2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
23 #include <linux/clocksource.h>
24 #include <linux/kvm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/module.h>
28 #include <linux/mman.h>
29 #include <linux/highmem.h>
31 #include <asm/uaccess.h>
35 #define MAX_IO_MSRS 256
36 #define CR0_RESERVED_BITS \
37 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
38 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
39 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
40 #define CR4_RESERVED_BITS \
41 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
42 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
43 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
44 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
46 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
48 * - enable syscall per default because its emulated by KVM
49 * - enable LME and LMA per default on 64 bit KVM
52 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
54 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
57 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
60 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
61 struct kvm_cpuid_entry2 __user
*entries
);
63 struct kvm_x86_ops
*kvm_x86_ops
;
65 struct kvm_stats_debugfs_item debugfs_entries
[] = {
66 { "pf_fixed", VCPU_STAT(pf_fixed
) },
67 { "pf_guest", VCPU_STAT(pf_guest
) },
68 { "tlb_flush", VCPU_STAT(tlb_flush
) },
69 { "invlpg", VCPU_STAT(invlpg
) },
70 { "exits", VCPU_STAT(exits
) },
71 { "io_exits", VCPU_STAT(io_exits
) },
72 { "mmio_exits", VCPU_STAT(mmio_exits
) },
73 { "signal_exits", VCPU_STAT(signal_exits
) },
74 { "irq_window", VCPU_STAT(irq_window_exits
) },
75 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
76 { "halt_exits", VCPU_STAT(halt_exits
) },
77 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
78 { "hypercalls", VCPU_STAT(hypercalls
) },
79 { "request_irq", VCPU_STAT(request_irq_exits
) },
80 { "irq_exits", VCPU_STAT(irq_exits
) },
81 { "host_state_reload", VCPU_STAT(host_state_reload
) },
82 { "efer_reload", VCPU_STAT(efer_reload
) },
83 { "fpu_reload", VCPU_STAT(fpu_reload
) },
84 { "insn_emulation", VCPU_STAT(insn_emulation
) },
85 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
86 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
87 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
88 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
89 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
90 { "mmu_flooded", VM_STAT(mmu_flooded
) },
91 { "mmu_recycled", VM_STAT(mmu_recycled
) },
92 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
93 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
94 { "largepages", VM_STAT(lpages
) },
99 unsigned long segment_base(u16 selector
)
101 struct descriptor_table gdt
;
102 struct desc_struct
*d
;
103 unsigned long table_base
;
109 asm("sgdt %0" : "=m"(gdt
));
110 table_base
= gdt
.base
;
112 if (selector
& 4) { /* from ldt */
115 asm("sldt %0" : "=g"(ldt_selector
));
116 table_base
= segment_base(ldt_selector
);
118 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
119 v
= d
->base0
| ((unsigned long)d
->base1
<< 16) |
120 ((unsigned long)d
->base2
<< 24);
122 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
123 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
127 EXPORT_SYMBOL_GPL(segment_base
);
129 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
131 if (irqchip_in_kernel(vcpu
->kvm
))
132 return vcpu
->arch
.apic_base
;
134 return vcpu
->arch
.apic_base
;
136 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
138 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
140 /* TODO: reserve bits check */
141 if (irqchip_in_kernel(vcpu
->kvm
))
142 kvm_lapic_set_base(vcpu
, data
);
144 vcpu
->arch
.apic_base
= data
;
146 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
148 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
150 WARN_ON(vcpu
->arch
.exception
.pending
);
151 vcpu
->arch
.exception
.pending
= true;
152 vcpu
->arch
.exception
.has_error_code
= false;
153 vcpu
->arch
.exception
.nr
= nr
;
155 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
157 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
160 ++vcpu
->stat
.pf_guest
;
161 if (vcpu
->arch
.exception
.pending
) {
162 if (vcpu
->arch
.exception
.nr
== PF_VECTOR
) {
163 printk(KERN_DEBUG
"kvm: inject_page_fault:"
164 " double fault 0x%lx\n", addr
);
165 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
166 vcpu
->arch
.exception
.error_code
= 0;
167 } else if (vcpu
->arch
.exception
.nr
== DF_VECTOR
) {
168 /* triple fault -> shutdown */
169 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
173 vcpu
->arch
.cr2
= addr
;
174 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
177 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
179 vcpu
->arch
.nmi_pending
= 1;
181 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
183 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
185 WARN_ON(vcpu
->arch
.exception
.pending
);
186 vcpu
->arch
.exception
.pending
= true;
187 vcpu
->arch
.exception
.has_error_code
= true;
188 vcpu
->arch
.exception
.nr
= nr
;
189 vcpu
->arch
.exception
.error_code
= error_code
;
191 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
193 static void __queue_exception(struct kvm_vcpu
*vcpu
)
195 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
196 vcpu
->arch
.exception
.has_error_code
,
197 vcpu
->arch
.exception
.error_code
);
201 * Load the pae pdptrs. Return true is they are all valid.
203 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
205 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
206 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
209 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
211 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
212 offset
* sizeof(u64
), sizeof(pdpte
));
217 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
218 if ((pdpte
[i
] & 1) && (pdpte
[i
] & 0xfffffff0000001e6ull
)) {
225 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
230 EXPORT_SYMBOL_GPL(load_pdptrs
);
232 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
234 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
238 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
241 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
244 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
250 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
252 if (cr0
& CR0_RESERVED_BITS
) {
253 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
254 cr0
, vcpu
->arch
.cr0
);
255 kvm_inject_gp(vcpu
, 0);
259 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
260 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
261 kvm_inject_gp(vcpu
, 0);
265 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
266 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
267 "and a clear PE flag\n");
268 kvm_inject_gp(vcpu
, 0);
272 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
274 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
278 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
279 "in long mode while PAE is disabled\n");
280 kvm_inject_gp(vcpu
, 0);
283 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
285 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
286 "in long mode while CS.L == 1\n");
287 kvm_inject_gp(vcpu
, 0);
293 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
294 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
296 kvm_inject_gp(vcpu
, 0);
302 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
303 vcpu
->arch
.cr0
= cr0
;
305 kvm_mmu_reset_context(vcpu
);
308 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
310 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
312 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
313 KVMTRACE_1D(LMSW
, vcpu
,
314 (u32
)((vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f)),
317 EXPORT_SYMBOL_GPL(kvm_lmsw
);
319 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
321 if (cr4
& CR4_RESERVED_BITS
) {
322 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
323 kvm_inject_gp(vcpu
, 0);
327 if (is_long_mode(vcpu
)) {
328 if (!(cr4
& X86_CR4_PAE
)) {
329 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
331 kvm_inject_gp(vcpu
, 0);
334 } else if (is_paging(vcpu
) && !is_pae(vcpu
) && (cr4
& X86_CR4_PAE
)
335 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
336 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
337 kvm_inject_gp(vcpu
, 0);
341 if (cr4
& X86_CR4_VMXE
) {
342 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
343 kvm_inject_gp(vcpu
, 0);
346 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
347 vcpu
->arch
.cr4
= cr4
;
348 kvm_mmu_reset_context(vcpu
);
350 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
352 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
354 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
355 kvm_mmu_flush_tlb(vcpu
);
359 if (is_long_mode(vcpu
)) {
360 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
361 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
362 kvm_inject_gp(vcpu
, 0);
367 if (cr3
& CR3_PAE_RESERVED_BITS
) {
369 "set_cr3: #GP, reserved bits\n");
370 kvm_inject_gp(vcpu
, 0);
373 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
374 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
376 kvm_inject_gp(vcpu
, 0);
381 * We don't check reserved bits in nonpae mode, because
382 * this isn't enforced, and VMware depends on this.
387 * Does the new cr3 value map to physical memory? (Note, we
388 * catch an invalid cr3 even in real-mode, because it would
389 * cause trouble later on when we turn on paging anyway.)
391 * A real CPU would silently accept an invalid cr3 and would
392 * attempt to use it - with largely undefined (and often hard
393 * to debug) behavior on the guest side.
395 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
396 kvm_inject_gp(vcpu
, 0);
398 vcpu
->arch
.cr3
= cr3
;
399 vcpu
->arch
.mmu
.new_cr3(vcpu
);
402 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
404 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
406 if (cr8
& CR8_RESERVED_BITS
) {
407 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
408 kvm_inject_gp(vcpu
, 0);
411 if (irqchip_in_kernel(vcpu
->kvm
))
412 kvm_lapic_set_tpr(vcpu
, cr8
);
414 vcpu
->arch
.cr8
= cr8
;
416 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
418 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
420 if (irqchip_in_kernel(vcpu
->kvm
))
421 return kvm_lapic_get_cr8(vcpu
);
423 return vcpu
->arch
.cr8
;
425 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
428 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
429 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
431 * This list is modified at module load time to reflect the
432 * capabilities of the host cpu.
434 static u32 msrs_to_save
[] = {
435 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
438 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
440 MSR_IA32_TIME_STAMP_COUNTER
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
441 MSR_IA32_PERF_STATUS
,
444 static unsigned num_msrs_to_save
;
446 static u32 emulated_msrs
[] = {
447 MSR_IA32_MISC_ENABLE
,
450 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
452 if (efer
& efer_reserved_bits
) {
453 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
455 kvm_inject_gp(vcpu
, 0);
460 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
461 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
462 kvm_inject_gp(vcpu
, 0);
466 kvm_x86_ops
->set_efer(vcpu
, efer
);
469 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
471 vcpu
->arch
.shadow_efer
= efer
;
474 void kvm_enable_efer_bits(u64 mask
)
476 efer_reserved_bits
&= ~mask
;
478 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
482 * Writes msr value into into the appropriate "register".
483 * Returns 0 on success, non-0 otherwise.
484 * Assumes vcpu_load() was already called.
486 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
488 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
492 * Adapt set_msr() to msr_io()'s calling convention
494 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
496 return kvm_set_msr(vcpu
, index
, *data
);
499 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
502 struct pvclock_wall_clock wc
;
503 struct timespec now
, sys
, boot
;
510 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
513 * The guest calculates current wall clock time by adding
514 * system time (updated by kvm_write_guest_time below) to the
515 * wall clock specified here. guest system time equals host
516 * system time for us, thus we must fill in host boot time here.
518 now
= current_kernel_time();
520 boot
= ns_to_timespec(timespec_to_ns(&now
) - timespec_to_ns(&sys
));
522 wc
.sec
= boot
.tv_sec
;
523 wc
.nsec
= boot
.tv_nsec
;
524 wc
.version
= version
;
526 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
529 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
532 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
534 uint32_t quotient
, remainder
;
536 /* Don't try to replace with do_div(), this one calculates
537 * "(dividend << 32) / divisor" */
539 : "=a" (quotient
), "=d" (remainder
)
540 : "0" (0), "1" (dividend
), "r" (divisor
) );
544 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
546 uint64_t nsecs
= 1000000000LL;
551 tps64
= tsc_khz
* 1000LL;
552 while (tps64
> nsecs
*2) {
557 tps32
= (uint32_t)tps64
;
558 while (tps32
<= (uint32_t)nsecs
) {
563 hv_clock
->tsc_shift
= shift
;
564 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
566 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
567 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
568 hv_clock
->tsc_to_system_mul
);
571 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
575 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
578 if ((!vcpu
->time_page
))
581 if (unlikely(vcpu
->hv_clock_tsc_khz
!= tsc_khz
)) {
582 kvm_set_time_scale(tsc_khz
, &vcpu
->hv_clock
);
583 vcpu
->hv_clock_tsc_khz
= tsc_khz
;
586 /* Keep irq disabled to prevent changes to the clock */
587 local_irq_save(flags
);
588 kvm_get_msr(v
, MSR_IA32_TIME_STAMP_COUNTER
,
589 &vcpu
->hv_clock
.tsc_timestamp
);
591 local_irq_restore(flags
);
593 /* With all the info we got, fill in the values */
595 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
596 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
598 * The interface expects us to write an even number signaling that the
599 * update is finished. Since the guest won't see the intermediate
600 * state, we just increase by 2 at the end.
602 vcpu
->hv_clock
.version
+= 2;
604 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
606 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
607 sizeof(vcpu
->hv_clock
));
609 kunmap_atomic(shared_kaddr
, KM_USER0
);
611 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
614 static bool msr_mtrr_valid(unsigned msr
)
617 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
618 case MSR_MTRRfix64K_00000
:
619 case MSR_MTRRfix16K_80000
:
620 case MSR_MTRRfix16K_A0000
:
621 case MSR_MTRRfix4K_C0000
:
622 case MSR_MTRRfix4K_C8000
:
623 case MSR_MTRRfix4K_D0000
:
624 case MSR_MTRRfix4K_D8000
:
625 case MSR_MTRRfix4K_E0000
:
626 case MSR_MTRRfix4K_E8000
:
627 case MSR_MTRRfix4K_F0000
:
628 case MSR_MTRRfix4K_F8000
:
629 case MSR_MTRRdefType
:
630 case MSR_IA32_CR_PAT
:
638 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
640 if (!msr_mtrr_valid(msr
))
643 vcpu
->arch
.mtrr
[msr
- 0x200] = data
;
647 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
651 set_efer(vcpu
, data
);
653 case MSR_IA32_MC0_STATUS
:
654 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
657 case MSR_IA32_MCG_STATUS
:
658 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
661 case MSR_IA32_MCG_CTL
:
662 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
665 case MSR_IA32_UCODE_REV
:
666 case MSR_IA32_UCODE_WRITE
:
668 case 0x200 ... 0x2ff:
669 return set_msr_mtrr(vcpu
, msr
, data
);
670 case MSR_IA32_APICBASE
:
671 kvm_set_apic_base(vcpu
, data
);
673 case MSR_IA32_MISC_ENABLE
:
674 vcpu
->arch
.ia32_misc_enable_msr
= data
;
676 case MSR_KVM_WALL_CLOCK
:
677 vcpu
->kvm
->arch
.wall_clock
= data
;
678 kvm_write_wall_clock(vcpu
->kvm
, data
);
680 case MSR_KVM_SYSTEM_TIME
: {
681 if (vcpu
->arch
.time_page
) {
682 kvm_release_page_dirty(vcpu
->arch
.time_page
);
683 vcpu
->arch
.time_page
= NULL
;
686 vcpu
->arch
.time
= data
;
688 /* we verify if the enable bit is set... */
692 /* ...but clean it before doing the actual write */
693 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
695 down_read(¤t
->mm
->mmap_sem
);
696 vcpu
->arch
.time_page
=
697 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
698 up_read(¤t
->mm
->mmap_sem
);
700 if (is_error_page(vcpu
->arch
.time_page
)) {
701 kvm_release_page_clean(vcpu
->arch
.time_page
);
702 vcpu
->arch
.time_page
= NULL
;
705 kvm_write_guest_time(vcpu
);
709 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n", msr
, data
);
714 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
718 * Reads an msr value (of 'msr_index') into 'pdata'.
719 * Returns 0 on success, non-0 otherwise.
720 * Assumes vcpu_load() was already called.
722 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
724 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
727 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
729 if (!msr_mtrr_valid(msr
))
732 *pdata
= vcpu
->arch
.mtrr
[msr
- 0x200];
736 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
741 case 0xc0010010: /* SYSCFG */
742 case 0xc0010015: /* HWCR */
743 case MSR_IA32_PLATFORM_ID
:
744 case MSR_IA32_P5_MC_ADDR
:
745 case MSR_IA32_P5_MC_TYPE
:
746 case MSR_IA32_MC0_CTL
:
747 case MSR_IA32_MCG_STATUS
:
748 case MSR_IA32_MCG_CAP
:
749 case MSR_IA32_MCG_CTL
:
750 case MSR_IA32_MC0_MISC
:
751 case MSR_IA32_MC0_MISC
+4:
752 case MSR_IA32_MC0_MISC
+8:
753 case MSR_IA32_MC0_MISC
+12:
754 case MSR_IA32_MC0_MISC
+16:
755 case MSR_IA32_UCODE_REV
:
756 case MSR_IA32_EBL_CR_POWERON
:
760 data
= 0x500 | KVM_NR_VAR_MTRR
;
762 case 0x200 ... 0x2ff:
763 return get_msr_mtrr(vcpu
, msr
, pdata
);
764 case 0xcd: /* fsb frequency */
767 case MSR_IA32_APICBASE
:
768 data
= kvm_get_apic_base(vcpu
);
770 case MSR_IA32_MISC_ENABLE
:
771 data
= vcpu
->arch
.ia32_misc_enable_msr
;
773 case MSR_IA32_PERF_STATUS
:
774 /* TSC increment by tick */
777 data
|= (((uint64_t)4ULL) << 40);
780 data
= vcpu
->arch
.shadow_efer
;
782 case MSR_KVM_WALL_CLOCK
:
783 data
= vcpu
->kvm
->arch
.wall_clock
;
785 case MSR_KVM_SYSTEM_TIME
:
786 data
= vcpu
->arch
.time
;
789 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
795 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
798 * Read or write a bunch of msrs. All parameters are kernel addresses.
800 * @return number of msrs set successfully.
802 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
803 struct kvm_msr_entry
*entries
,
804 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
805 unsigned index
, u64
*data
))
811 down_read(&vcpu
->kvm
->slots_lock
);
812 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
813 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
815 up_read(&vcpu
->kvm
->slots_lock
);
823 * Read or write a bunch of msrs. Parameters are user addresses.
825 * @return number of msrs set successfully.
827 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
828 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
829 unsigned index
, u64
*data
),
832 struct kvm_msrs msrs
;
833 struct kvm_msr_entry
*entries
;
838 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
842 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
846 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
847 entries
= vmalloc(size
);
852 if (copy_from_user(entries
, user_msrs
->entries
, size
))
855 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
860 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
871 int kvm_dev_ioctl_check_extension(long ext
)
876 case KVM_CAP_IRQCHIP
:
878 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
879 case KVM_CAP_USER_MEMORY
:
880 case KVM_CAP_SET_TSS_ADDR
:
881 case KVM_CAP_EXT_CPUID
:
882 case KVM_CAP_CLOCKSOURCE
:
884 case KVM_CAP_NOP_IO_DELAY
:
885 case KVM_CAP_MP_STATE
:
886 case KVM_CAP_SYNC_MMU
:
889 case KVM_CAP_COALESCED_MMIO
:
890 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
893 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
895 case KVM_CAP_NR_VCPUS
:
898 case KVM_CAP_NR_MEMSLOTS
:
899 r
= KVM_MEMORY_SLOTS
;
912 long kvm_arch_dev_ioctl(struct file
*filp
,
913 unsigned int ioctl
, unsigned long arg
)
915 void __user
*argp
= (void __user
*)arg
;
919 case KVM_GET_MSR_INDEX_LIST
: {
920 struct kvm_msr_list __user
*user_msr_list
= argp
;
921 struct kvm_msr_list msr_list
;
925 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
928 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
929 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
932 if (n
< num_msrs_to_save
)
935 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
936 num_msrs_to_save
* sizeof(u32
)))
938 if (copy_to_user(user_msr_list
->indices
939 + num_msrs_to_save
* sizeof(u32
),
941 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
946 case KVM_GET_SUPPORTED_CPUID
: {
947 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
948 struct kvm_cpuid2 cpuid
;
951 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
953 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
959 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
971 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
973 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
974 kvm_write_guest_time(vcpu
);
977 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
979 kvm_x86_ops
->vcpu_put(vcpu
);
980 kvm_put_guest_fpu(vcpu
);
983 static int is_efer_nx(void)
987 rdmsrl(MSR_EFER
, efer
);
988 return efer
& EFER_NX
;
991 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
994 struct kvm_cpuid_entry2
*e
, *entry
;
997 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
998 e
= &vcpu
->arch
.cpuid_entries
[i
];
999 if (e
->function
== 0x80000001) {
1004 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1005 entry
->edx
&= ~(1 << 20);
1006 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1010 /* when an old userspace process fills a new kernel module */
1011 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1012 struct kvm_cpuid
*cpuid
,
1013 struct kvm_cpuid_entry __user
*entries
)
1016 struct kvm_cpuid_entry
*cpuid_entries
;
1019 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1022 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1026 if (copy_from_user(cpuid_entries
, entries
,
1027 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1029 for (i
= 0; i
< cpuid
->nent
; i
++) {
1030 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1031 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1032 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1033 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1034 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1035 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1036 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1037 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1038 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1039 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1041 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1042 cpuid_fix_nx_cap(vcpu
);
1046 vfree(cpuid_entries
);
1051 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1052 struct kvm_cpuid2
*cpuid
,
1053 struct kvm_cpuid_entry2 __user
*entries
)
1058 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1061 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1062 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1064 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1071 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1072 struct kvm_cpuid2
*cpuid
,
1073 struct kvm_cpuid_entry2 __user
*entries
)
1078 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1081 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1082 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1087 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1091 static inline u32
bit(int bitno
)
1093 return 1 << (bitno
& 31);
1096 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1099 entry
->function
= function
;
1100 entry
->index
= index
;
1101 cpuid_count(entry
->function
, entry
->index
,
1102 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1106 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1107 u32 index
, int *nent
, int maxnent
)
1109 const u32 kvm_supported_word0_x86_features
= bit(X86_FEATURE_FPU
) |
1110 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1111 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1112 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1113 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1114 bit(X86_FEATURE_SEP
) | bit(X86_FEATURE_PGE
) |
1115 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
1116 bit(X86_FEATURE_CLFLSH
) | bit(X86_FEATURE_MMX
) |
1117 bit(X86_FEATURE_FXSR
) | bit(X86_FEATURE_XMM
) |
1118 bit(X86_FEATURE_XMM2
) | bit(X86_FEATURE_SELFSNOOP
);
1119 const u32 kvm_supported_word1_x86_features
= bit(X86_FEATURE_FPU
) |
1120 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1121 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1122 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1123 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1124 bit(X86_FEATURE_PGE
) |
1125 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
1126 bit(X86_FEATURE_MMX
) | bit(X86_FEATURE_FXSR
) |
1127 bit(X86_FEATURE_SYSCALL
) |
1128 (bit(X86_FEATURE_NX
) && is_efer_nx()) |
1129 #ifdef CONFIG_X86_64
1130 bit(X86_FEATURE_LM
) |
1132 bit(X86_FEATURE_MMXEXT
) |
1133 bit(X86_FEATURE_3DNOWEXT
) |
1134 bit(X86_FEATURE_3DNOW
);
1135 const u32 kvm_supported_word3_x86_features
=
1136 bit(X86_FEATURE_XMM3
) | bit(X86_FEATURE_CX16
);
1137 const u32 kvm_supported_word6_x86_features
=
1138 bit(X86_FEATURE_LAHF_LM
) | bit(X86_FEATURE_CMP_LEGACY
);
1140 /* all func 2 cpuid_count() should be called on the same cpu */
1142 do_cpuid_1_ent(entry
, function
, index
);
1147 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1150 entry
->edx
&= kvm_supported_word0_x86_features
;
1151 entry
->ecx
&= kvm_supported_word3_x86_features
;
1153 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1154 * may return different values. This forces us to get_cpu() before
1155 * issuing the first command, and also to emulate this annoying behavior
1156 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1158 int t
, times
= entry
->eax
& 0xff;
1160 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1161 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1162 do_cpuid_1_ent(&entry
[t
], function
, 0);
1163 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1168 /* function 4 and 0xb have additional index. */
1172 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1173 /* read more entries until cache_type is zero */
1174 for (i
= 1; *nent
< maxnent
; ++i
) {
1175 cache_type
= entry
[i
- 1].eax
& 0x1f;
1178 do_cpuid_1_ent(&entry
[i
], function
, i
);
1180 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1188 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1189 /* read more entries until level_type is zero */
1190 for (i
= 1; *nent
< maxnent
; ++i
) {
1191 level_type
= entry
[i
- 1].ecx
& 0xff;
1194 do_cpuid_1_ent(&entry
[i
], function
, i
);
1196 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1202 entry
->eax
= min(entry
->eax
, 0x8000001a);
1205 entry
->edx
&= kvm_supported_word1_x86_features
;
1206 entry
->ecx
&= kvm_supported_word6_x86_features
;
1212 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1213 struct kvm_cpuid_entry2 __user
*entries
)
1215 struct kvm_cpuid_entry2
*cpuid_entries
;
1216 int limit
, nent
= 0, r
= -E2BIG
;
1219 if (cpuid
->nent
< 1)
1222 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1226 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1227 limit
= cpuid_entries
[0].eax
;
1228 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1229 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1230 &nent
, cpuid
->nent
);
1232 if (nent
>= cpuid
->nent
)
1235 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1236 limit
= cpuid_entries
[nent
- 1].eax
;
1237 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1238 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1239 &nent
, cpuid
->nent
);
1241 if (copy_to_user(entries
, cpuid_entries
,
1242 nent
* sizeof(struct kvm_cpuid_entry2
)))
1248 vfree(cpuid_entries
);
1253 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1254 struct kvm_lapic_state
*s
)
1257 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1263 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1264 struct kvm_lapic_state
*s
)
1267 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1268 kvm_apic_post_state_restore(vcpu
);
1274 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1275 struct kvm_interrupt
*irq
)
1277 if (irq
->irq
< 0 || irq
->irq
>= 256)
1279 if (irqchip_in_kernel(vcpu
->kvm
))
1283 set_bit(irq
->irq
, vcpu
->arch
.irq_pending
);
1284 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->arch
.irq_summary
);
1291 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1292 struct kvm_tpr_access_ctl
*tac
)
1296 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1300 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1301 unsigned int ioctl
, unsigned long arg
)
1303 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1304 void __user
*argp
= (void __user
*)arg
;
1308 case KVM_GET_LAPIC
: {
1309 struct kvm_lapic_state lapic
;
1311 memset(&lapic
, 0, sizeof lapic
);
1312 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, &lapic
);
1316 if (copy_to_user(argp
, &lapic
, sizeof lapic
))
1321 case KVM_SET_LAPIC
: {
1322 struct kvm_lapic_state lapic
;
1325 if (copy_from_user(&lapic
, argp
, sizeof lapic
))
1327 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, &lapic
);;
1333 case KVM_INTERRUPT
: {
1334 struct kvm_interrupt irq
;
1337 if (copy_from_user(&irq
, argp
, sizeof irq
))
1339 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1345 case KVM_SET_CPUID
: {
1346 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1347 struct kvm_cpuid cpuid
;
1350 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1352 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1357 case KVM_SET_CPUID2
: {
1358 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1359 struct kvm_cpuid2 cpuid
;
1362 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1364 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1365 cpuid_arg
->entries
);
1370 case KVM_GET_CPUID2
: {
1371 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1372 struct kvm_cpuid2 cpuid
;
1375 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1377 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1378 cpuid_arg
->entries
);
1382 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1388 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1391 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1393 case KVM_TPR_ACCESS_REPORTING
: {
1394 struct kvm_tpr_access_ctl tac
;
1397 if (copy_from_user(&tac
, argp
, sizeof tac
))
1399 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1403 if (copy_to_user(argp
, &tac
, sizeof tac
))
1408 case KVM_SET_VAPIC_ADDR
: {
1409 struct kvm_vapic_addr va
;
1412 if (!irqchip_in_kernel(vcpu
->kvm
))
1415 if (copy_from_user(&va
, argp
, sizeof va
))
1418 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1428 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1432 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1434 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1438 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1439 u32 kvm_nr_mmu_pages
)
1441 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1444 down_write(&kvm
->slots_lock
);
1446 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1447 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1449 up_write(&kvm
->slots_lock
);
1453 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1455 return kvm
->arch
.n_alloc_mmu_pages
;
1458 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1461 struct kvm_mem_alias
*alias
;
1463 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1464 alias
= &kvm
->arch
.aliases
[i
];
1465 if (gfn
>= alias
->base_gfn
1466 && gfn
< alias
->base_gfn
+ alias
->npages
)
1467 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1473 * Set a new alias region. Aliases map a portion of physical memory into
1474 * another portion. This is useful for memory windows, for example the PC
1477 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1478 struct kvm_memory_alias
*alias
)
1481 struct kvm_mem_alias
*p
;
1484 /* General sanity checks */
1485 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1487 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1489 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1491 if (alias
->guest_phys_addr
+ alias
->memory_size
1492 < alias
->guest_phys_addr
)
1494 if (alias
->target_phys_addr
+ alias
->memory_size
1495 < alias
->target_phys_addr
)
1498 down_write(&kvm
->slots_lock
);
1499 spin_lock(&kvm
->mmu_lock
);
1501 p
= &kvm
->arch
.aliases
[alias
->slot
];
1502 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1503 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1504 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1506 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1507 if (kvm
->arch
.aliases
[n
- 1].npages
)
1509 kvm
->arch
.naliases
= n
;
1511 spin_unlock(&kvm
->mmu_lock
);
1512 kvm_mmu_zap_all(kvm
);
1514 up_write(&kvm
->slots_lock
);
1522 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1527 switch (chip
->chip_id
) {
1528 case KVM_IRQCHIP_PIC_MASTER
:
1529 memcpy(&chip
->chip
.pic
,
1530 &pic_irqchip(kvm
)->pics
[0],
1531 sizeof(struct kvm_pic_state
));
1533 case KVM_IRQCHIP_PIC_SLAVE
:
1534 memcpy(&chip
->chip
.pic
,
1535 &pic_irqchip(kvm
)->pics
[1],
1536 sizeof(struct kvm_pic_state
));
1538 case KVM_IRQCHIP_IOAPIC
:
1539 memcpy(&chip
->chip
.ioapic
,
1540 ioapic_irqchip(kvm
),
1541 sizeof(struct kvm_ioapic_state
));
1550 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1555 switch (chip
->chip_id
) {
1556 case KVM_IRQCHIP_PIC_MASTER
:
1557 memcpy(&pic_irqchip(kvm
)->pics
[0],
1559 sizeof(struct kvm_pic_state
));
1561 case KVM_IRQCHIP_PIC_SLAVE
:
1562 memcpy(&pic_irqchip(kvm
)->pics
[1],
1564 sizeof(struct kvm_pic_state
));
1566 case KVM_IRQCHIP_IOAPIC
:
1567 memcpy(ioapic_irqchip(kvm
),
1569 sizeof(struct kvm_ioapic_state
));
1575 kvm_pic_update_irq(pic_irqchip(kvm
));
1579 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1583 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
1587 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1591 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
1592 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
);
1597 * Get (and clear) the dirty memory log for a memory slot.
1599 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
1600 struct kvm_dirty_log
*log
)
1604 struct kvm_memory_slot
*memslot
;
1607 down_write(&kvm
->slots_lock
);
1609 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
1613 /* If nothing is dirty, don't bother messing with page tables. */
1615 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
1616 kvm_flush_remote_tlbs(kvm
);
1617 memslot
= &kvm
->memslots
[log
->slot
];
1618 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
1619 memset(memslot
->dirty_bitmap
, 0, n
);
1623 up_write(&kvm
->slots_lock
);
1627 long kvm_arch_vm_ioctl(struct file
*filp
,
1628 unsigned int ioctl
, unsigned long arg
)
1630 struct kvm
*kvm
= filp
->private_data
;
1631 void __user
*argp
= (void __user
*)arg
;
1635 case KVM_SET_TSS_ADDR
:
1636 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
1640 case KVM_SET_MEMORY_REGION
: {
1641 struct kvm_memory_region kvm_mem
;
1642 struct kvm_userspace_memory_region kvm_userspace_mem
;
1645 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
1647 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
1648 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
1649 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
1650 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
1651 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1656 case KVM_SET_NR_MMU_PAGES
:
1657 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
1661 case KVM_GET_NR_MMU_PAGES
:
1662 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
1664 case KVM_SET_MEMORY_ALIAS
: {
1665 struct kvm_memory_alias alias
;
1668 if (copy_from_user(&alias
, argp
, sizeof alias
))
1670 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &alias
);
1675 case KVM_CREATE_IRQCHIP
:
1677 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
1678 if (kvm
->arch
.vpic
) {
1679 r
= kvm_ioapic_init(kvm
);
1681 kfree(kvm
->arch
.vpic
);
1682 kvm
->arch
.vpic
= NULL
;
1688 case KVM_CREATE_PIT
:
1690 kvm
->arch
.vpit
= kvm_create_pit(kvm
);
1694 case KVM_IRQ_LINE
: {
1695 struct kvm_irq_level irq_event
;
1698 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
1700 if (irqchip_in_kernel(kvm
)) {
1701 mutex_lock(&kvm
->lock
);
1702 if (irq_event
.irq
< 16)
1703 kvm_pic_set_irq(pic_irqchip(kvm
),
1706 kvm_ioapic_set_irq(kvm
->arch
.vioapic
,
1709 mutex_unlock(&kvm
->lock
);
1714 case KVM_GET_IRQCHIP
: {
1715 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1716 struct kvm_irqchip chip
;
1719 if (copy_from_user(&chip
, argp
, sizeof chip
))
1722 if (!irqchip_in_kernel(kvm
))
1724 r
= kvm_vm_ioctl_get_irqchip(kvm
, &chip
);
1728 if (copy_to_user(argp
, &chip
, sizeof chip
))
1733 case KVM_SET_IRQCHIP
: {
1734 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1735 struct kvm_irqchip chip
;
1738 if (copy_from_user(&chip
, argp
, sizeof chip
))
1741 if (!irqchip_in_kernel(kvm
))
1743 r
= kvm_vm_ioctl_set_irqchip(kvm
, &chip
);
1750 struct kvm_pit_state ps
;
1752 if (copy_from_user(&ps
, argp
, sizeof ps
))
1755 if (!kvm
->arch
.vpit
)
1757 r
= kvm_vm_ioctl_get_pit(kvm
, &ps
);
1761 if (copy_to_user(argp
, &ps
, sizeof ps
))
1767 struct kvm_pit_state ps
;
1769 if (copy_from_user(&ps
, argp
, sizeof ps
))
1772 if (!kvm
->arch
.vpit
)
1774 r
= kvm_vm_ioctl_set_pit(kvm
, &ps
);
1787 static void kvm_init_msr_list(void)
1792 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
1793 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
1796 msrs_to_save
[j
] = msrs_to_save
[i
];
1799 num_msrs_to_save
= j
;
1803 * Only apic need an MMIO device hook, so shortcut now..
1805 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
1806 gpa_t addr
, int len
,
1809 struct kvm_io_device
*dev
;
1811 if (vcpu
->arch
.apic
) {
1812 dev
= &vcpu
->arch
.apic
->dev
;
1813 if (dev
->in_range(dev
, addr
, len
, is_write
))
1820 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
1821 gpa_t addr
, int len
,
1824 struct kvm_io_device
*dev
;
1826 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
, len
, is_write
);
1828 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
, len
,
1833 int emulator_read_std(unsigned long addr
,
1836 struct kvm_vcpu
*vcpu
)
1839 int r
= X86EMUL_CONTINUE
;
1842 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1843 unsigned offset
= addr
& (PAGE_SIZE
-1);
1844 unsigned tocopy
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
1847 if (gpa
== UNMAPPED_GVA
) {
1848 r
= X86EMUL_PROPAGATE_FAULT
;
1851 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, tocopy
);
1853 r
= X86EMUL_UNHANDLEABLE
;
1864 EXPORT_SYMBOL_GPL(emulator_read_std
);
1866 static int emulator_read_emulated(unsigned long addr
,
1869 struct kvm_vcpu
*vcpu
)
1871 struct kvm_io_device
*mmio_dev
;
1874 if (vcpu
->mmio_read_completed
) {
1875 memcpy(val
, vcpu
->mmio_data
, bytes
);
1876 vcpu
->mmio_read_completed
= 0;
1877 return X86EMUL_CONTINUE
;
1880 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1882 /* For APIC access vmexit */
1883 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
1886 if (emulator_read_std(addr
, val
, bytes
, vcpu
)
1887 == X86EMUL_CONTINUE
)
1888 return X86EMUL_CONTINUE
;
1889 if (gpa
== UNMAPPED_GVA
)
1890 return X86EMUL_PROPAGATE_FAULT
;
1894 * Is this MMIO handled locally?
1896 mutex_lock(&vcpu
->kvm
->lock
);
1897 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 0);
1899 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
1900 mutex_unlock(&vcpu
->kvm
->lock
);
1901 return X86EMUL_CONTINUE
;
1903 mutex_unlock(&vcpu
->kvm
->lock
);
1905 vcpu
->mmio_needed
= 1;
1906 vcpu
->mmio_phys_addr
= gpa
;
1907 vcpu
->mmio_size
= bytes
;
1908 vcpu
->mmio_is_write
= 0;
1910 return X86EMUL_UNHANDLEABLE
;
1913 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1914 const void *val
, int bytes
)
1918 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
1921 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
1925 static int emulator_write_emulated_onepage(unsigned long addr
,
1928 struct kvm_vcpu
*vcpu
)
1930 struct kvm_io_device
*mmio_dev
;
1933 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1935 if (gpa
== UNMAPPED_GVA
) {
1936 kvm_inject_page_fault(vcpu
, addr
, 2);
1937 return X86EMUL_PROPAGATE_FAULT
;
1940 /* For APIC access vmexit */
1941 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
1944 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
1945 return X86EMUL_CONTINUE
;
1949 * Is this MMIO handled locally?
1951 mutex_lock(&vcpu
->kvm
->lock
);
1952 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 1);
1954 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
1955 mutex_unlock(&vcpu
->kvm
->lock
);
1956 return X86EMUL_CONTINUE
;
1958 mutex_unlock(&vcpu
->kvm
->lock
);
1960 vcpu
->mmio_needed
= 1;
1961 vcpu
->mmio_phys_addr
= gpa
;
1962 vcpu
->mmio_size
= bytes
;
1963 vcpu
->mmio_is_write
= 1;
1964 memcpy(vcpu
->mmio_data
, val
, bytes
);
1966 return X86EMUL_CONTINUE
;
1969 int emulator_write_emulated(unsigned long addr
,
1972 struct kvm_vcpu
*vcpu
)
1974 /* Crossing a page boundary? */
1975 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
1978 now
= -addr
& ~PAGE_MASK
;
1979 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
1980 if (rc
!= X86EMUL_CONTINUE
)
1986 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
1988 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
1990 static int emulator_cmpxchg_emulated(unsigned long addr
,
1994 struct kvm_vcpu
*vcpu
)
1996 static int reported
;
2000 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
2002 #ifndef CONFIG_X86_64
2003 /* guests cmpxchg8b have to be emulated atomically */
2010 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2012 if (gpa
== UNMAPPED_GVA
||
2013 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2016 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2021 down_read(¤t
->mm
->mmap_sem
);
2022 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2023 up_read(¤t
->mm
->mmap_sem
);
2025 kaddr
= kmap_atomic(page
, KM_USER0
);
2026 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2027 kunmap_atomic(kaddr
, KM_USER0
);
2028 kvm_release_page_dirty(page
);
2033 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2036 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2038 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2041 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2043 return X86EMUL_CONTINUE
;
2046 int emulate_clts(struct kvm_vcpu
*vcpu
)
2048 KVMTRACE_0D(CLTS
, vcpu
, handler
);
2049 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2050 return X86EMUL_CONTINUE
;
2053 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2055 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2059 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2060 return X86EMUL_CONTINUE
;
2062 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2063 return X86EMUL_UNHANDLEABLE
;
2067 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2069 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2072 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2074 /* FIXME: better handling */
2075 return X86EMUL_UNHANDLEABLE
;
2077 return X86EMUL_CONTINUE
;
2080 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2083 unsigned long rip
= vcpu
->arch
.rip
;
2084 unsigned long rip_linear
;
2086 if (!printk_ratelimit())
2089 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2091 emulator_read_std(rip_linear
, (void *)opcodes
, 4, vcpu
);
2093 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2094 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2096 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2098 static struct x86_emulate_ops emulate_ops
= {
2099 .read_std
= emulator_read_std
,
2100 .read_emulated
= emulator_read_emulated
,
2101 .write_emulated
= emulator_write_emulated
,
2102 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2105 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2106 struct kvm_run
*run
,
2112 struct decode_cache
*c
;
2114 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2115 kvm_x86_ops
->cache_regs(vcpu
);
2117 vcpu
->mmio_is_write
= 0;
2118 vcpu
->arch
.pio
.string
= 0;
2120 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2122 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2124 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2125 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2126 vcpu
->arch
.emulate_ctxt
.mode
=
2127 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2128 ? X86EMUL_MODE_REAL
: cs_l
2129 ? X86EMUL_MODE_PROT64
: cs_db
2130 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2132 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2134 /* Reject the instructions other than VMCALL/VMMCALL when
2135 * try to emulate invalid opcode */
2136 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2137 if ((emulation_type
& EMULTYPE_TRAP_UD
) &&
2138 (!(c
->twobyte
&& c
->b
== 0x01 &&
2139 (c
->modrm_reg
== 0 || c
->modrm_reg
== 3) &&
2140 c
->modrm_mod
== 3 && c
->modrm_rm
== 1)))
2141 return EMULATE_FAIL
;
2143 ++vcpu
->stat
.insn_emulation
;
2145 ++vcpu
->stat
.insn_emulation_fail
;
2146 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2147 return EMULATE_DONE
;
2148 return EMULATE_FAIL
;
2152 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2154 if (vcpu
->arch
.pio
.string
)
2155 return EMULATE_DO_MMIO
;
2157 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2158 run
->exit_reason
= KVM_EXIT_MMIO
;
2159 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2160 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2161 run
->mmio
.len
= vcpu
->mmio_size
;
2162 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2166 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2167 return EMULATE_DONE
;
2168 if (!vcpu
->mmio_needed
) {
2169 kvm_report_emulation_failure(vcpu
, "mmio");
2170 return EMULATE_FAIL
;
2172 return EMULATE_DO_MMIO
;
2175 kvm_x86_ops
->decache_regs(vcpu
);
2176 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2178 if (vcpu
->mmio_is_write
) {
2179 vcpu
->mmio_needed
= 0;
2180 return EMULATE_DO_MMIO
;
2183 return EMULATE_DONE
;
2185 EXPORT_SYMBOL_GPL(emulate_instruction
);
2187 static void free_pio_guest_pages(struct kvm_vcpu
*vcpu
)
2191 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.pio
.guest_pages
); ++i
)
2192 if (vcpu
->arch
.pio
.guest_pages
[i
]) {
2193 kvm_release_page_dirty(vcpu
->arch
.pio
.guest_pages
[i
]);
2194 vcpu
->arch
.pio
.guest_pages
[i
] = NULL
;
2198 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2200 void *p
= vcpu
->arch
.pio_data
;
2203 int nr_pages
= vcpu
->arch
.pio
.guest_pages
[1] ? 2 : 1;
2205 q
= vmap(vcpu
->arch
.pio
.guest_pages
, nr_pages
, VM_READ
|VM_WRITE
,
2208 free_pio_guest_pages(vcpu
);
2211 q
+= vcpu
->arch
.pio
.guest_page_offset
;
2212 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2213 if (vcpu
->arch
.pio
.in
)
2214 memcpy(q
, p
, bytes
);
2216 memcpy(p
, q
, bytes
);
2217 q
-= vcpu
->arch
.pio
.guest_page_offset
;
2219 free_pio_guest_pages(vcpu
);
2223 int complete_pio(struct kvm_vcpu
*vcpu
)
2225 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2229 kvm_x86_ops
->cache_regs(vcpu
);
2233 memcpy(&vcpu
->arch
.regs
[VCPU_REGS_RAX
], vcpu
->arch
.pio_data
,
2237 r
= pio_copy_data(vcpu
);
2239 kvm_x86_ops
->cache_regs(vcpu
);
2246 delta
*= io
->cur_count
;
2248 * The size of the register should really depend on
2249 * current address size.
2251 vcpu
->arch
.regs
[VCPU_REGS_RCX
] -= delta
;
2257 vcpu
->arch
.regs
[VCPU_REGS_RDI
] += delta
;
2259 vcpu
->arch
.regs
[VCPU_REGS_RSI
] += delta
;
2262 kvm_x86_ops
->decache_regs(vcpu
);
2264 io
->count
-= io
->cur_count
;
2270 static void kernel_pio(struct kvm_io_device
*pio_dev
,
2271 struct kvm_vcpu
*vcpu
,
2274 /* TODO: String I/O for in kernel device */
2276 mutex_lock(&vcpu
->kvm
->lock
);
2277 if (vcpu
->arch
.pio
.in
)
2278 kvm_iodevice_read(pio_dev
, vcpu
->arch
.pio
.port
,
2279 vcpu
->arch
.pio
.size
,
2282 kvm_iodevice_write(pio_dev
, vcpu
->arch
.pio
.port
,
2283 vcpu
->arch
.pio
.size
,
2285 mutex_unlock(&vcpu
->kvm
->lock
);
2288 static void pio_string_write(struct kvm_io_device
*pio_dev
,
2289 struct kvm_vcpu
*vcpu
)
2291 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2292 void *pd
= vcpu
->arch
.pio_data
;
2295 mutex_lock(&vcpu
->kvm
->lock
);
2296 for (i
= 0; i
< io
->cur_count
; i
++) {
2297 kvm_iodevice_write(pio_dev
, io
->port
,
2302 mutex_unlock(&vcpu
->kvm
->lock
);
2305 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
2306 gpa_t addr
, int len
,
2309 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
, len
, is_write
);
2312 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2313 int size
, unsigned port
)
2315 struct kvm_io_device
*pio_dev
;
2317 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2318 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2319 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2320 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2321 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2322 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2323 vcpu
->arch
.pio
.in
= in
;
2324 vcpu
->arch
.pio
.string
= 0;
2325 vcpu
->arch
.pio
.down
= 0;
2326 vcpu
->arch
.pio
.guest_page_offset
= 0;
2327 vcpu
->arch
.pio
.rep
= 0;
2329 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2330 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2333 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2336 kvm_x86_ops
->cache_regs(vcpu
);
2337 memcpy(vcpu
->arch
.pio_data
, &vcpu
->arch
.regs
[VCPU_REGS_RAX
], 4);
2339 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2341 pio_dev
= vcpu_find_pio_dev(vcpu
, port
, size
, !in
);
2343 kernel_pio(pio_dev
, vcpu
, vcpu
->arch
.pio_data
);
2349 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2351 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2352 int size
, unsigned long count
, int down
,
2353 gva_t address
, int rep
, unsigned port
)
2355 unsigned now
, in_page
;
2359 struct kvm_io_device
*pio_dev
;
2361 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2362 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2363 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2364 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2365 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2366 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2367 vcpu
->arch
.pio
.in
= in
;
2368 vcpu
->arch
.pio
.string
= 1;
2369 vcpu
->arch
.pio
.down
= down
;
2370 vcpu
->arch
.pio
.guest_page_offset
= offset_in_page(address
);
2371 vcpu
->arch
.pio
.rep
= rep
;
2373 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2374 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2377 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2381 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2386 in_page
= PAGE_SIZE
- offset_in_page(address
);
2388 in_page
= offset_in_page(address
) + size
;
2389 now
= min(count
, (unsigned long)in_page
/ size
);
2392 * String I/O straddles page boundary. Pin two guest pages
2393 * so that we satisfy atomicity constraints. Do just one
2394 * transaction to avoid complexity.
2401 * String I/O in reverse. Yuck. Kill the guest, fix later.
2403 pr_unimpl(vcpu
, "guest string pio down\n");
2404 kvm_inject_gp(vcpu
, 0);
2407 vcpu
->run
->io
.count
= now
;
2408 vcpu
->arch
.pio
.cur_count
= now
;
2410 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
2411 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2413 for (i
= 0; i
< nr_pages
; ++i
) {
2414 page
= gva_to_page(vcpu
, address
+ i
* PAGE_SIZE
);
2415 vcpu
->arch
.pio
.guest_pages
[i
] = page
;
2417 kvm_inject_gp(vcpu
, 0);
2418 free_pio_guest_pages(vcpu
);
2423 pio_dev
= vcpu_find_pio_dev(vcpu
, port
,
2424 vcpu
->arch
.pio
.cur_count
,
2425 !vcpu
->arch
.pio
.in
);
2426 if (!vcpu
->arch
.pio
.in
) {
2427 /* string PIO write */
2428 ret
= pio_copy_data(vcpu
);
2429 if (ret
>= 0 && pio_dev
) {
2430 pio_string_write(pio_dev
, vcpu
);
2432 if (vcpu
->arch
.pio
.count
== 0)
2436 pr_unimpl(vcpu
, "no string pio read support yet, "
2437 "port %x size %d count %ld\n",
2442 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
2444 int kvm_arch_init(void *opaque
)
2447 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
2450 printk(KERN_ERR
"kvm: already loaded the other module\n");
2455 if (!ops
->cpu_has_kvm_support()) {
2456 printk(KERN_ERR
"kvm: no hardware support\n");
2460 if (ops
->disabled_by_bios()) {
2461 printk(KERN_ERR
"kvm: disabled by bios\n");
2466 r
= kvm_mmu_module_init();
2470 kvm_init_msr_list();
2473 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2474 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
2475 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
2476 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
2483 void kvm_arch_exit(void)
2486 kvm_mmu_module_exit();
2489 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
2491 ++vcpu
->stat
.halt_exits
;
2492 KVMTRACE_0D(HLT
, vcpu
, handler
);
2493 if (irqchip_in_kernel(vcpu
->kvm
)) {
2494 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
2495 up_read(&vcpu
->kvm
->slots_lock
);
2496 kvm_vcpu_block(vcpu
);
2497 down_read(&vcpu
->kvm
->slots_lock
);
2498 if (vcpu
->arch
.mp_state
!= KVM_MP_STATE_RUNNABLE
)
2502 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
2506 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
2508 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
2511 if (is_long_mode(vcpu
))
2514 return a0
| ((gpa_t
)a1
<< 32);
2517 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
2519 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
2522 kvm_x86_ops
->cache_regs(vcpu
);
2524 nr
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2525 a0
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
2526 a1
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2527 a2
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
2528 a3
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
2530 KVMTRACE_1D(VMMCALL
, vcpu
, (u32
)nr
, handler
);
2532 if (!is_long_mode(vcpu
)) {
2541 case KVM_HC_VAPIC_POLL_IRQ
:
2545 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
2551 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = ret
;
2552 kvm_x86_ops
->decache_regs(vcpu
);
2553 ++vcpu
->stat
.hypercalls
;
2556 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
2558 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
2560 char instruction
[3];
2565 * Blow out the MMU to ensure that no other VCPU has an active mapping
2566 * to ensure that the updated hypercall appears atomically across all
2569 kvm_mmu_zap_all(vcpu
->kvm
);
2571 kvm_x86_ops
->cache_regs(vcpu
);
2572 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
2573 if (emulator_write_emulated(vcpu
->arch
.rip
, instruction
, 3, vcpu
)
2574 != X86EMUL_CONTINUE
)
2580 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
2582 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
2585 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2587 struct descriptor_table dt
= { limit
, base
};
2589 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2592 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2594 struct descriptor_table dt
= { limit
, base
};
2596 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2599 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
2600 unsigned long *rflags
)
2602 kvm_lmsw(vcpu
, msw
);
2603 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2606 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
2608 unsigned long value
;
2610 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2613 value
= vcpu
->arch
.cr0
;
2616 value
= vcpu
->arch
.cr2
;
2619 value
= vcpu
->arch
.cr3
;
2622 value
= vcpu
->arch
.cr4
;
2625 value
= kvm_get_cr8(vcpu
);
2628 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2631 KVMTRACE_3D(CR_READ
, vcpu
, (u32
)cr
, (u32
)value
,
2632 (u32
)((u64
)value
>> 32), handler
);
2637 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
2638 unsigned long *rflags
)
2640 KVMTRACE_3D(CR_WRITE
, vcpu
, (u32
)cr
, (u32
)val
,
2641 (u32
)((u64
)val
>> 32), handler
);
2645 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
2646 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2649 vcpu
->arch
.cr2
= val
;
2652 kvm_set_cr3(vcpu
, val
);
2655 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
2658 kvm_set_cr8(vcpu
, val
& 0xfUL
);
2661 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2665 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
2667 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
2668 int j
, nent
= vcpu
->arch
.cpuid_nent
;
2670 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
2671 /* when no next entry is found, the current entry[i] is reselected */
2672 for (j
= i
+ 1; j
== i
; j
= (j
+ 1) % nent
) {
2673 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
2674 if (ej
->function
== e
->function
) {
2675 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2679 return 0; /* silence gcc, even though control never reaches here */
2682 /* find an entry with matching function, matching index (if needed), and that
2683 * should be read next (if it's stateful) */
2684 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
2685 u32 function
, u32 index
)
2687 if (e
->function
!= function
)
2689 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
2691 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
2692 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
2697 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
2700 u32 function
, index
;
2701 struct kvm_cpuid_entry2
*e
, *best
;
2703 kvm_x86_ops
->cache_regs(vcpu
);
2704 function
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2705 index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2706 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = 0;
2707 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = 0;
2708 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = 0;
2709 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = 0;
2711 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2712 e
= &vcpu
->arch
.cpuid_entries
[i
];
2713 if (is_matching_cpuid_entry(e
, function
, index
)) {
2714 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
2715 move_to_next_stateful_cpuid_entry(vcpu
, i
);
2720 * Both basic or both extended?
2722 if (((e
->function
^ function
) & 0x80000000) == 0)
2723 if (!best
|| e
->function
> best
->function
)
2727 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = best
->eax
;
2728 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = best
->ebx
;
2729 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = best
->ecx
;
2730 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = best
->edx
;
2732 kvm_x86_ops
->decache_regs(vcpu
);
2733 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2734 KVMTRACE_5D(CPUID
, vcpu
, function
,
2735 (u32
)vcpu
->arch
.regs
[VCPU_REGS_RAX
],
2736 (u32
)vcpu
->arch
.regs
[VCPU_REGS_RBX
],
2737 (u32
)vcpu
->arch
.regs
[VCPU_REGS_RCX
],
2738 (u32
)vcpu
->arch
.regs
[VCPU_REGS_RDX
], handler
);
2740 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
2743 * Check if userspace requested an interrupt window, and that the
2744 * interrupt window is open.
2746 * No need to exit to userspace if we already have an interrupt queued.
2748 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
2749 struct kvm_run
*kvm_run
)
2751 return (!vcpu
->arch
.irq_summary
&&
2752 kvm_run
->request_interrupt_window
&&
2753 vcpu
->arch
.interrupt_window_open
&&
2754 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
));
2757 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
2758 struct kvm_run
*kvm_run
)
2760 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
2761 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
2762 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
2763 if (irqchip_in_kernel(vcpu
->kvm
))
2764 kvm_run
->ready_for_interrupt_injection
= 1;
2766 kvm_run
->ready_for_interrupt_injection
=
2767 (vcpu
->arch
.interrupt_window_open
&&
2768 vcpu
->arch
.irq_summary
== 0);
2771 static void vapic_enter(struct kvm_vcpu
*vcpu
)
2773 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2776 if (!apic
|| !apic
->vapic_addr
)
2779 down_read(¤t
->mm
->mmap_sem
);
2780 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2781 up_read(¤t
->mm
->mmap_sem
);
2783 vcpu
->arch
.apic
->vapic_page
= page
;
2786 static void vapic_exit(struct kvm_vcpu
*vcpu
)
2788 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2790 if (!apic
|| !apic
->vapic_addr
)
2793 down_read(&vcpu
->kvm
->slots_lock
);
2794 kvm_release_page_dirty(apic
->vapic_page
);
2795 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2796 up_read(&vcpu
->kvm
->slots_lock
);
2799 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2803 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
2804 pr_debug("vcpu %d received sipi with vector # %x\n",
2805 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
2806 kvm_lapic_reset(vcpu
);
2807 r
= kvm_x86_ops
->vcpu_reset(vcpu
);
2810 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
2813 down_read(&vcpu
->kvm
->slots_lock
);
2817 if (vcpu
->guest_debug
.enabled
)
2818 kvm_x86_ops
->guest_debug_pre(vcpu
);
2822 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
2823 kvm_mmu_unload(vcpu
);
2825 r
= kvm_mmu_reload(vcpu
);
2829 if (vcpu
->requests
) {
2830 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
2831 __kvm_migrate_timers(vcpu
);
2832 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
2833 kvm_x86_ops
->tlb_flush(vcpu
);
2834 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
2836 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
2840 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
2841 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2847 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
2848 kvm_inject_pending_timer_irqs(vcpu
);
2852 kvm_x86_ops
->prepare_guest_switch(vcpu
);
2853 kvm_load_guest_fpu(vcpu
);
2855 local_irq_disable();
2857 if (vcpu
->requests
|| need_resched()) {
2864 if (signal_pending(current
)) {
2868 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2869 ++vcpu
->stat
.signal_exits
;
2873 vcpu
->guest_mode
= 1;
2875 * Make sure that guest_mode assignment won't happen after
2876 * testing the pending IRQ vector bitmap.
2880 if (vcpu
->arch
.exception
.pending
)
2881 __queue_exception(vcpu
);
2882 else if (irqchip_in_kernel(vcpu
->kvm
))
2883 kvm_x86_ops
->inject_pending_irq(vcpu
);
2885 kvm_x86_ops
->inject_pending_vectors(vcpu
, kvm_run
);
2887 kvm_lapic_sync_to_vapic(vcpu
);
2889 up_read(&vcpu
->kvm
->slots_lock
);
2894 KVMTRACE_0D(VMENTRY
, vcpu
, entryexit
);
2895 kvm_x86_ops
->run(vcpu
, kvm_run
);
2897 vcpu
->guest_mode
= 0;
2903 * We must have an instruction between local_irq_enable() and
2904 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2905 * the interrupt shadow. The stat.exits increment will do nicely.
2906 * But we need to prevent reordering, hence this barrier():
2914 down_read(&vcpu
->kvm
->slots_lock
);
2917 * Profile KVM exit RIPs:
2919 if (unlikely(prof_on
== KVM_PROFILING
)) {
2920 kvm_x86_ops
->cache_regs(vcpu
);
2921 profile_hit(KVM_PROFILING
, (void *)vcpu
->arch
.rip
);
2924 if (vcpu
->arch
.exception
.pending
&& kvm_x86_ops
->exception_injected(vcpu
))
2925 vcpu
->arch
.exception
.pending
= false;
2927 kvm_lapic_sync_from_vapic(vcpu
);
2929 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
2932 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
2934 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2935 ++vcpu
->stat
.request_irq_exits
;
2938 if (!need_resched())
2943 up_read(&vcpu
->kvm
->slots_lock
);
2946 down_read(&vcpu
->kvm
->slots_lock
);
2950 post_kvm_run_save(vcpu
, kvm_run
);
2957 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2964 if (vcpu
->sigset_active
)
2965 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
2967 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
2968 kvm_vcpu_block(vcpu
);
2973 /* re-sync apic's tpr */
2974 if (!irqchip_in_kernel(vcpu
->kvm
))
2975 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
2977 if (vcpu
->arch
.pio
.cur_count
) {
2978 r
= complete_pio(vcpu
);
2982 #if CONFIG_HAS_IOMEM
2983 if (vcpu
->mmio_needed
) {
2984 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
2985 vcpu
->mmio_read_completed
= 1;
2986 vcpu
->mmio_needed
= 0;
2988 down_read(&vcpu
->kvm
->slots_lock
);
2989 r
= emulate_instruction(vcpu
, kvm_run
,
2990 vcpu
->arch
.mmio_fault_cr2
, 0,
2991 EMULTYPE_NO_DECODE
);
2992 up_read(&vcpu
->kvm
->slots_lock
);
2993 if (r
== EMULATE_DO_MMIO
) {
2995 * Read-modify-write. Back to userspace.
3002 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
) {
3003 kvm_x86_ops
->cache_regs(vcpu
);
3004 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = kvm_run
->hypercall
.ret
;
3005 kvm_x86_ops
->decache_regs(vcpu
);
3008 r
= __vcpu_run(vcpu
, kvm_run
);
3011 if (vcpu
->sigset_active
)
3012 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3018 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3022 kvm_x86_ops
->cache_regs(vcpu
);
3024 regs
->rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3025 regs
->rbx
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
3026 regs
->rcx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3027 regs
->rdx
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
3028 regs
->rsi
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
3029 regs
->rdi
= vcpu
->arch
.regs
[VCPU_REGS_RDI
];
3030 regs
->rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3031 regs
->rbp
= vcpu
->arch
.regs
[VCPU_REGS_RBP
];
3032 #ifdef CONFIG_X86_64
3033 regs
->r8
= vcpu
->arch
.regs
[VCPU_REGS_R8
];
3034 regs
->r9
= vcpu
->arch
.regs
[VCPU_REGS_R9
];
3035 regs
->r10
= vcpu
->arch
.regs
[VCPU_REGS_R10
];
3036 regs
->r11
= vcpu
->arch
.regs
[VCPU_REGS_R11
];
3037 regs
->r12
= vcpu
->arch
.regs
[VCPU_REGS_R12
];
3038 regs
->r13
= vcpu
->arch
.regs
[VCPU_REGS_R13
];
3039 regs
->r14
= vcpu
->arch
.regs
[VCPU_REGS_R14
];
3040 regs
->r15
= vcpu
->arch
.regs
[VCPU_REGS_R15
];
3043 regs
->rip
= vcpu
->arch
.rip
;
3044 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3047 * Don't leak debug flags in case they were set for guest debugging
3049 if (vcpu
->guest_debug
.enabled
&& vcpu
->guest_debug
.singlestep
)
3050 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3057 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3061 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = regs
->rax
;
3062 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = regs
->rbx
;
3063 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = regs
->rcx
;
3064 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = regs
->rdx
;
3065 vcpu
->arch
.regs
[VCPU_REGS_RSI
] = regs
->rsi
;
3066 vcpu
->arch
.regs
[VCPU_REGS_RDI
] = regs
->rdi
;
3067 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = regs
->rsp
;
3068 vcpu
->arch
.regs
[VCPU_REGS_RBP
] = regs
->rbp
;
3069 #ifdef CONFIG_X86_64
3070 vcpu
->arch
.regs
[VCPU_REGS_R8
] = regs
->r8
;
3071 vcpu
->arch
.regs
[VCPU_REGS_R9
] = regs
->r9
;
3072 vcpu
->arch
.regs
[VCPU_REGS_R10
] = regs
->r10
;
3073 vcpu
->arch
.regs
[VCPU_REGS_R11
] = regs
->r11
;
3074 vcpu
->arch
.regs
[VCPU_REGS_R12
] = regs
->r12
;
3075 vcpu
->arch
.regs
[VCPU_REGS_R13
] = regs
->r13
;
3076 vcpu
->arch
.regs
[VCPU_REGS_R14
] = regs
->r14
;
3077 vcpu
->arch
.regs
[VCPU_REGS_R15
] = regs
->r15
;
3080 vcpu
->arch
.rip
= regs
->rip
;
3081 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3083 kvm_x86_ops
->decache_regs(vcpu
);
3085 vcpu
->arch
.exception
.pending
= false;
3092 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3093 struct kvm_segment
*var
, int seg
)
3095 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3098 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3100 struct kvm_segment cs
;
3102 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3106 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3108 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3109 struct kvm_sregs
*sregs
)
3111 struct descriptor_table dt
;
3116 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3117 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3118 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3119 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3120 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3121 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3123 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3124 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3126 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3127 sregs
->idt
.limit
= dt
.limit
;
3128 sregs
->idt
.base
= dt
.base
;
3129 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3130 sregs
->gdt
.limit
= dt
.limit
;
3131 sregs
->gdt
.base
= dt
.base
;
3133 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3134 sregs
->cr0
= vcpu
->arch
.cr0
;
3135 sregs
->cr2
= vcpu
->arch
.cr2
;
3136 sregs
->cr3
= vcpu
->arch
.cr3
;
3137 sregs
->cr4
= vcpu
->arch
.cr4
;
3138 sregs
->cr8
= kvm_get_cr8(vcpu
);
3139 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3140 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3142 if (irqchip_in_kernel(vcpu
->kvm
)) {
3143 memset(sregs
->interrupt_bitmap
, 0,
3144 sizeof sregs
->interrupt_bitmap
);
3145 pending_vec
= kvm_x86_ops
->get_irq(vcpu
);
3146 if (pending_vec
>= 0)
3147 set_bit(pending_vec
,
3148 (unsigned long *)sregs
->interrupt_bitmap
);
3150 memcpy(sregs
->interrupt_bitmap
, vcpu
->arch
.irq_pending
,
3151 sizeof sregs
->interrupt_bitmap
);
3158 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3159 struct kvm_mp_state
*mp_state
)
3162 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3167 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3168 struct kvm_mp_state
*mp_state
)
3171 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3176 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3177 struct kvm_segment
*var
, int seg
)
3179 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3182 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3183 struct kvm_segment
*kvm_desct
)
3185 kvm_desct
->base
= seg_desc
->base0
;
3186 kvm_desct
->base
|= seg_desc
->base1
<< 16;
3187 kvm_desct
->base
|= seg_desc
->base2
<< 24;
3188 kvm_desct
->limit
= seg_desc
->limit0
;
3189 kvm_desct
->limit
|= seg_desc
->limit
<< 16;
3191 kvm_desct
->limit
<<= 12;
3192 kvm_desct
->limit
|= 0xfff;
3194 kvm_desct
->selector
= selector
;
3195 kvm_desct
->type
= seg_desc
->type
;
3196 kvm_desct
->present
= seg_desc
->p
;
3197 kvm_desct
->dpl
= seg_desc
->dpl
;
3198 kvm_desct
->db
= seg_desc
->d
;
3199 kvm_desct
->s
= seg_desc
->s
;
3200 kvm_desct
->l
= seg_desc
->l
;
3201 kvm_desct
->g
= seg_desc
->g
;
3202 kvm_desct
->avl
= seg_desc
->avl
;
3204 kvm_desct
->unusable
= 1;
3206 kvm_desct
->unusable
= 0;
3207 kvm_desct
->padding
= 0;
3210 static void get_segment_descritptor_dtable(struct kvm_vcpu
*vcpu
,
3212 struct descriptor_table
*dtable
)
3214 if (selector
& 1 << 2) {
3215 struct kvm_segment kvm_seg
;
3217 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
3219 if (kvm_seg
.unusable
)
3222 dtable
->limit
= kvm_seg
.limit
;
3223 dtable
->base
= kvm_seg
.base
;
3226 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
3229 /* allowed just for 8 bytes segments */
3230 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3231 struct desc_struct
*seg_desc
)
3234 struct descriptor_table dtable
;
3235 u16 index
= selector
>> 3;
3237 get_segment_descritptor_dtable(vcpu
, selector
, &dtable
);
3239 if (dtable
.limit
< index
* 8 + 7) {
3240 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
3243 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3245 return kvm_read_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3248 /* allowed just for 8 bytes segments */
3249 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3250 struct desc_struct
*seg_desc
)
3253 struct descriptor_table dtable
;
3254 u16 index
= selector
>> 3;
3256 get_segment_descritptor_dtable(vcpu
, selector
, &dtable
);
3258 if (dtable
.limit
< index
* 8 + 7)
3260 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3262 return kvm_write_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3265 static u32
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
3266 struct desc_struct
*seg_desc
)
3270 base_addr
= seg_desc
->base0
;
3271 base_addr
|= (seg_desc
->base1
<< 16);
3272 base_addr
|= (seg_desc
->base2
<< 24);
3274 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, base_addr
);
3277 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
3279 struct kvm_segment kvm_seg
;
3281 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
3282 return kvm_seg
.selector
;
3285 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
3287 struct kvm_segment
*kvm_seg
)
3289 struct desc_struct seg_desc
;
3291 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
3293 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
3297 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3298 int type_bits
, int seg
)
3300 struct kvm_segment kvm_seg
;
3302 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
3304 kvm_seg
.type
|= type_bits
;
3306 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
3307 seg
!= VCPU_SREG_LDTR
)
3309 kvm_seg
.unusable
= 1;
3311 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
3315 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
3316 struct tss_segment_32
*tss
)
3318 tss
->cr3
= vcpu
->arch
.cr3
;
3319 tss
->eip
= vcpu
->arch
.rip
;
3320 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3321 tss
->eax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3322 tss
->ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3323 tss
->edx
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
3324 tss
->ebx
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
3325 tss
->esp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3326 tss
->ebp
= vcpu
->arch
.regs
[VCPU_REGS_RBP
];
3327 tss
->esi
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
3328 tss
->edi
= vcpu
->arch
.regs
[VCPU_REGS_RDI
];
3330 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3331 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3332 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3333 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3334 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
3335 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
3336 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3337 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3340 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
3341 struct tss_segment_32
*tss
)
3343 kvm_set_cr3(vcpu
, tss
->cr3
);
3345 vcpu
->arch
.rip
= tss
->eip
;
3346 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
3348 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = tss
->eax
;
3349 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = tss
->ecx
;
3350 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = tss
->edx
;
3351 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = tss
->ebx
;
3352 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = tss
->esp
;
3353 vcpu
->arch
.regs
[VCPU_REGS_RBP
] = tss
->ebp
;
3354 vcpu
->arch
.regs
[VCPU_REGS_RSI
] = tss
->esi
;
3355 vcpu
->arch
.regs
[VCPU_REGS_RDI
] = tss
->edi
;
3357 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
3360 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3363 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3366 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3369 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3372 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
3375 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
3380 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
3381 struct tss_segment_16
*tss
)
3383 tss
->ip
= vcpu
->arch
.rip
;
3384 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
3385 tss
->ax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3386 tss
->cx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3387 tss
->dx
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
3388 tss
->bx
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
3389 tss
->sp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3390 tss
->bp
= vcpu
->arch
.regs
[VCPU_REGS_RBP
];
3391 tss
->si
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
3392 tss
->di
= vcpu
->arch
.regs
[VCPU_REGS_RDI
];
3394 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3395 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3396 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3397 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3398 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3399 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3402 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
3403 struct tss_segment_16
*tss
)
3405 vcpu
->arch
.rip
= tss
->ip
;
3406 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
3407 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = tss
->ax
;
3408 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = tss
->cx
;
3409 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = tss
->dx
;
3410 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = tss
->bx
;
3411 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = tss
->sp
;
3412 vcpu
->arch
.regs
[VCPU_REGS_RBP
] = tss
->bp
;
3413 vcpu
->arch
.regs
[VCPU_REGS_RSI
] = tss
->si
;
3414 vcpu
->arch
.regs
[VCPU_REGS_RDI
] = tss
->di
;
3416 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
3419 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3422 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3425 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3428 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3433 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3435 struct desc_struct
*nseg_desc
)
3437 struct tss_segment_16 tss_segment_16
;
3440 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3441 sizeof tss_segment_16
))
3444 save_state_to_tss16(vcpu
, &tss_segment_16
);
3446 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3447 sizeof tss_segment_16
))
3450 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3451 &tss_segment_16
, sizeof tss_segment_16
))
3454 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
3462 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3464 struct desc_struct
*nseg_desc
)
3466 struct tss_segment_32 tss_segment_32
;
3469 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3470 sizeof tss_segment_32
))
3473 save_state_to_tss32(vcpu
, &tss_segment_32
);
3475 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3476 sizeof tss_segment_32
))
3479 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3480 &tss_segment_32
, sizeof tss_segment_32
))
3483 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
3491 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
3493 struct kvm_segment tr_seg
;
3494 struct desc_struct cseg_desc
;
3495 struct desc_struct nseg_desc
;
3497 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
3498 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3500 old_tss_base
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, old_tss_base
);
3502 /* FIXME: Handle errors. Failure to read either TSS or their
3503 * descriptors should generate a pagefault.
3505 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
3508 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
3511 if (reason
!= TASK_SWITCH_IRET
) {
3514 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
3515 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
3516 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
3521 if (!nseg_desc
.p
|| (nseg_desc
.limit0
| nseg_desc
.limit
<< 16) < 0x67) {
3522 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
3526 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
3527 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
3528 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
3531 if (reason
== TASK_SWITCH_IRET
) {
3532 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3533 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
3536 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3537 kvm_x86_ops
->cache_regs(vcpu
);
3539 if (nseg_desc
.type
& 8)
3540 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_base
,
3543 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_base
,
3546 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
3547 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3548 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
3551 if (reason
!= TASK_SWITCH_IRET
) {
3552 nseg_desc
.type
|= (1 << 1);
3553 save_guest_segment_descriptor(vcpu
, tss_selector
,
3557 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
3558 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
3560 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
3562 kvm_x86_ops
->decache_regs(vcpu
);
3565 EXPORT_SYMBOL_GPL(kvm_task_switch
);
3567 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
3568 struct kvm_sregs
*sregs
)
3570 int mmu_reset_needed
= 0;
3571 int i
, pending_vec
, max_bits
;
3572 struct descriptor_table dt
;
3576 dt
.limit
= sregs
->idt
.limit
;
3577 dt
.base
= sregs
->idt
.base
;
3578 kvm_x86_ops
->set_idt(vcpu
, &dt
);
3579 dt
.limit
= sregs
->gdt
.limit
;
3580 dt
.base
= sregs
->gdt
.base
;
3581 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
3583 vcpu
->arch
.cr2
= sregs
->cr2
;
3584 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
3585 vcpu
->arch
.cr3
= sregs
->cr3
;
3587 kvm_set_cr8(vcpu
, sregs
->cr8
);
3589 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
3590 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
3591 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
3593 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3595 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
3596 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
3597 vcpu
->arch
.cr0
= sregs
->cr0
;
3599 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
3600 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
3601 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
3602 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
3604 if (mmu_reset_needed
)
3605 kvm_mmu_reset_context(vcpu
);
3607 if (!irqchip_in_kernel(vcpu
->kvm
)) {
3608 memcpy(vcpu
->arch
.irq_pending
, sregs
->interrupt_bitmap
,
3609 sizeof vcpu
->arch
.irq_pending
);
3610 vcpu
->arch
.irq_summary
= 0;
3611 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.irq_pending
); ++i
)
3612 if (vcpu
->arch
.irq_pending
[i
])
3613 __set_bit(i
, &vcpu
->arch
.irq_summary
);
3615 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
3616 pending_vec
= find_first_bit(
3617 (const unsigned long *)sregs
->interrupt_bitmap
,
3619 /* Only pending external irq is handled here */
3620 if (pending_vec
< max_bits
) {
3621 kvm_x86_ops
->set_irq(vcpu
, pending_vec
);
3622 pr_debug("Set back pending irq %d\n",
3627 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3628 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3629 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3630 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3631 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3632 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3634 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3635 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3642 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu
*vcpu
,
3643 struct kvm_debug_guest
*dbg
)
3649 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
3657 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3658 * we have asm/x86/processor.h
3669 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3670 #ifdef CONFIG_X86_64
3671 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3673 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3678 * Translate a guest virtual address to a guest physical address.
3680 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
3681 struct kvm_translation
*tr
)
3683 unsigned long vaddr
= tr
->linear_address
;
3687 down_read(&vcpu
->kvm
->slots_lock
);
3688 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
3689 up_read(&vcpu
->kvm
->slots_lock
);
3690 tr
->physical_address
= gpa
;
3691 tr
->valid
= gpa
!= UNMAPPED_GVA
;
3699 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
3701 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
3705 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
3706 fpu
->fcw
= fxsave
->cwd
;
3707 fpu
->fsw
= fxsave
->swd
;
3708 fpu
->ftwx
= fxsave
->twd
;
3709 fpu
->last_opcode
= fxsave
->fop
;
3710 fpu
->last_ip
= fxsave
->rip
;
3711 fpu
->last_dp
= fxsave
->rdp
;
3712 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
3719 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
3721 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
3725 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
3726 fxsave
->cwd
= fpu
->fcw
;
3727 fxsave
->swd
= fpu
->fsw
;
3728 fxsave
->twd
= fpu
->ftwx
;
3729 fxsave
->fop
= fpu
->last_opcode
;
3730 fxsave
->rip
= fpu
->last_ip
;
3731 fxsave
->rdp
= fpu
->last_dp
;
3732 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
3739 void fx_init(struct kvm_vcpu
*vcpu
)
3741 unsigned after_mxcsr_mask
;
3744 * Touch the fpu the first time in non atomic context as if
3745 * this is the first fpu instruction the exception handler
3746 * will fire before the instruction returns and it'll have to
3747 * allocate ram with GFP_KERNEL.
3750 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
3752 /* Initialize guest FPU by resetting ours and saving into guest's */
3754 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
3756 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
3757 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
3760 vcpu
->arch
.cr0
|= X86_CR0_ET
;
3761 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
3762 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
3763 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
3764 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
3766 EXPORT_SYMBOL_GPL(fx_init
);
3768 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
3770 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
3773 vcpu
->guest_fpu_loaded
= 1;
3774 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
3775 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
3777 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
3779 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
3781 if (!vcpu
->guest_fpu_loaded
)
3784 vcpu
->guest_fpu_loaded
= 0;
3785 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
3786 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
3787 ++vcpu
->stat
.fpu_reload
;
3789 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
3791 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
3793 kvm_x86_ops
->vcpu_free(vcpu
);
3796 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
3799 return kvm_x86_ops
->vcpu_create(kvm
, id
);
3802 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
3806 /* We do fxsave: this must be aligned. */
3807 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
3810 r
= kvm_arch_vcpu_reset(vcpu
);
3812 r
= kvm_mmu_setup(vcpu
);
3819 kvm_x86_ops
->vcpu_free(vcpu
);
3823 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
3826 kvm_mmu_unload(vcpu
);
3829 kvm_x86_ops
->vcpu_free(vcpu
);
3832 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
3834 return kvm_x86_ops
->vcpu_reset(vcpu
);
3837 void kvm_arch_hardware_enable(void *garbage
)
3839 kvm_x86_ops
->hardware_enable(garbage
);
3842 void kvm_arch_hardware_disable(void *garbage
)
3844 kvm_x86_ops
->hardware_disable(garbage
);
3847 int kvm_arch_hardware_setup(void)
3849 return kvm_x86_ops
->hardware_setup();
3852 void kvm_arch_hardware_unsetup(void)
3854 kvm_x86_ops
->hardware_unsetup();
3857 void kvm_arch_check_processor_compat(void *rtn
)
3859 kvm_x86_ops
->check_processor_compatibility(rtn
);
3862 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
3868 BUG_ON(vcpu
->kvm
== NULL
);
3871 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3872 if (!irqchip_in_kernel(kvm
) || vcpu
->vcpu_id
== 0)
3873 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3875 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
3877 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
3882 vcpu
->arch
.pio_data
= page_address(page
);
3884 r
= kvm_mmu_create(vcpu
);
3886 goto fail_free_pio_data
;
3888 if (irqchip_in_kernel(kvm
)) {
3889 r
= kvm_create_lapic(vcpu
);
3891 goto fail_mmu_destroy
;
3897 kvm_mmu_destroy(vcpu
);
3899 free_page((unsigned long)vcpu
->arch
.pio_data
);
3904 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
3906 kvm_free_lapic(vcpu
);
3907 down_read(&vcpu
->kvm
->slots_lock
);
3908 kvm_mmu_destroy(vcpu
);
3909 up_read(&vcpu
->kvm
->slots_lock
);
3910 free_page((unsigned long)vcpu
->arch
.pio_data
);
3913 struct kvm
*kvm_arch_create_vm(void)
3915 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
3918 return ERR_PTR(-ENOMEM
);
3920 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
3925 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
3928 kvm_mmu_unload(vcpu
);
3932 static void kvm_free_vcpus(struct kvm
*kvm
)
3937 * Unpin any mmu pages first.
3939 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
3941 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
3942 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
3943 if (kvm
->vcpus
[i
]) {
3944 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
3945 kvm
->vcpus
[i
] = NULL
;
3951 void kvm_arch_destroy_vm(struct kvm
*kvm
)
3954 kfree(kvm
->arch
.vpic
);
3955 kfree(kvm
->arch
.vioapic
);
3956 kvm_free_vcpus(kvm
);
3957 kvm_free_physmem(kvm
);
3958 if (kvm
->arch
.apic_access_page
)
3959 put_page(kvm
->arch
.apic_access_page
);
3960 if (kvm
->arch
.ept_identity_pagetable
)
3961 put_page(kvm
->arch
.ept_identity_pagetable
);
3965 int kvm_arch_set_memory_region(struct kvm
*kvm
,
3966 struct kvm_userspace_memory_region
*mem
,
3967 struct kvm_memory_slot old
,
3970 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
3971 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
3973 /*To keep backward compatibility with older userspace,
3974 *x86 needs to hanlde !user_alloc case.
3977 if (npages
&& !old
.rmap
) {
3978 unsigned long userspace_addr
;
3980 down_write(¤t
->mm
->mmap_sem
);
3981 userspace_addr
= do_mmap(NULL
, 0,
3983 PROT_READ
| PROT_WRITE
,
3984 MAP_SHARED
| MAP_ANONYMOUS
,
3986 up_write(¤t
->mm
->mmap_sem
);
3988 if (IS_ERR((void *)userspace_addr
))
3989 return PTR_ERR((void *)userspace_addr
);
3991 /* set userspace_addr atomically for kvm_hva_to_rmapp */
3992 spin_lock(&kvm
->mmu_lock
);
3993 memslot
->userspace_addr
= userspace_addr
;
3994 spin_unlock(&kvm
->mmu_lock
);
3996 if (!old
.user_alloc
&& old
.rmap
) {
3999 down_write(¤t
->mm
->mmap_sem
);
4000 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
4001 old
.npages
* PAGE_SIZE
);
4002 up_write(¤t
->mm
->mmap_sem
);
4005 "kvm_vm_ioctl_set_memory_region: "
4006 "failed to munmap memory\n");
4011 if (!kvm
->arch
.n_requested_mmu_pages
) {
4012 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
4013 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
4016 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
4017 kvm_flush_remote_tlbs(kvm
);
4022 void kvm_arch_flush_shadow(struct kvm
*kvm
)
4024 kvm_mmu_zap_all(kvm
);
4027 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
4029 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
4030 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
;
4033 static void vcpu_kick_intr(void *info
)
4036 struct kvm_vcpu
*vcpu
= (struct kvm_vcpu
*)info
;
4037 printk(KERN_DEBUG
"vcpu_kick_intr %p \n", vcpu
);
4041 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
4043 int ipi_pcpu
= vcpu
->cpu
;
4044 int cpu
= get_cpu();
4046 if (waitqueue_active(&vcpu
->wq
)) {
4047 wake_up_interruptible(&vcpu
->wq
);
4048 ++vcpu
->stat
.halt_wakeup
;
4051 * We may be called synchronously with irqs disabled in guest mode,
4052 * So need not to call smp_call_function_single() in that case.
4054 if (vcpu
->guest_mode
&& vcpu
->cpu
!= cpu
)
4055 smp_call_function_single(ipi_pcpu
, vcpu_kick_intr
, vcpu
, 0);