)
4138 * Output format version, so at least we can change it
4139 * without _too_ many complaints.
4142 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4144 seq_puts(m
, "slabinfo - version: 2.1\n");
4146 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4147 "<objperslab> <pagesperslab>");
4148 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4149 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4151 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4152 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4153 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4158 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4162 mutex_lock(&cache_chain_mutex
);
4164 print_slabinfo_header(m
);
4166 return seq_list_start(&cache_chain
, *pos
);
4169 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4171 return seq_list_next(p
, &cache_chain
, pos
);
4174 static void s_stop(struct seq_file
*m
, void *p
)
4176 mutex_unlock(&cache_chain_mutex
);
4179 static int s_show(struct seq_file
*m
, void *p
)
4181 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4183 unsigned long active_objs
;
4184 unsigned long num_objs
;
4185 unsigned long active_slabs
= 0;
4186 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4190 struct kmem_list3
*l3
;
4194 for_each_online_node(node
) {
4195 l3
= cachep
->nodelists
[node
];
4200 spin_lock_irq(&l3
->list_lock
);
4202 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4203 if (slabp
->inuse
!= cachep
->num
&& !error
)
4204 error
= "slabs_full accounting error";
4205 active_objs
+= cachep
->num
;
4208 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4209 if (slabp
->inuse
== cachep
->num
&& !error
)
4210 error
= "slabs_partial inuse accounting error";
4211 if (!slabp
->inuse
&& !error
)
4212 error
= "slabs_partial/inuse accounting error";
4213 active_objs
+= slabp
->inuse
;
4216 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4217 if (slabp
->inuse
&& !error
)
4218 error
= "slabs_free/inuse accounting error";
4221 free_objects
+= l3
->free_objects
;
4223 shared_avail
+= l3
->shared
->avail
;
4225 spin_unlock_irq(&l3
->list_lock
);
4227 num_slabs
+= active_slabs
;
4228 num_objs
= num_slabs
* cachep
->num
;
4229 if (num_objs
- active_objs
!= free_objects
&& !error
)
4230 error
= "free_objects accounting error";
4232 name
= cachep
->name
;
4234 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4236 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4237 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4238 cachep
->num
, (1 << cachep
->gfporder
));
4239 seq_printf(m
, " : tunables %4u %4u %4u",
4240 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4241 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4242 active_slabs
, num_slabs
, shared_avail
);
4245 unsigned long high
= cachep
->high_mark
;
4246 unsigned long allocs
= cachep
->num_allocations
;
4247 unsigned long grown
= cachep
->grown
;
4248 unsigned long reaped
= cachep
->reaped
;
4249 unsigned long errors
= cachep
->errors
;
4250 unsigned long max_freeable
= cachep
->max_freeable
;
4251 unsigned long node_allocs
= cachep
->node_allocs
;
4252 unsigned long node_frees
= cachep
->node_frees
;
4253 unsigned long overflows
= cachep
->node_overflow
;
4255 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4256 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4257 reaped
, errors
, max_freeable
, node_allocs
,
4258 node_frees
, overflows
);
4262 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4263 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4264 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4265 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4267 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4268 allochit
, allocmiss
, freehit
, freemiss
);
4276 * slabinfo_op - iterator that generates /proc/slabinfo
4285 * num-pages-per-slab
4286 * + further values on SMP and with statistics enabled
4289 static const struct seq_operations slabinfo_op
= {
4296 #define MAX_SLABINFO_WRITE 128
4298 * slabinfo_write - Tuning for the slab allocator
4300 * @buffer: user buffer
4301 * @count: data length
4304 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4305 size_t count
, loff_t
*ppos
)
4307 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4308 int limit
, batchcount
, shared
, res
;
4309 struct kmem_cache
*cachep
;
4311 if (count
> MAX_SLABINFO_WRITE
)
4313 if (copy_from_user(&kbuf
, buffer
, count
))
4315 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4317 tmp
= strchr(kbuf
, ' ');
4322 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4325 /* Find the cache in the chain of caches. */
4326 mutex_lock(&cache_chain_mutex
);
4328 list_for_each_entry(cachep
, &cache_chain
, next
) {
4329 if (!strcmp(cachep
->name
, kbuf
)) {
4330 if (limit
< 1 || batchcount
< 1 ||
4331 batchcount
> limit
|| shared
< 0) {
4334 res
= do_tune_cpucache(cachep
, limit
,
4341 mutex_unlock(&cache_chain_mutex
);
4347 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4349 return seq_open(file
, &slabinfo_op
);
4352 static const struct file_operations proc_slabinfo_operations
= {
4353 .open
= slabinfo_open
,
4355 .write
= slabinfo_write
,
4356 .llseek
= seq_lseek
,
4357 .release
= seq_release
,
4360 #ifdef CONFIG_DEBUG_SLAB_LEAK
4362 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4364 mutex_lock(&cache_chain_mutex
);
4365 return seq_list_start(&cache_chain
, *pos
);
4368 static inline int add_caller(unsigned long *n
, unsigned long v
)
4378 unsigned long *q
= p
+ 2 * i
;
4392 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4398 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4404 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4405 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4407 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4412 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4414 #ifdef CONFIG_KALLSYMS
4415 unsigned long offset
, size
;
4416 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4418 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4419 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4421 seq_printf(m
, " [%s]", modname
);
4425 seq_printf(m
, "%p", (void *)address
);
4428 static int leaks_show(struct seq_file
*m
, void *p
)
4430 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4432 struct kmem_list3
*l3
;
4434 unsigned long *n
= m
->private;
4438 if (!(cachep
->flags
& SLAB_STORE_USER
))
4440 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4443 /* OK, we can do it */
4447 for_each_online_node(node
) {
4448 l3
= cachep
->nodelists
[node
];
4453 spin_lock_irq(&l3
->list_lock
);
4455 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4456 handle_slab(n
, cachep
, slabp
);
4457 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4458 handle_slab(n
, cachep
, slabp
);
4459 spin_unlock_irq(&l3
->list_lock
);
4461 name
= cachep
->name
;
4463 /* Increase the buffer size */
4464 mutex_unlock(&cache_chain_mutex
);
4465 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4467 /* Too bad, we are really out */
4469 mutex_lock(&cache_chain_mutex
);
4472 *(unsigned long *)m
->private = n
[0] * 2;
4474 mutex_lock(&cache_chain_mutex
);
4475 /* Now make sure this entry will be retried */
4479 for (i
= 0; i
< n
[1]; i
++) {
4480 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4481 show_symbol(m
, n
[2*i
+2]);
4488 static const struct seq_operations slabstats_op
= {
4489 .start
= leaks_start
,
4495 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4497 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4500 ret
= seq_open(file
, &slabstats_op
);
4502 struct seq_file
*m
= file
->private_data
;
4503 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4512 static const struct file_operations proc_slabstats_operations
= {
4513 .open
= slabstats_open
,
4515 .llseek
= seq_lseek
,
4516 .release
= seq_release_private
,
4520 static int __init
slab_proc_init(void)
4522 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4523 #ifdef CONFIG_DEBUG_SLAB_LEAK
4524 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4528 module_init(slab_proc_init
);
4532 * ksize - get the actual amount of memory allocated for a given object
4533 * @objp: Pointer to the object
4535 * kmalloc may internally round up allocations and return more memory
4536 * than requested. ksize() can be used to determine the actual amount of
4537 * memory allocated. The caller may use this additional memory, even though
4538 * a smaller amount of memory was initially specified with the kmalloc call.
4539 * The caller must guarantee that objp points to a valid object previously
4540 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4541 * must not be freed during the duration of the call.
4543 size_t ksize(const void *objp
)
4546 if (unlikely(objp
== ZERO_SIZE_PTR
))
4549 return obj_size(virt_to_cache(objp
));
4551 EXPORT_SYMBOL(ksize
);