6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
35 #include <asm/mmu_context.h>
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags) (0)
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len) (addr)
47 static void unmap_region(struct mm_struct
*mm
,
48 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
49 unsigned long start
, unsigned long end
);
52 * WARNING: the debugging will use recursive algorithms so never enable this
53 * unless you know what you are doing.
57 /* description of effects of mapping type and prot in current implementation.
58 * this is due to the limited x86 page protection hardware. The expected
59 * behavior is in parens:
62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
64 * w: (no) no w: (no) no w: (yes) yes w: (no) no
65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
68 * w: (no) no w: (no) no w: (copy) copy w: (no) no
69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 pgprot_t protection_map
[16] = {
73 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
74 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
77 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
79 return __pgprot(pgprot_val(protection_map
[vm_flags
&
80 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
81 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
83 EXPORT_SYMBOL(vm_get_page_prot
);
85 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
86 int sysctl_overcommit_ratio
= 50; /* default is 50% */
87 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
88 struct percpu_counter vm_committed_as
;
91 * Check that a process has enough memory to allocate a new virtual
92 * mapping. 0 means there is enough memory for the allocation to
93 * succeed and -ENOMEM implies there is not.
95 * We currently support three overcommit policies, which are set via the
96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99 * Additional code 2002 Jul 20 by Robert Love.
101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103 * Note this is a helper function intended to be used by LSMs which
104 * wish to use this logic.
106 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
108 unsigned long free
, allowed
;
110 vm_acct_memory(pages
);
113 * Sometimes we want to use more memory than we have
115 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
118 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
121 free
= global_page_state(NR_FILE_PAGES
);
122 free
+= nr_swap_pages
;
125 * Any slabs which are created with the
126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 * which are reclaimable, under pressure. The dentry
128 * cache and most inode caches should fall into this
130 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
133 * Leave the last 3% for root
142 * nr_free_pages() is very expensive on large systems,
143 * only call if we're about to fail.
148 * Leave reserved pages. The pages are not for anonymous pages.
150 if (n
<= totalreserve_pages
)
153 n
-= totalreserve_pages
;
156 * Leave the last 3% for root
168 allowed
= (totalram_pages
- hugetlb_total_pages())
169 * sysctl_overcommit_ratio
/ 100;
171 * Leave the last 3% for root
174 allowed
-= allowed
/ 32;
175 allowed
+= total_swap_pages
;
177 /* Don't let a single process grow too big:
178 leave 3% of the size of this process for other processes */
180 allowed
-= mm
->total_vm
/ 32;
182 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
185 vm_unacct_memory(pages
);
191 * Requires inode->i_mapping->i_mmap_lock
193 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
194 struct file
*file
, struct address_space
*mapping
)
196 if (vma
->vm_flags
& VM_DENYWRITE
)
197 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
198 if (vma
->vm_flags
& VM_SHARED
)
199 mapping
->i_mmap_writable
--;
201 flush_dcache_mmap_lock(mapping
);
202 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
203 list_del_init(&vma
->shared
.vm_set
.list
);
205 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
206 flush_dcache_mmap_unlock(mapping
);
210 * Unlink a file-based vm structure from its prio_tree, to hide
211 * vma from rmap and vmtruncate before freeing its page tables.
213 void unlink_file_vma(struct vm_area_struct
*vma
)
215 struct file
*file
= vma
->vm_file
;
218 struct address_space
*mapping
= file
->f_mapping
;
219 spin_lock(&mapping
->i_mmap_lock
);
220 __remove_shared_vm_struct(vma
, file
, mapping
);
221 spin_unlock(&mapping
->i_mmap_lock
);
226 * Close a vm structure and free it, returning the next.
228 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
230 struct vm_area_struct
*next
= vma
->vm_next
;
233 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
234 vma
->vm_ops
->close(vma
);
237 if (vma
->vm_flags
& VM_EXECUTABLE
)
238 removed_exe_file_vma(vma
->vm_mm
);
240 mpol_put(vma_policy(vma
));
241 kmem_cache_free(vm_area_cachep
, vma
);
245 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
247 unsigned long rlim
, retval
;
248 unsigned long newbrk
, oldbrk
;
249 struct mm_struct
*mm
= current
->mm
;
250 unsigned long min_brk
;
252 down_write(&mm
->mmap_sem
);
254 #ifdef CONFIG_COMPAT_BRK
255 min_brk
= mm
->end_code
;
257 min_brk
= mm
->start_brk
;
263 * Check against rlimit here. If this check is done later after the test
264 * of oldbrk with newbrk then it can escape the test and let the data
265 * segment grow beyond its set limit the in case where the limit is
266 * not page aligned -Ram Gupta
268 rlim
= current
->signal
->rlim
[RLIMIT_DATA
].rlim_cur
;
269 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
270 (mm
->end_data
- mm
->start_data
) > rlim
)
273 newbrk
= PAGE_ALIGN(brk
);
274 oldbrk
= PAGE_ALIGN(mm
->brk
);
275 if (oldbrk
== newbrk
)
278 /* Always allow shrinking brk. */
279 if (brk
<= mm
->brk
) {
280 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
285 /* Check against existing mmap mappings. */
286 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
289 /* Ok, looks good - let it rip. */
290 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
296 up_write(&mm
->mmap_sem
);
301 static int browse_rb(struct rb_root
*root
)
304 struct rb_node
*nd
, *pn
= NULL
;
305 unsigned long prev
= 0, pend
= 0;
307 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
308 struct vm_area_struct
*vma
;
309 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
310 if (vma
->vm_start
< prev
)
311 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
312 if (vma
->vm_start
< pend
)
313 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
314 if (vma
->vm_start
> vma
->vm_end
)
315 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
318 prev
= vma
->vm_start
;
322 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
326 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
330 void validate_mm(struct mm_struct
*mm
)
334 struct vm_area_struct
*tmp
= mm
->mmap
;
339 if (i
!= mm
->map_count
)
340 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
341 i
= browse_rb(&mm
->mm_rb
);
342 if (i
!= mm
->map_count
)
343 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
347 #define validate_mm(mm) do { } while (0)
350 static struct vm_area_struct
*
351 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
352 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
353 struct rb_node
** rb_parent
)
355 struct vm_area_struct
* vma
;
356 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
358 __rb_link
= &mm
->mm_rb
.rb_node
;
359 rb_prev
= __rb_parent
= NULL
;
363 struct vm_area_struct
*vma_tmp
;
365 __rb_parent
= *__rb_link
;
366 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
368 if (vma_tmp
->vm_end
> addr
) {
370 if (vma_tmp
->vm_start
<= addr
)
372 __rb_link
= &__rb_parent
->rb_left
;
374 rb_prev
= __rb_parent
;
375 __rb_link
= &__rb_parent
->rb_right
;
381 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
382 *rb_link
= __rb_link
;
383 *rb_parent
= __rb_parent
;
388 __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
389 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
392 vma
->vm_next
= prev
->vm_next
;
397 vma
->vm_next
= rb_entry(rb_parent
,
398 struct vm_area_struct
, vm_rb
);
404 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
405 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
407 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
408 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
411 static void __vma_link_file(struct vm_area_struct
*vma
)
417 struct address_space
*mapping
= file
->f_mapping
;
419 if (vma
->vm_flags
& VM_DENYWRITE
)
420 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
421 if (vma
->vm_flags
& VM_SHARED
)
422 mapping
->i_mmap_writable
++;
424 flush_dcache_mmap_lock(mapping
);
425 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
426 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
428 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
429 flush_dcache_mmap_unlock(mapping
);
434 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
435 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
436 struct rb_node
*rb_parent
)
438 __vma_link_list(mm
, vma
, prev
, rb_parent
);
439 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
440 __anon_vma_link(vma
);
443 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
444 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
445 struct rb_node
*rb_parent
)
447 struct address_space
*mapping
= NULL
;
450 mapping
= vma
->vm_file
->f_mapping
;
453 spin_lock(&mapping
->i_mmap_lock
);
454 vma
->vm_truncate_count
= mapping
->truncate_count
;
458 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
459 __vma_link_file(vma
);
461 anon_vma_unlock(vma
);
463 spin_unlock(&mapping
->i_mmap_lock
);
470 * Helper for vma_adjust in the split_vma insert case:
471 * insert vm structure into list and rbtree and anon_vma,
472 * but it has already been inserted into prio_tree earlier.
474 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
476 struct vm_area_struct
*__vma
, *prev
;
477 struct rb_node
**rb_link
, *rb_parent
;
479 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
480 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
481 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
486 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
487 struct vm_area_struct
*prev
)
489 prev
->vm_next
= vma
->vm_next
;
490 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
491 if (mm
->mmap_cache
== vma
)
492 mm
->mmap_cache
= prev
;
496 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
497 * is already present in an i_mmap tree without adjusting the tree.
498 * The following helper function should be used when such adjustments
499 * are necessary. The "insert" vma (if any) is to be inserted
500 * before we drop the necessary locks.
502 void vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
503 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
505 struct mm_struct
*mm
= vma
->vm_mm
;
506 struct vm_area_struct
*next
= vma
->vm_next
;
507 struct vm_area_struct
*importer
= NULL
;
508 struct address_space
*mapping
= NULL
;
509 struct prio_tree_root
*root
= NULL
;
510 struct file
*file
= vma
->vm_file
;
511 struct anon_vma
*anon_vma
= NULL
;
512 long adjust_next
= 0;
515 if (next
&& !insert
) {
516 if (end
>= next
->vm_end
) {
518 * vma expands, overlapping all the next, and
519 * perhaps the one after too (mprotect case 6).
521 again
: remove_next
= 1 + (end
> next
->vm_end
);
523 anon_vma
= next
->anon_vma
;
525 } else if (end
> next
->vm_start
) {
527 * vma expands, overlapping part of the next:
528 * mprotect case 5 shifting the boundary up.
530 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
531 anon_vma
= next
->anon_vma
;
533 } else if (end
< vma
->vm_end
) {
535 * vma shrinks, and !insert tells it's not
536 * split_vma inserting another: so it must be
537 * mprotect case 4 shifting the boundary down.
539 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
540 anon_vma
= next
->anon_vma
;
546 mapping
= file
->f_mapping
;
547 if (!(vma
->vm_flags
& VM_NONLINEAR
))
548 root
= &mapping
->i_mmap
;
549 spin_lock(&mapping
->i_mmap_lock
);
551 vma
->vm_truncate_count
!= next
->vm_truncate_count
) {
553 * unmap_mapping_range might be in progress:
554 * ensure that the expanding vma is rescanned.
556 importer
->vm_truncate_count
= 0;
559 insert
->vm_truncate_count
= vma
->vm_truncate_count
;
561 * Put into prio_tree now, so instantiated pages
562 * are visible to arm/parisc __flush_dcache_page
563 * throughout; but we cannot insert into address
564 * space until vma start or end is updated.
566 __vma_link_file(insert
);
571 * When changing only vma->vm_end, we don't really need
572 * anon_vma lock: but is that case worth optimizing out?
575 anon_vma
= vma
->anon_vma
;
577 spin_lock(&anon_vma
->lock
);
579 * Easily overlooked: when mprotect shifts the boundary,
580 * make sure the expanding vma has anon_vma set if the
581 * shrinking vma had, to cover any anon pages imported.
583 if (importer
&& !importer
->anon_vma
) {
584 importer
->anon_vma
= anon_vma
;
585 __anon_vma_link(importer
);
590 flush_dcache_mmap_lock(mapping
);
591 vma_prio_tree_remove(vma
, root
);
593 vma_prio_tree_remove(next
, root
);
596 vma
->vm_start
= start
;
598 vma
->vm_pgoff
= pgoff
;
600 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
601 next
->vm_pgoff
+= adjust_next
;
606 vma_prio_tree_insert(next
, root
);
607 vma_prio_tree_insert(vma
, root
);
608 flush_dcache_mmap_unlock(mapping
);
613 * vma_merge has merged next into vma, and needs
614 * us to remove next before dropping the locks.
616 __vma_unlink(mm
, next
, vma
);
618 __remove_shared_vm_struct(next
, file
, mapping
);
620 __anon_vma_merge(vma
, next
);
623 * split_vma has split insert from vma, and needs
624 * us to insert it before dropping the locks
625 * (it may either follow vma or precede it).
627 __insert_vm_struct(mm
, insert
);
631 spin_unlock(&anon_vma
->lock
);
633 spin_unlock(&mapping
->i_mmap_lock
);
638 if (next
->vm_flags
& VM_EXECUTABLE
)
639 removed_exe_file_vma(mm
);
642 mpol_put(vma_policy(next
));
643 kmem_cache_free(vm_area_cachep
, next
);
645 * In mprotect's case 6 (see comments on vma_merge),
646 * we must remove another next too. It would clutter
647 * up the code too much to do both in one go.
649 if (remove_next
== 2) {
658 /* Flags that can be inherited from an existing mapping when merging */
659 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
662 * If the vma has a ->close operation then the driver probably needs to release
663 * per-vma resources, so we don't attempt to merge those.
665 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
666 struct file
*file
, unsigned long vm_flags
)
668 if ((vma
->vm_flags
^ vm_flags
) & ~VM_MERGEABLE_FLAGS
)
670 if (vma
->vm_file
!= file
)
672 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
677 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
678 struct anon_vma
*anon_vma2
)
680 return !anon_vma1
|| !anon_vma2
|| (anon_vma1
== anon_vma2
);
684 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
685 * in front of (at a lower virtual address and file offset than) the vma.
687 * We cannot merge two vmas if they have differently assigned (non-NULL)
688 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
690 * We don't check here for the merged mmap wrapping around the end of pagecache
691 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
692 * wrap, nor mmaps which cover the final page at index -1UL.
695 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
696 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
698 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
699 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
700 if (vma
->vm_pgoff
== vm_pgoff
)
707 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
708 * beyond (at a higher virtual address and file offset than) the vma.
710 * We cannot merge two vmas if they have differently assigned (non-NULL)
711 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
714 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
715 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
717 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
718 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
720 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
721 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
728 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
729 * whether that can be merged with its predecessor or its successor.
730 * Or both (it neatly fills a hole).
732 * In most cases - when called for mmap, brk or mremap - [addr,end) is
733 * certain not to be mapped by the time vma_merge is called; but when
734 * called for mprotect, it is certain to be already mapped (either at
735 * an offset within prev, or at the start of next), and the flags of
736 * this area are about to be changed to vm_flags - and the no-change
737 * case has already been eliminated.
739 * The following mprotect cases have to be considered, where AAAA is
740 * the area passed down from mprotect_fixup, never extending beyond one
741 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
743 * AAAA AAAA AAAA AAAA
744 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
745 * cannot merge might become might become might become
746 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
747 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
748 * mremap move: PPPPNNNNNNNN 8
750 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
751 * might become case 1 below case 2 below case 3 below
753 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
754 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
756 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
757 struct vm_area_struct
*prev
, unsigned long addr
,
758 unsigned long end
, unsigned long vm_flags
,
759 struct anon_vma
*anon_vma
, struct file
*file
,
760 pgoff_t pgoff
, struct mempolicy
*policy
)
762 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
763 struct vm_area_struct
*area
, *next
;
766 * We later require that vma->vm_flags == vm_flags,
767 * so this tests vma->vm_flags & VM_SPECIAL, too.
769 if (vm_flags
& VM_SPECIAL
)
773 next
= prev
->vm_next
;
777 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
778 next
= next
->vm_next
;
781 * Can it merge with the predecessor?
783 if (prev
&& prev
->vm_end
== addr
&&
784 mpol_equal(vma_policy(prev
), policy
) &&
785 can_vma_merge_after(prev
, vm_flags
,
786 anon_vma
, file
, pgoff
)) {
788 * OK, it can. Can we now merge in the successor as well?
790 if (next
&& end
== next
->vm_start
&&
791 mpol_equal(policy
, vma_policy(next
)) &&
792 can_vma_merge_before(next
, vm_flags
,
793 anon_vma
, file
, pgoff
+pglen
) &&
794 is_mergeable_anon_vma(prev
->anon_vma
,
797 vma_adjust(prev
, prev
->vm_start
,
798 next
->vm_end
, prev
->vm_pgoff
, NULL
);
799 } else /* cases 2, 5, 7 */
800 vma_adjust(prev
, prev
->vm_start
,
801 end
, prev
->vm_pgoff
, NULL
);
806 * Can this new request be merged in front of next?
808 if (next
&& end
== next
->vm_start
&&
809 mpol_equal(policy
, vma_policy(next
)) &&
810 can_vma_merge_before(next
, vm_flags
,
811 anon_vma
, file
, pgoff
+pglen
)) {
812 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
813 vma_adjust(prev
, prev
->vm_start
,
814 addr
, prev
->vm_pgoff
, NULL
);
815 else /* cases 3, 8 */
816 vma_adjust(area
, addr
, next
->vm_end
,
817 next
->vm_pgoff
- pglen
, NULL
);
825 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
826 * neighbouring vmas for a suitable anon_vma, before it goes off
827 * to allocate a new anon_vma. It checks because a repetitive
828 * sequence of mprotects and faults may otherwise lead to distinct
829 * anon_vmas being allocated, preventing vma merge in subsequent
832 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
834 struct vm_area_struct
*near
;
835 unsigned long vm_flags
;
842 * Since only mprotect tries to remerge vmas, match flags
843 * which might be mprotected into each other later on.
844 * Neither mlock nor madvise tries to remerge at present,
845 * so leave their flags as obstructing a merge.
847 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
848 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
850 if (near
->anon_vma
&& vma
->vm_end
== near
->vm_start
&&
851 mpol_equal(vma_policy(vma
), vma_policy(near
)) &&
852 can_vma_merge_before(near
, vm_flags
,
853 NULL
, vma
->vm_file
, vma
->vm_pgoff
+
854 ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
)))
855 return near
->anon_vma
;
858 * It is potentially slow to have to call find_vma_prev here.
859 * But it's only on the first write fault on the vma, not
860 * every time, and we could devise a way to avoid it later
861 * (e.g. stash info in next's anon_vma_node when assigning
862 * an anon_vma, or when trying vma_merge). Another time.
864 BUG_ON(find_vma_prev(vma
->vm_mm
, vma
->vm_start
, &near
) != vma
);
868 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
869 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
871 if (near
->anon_vma
&& near
->vm_end
== vma
->vm_start
&&
872 mpol_equal(vma_policy(near
), vma_policy(vma
)) &&
873 can_vma_merge_after(near
, vm_flags
,
874 NULL
, vma
->vm_file
, vma
->vm_pgoff
))
875 return near
->anon_vma
;
878 * There's no absolute need to look only at touching neighbours:
879 * we could search further afield for "compatible" anon_vmas.
880 * But it would probably just be a waste of time searching,
881 * or lead to too many vmas hanging off the same anon_vma.
882 * We're trying to allow mprotect remerging later on,
883 * not trying to minimize memory used for anon_vmas.
888 #ifdef CONFIG_PROC_FS
889 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
890 struct file
*file
, long pages
)
892 const unsigned long stack_flags
893 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
896 mm
->shared_vm
+= pages
;
897 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
898 mm
->exec_vm
+= pages
;
899 } else if (flags
& stack_flags
)
900 mm
->stack_vm
+= pages
;
901 if (flags
& (VM_RESERVED
|VM_IO
))
902 mm
->reserved_vm
+= pages
;
904 #endif /* CONFIG_PROC_FS */
907 * The caller must hold down_write(current->mm->mmap_sem).
910 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
911 unsigned long len
, unsigned long prot
,
912 unsigned long flags
, unsigned long pgoff
)
914 struct mm_struct
* mm
= current
->mm
;
916 unsigned int vm_flags
;
918 unsigned long reqprot
= prot
;
921 * Does the application expect PROT_READ to imply PROT_EXEC?
923 * (the exception is when the underlying filesystem is noexec
924 * mounted, in which case we dont add PROT_EXEC.)
926 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
927 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
933 if (!(flags
& MAP_FIXED
))
934 addr
= round_hint_to_min(addr
);
936 error
= arch_mmap_check(addr
, len
, flags
);
940 /* Careful about overflows.. */
941 len
= PAGE_ALIGN(len
);
942 if (!len
|| len
> TASK_SIZE
)
945 /* offset overflow? */
946 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
949 /* Too many mappings? */
950 if (mm
->map_count
> sysctl_max_map_count
)
953 /* Obtain the address to map to. we verify (or select) it and ensure
954 * that it represents a valid section of the address space.
956 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
957 if (addr
& ~PAGE_MASK
)
960 /* Do simple checking here so the lower-level routines won't have
961 * to. we assume access permissions have been handled by the open
962 * of the memory object, so we don't do any here.
964 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
965 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
967 if (flags
& MAP_LOCKED
) {
970 vm_flags
|= VM_LOCKED
;
973 /* mlock MCL_FUTURE? */
974 if (vm_flags
& VM_LOCKED
) {
975 unsigned long locked
, lock_limit
;
976 locked
= len
>> PAGE_SHIFT
;
977 locked
+= mm
->locked_vm
;
978 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
979 lock_limit
>>= PAGE_SHIFT
;
980 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
984 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
987 switch (flags
& MAP_TYPE
) {
989 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
993 * Make sure we don't allow writing to an append-only
996 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1000 * Make sure there are no mandatory locks on the file.
1002 if (locks_verify_locked(inode
))
1005 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1006 if (!(file
->f_mode
& FMODE_WRITE
))
1007 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1011 if (!(file
->f_mode
& FMODE_READ
))
1013 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1014 if (vm_flags
& VM_EXEC
)
1016 vm_flags
&= ~VM_MAYEXEC
;
1019 if (!file
->f_op
|| !file
->f_op
->mmap
)
1027 switch (flags
& MAP_TYPE
) {
1033 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1037 * Set pgoff according to addr for anon_vma.
1039 pgoff
= addr
>> PAGE_SHIFT
;
1046 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1049 error
= ima_file_mmap(file
, prot
);
1053 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
);
1055 EXPORT_SYMBOL(do_mmap_pgoff
);
1058 * Some shared mappigns will want the pages marked read-only
1059 * to track write events. If so, we'll downgrade vm_page_prot
1060 * to the private version (using protection_map[] without the
1063 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1065 unsigned int vm_flags
= vma
->vm_flags
;
1067 /* If it was private or non-writable, the write bit is already clear */
1068 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1071 /* The backer wishes to know when pages are first written to? */
1072 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1075 /* The open routine did something to the protections already? */
1076 if (pgprot_val(vma
->vm_page_prot
) !=
1077 pgprot_val(vm_get_page_prot(vm_flags
)))
1080 /* Specialty mapping? */
1081 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1084 /* Can the mapping track the dirty pages? */
1085 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1086 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1090 * We account for memory if it's a private writeable mapping,
1091 * not hugepages and VM_NORESERVE wasn't set.
1093 static inline int accountable_mapping(struct file
*file
, unsigned int vm_flags
)
1096 * hugetlb has its own accounting separate from the core VM
1097 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1099 if (file
&& is_file_hugepages(file
))
1102 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1105 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1106 unsigned long len
, unsigned long flags
,
1107 unsigned int vm_flags
, unsigned long pgoff
)
1109 struct mm_struct
*mm
= current
->mm
;
1110 struct vm_area_struct
*vma
, *prev
;
1111 int correct_wcount
= 0;
1113 struct rb_node
**rb_link
, *rb_parent
;
1114 unsigned long charged
= 0;
1115 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1117 /* Clear old maps */
1120 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1121 if (vma
&& vma
->vm_start
< addr
+ len
) {
1122 if (do_munmap(mm
, addr
, len
))
1127 /* Check against address space limit. */
1128 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1132 * Set 'VM_NORESERVE' if we should not account for the
1133 * memory use of this mapping.
1135 if ((flags
& MAP_NORESERVE
)) {
1136 /* We honor MAP_NORESERVE if allowed to overcommit */
1137 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1138 vm_flags
|= VM_NORESERVE
;
1140 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1141 if (file
&& is_file_hugepages(file
))
1142 vm_flags
|= VM_NORESERVE
;
1146 * Private writable mapping: check memory availability
1148 if (accountable_mapping(file
, vm_flags
)) {
1149 charged
= len
>> PAGE_SHIFT
;
1150 if (security_vm_enough_memory(charged
))
1152 vm_flags
|= VM_ACCOUNT
;
1156 * Can we just expand an old mapping?
1158 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1163 * Determine the object being mapped and call the appropriate
1164 * specific mapper. the address has already been validated, but
1165 * not unmapped, but the maps are removed from the list.
1167 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1174 vma
->vm_start
= addr
;
1175 vma
->vm_end
= addr
+ len
;
1176 vma
->vm_flags
= vm_flags
;
1177 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1178 vma
->vm_pgoff
= pgoff
;
1182 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1184 if (vm_flags
& VM_DENYWRITE
) {
1185 error
= deny_write_access(file
);
1190 vma
->vm_file
= file
;
1192 error
= file
->f_op
->mmap(file
, vma
);
1194 goto unmap_and_free_vma
;
1195 if (vm_flags
& VM_EXECUTABLE
)
1196 added_exe_file_vma(mm
);
1197 } else if (vm_flags
& VM_SHARED
) {
1198 error
= shmem_zero_setup(vma
);
1203 /* Can addr have changed??
1205 * Answer: Yes, several device drivers can do it in their
1206 * f_op->mmap method. -DaveM
1208 addr
= vma
->vm_start
;
1209 pgoff
= vma
->vm_pgoff
;
1210 vm_flags
= vma
->vm_flags
;
1212 if (vma_wants_writenotify(vma
))
1213 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1215 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1216 file
= vma
->vm_file
;
1218 /* Once vma denies write, undo our temporary denial count */
1220 atomic_inc(&inode
->i_writecount
);
1222 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1223 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1224 if (vm_flags
& VM_LOCKED
) {
1226 * makes pages present; downgrades, drops, reacquires mmap_sem
1228 long nr_pages
= mlock_vma_pages_range(vma
, addr
, addr
+ len
);
1230 return nr_pages
; /* vma gone! */
1231 mm
->locked_vm
+= (len
>> PAGE_SHIFT
) - nr_pages
;
1232 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1233 make_pages_present(addr
, addr
+ len
);
1238 atomic_inc(&inode
->i_writecount
);
1239 vma
->vm_file
= NULL
;
1242 /* Undo any partial mapping done by a device driver. */
1243 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1246 kmem_cache_free(vm_area_cachep
, vma
);
1249 vm_unacct_memory(charged
);
1253 /* Get an address range which is currently unmapped.
1254 * For shmat() with addr=0.
1256 * Ugly calling convention alert:
1257 * Return value with the low bits set means error value,
1259 * if (ret & ~PAGE_MASK)
1262 * This function "knows" that -ENOMEM has the bits set.
1264 #ifndef HAVE_ARCH_UNMAPPED_AREA
1266 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1267 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1269 struct mm_struct
*mm
= current
->mm
;
1270 struct vm_area_struct
*vma
;
1271 unsigned long start_addr
;
1273 if (len
> TASK_SIZE
)
1276 if (flags
& MAP_FIXED
)
1280 addr
= PAGE_ALIGN(addr
);
1281 vma
= find_vma(mm
, addr
);
1282 if (TASK_SIZE
- len
>= addr
&&
1283 (!vma
|| addr
+ len
<= vma
->vm_start
))
1286 if (len
> mm
->cached_hole_size
) {
1287 start_addr
= addr
= mm
->free_area_cache
;
1289 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1290 mm
->cached_hole_size
= 0;
1294 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1295 /* At this point: (!vma || addr < vma->vm_end). */
1296 if (TASK_SIZE
- len
< addr
) {
1298 * Start a new search - just in case we missed
1301 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1302 addr
= TASK_UNMAPPED_BASE
;
1304 mm
->cached_hole_size
= 0;
1309 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1311 * Remember the place where we stopped the search:
1313 mm
->free_area_cache
= addr
+ len
;
1316 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1317 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1323 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1326 * Is this a new hole at the lowest possible address?
1328 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
) {
1329 mm
->free_area_cache
= addr
;
1330 mm
->cached_hole_size
= ~0UL;
1335 * This mmap-allocator allocates new areas top-down from below the
1336 * stack's low limit (the base):
1338 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1340 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1341 const unsigned long len
, const unsigned long pgoff
,
1342 const unsigned long flags
)
1344 struct vm_area_struct
*vma
;
1345 struct mm_struct
*mm
= current
->mm
;
1346 unsigned long addr
= addr0
;
1348 /* requested length too big for entire address space */
1349 if (len
> TASK_SIZE
)
1352 if (flags
& MAP_FIXED
)
1355 /* requesting a specific address */
1357 addr
= PAGE_ALIGN(addr
);
1358 vma
= find_vma(mm
, addr
);
1359 if (TASK_SIZE
- len
>= addr
&&
1360 (!vma
|| addr
+ len
<= vma
->vm_start
))
1364 /* check if free_area_cache is useful for us */
1365 if (len
<= mm
->cached_hole_size
) {
1366 mm
->cached_hole_size
= 0;
1367 mm
->free_area_cache
= mm
->mmap_base
;
1370 /* either no address requested or can't fit in requested address hole */
1371 addr
= mm
->free_area_cache
;
1373 /* make sure it can fit in the remaining address space */
1375 vma
= find_vma(mm
, addr
-len
);
1376 if (!vma
|| addr
<= vma
->vm_start
)
1377 /* remember the address as a hint for next time */
1378 return (mm
->free_area_cache
= addr
-len
);
1381 if (mm
->mmap_base
< len
)
1384 addr
= mm
->mmap_base
-len
;
1388 * Lookup failure means no vma is above this address,
1389 * else if new region fits below vma->vm_start,
1390 * return with success:
1392 vma
= find_vma(mm
, addr
);
1393 if (!vma
|| addr
+len
<= vma
->vm_start
)
1394 /* remember the address as a hint for next time */
1395 return (mm
->free_area_cache
= addr
);
1397 /* remember the largest hole we saw so far */
1398 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1399 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1401 /* try just below the current vma->vm_start */
1402 addr
= vma
->vm_start
-len
;
1403 } while (len
< vma
->vm_start
);
1407 * A failed mmap() very likely causes application failure,
1408 * so fall back to the bottom-up function here. This scenario
1409 * can happen with large stack limits and large mmap()
1412 mm
->cached_hole_size
= ~0UL;
1413 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1414 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1416 * Restore the topdown base:
1418 mm
->free_area_cache
= mm
->mmap_base
;
1419 mm
->cached_hole_size
= ~0UL;
1425 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1428 * Is this a new hole at the highest possible address?
1430 if (addr
> mm
->free_area_cache
)
1431 mm
->free_area_cache
= addr
;
1433 /* dont allow allocations above current base */
1434 if (mm
->free_area_cache
> mm
->mmap_base
)
1435 mm
->free_area_cache
= mm
->mmap_base
;
1439 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1440 unsigned long pgoff
, unsigned long flags
)
1442 unsigned long (*get_area
)(struct file
*, unsigned long,
1443 unsigned long, unsigned long, unsigned long);
1445 get_area
= current
->mm
->get_unmapped_area
;
1446 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1447 get_area
= file
->f_op
->get_unmapped_area
;
1448 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1449 if (IS_ERR_VALUE(addr
))
1452 if (addr
> TASK_SIZE
- len
)
1454 if (addr
& ~PAGE_MASK
)
1457 return arch_rebalance_pgtables(addr
, len
);
1460 EXPORT_SYMBOL(get_unmapped_area
);
1462 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1463 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1465 struct vm_area_struct
*vma
= NULL
;
1468 /* Check the cache first. */
1469 /* (Cache hit rate is typically around 35%.) */
1470 vma
= mm
->mmap_cache
;
1471 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1472 struct rb_node
* rb_node
;
1474 rb_node
= mm
->mm_rb
.rb_node
;
1478 struct vm_area_struct
* vma_tmp
;
1480 vma_tmp
= rb_entry(rb_node
,
1481 struct vm_area_struct
, vm_rb
);
1483 if (vma_tmp
->vm_end
> addr
) {
1485 if (vma_tmp
->vm_start
<= addr
)
1487 rb_node
= rb_node
->rb_left
;
1489 rb_node
= rb_node
->rb_right
;
1492 mm
->mmap_cache
= vma
;
1498 EXPORT_SYMBOL(find_vma
);
1500 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1501 struct vm_area_struct
*
1502 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1503 struct vm_area_struct
**pprev
)
1505 struct vm_area_struct
*vma
= NULL
, *prev
= NULL
;
1506 struct rb_node
*rb_node
;
1510 /* Guard against addr being lower than the first VMA */
1513 /* Go through the RB tree quickly. */
1514 rb_node
= mm
->mm_rb
.rb_node
;
1517 struct vm_area_struct
*vma_tmp
;
1518 vma_tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1520 if (addr
< vma_tmp
->vm_end
) {
1521 rb_node
= rb_node
->rb_left
;
1524 if (!prev
->vm_next
|| (addr
< prev
->vm_next
->vm_end
))
1526 rb_node
= rb_node
->rb_right
;
1532 return prev
? prev
->vm_next
: vma
;
1536 * Verify that the stack growth is acceptable and
1537 * update accounting. This is shared with both the
1538 * grow-up and grow-down cases.
1540 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1542 struct mm_struct
*mm
= vma
->vm_mm
;
1543 struct rlimit
*rlim
= current
->signal
->rlim
;
1544 unsigned long new_start
;
1546 /* address space limit tests */
1547 if (!may_expand_vm(mm
, grow
))
1550 /* Stack limit test */
1551 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
)
1554 /* mlock limit tests */
1555 if (vma
->vm_flags
& VM_LOCKED
) {
1556 unsigned long locked
;
1557 unsigned long limit
;
1558 locked
= mm
->locked_vm
+ grow
;
1559 limit
= rlim
[RLIMIT_MEMLOCK
].rlim_cur
>> PAGE_SHIFT
;
1560 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1564 /* Check to ensure the stack will not grow into a hugetlb-only region */
1565 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1567 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1571 * Overcommit.. This must be the final test, as it will
1572 * update security statistics.
1574 if (security_vm_enough_memory_mm(mm
, grow
))
1577 /* Ok, everything looks good - let it rip */
1578 mm
->total_vm
+= grow
;
1579 if (vma
->vm_flags
& VM_LOCKED
)
1580 mm
->locked_vm
+= grow
;
1581 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1585 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1587 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1588 * vma is the last one with address > vma->vm_end. Have to extend vma.
1593 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1597 if (!(vma
->vm_flags
& VM_GROWSUP
))
1601 * We must make sure the anon_vma is allocated
1602 * so that the anon_vma locking is not a noop.
1604 if (unlikely(anon_vma_prepare(vma
)))
1609 * vma->vm_start/vm_end cannot change under us because the caller
1610 * is required to hold the mmap_sem in read mode. We need the
1611 * anon_vma lock to serialize against concurrent expand_stacks.
1612 * Also guard against wrapping around to address 0.
1614 if (address
< PAGE_ALIGN(address
+4))
1615 address
= PAGE_ALIGN(address
+4);
1617 anon_vma_unlock(vma
);
1622 /* Somebody else might have raced and expanded it already */
1623 if (address
> vma
->vm_end
) {
1624 unsigned long size
, grow
;
1626 size
= address
- vma
->vm_start
;
1627 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1629 error
= acct_stack_growth(vma
, size
, grow
);
1631 vma
->vm_end
= address
;
1633 anon_vma_unlock(vma
);
1636 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1639 * vma is the first one with address < vma->vm_start. Have to extend vma.
1641 static int expand_downwards(struct vm_area_struct
*vma
,
1642 unsigned long address
)
1647 * We must make sure the anon_vma is allocated
1648 * so that the anon_vma locking is not a noop.
1650 if (unlikely(anon_vma_prepare(vma
)))
1653 address
&= PAGE_MASK
;
1654 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1661 * vma->vm_start/vm_end cannot change under us because the caller
1662 * is required to hold the mmap_sem in read mode. We need the
1663 * anon_vma lock to serialize against concurrent expand_stacks.
1666 /* Somebody else might have raced and expanded it already */
1667 if (address
< vma
->vm_start
) {
1668 unsigned long size
, grow
;
1670 size
= vma
->vm_end
- address
;
1671 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1673 error
= acct_stack_growth(vma
, size
, grow
);
1675 vma
->vm_start
= address
;
1676 vma
->vm_pgoff
-= grow
;
1679 anon_vma_unlock(vma
);
1683 int expand_stack_downwards(struct vm_area_struct
*vma
, unsigned long address
)
1685 return expand_downwards(vma
, address
);
1688 #ifdef CONFIG_STACK_GROWSUP
1689 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1691 return expand_upwards(vma
, address
);
1694 struct vm_area_struct
*
1695 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1697 struct vm_area_struct
*vma
, *prev
;
1700 vma
= find_vma_prev(mm
, addr
, &prev
);
1701 if (vma
&& (vma
->vm_start
<= addr
))
1703 if (!prev
|| expand_stack(prev
, addr
))
1705 if (prev
->vm_flags
& VM_LOCKED
) {
1706 if (mlock_vma_pages_range(prev
, addr
, prev
->vm_end
) < 0)
1707 return NULL
; /* vma gone! */
1712 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1714 return expand_downwards(vma
, address
);
1717 struct vm_area_struct
*
1718 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1720 struct vm_area_struct
* vma
;
1721 unsigned long start
;
1724 vma
= find_vma(mm
,addr
);
1727 if (vma
->vm_start
<= addr
)
1729 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1731 start
= vma
->vm_start
;
1732 if (expand_stack(vma
, addr
))
1734 if (vma
->vm_flags
& VM_LOCKED
) {
1735 if (mlock_vma_pages_range(vma
, addr
, start
) < 0)
1736 return NULL
; /* vma gone! */
1743 * Ok - we have the memory areas we should free on the vma list,
1744 * so release them, and do the vma updates.
1746 * Called with the mm semaphore held.
1748 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1750 /* Update high watermark before we lower total_vm */
1751 update_hiwater_vm(mm
);
1753 long nrpages
= vma_pages(vma
);
1755 mm
->total_vm
-= nrpages
;
1756 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1757 vma
= remove_vma(vma
);
1763 * Get rid of page table information in the indicated region.
1765 * Called with the mm semaphore held.
1767 static void unmap_region(struct mm_struct
*mm
,
1768 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1769 unsigned long start
, unsigned long end
)
1771 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1772 struct mmu_gather
*tlb
;
1773 unsigned long nr_accounted
= 0;
1776 tlb
= tlb_gather_mmu(mm
, 0);
1777 update_hiwater_rss(mm
);
1778 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1779 vm_unacct_memory(nr_accounted
);
1780 free_pgtables(tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1781 next
? next
->vm_start
: 0);
1782 tlb_finish_mmu(tlb
, start
, end
);
1786 * Create a list of vma's touched by the unmap, removing them from the mm's
1787 * vma list as we go..
1790 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1791 struct vm_area_struct
*prev
, unsigned long end
)
1793 struct vm_area_struct
**insertion_point
;
1794 struct vm_area_struct
*tail_vma
= NULL
;
1797 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1799 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1803 } while (vma
&& vma
->vm_start
< end
);
1804 *insertion_point
= vma
;
1805 tail_vma
->vm_next
= NULL
;
1806 if (mm
->unmap_area
== arch_unmap_area
)
1807 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1809 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1810 mm
->unmap_area(mm
, addr
);
1811 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1815 * Split a vma into two pieces at address 'addr', a new vma is allocated
1816 * either for the first part or the tail.
1818 int split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1819 unsigned long addr
, int new_below
)
1821 struct mempolicy
*pol
;
1822 struct vm_area_struct
*new;
1824 if (is_vm_hugetlb_page(vma
) && (addr
&
1825 ~(huge_page_mask(hstate_vma(vma
)))))
1828 if (mm
->map_count
>= sysctl_max_map_count
)
1831 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1835 /* most fields are the same, copy all, and then fixup */
1841 new->vm_start
= addr
;
1842 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1845 pol
= mpol_dup(vma_policy(vma
));
1847 kmem_cache_free(vm_area_cachep
, new);
1848 return PTR_ERR(pol
);
1850 vma_set_policy(new, pol
);
1853 get_file(new->vm_file
);
1854 if (vma
->vm_flags
& VM_EXECUTABLE
)
1855 added_exe_file_vma(mm
);
1858 if (new->vm_ops
&& new->vm_ops
->open
)
1859 new->vm_ops
->open(new);
1862 vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1863 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1865 vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
1870 /* Munmap is split into 2 main parts -- this part which finds
1871 * what needs doing, and the areas themselves, which do the
1872 * work. This now handles partial unmappings.
1873 * Jeremy Fitzhardinge <jeremy@goop.org>
1875 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1878 struct vm_area_struct
*vma
, *prev
, *last
;
1880 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
1883 if ((len
= PAGE_ALIGN(len
)) == 0)
1886 /* Find the first overlapping VMA */
1887 vma
= find_vma_prev(mm
, start
, &prev
);
1890 /* we have start < vma->vm_end */
1892 /* if it doesn't overlap, we have nothing.. */
1894 if (vma
->vm_start
>= end
)
1898 * If we need to split any vma, do it now to save pain later.
1900 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1901 * unmapped vm_area_struct will remain in use: so lower split_vma
1902 * places tmp vma above, and higher split_vma places tmp vma below.
1904 if (start
> vma
->vm_start
) {
1905 int error
= split_vma(mm
, vma
, start
, 0);
1911 /* Does it split the last one? */
1912 last
= find_vma(mm
, end
);
1913 if (last
&& end
> last
->vm_start
) {
1914 int error
= split_vma(mm
, last
, end
, 1);
1918 vma
= prev
? prev
->vm_next
: mm
->mmap
;
1921 * unlock any mlock()ed ranges before detaching vmas
1923 if (mm
->locked_vm
) {
1924 struct vm_area_struct
*tmp
= vma
;
1925 while (tmp
&& tmp
->vm_start
< end
) {
1926 if (tmp
->vm_flags
& VM_LOCKED
) {
1927 mm
->locked_vm
-= vma_pages(tmp
);
1928 munlock_vma_pages_all(tmp
);
1935 * Remove the vma's, and unmap the actual pages
1937 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
1938 unmap_region(mm
, vma
, prev
, start
, end
);
1940 /* Fix up all other VM information */
1941 remove_vma_list(mm
, vma
);
1946 EXPORT_SYMBOL(do_munmap
);
1948 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1951 struct mm_struct
*mm
= current
->mm
;
1953 profile_munmap(addr
);
1955 down_write(&mm
->mmap_sem
);
1956 ret
= do_munmap(mm
, addr
, len
);
1957 up_write(&mm
->mmap_sem
);
1961 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
1963 #ifdef CONFIG_DEBUG_VM
1964 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
1966 up_read(&mm
->mmap_sem
);
1972 * this is really a simplified "do_mmap". it only handles
1973 * anonymous maps. eventually we may be able to do some
1974 * brk-specific accounting here.
1976 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1978 struct mm_struct
* mm
= current
->mm
;
1979 struct vm_area_struct
* vma
, * prev
;
1980 unsigned long flags
;
1981 struct rb_node
** rb_link
, * rb_parent
;
1982 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
1985 len
= PAGE_ALIGN(len
);
1989 if ((addr
+ len
) > TASK_SIZE
|| (addr
+ len
) < addr
)
1992 if (is_hugepage_only_range(mm
, addr
, len
))
1995 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
1999 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2001 error
= arch_mmap_check(addr
, len
, flags
);
2008 if (mm
->def_flags
& VM_LOCKED
) {
2009 unsigned long locked
, lock_limit
;
2010 locked
= len
>> PAGE_SHIFT
;
2011 locked
+= mm
->locked_vm
;
2012 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2013 lock_limit
>>= PAGE_SHIFT
;
2014 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2019 * mm->mmap_sem is required to protect against another thread
2020 * changing the mappings in case we sleep.
2022 verify_mm_writelocked(mm
);
2025 * Clear old maps. this also does some error checking for us
2028 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2029 if (vma
&& vma
->vm_start
< addr
+ len
) {
2030 if (do_munmap(mm
, addr
, len
))
2035 /* Check against address space limits *after* clearing old maps... */
2036 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2039 if (mm
->map_count
> sysctl_max_map_count
)
2042 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
2045 /* Can we just expand an old private anonymous mapping? */
2046 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2047 NULL
, NULL
, pgoff
, NULL
);
2052 * create a vma struct for an anonymous mapping
2054 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2056 vm_unacct_memory(len
>> PAGE_SHIFT
);
2061 vma
->vm_start
= addr
;
2062 vma
->vm_end
= addr
+ len
;
2063 vma
->vm_pgoff
= pgoff
;
2064 vma
->vm_flags
= flags
;
2065 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2066 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2068 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2069 if (flags
& VM_LOCKED
) {
2070 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2071 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2076 EXPORT_SYMBOL(do_brk
);
2078 /* Release all mmaps. */
2079 void exit_mmap(struct mm_struct
*mm
)
2081 struct mmu_gather
*tlb
;
2082 struct vm_area_struct
*vma
;
2083 unsigned long nr_accounted
= 0;
2086 /* mm's last user has gone, and its about to be pulled down */
2087 mmu_notifier_release(mm
);
2089 if (mm
->locked_vm
) {
2092 if (vma
->vm_flags
& VM_LOCKED
)
2093 munlock_vma_pages_all(vma
);
2101 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2106 tlb
= tlb_gather_mmu(mm
, 1);
2107 /* update_hiwater_rss(mm) here? but nobody should be looking */
2108 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2109 end
= unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2110 vm_unacct_memory(nr_accounted
);
2111 free_pgtables(tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2112 tlb_finish_mmu(tlb
, 0, end
);
2115 * Walk the list again, actually closing and freeing it,
2116 * with preemption enabled, without holding any MM locks.
2119 vma
= remove_vma(vma
);
2121 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2124 /* Insert vm structure into process list sorted by address
2125 * and into the inode's i_mmap tree. If vm_file is non-NULL
2126 * then i_mmap_lock is taken here.
2128 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2130 struct vm_area_struct
* __vma
, * prev
;
2131 struct rb_node
** rb_link
, * rb_parent
;
2134 * The vm_pgoff of a purely anonymous vma should be irrelevant
2135 * until its first write fault, when page's anon_vma and index
2136 * are set. But now set the vm_pgoff it will almost certainly
2137 * end up with (unless mremap moves it elsewhere before that
2138 * first wfault), so /proc/pid/maps tells a consistent story.
2140 * By setting it to reflect the virtual start address of the
2141 * vma, merges and splits can happen in a seamless way, just
2142 * using the existing file pgoff checks and manipulations.
2143 * Similarly in do_mmap_pgoff and in do_brk.
2145 if (!vma
->vm_file
) {
2146 BUG_ON(vma
->anon_vma
);
2147 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2149 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2150 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2152 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2153 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2155 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2160 * Copy the vma structure to a new location in the same mm,
2161 * prior to moving page table entries, to effect an mremap move.
2163 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2164 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2166 struct vm_area_struct
*vma
= *vmap
;
2167 unsigned long vma_start
= vma
->vm_start
;
2168 struct mm_struct
*mm
= vma
->vm_mm
;
2169 struct vm_area_struct
*new_vma
, *prev
;
2170 struct rb_node
**rb_link
, *rb_parent
;
2171 struct mempolicy
*pol
;
2174 * If anonymous vma has not yet been faulted, update new pgoff
2175 * to match new location, to increase its chance of merging.
2177 if (!vma
->vm_file
&& !vma
->anon_vma
)
2178 pgoff
= addr
>> PAGE_SHIFT
;
2180 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2181 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2182 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2185 * Source vma may have been merged into new_vma
2187 if (vma_start
>= new_vma
->vm_start
&&
2188 vma_start
< new_vma
->vm_end
)
2191 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2194 pol
= mpol_dup(vma_policy(vma
));
2196 kmem_cache_free(vm_area_cachep
, new_vma
);
2199 vma_set_policy(new_vma
, pol
);
2200 new_vma
->vm_start
= addr
;
2201 new_vma
->vm_end
= addr
+ len
;
2202 new_vma
->vm_pgoff
= pgoff
;
2203 if (new_vma
->vm_file
) {
2204 get_file(new_vma
->vm_file
);
2205 if (vma
->vm_flags
& VM_EXECUTABLE
)
2206 added_exe_file_vma(mm
);
2208 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2209 new_vma
->vm_ops
->open(new_vma
);
2210 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2217 * Return true if the calling process may expand its vm space by the passed
2220 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2222 unsigned long cur
= mm
->total_vm
; /* pages */
2225 lim
= current
->signal
->rlim
[RLIMIT_AS
].rlim_cur
>> PAGE_SHIFT
;
2227 if (cur
+ npages
> lim
)
2233 static int special_mapping_fault(struct vm_area_struct
*vma
,
2234 struct vm_fault
*vmf
)
2237 struct page
**pages
;
2240 * special mappings have no vm_file, and in that case, the mm
2241 * uses vm_pgoff internally. So we have to subtract it from here.
2242 * We are allowed to do this because we are the mm; do not copy
2243 * this code into drivers!
2245 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2247 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2251 struct page
*page
= *pages
;
2257 return VM_FAULT_SIGBUS
;
2261 * Having a close hook prevents vma merging regardless of flags.
2263 static void special_mapping_close(struct vm_area_struct
*vma
)
2267 static struct vm_operations_struct special_mapping_vmops
= {
2268 .close
= special_mapping_close
,
2269 .fault
= special_mapping_fault
,
2273 * Called with mm->mmap_sem held for writing.
2274 * Insert a new vma covering the given region, with the given flags.
2275 * Its pages are supplied by the given array of struct page *.
2276 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2277 * The region past the last page supplied will always produce SIGBUS.
2278 * The array pointer and the pages it points to are assumed to stay alive
2279 * for as long as this mapping might exist.
2281 int install_special_mapping(struct mm_struct
*mm
,
2282 unsigned long addr
, unsigned long len
,
2283 unsigned long vm_flags
, struct page
**pages
)
2285 struct vm_area_struct
*vma
;
2287 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2288 if (unlikely(vma
== NULL
))
2292 vma
->vm_start
= addr
;
2293 vma
->vm_end
= addr
+ len
;
2295 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2296 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2298 vma
->vm_ops
= &special_mapping_vmops
;
2299 vma
->vm_private_data
= pages
;
2301 if (unlikely(insert_vm_struct(mm
, vma
))) {
2302 kmem_cache_free(vm_area_cachep
, vma
);
2306 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2311 static DEFINE_MUTEX(mm_all_locks_mutex
);
2313 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2315 if (!test_bit(0, (unsigned long *) &anon_vma
->head
.next
)) {
2317 * The LSB of head.next can't change from under us
2318 * because we hold the mm_all_locks_mutex.
2320 spin_lock_nest_lock(&anon_vma
->lock
, &mm
->mmap_sem
);
2322 * We can safely modify head.next after taking the
2323 * anon_vma->lock. If some other vma in this mm shares
2324 * the same anon_vma we won't take it again.
2326 * No need of atomic instructions here, head.next
2327 * can't change from under us thanks to the
2330 if (__test_and_set_bit(0, (unsigned long *)
2331 &anon_vma
->head
.next
))
2336 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2338 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2340 * AS_MM_ALL_LOCKS can't change from under us because
2341 * we hold the mm_all_locks_mutex.
2343 * Operations on ->flags have to be atomic because
2344 * even if AS_MM_ALL_LOCKS is stable thanks to the
2345 * mm_all_locks_mutex, there may be other cpus
2346 * changing other bitflags in parallel to us.
2348 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2350 spin_lock_nest_lock(&mapping
->i_mmap_lock
, &mm
->mmap_sem
);
2355 * This operation locks against the VM for all pte/vma/mm related
2356 * operations that could ever happen on a certain mm. This includes
2357 * vmtruncate, try_to_unmap, and all page faults.
2359 * The caller must take the mmap_sem in write mode before calling
2360 * mm_take_all_locks(). The caller isn't allowed to release the
2361 * mmap_sem until mm_drop_all_locks() returns.
2363 * mmap_sem in write mode is required in order to block all operations
2364 * that could modify pagetables and free pages without need of
2365 * altering the vma layout (for example populate_range() with
2366 * nonlinear vmas). It's also needed in write mode to avoid new
2367 * anon_vmas to be associated with existing vmas.
2369 * A single task can't take more than one mm_take_all_locks() in a row
2370 * or it would deadlock.
2372 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2373 * mapping->flags avoid to take the same lock twice, if more than one
2374 * vma in this mm is backed by the same anon_vma or address_space.
2376 * We can take all the locks in random order because the VM code
2377 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2378 * takes more than one of them in a row. Secondly we're protected
2379 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2381 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2382 * that may have to take thousand of locks.
2384 * mm_take_all_locks() can fail if it's interrupted by signals.
2386 int mm_take_all_locks(struct mm_struct
*mm
)
2388 struct vm_area_struct
*vma
;
2391 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2393 mutex_lock(&mm_all_locks_mutex
);
2395 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2396 if (signal_pending(current
))
2398 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2399 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2402 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2403 if (signal_pending(current
))
2406 vm_lock_anon_vma(mm
, vma
->anon_vma
);
2413 mm_drop_all_locks(mm
);
2418 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2420 if (test_bit(0, (unsigned long *) &anon_vma
->head
.next
)) {
2422 * The LSB of head.next can't change to 0 from under
2423 * us because we hold the mm_all_locks_mutex.
2425 * We must however clear the bitflag before unlocking
2426 * the vma so the users using the anon_vma->head will
2427 * never see our bitflag.
2429 * No need of atomic instructions here, head.next
2430 * can't change from under us until we release the
2433 if (!__test_and_clear_bit(0, (unsigned long *)
2434 &anon_vma
->head
.next
))
2436 spin_unlock(&anon_vma
->lock
);
2440 static void vm_unlock_mapping(struct address_space
*mapping
)
2442 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2444 * AS_MM_ALL_LOCKS can't change to 0 from under us
2445 * because we hold the mm_all_locks_mutex.
2447 spin_unlock(&mapping
->i_mmap_lock
);
2448 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2455 * The mmap_sem cannot be released by the caller until
2456 * mm_drop_all_locks() returns.
2458 void mm_drop_all_locks(struct mm_struct
*mm
)
2460 struct vm_area_struct
*vma
;
2462 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2463 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2465 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2467 vm_unlock_anon_vma(vma
->anon_vma
);
2468 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2469 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2472 mutex_unlock(&mm_all_locks_mutex
);
2476 * initialise the VMA slab
2478 void __init
mmap_init(void)
2482 ret
= percpu_counter_init(&vm_committed_as
, 0);