KVM: Add AMD cpuid bit: cr8_legacy, abm, misaligned sse, sse4, 3dnow prefetch
[linux-2.6/linux-2.6-openrd.git] / arch / x86 / kvm / x86.c
blob95de3d34b115afb38d2809afbfd9a3a4d467b387
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 /* EFER defaults:
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
62 #ifdef CONFIG_X86_64
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
64 #else
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
66 #endif
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72 struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74 u32 function, u32 index);
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed) },
81 { "pf_guest", VCPU_STAT(pf_guest) },
82 { "tlb_flush", VCPU_STAT(tlb_flush) },
83 { "invlpg", VCPU_STAT(invlpg) },
84 { "exits", VCPU_STAT(exits) },
85 { "io_exits", VCPU_STAT(io_exits) },
86 { "mmio_exits", VCPU_STAT(mmio_exits) },
87 { "signal_exits", VCPU_STAT(signal_exits) },
88 { "irq_window", VCPU_STAT(irq_window_exits) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits) },
90 { "halt_exits", VCPU_STAT(halt_exits) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92 { "hypercalls", VCPU_STAT(hypercalls) },
93 { "request_irq", VCPU_STAT(request_irq_exits) },
94 { "irq_exits", VCPU_STAT(irq_exits) },
95 { "host_state_reload", VCPU_STAT(host_state_reload) },
96 { "efer_reload", VCPU_STAT(efer_reload) },
97 { "fpu_reload", VCPU_STAT(fpu_reload) },
98 { "insn_emulation", VCPU_STAT(insn_emulation) },
99 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
100 { "irq_injections", VCPU_STAT(irq_injections) },
101 { "nmi_injections", VCPU_STAT(nmi_injections) },
102 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
103 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
104 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
105 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
106 { "mmu_flooded", VM_STAT(mmu_flooded) },
107 { "mmu_recycled", VM_STAT(mmu_recycled) },
108 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
109 { "mmu_unsync", VM_STAT(mmu_unsync) },
110 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
111 { "largepages", VM_STAT(lpages) },
112 { NULL }
115 unsigned long segment_base(u16 selector)
117 struct descriptor_table gdt;
118 struct desc_struct *d;
119 unsigned long table_base;
120 unsigned long v;
122 if (selector == 0)
123 return 0;
125 asm("sgdt %0" : "=m"(gdt));
126 table_base = gdt.base;
128 if (selector & 4) { /* from ldt */
129 u16 ldt_selector;
131 asm("sldt %0" : "=g"(ldt_selector));
132 table_base = segment_base(ldt_selector);
134 d = (struct desc_struct *)(table_base + (selector & ~7));
135 v = d->base0 | ((unsigned long)d->base1 << 16) |
136 ((unsigned long)d->base2 << 24);
137 #ifdef CONFIG_X86_64
138 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
139 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
140 #endif
141 return v;
143 EXPORT_SYMBOL_GPL(segment_base);
145 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
147 if (irqchip_in_kernel(vcpu->kvm))
148 return vcpu->arch.apic_base;
149 else
150 return vcpu->arch.apic_base;
152 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
154 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
156 /* TODO: reserve bits check */
157 if (irqchip_in_kernel(vcpu->kvm))
158 kvm_lapic_set_base(vcpu, data);
159 else
160 vcpu->arch.apic_base = data;
162 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
164 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
166 WARN_ON(vcpu->arch.exception.pending);
167 vcpu->arch.exception.pending = true;
168 vcpu->arch.exception.has_error_code = false;
169 vcpu->arch.exception.nr = nr;
171 EXPORT_SYMBOL_GPL(kvm_queue_exception);
173 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
174 u32 error_code)
176 ++vcpu->stat.pf_guest;
178 if (vcpu->arch.exception.pending) {
179 if (vcpu->arch.exception.nr == PF_VECTOR) {
180 printk(KERN_DEBUG "kvm: inject_page_fault:"
181 " double fault 0x%lx\n", addr);
182 vcpu->arch.exception.nr = DF_VECTOR;
183 vcpu->arch.exception.error_code = 0;
184 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
185 /* triple fault -> shutdown */
186 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
188 return;
190 vcpu->arch.cr2 = addr;
191 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
194 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
196 vcpu->arch.nmi_pending = 1;
198 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
200 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
202 WARN_ON(vcpu->arch.exception.pending);
203 vcpu->arch.exception.pending = true;
204 vcpu->arch.exception.has_error_code = true;
205 vcpu->arch.exception.nr = nr;
206 vcpu->arch.exception.error_code = error_code;
208 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
210 static void __queue_exception(struct kvm_vcpu *vcpu)
212 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
213 vcpu->arch.exception.has_error_code,
214 vcpu->arch.exception.error_code);
218 * Load the pae pdptrs. Return true is they are all valid.
220 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
222 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
223 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
224 int i;
225 int ret;
226 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
228 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
229 offset * sizeof(u64), sizeof(pdpte));
230 if (ret < 0) {
231 ret = 0;
232 goto out;
234 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
235 if (is_present_pte(pdpte[i]) &&
236 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
237 ret = 0;
238 goto out;
241 ret = 1;
243 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
244 out:
246 return ret;
248 EXPORT_SYMBOL_GPL(load_pdptrs);
250 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
252 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
253 bool changed = true;
254 int r;
256 if (is_long_mode(vcpu) || !is_pae(vcpu))
257 return false;
259 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
260 if (r < 0)
261 goto out;
262 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
263 out:
265 return changed;
268 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
270 if (cr0 & CR0_RESERVED_BITS) {
271 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
272 cr0, vcpu->arch.cr0);
273 kvm_inject_gp(vcpu, 0);
274 return;
277 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
278 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
279 kvm_inject_gp(vcpu, 0);
280 return;
283 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
284 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
285 "and a clear PE flag\n");
286 kvm_inject_gp(vcpu, 0);
287 return;
290 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
291 #ifdef CONFIG_X86_64
292 if ((vcpu->arch.shadow_efer & EFER_LME)) {
293 int cs_db, cs_l;
295 if (!is_pae(vcpu)) {
296 printk(KERN_DEBUG "set_cr0: #GP, start paging "
297 "in long mode while PAE is disabled\n");
298 kvm_inject_gp(vcpu, 0);
299 return;
301 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
302 if (cs_l) {
303 printk(KERN_DEBUG "set_cr0: #GP, start paging "
304 "in long mode while CS.L == 1\n");
305 kvm_inject_gp(vcpu, 0);
306 return;
309 } else
310 #endif
311 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
312 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
313 "reserved bits\n");
314 kvm_inject_gp(vcpu, 0);
315 return;
320 kvm_x86_ops->set_cr0(vcpu, cr0);
321 vcpu->arch.cr0 = cr0;
323 kvm_mmu_reset_context(vcpu);
324 return;
326 EXPORT_SYMBOL_GPL(kvm_set_cr0);
328 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
330 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
331 KVMTRACE_1D(LMSW, vcpu,
332 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
333 handler);
335 EXPORT_SYMBOL_GPL(kvm_lmsw);
337 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
339 unsigned long old_cr4 = vcpu->arch.cr4;
340 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
342 if (cr4 & CR4_RESERVED_BITS) {
343 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
344 kvm_inject_gp(vcpu, 0);
345 return;
348 if (is_long_mode(vcpu)) {
349 if (!(cr4 & X86_CR4_PAE)) {
350 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
351 "in long mode\n");
352 kvm_inject_gp(vcpu, 0);
353 return;
355 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
356 && ((cr4 ^ old_cr4) & pdptr_bits)
357 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
358 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
359 kvm_inject_gp(vcpu, 0);
360 return;
363 if (cr4 & X86_CR4_VMXE) {
364 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
365 kvm_inject_gp(vcpu, 0);
366 return;
368 kvm_x86_ops->set_cr4(vcpu, cr4);
369 vcpu->arch.cr4 = cr4;
370 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
371 kvm_mmu_reset_context(vcpu);
373 EXPORT_SYMBOL_GPL(kvm_set_cr4);
375 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
377 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
378 kvm_mmu_sync_roots(vcpu);
379 kvm_mmu_flush_tlb(vcpu);
380 return;
383 if (is_long_mode(vcpu)) {
384 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
385 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
386 kvm_inject_gp(vcpu, 0);
387 return;
389 } else {
390 if (is_pae(vcpu)) {
391 if (cr3 & CR3_PAE_RESERVED_BITS) {
392 printk(KERN_DEBUG
393 "set_cr3: #GP, reserved bits\n");
394 kvm_inject_gp(vcpu, 0);
395 return;
397 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
398 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
399 "reserved bits\n");
400 kvm_inject_gp(vcpu, 0);
401 return;
405 * We don't check reserved bits in nonpae mode, because
406 * this isn't enforced, and VMware depends on this.
411 * Does the new cr3 value map to physical memory? (Note, we
412 * catch an invalid cr3 even in real-mode, because it would
413 * cause trouble later on when we turn on paging anyway.)
415 * A real CPU would silently accept an invalid cr3 and would
416 * attempt to use it - with largely undefined (and often hard
417 * to debug) behavior on the guest side.
419 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
420 kvm_inject_gp(vcpu, 0);
421 else {
422 vcpu->arch.cr3 = cr3;
423 vcpu->arch.mmu.new_cr3(vcpu);
426 EXPORT_SYMBOL_GPL(kvm_set_cr3);
428 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
430 if (cr8 & CR8_RESERVED_BITS) {
431 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
432 kvm_inject_gp(vcpu, 0);
433 return;
435 if (irqchip_in_kernel(vcpu->kvm))
436 kvm_lapic_set_tpr(vcpu, cr8);
437 else
438 vcpu->arch.cr8 = cr8;
440 EXPORT_SYMBOL_GPL(kvm_set_cr8);
442 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
444 if (irqchip_in_kernel(vcpu->kvm))
445 return kvm_lapic_get_cr8(vcpu);
446 else
447 return vcpu->arch.cr8;
449 EXPORT_SYMBOL_GPL(kvm_get_cr8);
451 static inline u32 bit(int bitno)
453 return 1 << (bitno & 31);
457 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
458 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
460 * This list is modified at module load time to reflect the
461 * capabilities of the host cpu.
463 static u32 msrs_to_save[] = {
464 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
465 MSR_K6_STAR,
466 #ifdef CONFIG_X86_64
467 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
468 #endif
469 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
470 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
473 static unsigned num_msrs_to_save;
475 static u32 emulated_msrs[] = {
476 MSR_IA32_MISC_ENABLE,
479 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
481 if (efer & efer_reserved_bits) {
482 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
483 efer);
484 kvm_inject_gp(vcpu, 0);
485 return;
488 if (is_paging(vcpu)
489 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
490 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
491 kvm_inject_gp(vcpu, 0);
492 return;
495 if (efer & EFER_FFXSR) {
496 struct kvm_cpuid_entry2 *feat;
498 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
499 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
500 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
501 kvm_inject_gp(vcpu, 0);
502 return;
506 if (efer & EFER_SVME) {
507 struct kvm_cpuid_entry2 *feat;
509 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
510 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
511 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
512 kvm_inject_gp(vcpu, 0);
513 return;
517 kvm_x86_ops->set_efer(vcpu, efer);
519 efer &= ~EFER_LMA;
520 efer |= vcpu->arch.shadow_efer & EFER_LMA;
522 vcpu->arch.shadow_efer = efer;
524 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
525 kvm_mmu_reset_context(vcpu);
528 void kvm_enable_efer_bits(u64 mask)
530 efer_reserved_bits &= ~mask;
532 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
536 * Writes msr value into into the appropriate "register".
537 * Returns 0 on success, non-0 otherwise.
538 * Assumes vcpu_load() was already called.
540 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
542 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
546 * Adapt set_msr() to msr_io()'s calling convention
548 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
550 return kvm_set_msr(vcpu, index, *data);
553 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
555 static int version;
556 struct pvclock_wall_clock wc;
557 struct timespec now, sys, boot;
559 if (!wall_clock)
560 return;
562 version++;
564 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
567 * The guest calculates current wall clock time by adding
568 * system time (updated by kvm_write_guest_time below) to the
569 * wall clock specified here. guest system time equals host
570 * system time for us, thus we must fill in host boot time here.
572 now = current_kernel_time();
573 ktime_get_ts(&sys);
574 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
576 wc.sec = boot.tv_sec;
577 wc.nsec = boot.tv_nsec;
578 wc.version = version;
580 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
582 version++;
583 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
586 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
588 uint32_t quotient, remainder;
590 /* Don't try to replace with do_div(), this one calculates
591 * "(dividend << 32) / divisor" */
592 __asm__ ( "divl %4"
593 : "=a" (quotient), "=d" (remainder)
594 : "0" (0), "1" (dividend), "r" (divisor) );
595 return quotient;
598 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
600 uint64_t nsecs = 1000000000LL;
601 int32_t shift = 0;
602 uint64_t tps64;
603 uint32_t tps32;
605 tps64 = tsc_khz * 1000LL;
606 while (tps64 > nsecs*2) {
607 tps64 >>= 1;
608 shift--;
611 tps32 = (uint32_t)tps64;
612 while (tps32 <= (uint32_t)nsecs) {
613 tps32 <<= 1;
614 shift++;
617 hv_clock->tsc_shift = shift;
618 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
620 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
621 __func__, tsc_khz, hv_clock->tsc_shift,
622 hv_clock->tsc_to_system_mul);
625 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
627 static void kvm_write_guest_time(struct kvm_vcpu *v)
629 struct timespec ts;
630 unsigned long flags;
631 struct kvm_vcpu_arch *vcpu = &v->arch;
632 void *shared_kaddr;
633 unsigned long this_tsc_khz;
635 if ((!vcpu->time_page))
636 return;
638 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
639 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
640 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
641 vcpu->hv_clock_tsc_khz = this_tsc_khz;
643 put_cpu_var(cpu_tsc_khz);
645 /* Keep irq disabled to prevent changes to the clock */
646 local_irq_save(flags);
647 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
648 &vcpu->hv_clock.tsc_timestamp);
649 ktime_get_ts(&ts);
650 local_irq_restore(flags);
652 /* With all the info we got, fill in the values */
654 vcpu->hv_clock.system_time = ts.tv_nsec +
655 (NSEC_PER_SEC * (u64)ts.tv_sec);
657 * The interface expects us to write an even number signaling that the
658 * update is finished. Since the guest won't see the intermediate
659 * state, we just increase by 2 at the end.
661 vcpu->hv_clock.version += 2;
663 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
665 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
666 sizeof(vcpu->hv_clock));
668 kunmap_atomic(shared_kaddr, KM_USER0);
670 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
673 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
675 struct kvm_vcpu_arch *vcpu = &v->arch;
677 if (!vcpu->time_page)
678 return 0;
679 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
680 return 1;
683 static bool msr_mtrr_valid(unsigned msr)
685 switch (msr) {
686 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
687 case MSR_MTRRfix64K_00000:
688 case MSR_MTRRfix16K_80000:
689 case MSR_MTRRfix16K_A0000:
690 case MSR_MTRRfix4K_C0000:
691 case MSR_MTRRfix4K_C8000:
692 case MSR_MTRRfix4K_D0000:
693 case MSR_MTRRfix4K_D8000:
694 case MSR_MTRRfix4K_E0000:
695 case MSR_MTRRfix4K_E8000:
696 case MSR_MTRRfix4K_F0000:
697 case MSR_MTRRfix4K_F8000:
698 case MSR_MTRRdefType:
699 case MSR_IA32_CR_PAT:
700 return true;
701 case 0x2f8:
702 return true;
704 return false;
707 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
709 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
711 if (!msr_mtrr_valid(msr))
712 return 1;
714 if (msr == MSR_MTRRdefType) {
715 vcpu->arch.mtrr_state.def_type = data;
716 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
717 } else if (msr == MSR_MTRRfix64K_00000)
718 p[0] = data;
719 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
720 p[1 + msr - MSR_MTRRfix16K_80000] = data;
721 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
722 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
723 else if (msr == MSR_IA32_CR_PAT)
724 vcpu->arch.pat = data;
725 else { /* Variable MTRRs */
726 int idx, is_mtrr_mask;
727 u64 *pt;
729 idx = (msr - 0x200) / 2;
730 is_mtrr_mask = msr - 0x200 - 2 * idx;
731 if (!is_mtrr_mask)
732 pt =
733 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
734 else
735 pt =
736 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
737 *pt = data;
740 kvm_mmu_reset_context(vcpu);
741 return 0;
744 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
746 switch (msr) {
747 case MSR_EFER:
748 set_efer(vcpu, data);
749 break;
750 case MSR_IA32_MC0_STATUS:
751 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
752 __func__, data);
753 break;
754 case MSR_IA32_MCG_STATUS:
755 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
756 __func__, data);
757 break;
758 case MSR_IA32_MCG_CTL:
759 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
760 __func__, data);
761 break;
762 case MSR_IA32_DEBUGCTLMSR:
763 if (!data) {
764 /* We support the non-activated case already */
765 break;
766 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
767 /* Values other than LBR and BTF are vendor-specific,
768 thus reserved and should throw a #GP */
769 return 1;
771 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
772 __func__, data);
773 break;
774 case MSR_IA32_UCODE_REV:
775 case MSR_IA32_UCODE_WRITE:
776 case MSR_VM_HSAVE_PA:
777 break;
778 case 0x200 ... 0x2ff:
779 return set_msr_mtrr(vcpu, msr, data);
780 case MSR_IA32_APICBASE:
781 kvm_set_apic_base(vcpu, data);
782 break;
783 case MSR_IA32_MISC_ENABLE:
784 vcpu->arch.ia32_misc_enable_msr = data;
785 break;
786 case MSR_KVM_WALL_CLOCK:
787 vcpu->kvm->arch.wall_clock = data;
788 kvm_write_wall_clock(vcpu->kvm, data);
789 break;
790 case MSR_KVM_SYSTEM_TIME: {
791 if (vcpu->arch.time_page) {
792 kvm_release_page_dirty(vcpu->arch.time_page);
793 vcpu->arch.time_page = NULL;
796 vcpu->arch.time = data;
798 /* we verify if the enable bit is set... */
799 if (!(data & 1))
800 break;
802 /* ...but clean it before doing the actual write */
803 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
805 vcpu->arch.time_page =
806 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
808 if (is_error_page(vcpu->arch.time_page)) {
809 kvm_release_page_clean(vcpu->arch.time_page);
810 vcpu->arch.time_page = NULL;
813 kvm_request_guest_time_update(vcpu);
814 break;
816 default:
817 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
818 return 1;
820 return 0;
822 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
826 * Reads an msr value (of 'msr_index') into 'pdata'.
827 * Returns 0 on success, non-0 otherwise.
828 * Assumes vcpu_load() was already called.
830 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
832 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
835 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
837 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
839 if (!msr_mtrr_valid(msr))
840 return 1;
842 if (msr == MSR_MTRRdefType)
843 *pdata = vcpu->arch.mtrr_state.def_type +
844 (vcpu->arch.mtrr_state.enabled << 10);
845 else if (msr == MSR_MTRRfix64K_00000)
846 *pdata = p[0];
847 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
848 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
849 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
850 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
851 else if (msr == MSR_IA32_CR_PAT)
852 *pdata = vcpu->arch.pat;
853 else { /* Variable MTRRs */
854 int idx, is_mtrr_mask;
855 u64 *pt;
857 idx = (msr - 0x200) / 2;
858 is_mtrr_mask = msr - 0x200 - 2 * idx;
859 if (!is_mtrr_mask)
860 pt =
861 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
862 else
863 pt =
864 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
865 *pdata = *pt;
868 return 0;
871 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
873 u64 data;
875 switch (msr) {
876 case 0xc0010010: /* SYSCFG */
877 case 0xc0010015: /* HWCR */
878 case MSR_IA32_PLATFORM_ID:
879 case MSR_IA32_P5_MC_ADDR:
880 case MSR_IA32_P5_MC_TYPE:
881 case MSR_IA32_MC0_CTL:
882 case MSR_IA32_MCG_STATUS:
883 case MSR_IA32_MCG_CAP:
884 case MSR_IA32_MCG_CTL:
885 case MSR_IA32_MC0_MISC:
886 case MSR_IA32_MC0_MISC+4:
887 case MSR_IA32_MC0_MISC+8:
888 case MSR_IA32_MC0_MISC+12:
889 case MSR_IA32_MC0_MISC+16:
890 case MSR_IA32_MC0_MISC+20:
891 case MSR_IA32_UCODE_REV:
892 case MSR_IA32_EBL_CR_POWERON:
893 case MSR_IA32_DEBUGCTLMSR:
894 case MSR_IA32_LASTBRANCHFROMIP:
895 case MSR_IA32_LASTBRANCHTOIP:
896 case MSR_IA32_LASTINTFROMIP:
897 case MSR_IA32_LASTINTTOIP:
898 case MSR_VM_HSAVE_PA:
899 case MSR_P6_EVNTSEL0:
900 case MSR_P6_EVNTSEL1:
901 data = 0;
902 break;
903 case MSR_MTRRcap:
904 data = 0x500 | KVM_NR_VAR_MTRR;
905 break;
906 case 0x200 ... 0x2ff:
907 return get_msr_mtrr(vcpu, msr, pdata);
908 case 0xcd: /* fsb frequency */
909 data = 3;
910 break;
911 case MSR_IA32_APICBASE:
912 data = kvm_get_apic_base(vcpu);
913 break;
914 case MSR_IA32_MISC_ENABLE:
915 data = vcpu->arch.ia32_misc_enable_msr;
916 break;
917 case MSR_IA32_PERF_STATUS:
918 /* TSC increment by tick */
919 data = 1000ULL;
920 /* CPU multiplier */
921 data |= (((uint64_t)4ULL) << 40);
922 break;
923 case MSR_EFER:
924 data = vcpu->arch.shadow_efer;
925 break;
926 case MSR_KVM_WALL_CLOCK:
927 data = vcpu->kvm->arch.wall_clock;
928 break;
929 case MSR_KVM_SYSTEM_TIME:
930 data = vcpu->arch.time;
931 break;
932 default:
933 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
934 return 1;
936 *pdata = data;
937 return 0;
939 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
942 * Read or write a bunch of msrs. All parameters are kernel addresses.
944 * @return number of msrs set successfully.
946 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
947 struct kvm_msr_entry *entries,
948 int (*do_msr)(struct kvm_vcpu *vcpu,
949 unsigned index, u64 *data))
951 int i;
953 vcpu_load(vcpu);
955 down_read(&vcpu->kvm->slots_lock);
956 for (i = 0; i < msrs->nmsrs; ++i)
957 if (do_msr(vcpu, entries[i].index, &entries[i].data))
958 break;
959 up_read(&vcpu->kvm->slots_lock);
961 vcpu_put(vcpu);
963 return i;
967 * Read or write a bunch of msrs. Parameters are user addresses.
969 * @return number of msrs set successfully.
971 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
972 int (*do_msr)(struct kvm_vcpu *vcpu,
973 unsigned index, u64 *data),
974 int writeback)
976 struct kvm_msrs msrs;
977 struct kvm_msr_entry *entries;
978 int r, n;
979 unsigned size;
981 r = -EFAULT;
982 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
983 goto out;
985 r = -E2BIG;
986 if (msrs.nmsrs >= MAX_IO_MSRS)
987 goto out;
989 r = -ENOMEM;
990 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
991 entries = vmalloc(size);
992 if (!entries)
993 goto out;
995 r = -EFAULT;
996 if (copy_from_user(entries, user_msrs->entries, size))
997 goto out_free;
999 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1000 if (r < 0)
1001 goto out_free;
1003 r = -EFAULT;
1004 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1005 goto out_free;
1007 r = n;
1009 out_free:
1010 vfree(entries);
1011 out:
1012 return r;
1015 int kvm_dev_ioctl_check_extension(long ext)
1017 int r;
1019 switch (ext) {
1020 case KVM_CAP_IRQCHIP:
1021 case KVM_CAP_HLT:
1022 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1023 case KVM_CAP_SET_TSS_ADDR:
1024 case KVM_CAP_EXT_CPUID:
1025 case KVM_CAP_CLOCKSOURCE:
1026 case KVM_CAP_PIT:
1027 case KVM_CAP_NOP_IO_DELAY:
1028 case KVM_CAP_MP_STATE:
1029 case KVM_CAP_SYNC_MMU:
1030 case KVM_CAP_REINJECT_CONTROL:
1031 case KVM_CAP_IRQ_INJECT_STATUS:
1032 case KVM_CAP_ASSIGN_DEV_IRQ:
1033 r = 1;
1034 break;
1035 case KVM_CAP_COALESCED_MMIO:
1036 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1037 break;
1038 case KVM_CAP_VAPIC:
1039 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1040 break;
1041 case KVM_CAP_NR_VCPUS:
1042 r = KVM_MAX_VCPUS;
1043 break;
1044 case KVM_CAP_NR_MEMSLOTS:
1045 r = KVM_MEMORY_SLOTS;
1046 break;
1047 case KVM_CAP_PV_MMU:
1048 r = !tdp_enabled;
1049 break;
1050 case KVM_CAP_IOMMU:
1051 r = iommu_found();
1052 break;
1053 default:
1054 r = 0;
1055 break;
1057 return r;
1061 long kvm_arch_dev_ioctl(struct file *filp,
1062 unsigned int ioctl, unsigned long arg)
1064 void __user *argp = (void __user *)arg;
1065 long r;
1067 switch (ioctl) {
1068 case KVM_GET_MSR_INDEX_LIST: {
1069 struct kvm_msr_list __user *user_msr_list = argp;
1070 struct kvm_msr_list msr_list;
1071 unsigned n;
1073 r = -EFAULT;
1074 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1075 goto out;
1076 n = msr_list.nmsrs;
1077 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1078 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1079 goto out;
1080 r = -E2BIG;
1081 if (n < num_msrs_to_save)
1082 goto out;
1083 r = -EFAULT;
1084 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1085 num_msrs_to_save * sizeof(u32)))
1086 goto out;
1087 if (copy_to_user(user_msr_list->indices
1088 + num_msrs_to_save * sizeof(u32),
1089 &emulated_msrs,
1090 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1091 goto out;
1092 r = 0;
1093 break;
1095 case KVM_GET_SUPPORTED_CPUID: {
1096 struct kvm_cpuid2 __user *cpuid_arg = argp;
1097 struct kvm_cpuid2 cpuid;
1099 r = -EFAULT;
1100 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1101 goto out;
1102 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1103 cpuid_arg->entries);
1104 if (r)
1105 goto out;
1107 r = -EFAULT;
1108 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1109 goto out;
1110 r = 0;
1111 break;
1113 default:
1114 r = -EINVAL;
1116 out:
1117 return r;
1120 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1122 kvm_x86_ops->vcpu_load(vcpu, cpu);
1123 kvm_request_guest_time_update(vcpu);
1126 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1128 kvm_x86_ops->vcpu_put(vcpu);
1129 kvm_put_guest_fpu(vcpu);
1132 static int is_efer_nx(void)
1134 unsigned long long efer = 0;
1136 rdmsrl_safe(MSR_EFER, &efer);
1137 return efer & EFER_NX;
1140 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1142 int i;
1143 struct kvm_cpuid_entry2 *e, *entry;
1145 entry = NULL;
1146 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1147 e = &vcpu->arch.cpuid_entries[i];
1148 if (e->function == 0x80000001) {
1149 entry = e;
1150 break;
1153 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1154 entry->edx &= ~(1 << 20);
1155 printk(KERN_INFO "kvm: guest NX capability removed\n");
1159 /* when an old userspace process fills a new kernel module */
1160 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1161 struct kvm_cpuid *cpuid,
1162 struct kvm_cpuid_entry __user *entries)
1164 int r, i;
1165 struct kvm_cpuid_entry *cpuid_entries;
1167 r = -E2BIG;
1168 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1169 goto out;
1170 r = -ENOMEM;
1171 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1172 if (!cpuid_entries)
1173 goto out;
1174 r = -EFAULT;
1175 if (copy_from_user(cpuid_entries, entries,
1176 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1177 goto out_free;
1178 for (i = 0; i < cpuid->nent; i++) {
1179 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1180 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1181 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1182 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1183 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1184 vcpu->arch.cpuid_entries[i].index = 0;
1185 vcpu->arch.cpuid_entries[i].flags = 0;
1186 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1187 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1188 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1190 vcpu->arch.cpuid_nent = cpuid->nent;
1191 cpuid_fix_nx_cap(vcpu);
1192 r = 0;
1194 out_free:
1195 vfree(cpuid_entries);
1196 out:
1197 return r;
1200 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1201 struct kvm_cpuid2 *cpuid,
1202 struct kvm_cpuid_entry2 __user *entries)
1204 int r;
1206 r = -E2BIG;
1207 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1208 goto out;
1209 r = -EFAULT;
1210 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1211 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1212 goto out;
1213 vcpu->arch.cpuid_nent = cpuid->nent;
1214 return 0;
1216 out:
1217 return r;
1220 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1221 struct kvm_cpuid2 *cpuid,
1222 struct kvm_cpuid_entry2 __user *entries)
1224 int r;
1226 r = -E2BIG;
1227 if (cpuid->nent < vcpu->arch.cpuid_nent)
1228 goto out;
1229 r = -EFAULT;
1230 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1231 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1232 goto out;
1233 return 0;
1235 out:
1236 cpuid->nent = vcpu->arch.cpuid_nent;
1237 return r;
1240 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1241 u32 index)
1243 entry->function = function;
1244 entry->index = index;
1245 cpuid_count(entry->function, entry->index,
1246 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1247 entry->flags = 0;
1250 #define F(x) bit(X86_FEATURE_##x)
1252 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1253 u32 index, int *nent, int maxnent)
1255 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1256 #ifdef CONFIG_X86_64
1257 unsigned f_lm = F(LM);
1258 #else
1259 unsigned f_lm = 0;
1260 #endif
1262 /* cpuid 1.edx */
1263 const u32 kvm_supported_word0_x86_features =
1264 F(FPU) | F(VME) | F(DE) | F(PSE) |
1265 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1266 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1267 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1268 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1269 0 /* Reserved, DS, ACPI */ | F(MMX) |
1270 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1271 0 /* HTT, TM, Reserved, PBE */;
1272 /* cpuid 0x80000001.edx */
1273 const u32 kvm_supported_word1_x86_features =
1274 F(FPU) | F(VME) | F(DE) | F(PSE) |
1275 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1276 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1277 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1278 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1279 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1280 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1281 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1282 /* cpuid 1.ecx */
1283 const u32 kvm_supported_word4_x86_features =
1284 F(XMM3) | F(CX16);
1285 /* cpuid 0x80000001.ecx */
1286 const u32 kvm_supported_word6_x86_features =
1287 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1288 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1289 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1290 0 /* SKINIT */ | 0 /* WDT */;
1292 /* all calls to cpuid_count() should be made on the same cpu */
1293 get_cpu();
1294 do_cpuid_1_ent(entry, function, index);
1295 ++*nent;
1297 switch (function) {
1298 case 0:
1299 entry->eax = min(entry->eax, (u32)0xb);
1300 break;
1301 case 1:
1302 entry->edx &= kvm_supported_word0_x86_features;
1303 entry->ecx &= kvm_supported_word4_x86_features;
1304 break;
1305 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1306 * may return different values. This forces us to get_cpu() before
1307 * issuing the first command, and also to emulate this annoying behavior
1308 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1309 case 2: {
1310 int t, times = entry->eax & 0xff;
1312 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1313 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1314 for (t = 1; t < times && *nent < maxnent; ++t) {
1315 do_cpuid_1_ent(&entry[t], function, 0);
1316 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1317 ++*nent;
1319 break;
1321 /* function 4 and 0xb have additional index. */
1322 case 4: {
1323 int i, cache_type;
1325 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1326 /* read more entries until cache_type is zero */
1327 for (i = 1; *nent < maxnent; ++i) {
1328 cache_type = entry[i - 1].eax & 0x1f;
1329 if (!cache_type)
1330 break;
1331 do_cpuid_1_ent(&entry[i], function, i);
1332 entry[i].flags |=
1333 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1334 ++*nent;
1336 break;
1338 case 0xb: {
1339 int i, level_type;
1341 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1342 /* read more entries until level_type is zero */
1343 for (i = 1; *nent < maxnent; ++i) {
1344 level_type = entry[i - 1].ecx & 0xff00;
1345 if (!level_type)
1346 break;
1347 do_cpuid_1_ent(&entry[i], function, i);
1348 entry[i].flags |=
1349 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1350 ++*nent;
1352 break;
1354 case 0x80000000:
1355 entry->eax = min(entry->eax, 0x8000001a);
1356 break;
1357 case 0x80000001:
1358 entry->edx &= kvm_supported_word1_x86_features;
1359 entry->ecx &= kvm_supported_word6_x86_features;
1360 break;
1362 put_cpu();
1365 #undef F
1367 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1368 struct kvm_cpuid_entry2 __user *entries)
1370 struct kvm_cpuid_entry2 *cpuid_entries;
1371 int limit, nent = 0, r = -E2BIG;
1372 u32 func;
1374 if (cpuid->nent < 1)
1375 goto out;
1376 r = -ENOMEM;
1377 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1378 if (!cpuid_entries)
1379 goto out;
1381 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1382 limit = cpuid_entries[0].eax;
1383 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1384 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1385 &nent, cpuid->nent);
1386 r = -E2BIG;
1387 if (nent >= cpuid->nent)
1388 goto out_free;
1390 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1391 limit = cpuid_entries[nent - 1].eax;
1392 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1393 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1394 &nent, cpuid->nent);
1395 r = -EFAULT;
1396 if (copy_to_user(entries, cpuid_entries,
1397 nent * sizeof(struct kvm_cpuid_entry2)))
1398 goto out_free;
1399 cpuid->nent = nent;
1400 r = 0;
1402 out_free:
1403 vfree(cpuid_entries);
1404 out:
1405 return r;
1408 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1409 struct kvm_lapic_state *s)
1411 vcpu_load(vcpu);
1412 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1413 vcpu_put(vcpu);
1415 return 0;
1418 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1419 struct kvm_lapic_state *s)
1421 vcpu_load(vcpu);
1422 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1423 kvm_apic_post_state_restore(vcpu);
1424 vcpu_put(vcpu);
1426 return 0;
1429 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1430 struct kvm_interrupt *irq)
1432 if (irq->irq < 0 || irq->irq >= 256)
1433 return -EINVAL;
1434 if (irqchip_in_kernel(vcpu->kvm))
1435 return -ENXIO;
1436 vcpu_load(vcpu);
1438 set_bit(irq->irq, vcpu->arch.irq_pending);
1439 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1441 vcpu_put(vcpu);
1443 return 0;
1446 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1448 vcpu_load(vcpu);
1449 kvm_inject_nmi(vcpu);
1450 vcpu_put(vcpu);
1452 return 0;
1455 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1456 struct kvm_tpr_access_ctl *tac)
1458 if (tac->flags)
1459 return -EINVAL;
1460 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1461 return 0;
1464 long kvm_arch_vcpu_ioctl(struct file *filp,
1465 unsigned int ioctl, unsigned long arg)
1467 struct kvm_vcpu *vcpu = filp->private_data;
1468 void __user *argp = (void __user *)arg;
1469 int r;
1470 struct kvm_lapic_state *lapic = NULL;
1472 switch (ioctl) {
1473 case KVM_GET_LAPIC: {
1474 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1476 r = -ENOMEM;
1477 if (!lapic)
1478 goto out;
1479 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1480 if (r)
1481 goto out;
1482 r = -EFAULT;
1483 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1484 goto out;
1485 r = 0;
1486 break;
1488 case KVM_SET_LAPIC: {
1489 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1490 r = -ENOMEM;
1491 if (!lapic)
1492 goto out;
1493 r = -EFAULT;
1494 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1495 goto out;
1496 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1497 if (r)
1498 goto out;
1499 r = 0;
1500 break;
1502 case KVM_INTERRUPT: {
1503 struct kvm_interrupt irq;
1505 r = -EFAULT;
1506 if (copy_from_user(&irq, argp, sizeof irq))
1507 goto out;
1508 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1509 if (r)
1510 goto out;
1511 r = 0;
1512 break;
1514 case KVM_NMI: {
1515 r = kvm_vcpu_ioctl_nmi(vcpu);
1516 if (r)
1517 goto out;
1518 r = 0;
1519 break;
1521 case KVM_SET_CPUID: {
1522 struct kvm_cpuid __user *cpuid_arg = argp;
1523 struct kvm_cpuid cpuid;
1525 r = -EFAULT;
1526 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1527 goto out;
1528 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1529 if (r)
1530 goto out;
1531 break;
1533 case KVM_SET_CPUID2: {
1534 struct kvm_cpuid2 __user *cpuid_arg = argp;
1535 struct kvm_cpuid2 cpuid;
1537 r = -EFAULT;
1538 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1539 goto out;
1540 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1541 cpuid_arg->entries);
1542 if (r)
1543 goto out;
1544 break;
1546 case KVM_GET_CPUID2: {
1547 struct kvm_cpuid2 __user *cpuid_arg = argp;
1548 struct kvm_cpuid2 cpuid;
1550 r = -EFAULT;
1551 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1552 goto out;
1553 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1554 cpuid_arg->entries);
1555 if (r)
1556 goto out;
1557 r = -EFAULT;
1558 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1559 goto out;
1560 r = 0;
1561 break;
1563 case KVM_GET_MSRS:
1564 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1565 break;
1566 case KVM_SET_MSRS:
1567 r = msr_io(vcpu, argp, do_set_msr, 0);
1568 break;
1569 case KVM_TPR_ACCESS_REPORTING: {
1570 struct kvm_tpr_access_ctl tac;
1572 r = -EFAULT;
1573 if (copy_from_user(&tac, argp, sizeof tac))
1574 goto out;
1575 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1576 if (r)
1577 goto out;
1578 r = -EFAULT;
1579 if (copy_to_user(argp, &tac, sizeof tac))
1580 goto out;
1581 r = 0;
1582 break;
1584 case KVM_SET_VAPIC_ADDR: {
1585 struct kvm_vapic_addr va;
1587 r = -EINVAL;
1588 if (!irqchip_in_kernel(vcpu->kvm))
1589 goto out;
1590 r = -EFAULT;
1591 if (copy_from_user(&va, argp, sizeof va))
1592 goto out;
1593 r = 0;
1594 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1595 break;
1597 default:
1598 r = -EINVAL;
1600 out:
1601 kfree(lapic);
1602 return r;
1605 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1607 int ret;
1609 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1610 return -1;
1611 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1612 return ret;
1615 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1616 u32 kvm_nr_mmu_pages)
1618 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1619 return -EINVAL;
1621 down_write(&kvm->slots_lock);
1623 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1624 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1626 up_write(&kvm->slots_lock);
1627 return 0;
1630 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1632 return kvm->arch.n_alloc_mmu_pages;
1635 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1637 int i;
1638 struct kvm_mem_alias *alias;
1640 for (i = 0; i < kvm->arch.naliases; ++i) {
1641 alias = &kvm->arch.aliases[i];
1642 if (gfn >= alias->base_gfn
1643 && gfn < alias->base_gfn + alias->npages)
1644 return alias->target_gfn + gfn - alias->base_gfn;
1646 return gfn;
1650 * Set a new alias region. Aliases map a portion of physical memory into
1651 * another portion. This is useful for memory windows, for example the PC
1652 * VGA region.
1654 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1655 struct kvm_memory_alias *alias)
1657 int r, n;
1658 struct kvm_mem_alias *p;
1660 r = -EINVAL;
1661 /* General sanity checks */
1662 if (alias->memory_size & (PAGE_SIZE - 1))
1663 goto out;
1664 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1665 goto out;
1666 if (alias->slot >= KVM_ALIAS_SLOTS)
1667 goto out;
1668 if (alias->guest_phys_addr + alias->memory_size
1669 < alias->guest_phys_addr)
1670 goto out;
1671 if (alias->target_phys_addr + alias->memory_size
1672 < alias->target_phys_addr)
1673 goto out;
1675 down_write(&kvm->slots_lock);
1676 spin_lock(&kvm->mmu_lock);
1678 p = &kvm->arch.aliases[alias->slot];
1679 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1680 p->npages = alias->memory_size >> PAGE_SHIFT;
1681 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1683 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1684 if (kvm->arch.aliases[n - 1].npages)
1685 break;
1686 kvm->arch.naliases = n;
1688 spin_unlock(&kvm->mmu_lock);
1689 kvm_mmu_zap_all(kvm);
1691 up_write(&kvm->slots_lock);
1693 return 0;
1695 out:
1696 return r;
1699 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1701 int r;
1703 r = 0;
1704 switch (chip->chip_id) {
1705 case KVM_IRQCHIP_PIC_MASTER:
1706 memcpy(&chip->chip.pic,
1707 &pic_irqchip(kvm)->pics[0],
1708 sizeof(struct kvm_pic_state));
1709 break;
1710 case KVM_IRQCHIP_PIC_SLAVE:
1711 memcpy(&chip->chip.pic,
1712 &pic_irqchip(kvm)->pics[1],
1713 sizeof(struct kvm_pic_state));
1714 break;
1715 case KVM_IRQCHIP_IOAPIC:
1716 memcpy(&chip->chip.ioapic,
1717 ioapic_irqchip(kvm),
1718 sizeof(struct kvm_ioapic_state));
1719 break;
1720 default:
1721 r = -EINVAL;
1722 break;
1724 return r;
1727 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1729 int r;
1731 r = 0;
1732 switch (chip->chip_id) {
1733 case KVM_IRQCHIP_PIC_MASTER:
1734 memcpy(&pic_irqchip(kvm)->pics[0],
1735 &chip->chip.pic,
1736 sizeof(struct kvm_pic_state));
1737 break;
1738 case KVM_IRQCHIP_PIC_SLAVE:
1739 memcpy(&pic_irqchip(kvm)->pics[1],
1740 &chip->chip.pic,
1741 sizeof(struct kvm_pic_state));
1742 break;
1743 case KVM_IRQCHIP_IOAPIC:
1744 memcpy(ioapic_irqchip(kvm),
1745 &chip->chip.ioapic,
1746 sizeof(struct kvm_ioapic_state));
1747 break;
1748 default:
1749 r = -EINVAL;
1750 break;
1752 kvm_pic_update_irq(pic_irqchip(kvm));
1753 return r;
1756 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1758 int r = 0;
1760 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1761 return r;
1764 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1766 int r = 0;
1768 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1769 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1770 return r;
1773 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1774 struct kvm_reinject_control *control)
1776 if (!kvm->arch.vpit)
1777 return -ENXIO;
1778 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1779 return 0;
1783 * Get (and clear) the dirty memory log for a memory slot.
1785 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1786 struct kvm_dirty_log *log)
1788 int r;
1789 int n;
1790 struct kvm_memory_slot *memslot;
1791 int is_dirty = 0;
1793 down_write(&kvm->slots_lock);
1795 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1796 if (r)
1797 goto out;
1799 /* If nothing is dirty, don't bother messing with page tables. */
1800 if (is_dirty) {
1801 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1802 kvm_flush_remote_tlbs(kvm);
1803 memslot = &kvm->memslots[log->slot];
1804 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1805 memset(memslot->dirty_bitmap, 0, n);
1807 r = 0;
1808 out:
1809 up_write(&kvm->slots_lock);
1810 return r;
1813 long kvm_arch_vm_ioctl(struct file *filp,
1814 unsigned int ioctl, unsigned long arg)
1816 struct kvm *kvm = filp->private_data;
1817 void __user *argp = (void __user *)arg;
1818 int r = -EINVAL;
1820 * This union makes it completely explicit to gcc-3.x
1821 * that these two variables' stack usage should be
1822 * combined, not added together.
1824 union {
1825 struct kvm_pit_state ps;
1826 struct kvm_memory_alias alias;
1827 } u;
1829 switch (ioctl) {
1830 case KVM_SET_TSS_ADDR:
1831 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1832 if (r < 0)
1833 goto out;
1834 break;
1835 case KVM_SET_MEMORY_REGION: {
1836 struct kvm_memory_region kvm_mem;
1837 struct kvm_userspace_memory_region kvm_userspace_mem;
1839 r = -EFAULT;
1840 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1841 goto out;
1842 kvm_userspace_mem.slot = kvm_mem.slot;
1843 kvm_userspace_mem.flags = kvm_mem.flags;
1844 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1845 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1846 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1847 if (r)
1848 goto out;
1849 break;
1851 case KVM_SET_NR_MMU_PAGES:
1852 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1853 if (r)
1854 goto out;
1855 break;
1856 case KVM_GET_NR_MMU_PAGES:
1857 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1858 break;
1859 case KVM_SET_MEMORY_ALIAS:
1860 r = -EFAULT;
1861 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1862 goto out;
1863 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1864 if (r)
1865 goto out;
1866 break;
1867 case KVM_CREATE_IRQCHIP:
1868 r = -ENOMEM;
1869 kvm->arch.vpic = kvm_create_pic(kvm);
1870 if (kvm->arch.vpic) {
1871 r = kvm_ioapic_init(kvm);
1872 if (r) {
1873 kfree(kvm->arch.vpic);
1874 kvm->arch.vpic = NULL;
1875 goto out;
1877 } else
1878 goto out;
1879 r = kvm_setup_default_irq_routing(kvm);
1880 if (r) {
1881 kfree(kvm->arch.vpic);
1882 kfree(kvm->arch.vioapic);
1883 goto out;
1885 break;
1886 case KVM_CREATE_PIT:
1887 mutex_lock(&kvm->lock);
1888 r = -EEXIST;
1889 if (kvm->arch.vpit)
1890 goto create_pit_unlock;
1891 r = -ENOMEM;
1892 kvm->arch.vpit = kvm_create_pit(kvm);
1893 if (kvm->arch.vpit)
1894 r = 0;
1895 create_pit_unlock:
1896 mutex_unlock(&kvm->lock);
1897 break;
1898 case KVM_IRQ_LINE_STATUS:
1899 case KVM_IRQ_LINE: {
1900 struct kvm_irq_level irq_event;
1902 r = -EFAULT;
1903 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1904 goto out;
1905 if (irqchip_in_kernel(kvm)) {
1906 __s32 status;
1907 mutex_lock(&kvm->lock);
1908 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1909 irq_event.irq, irq_event.level);
1910 mutex_unlock(&kvm->lock);
1911 if (ioctl == KVM_IRQ_LINE_STATUS) {
1912 irq_event.status = status;
1913 if (copy_to_user(argp, &irq_event,
1914 sizeof irq_event))
1915 goto out;
1917 r = 0;
1919 break;
1921 case KVM_GET_IRQCHIP: {
1922 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1923 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1925 r = -ENOMEM;
1926 if (!chip)
1927 goto out;
1928 r = -EFAULT;
1929 if (copy_from_user(chip, argp, sizeof *chip))
1930 goto get_irqchip_out;
1931 r = -ENXIO;
1932 if (!irqchip_in_kernel(kvm))
1933 goto get_irqchip_out;
1934 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1935 if (r)
1936 goto get_irqchip_out;
1937 r = -EFAULT;
1938 if (copy_to_user(argp, chip, sizeof *chip))
1939 goto get_irqchip_out;
1940 r = 0;
1941 get_irqchip_out:
1942 kfree(chip);
1943 if (r)
1944 goto out;
1945 break;
1947 case KVM_SET_IRQCHIP: {
1948 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1949 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1951 r = -ENOMEM;
1952 if (!chip)
1953 goto out;
1954 r = -EFAULT;
1955 if (copy_from_user(chip, argp, sizeof *chip))
1956 goto set_irqchip_out;
1957 r = -ENXIO;
1958 if (!irqchip_in_kernel(kvm))
1959 goto set_irqchip_out;
1960 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1961 if (r)
1962 goto set_irqchip_out;
1963 r = 0;
1964 set_irqchip_out:
1965 kfree(chip);
1966 if (r)
1967 goto out;
1968 break;
1970 case KVM_GET_PIT: {
1971 r = -EFAULT;
1972 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1973 goto out;
1974 r = -ENXIO;
1975 if (!kvm->arch.vpit)
1976 goto out;
1977 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1978 if (r)
1979 goto out;
1980 r = -EFAULT;
1981 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1982 goto out;
1983 r = 0;
1984 break;
1986 case KVM_SET_PIT: {
1987 r = -EFAULT;
1988 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1989 goto out;
1990 r = -ENXIO;
1991 if (!kvm->arch.vpit)
1992 goto out;
1993 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1994 if (r)
1995 goto out;
1996 r = 0;
1997 break;
1999 case KVM_REINJECT_CONTROL: {
2000 struct kvm_reinject_control control;
2001 r = -EFAULT;
2002 if (copy_from_user(&control, argp, sizeof(control)))
2003 goto out;
2004 r = kvm_vm_ioctl_reinject(kvm, &control);
2005 if (r)
2006 goto out;
2007 r = 0;
2008 break;
2010 default:
2013 out:
2014 return r;
2017 static void kvm_init_msr_list(void)
2019 u32 dummy[2];
2020 unsigned i, j;
2022 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2023 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2024 continue;
2025 if (j < i)
2026 msrs_to_save[j] = msrs_to_save[i];
2027 j++;
2029 num_msrs_to_save = j;
2033 * Only apic need an MMIO device hook, so shortcut now..
2035 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2036 gpa_t addr, int len,
2037 int is_write)
2039 struct kvm_io_device *dev;
2041 if (vcpu->arch.apic) {
2042 dev = &vcpu->arch.apic->dev;
2043 if (dev->in_range(dev, addr, len, is_write))
2044 return dev;
2046 return NULL;
2050 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2051 gpa_t addr, int len,
2052 int is_write)
2054 struct kvm_io_device *dev;
2056 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2057 if (dev == NULL)
2058 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2059 is_write);
2060 return dev;
2063 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2064 struct kvm_vcpu *vcpu)
2066 void *data = val;
2067 int r = X86EMUL_CONTINUE;
2069 while (bytes) {
2070 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2071 unsigned offset = addr & (PAGE_SIZE-1);
2072 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2073 int ret;
2075 if (gpa == UNMAPPED_GVA) {
2076 r = X86EMUL_PROPAGATE_FAULT;
2077 goto out;
2079 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2080 if (ret < 0) {
2081 r = X86EMUL_UNHANDLEABLE;
2082 goto out;
2085 bytes -= toread;
2086 data += toread;
2087 addr += toread;
2089 out:
2090 return r;
2093 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2094 struct kvm_vcpu *vcpu)
2096 void *data = val;
2097 int r = X86EMUL_CONTINUE;
2099 while (bytes) {
2100 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2101 unsigned offset = addr & (PAGE_SIZE-1);
2102 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2103 int ret;
2105 if (gpa == UNMAPPED_GVA) {
2106 r = X86EMUL_PROPAGATE_FAULT;
2107 goto out;
2109 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2110 if (ret < 0) {
2111 r = X86EMUL_UNHANDLEABLE;
2112 goto out;
2115 bytes -= towrite;
2116 data += towrite;
2117 addr += towrite;
2119 out:
2120 return r;
2124 static int emulator_read_emulated(unsigned long addr,
2125 void *val,
2126 unsigned int bytes,
2127 struct kvm_vcpu *vcpu)
2129 struct kvm_io_device *mmio_dev;
2130 gpa_t gpa;
2132 if (vcpu->mmio_read_completed) {
2133 memcpy(val, vcpu->mmio_data, bytes);
2134 vcpu->mmio_read_completed = 0;
2135 return X86EMUL_CONTINUE;
2138 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2140 /* For APIC access vmexit */
2141 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2142 goto mmio;
2144 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2145 == X86EMUL_CONTINUE)
2146 return X86EMUL_CONTINUE;
2147 if (gpa == UNMAPPED_GVA)
2148 return X86EMUL_PROPAGATE_FAULT;
2150 mmio:
2152 * Is this MMIO handled locally?
2154 mutex_lock(&vcpu->kvm->lock);
2155 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2156 if (mmio_dev) {
2157 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2158 mutex_unlock(&vcpu->kvm->lock);
2159 return X86EMUL_CONTINUE;
2161 mutex_unlock(&vcpu->kvm->lock);
2163 vcpu->mmio_needed = 1;
2164 vcpu->mmio_phys_addr = gpa;
2165 vcpu->mmio_size = bytes;
2166 vcpu->mmio_is_write = 0;
2168 return X86EMUL_UNHANDLEABLE;
2171 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2172 const void *val, int bytes)
2174 int ret;
2176 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2177 if (ret < 0)
2178 return 0;
2179 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2180 return 1;
2183 static int emulator_write_emulated_onepage(unsigned long addr,
2184 const void *val,
2185 unsigned int bytes,
2186 struct kvm_vcpu *vcpu)
2188 struct kvm_io_device *mmio_dev;
2189 gpa_t gpa;
2191 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2193 if (gpa == UNMAPPED_GVA) {
2194 kvm_inject_page_fault(vcpu, addr, 2);
2195 return X86EMUL_PROPAGATE_FAULT;
2198 /* For APIC access vmexit */
2199 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2200 goto mmio;
2202 if (emulator_write_phys(vcpu, gpa, val, bytes))
2203 return X86EMUL_CONTINUE;
2205 mmio:
2207 * Is this MMIO handled locally?
2209 mutex_lock(&vcpu->kvm->lock);
2210 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2211 if (mmio_dev) {
2212 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2213 mutex_unlock(&vcpu->kvm->lock);
2214 return X86EMUL_CONTINUE;
2216 mutex_unlock(&vcpu->kvm->lock);
2218 vcpu->mmio_needed = 1;
2219 vcpu->mmio_phys_addr = gpa;
2220 vcpu->mmio_size = bytes;
2221 vcpu->mmio_is_write = 1;
2222 memcpy(vcpu->mmio_data, val, bytes);
2224 return X86EMUL_CONTINUE;
2227 int emulator_write_emulated(unsigned long addr,
2228 const void *val,
2229 unsigned int bytes,
2230 struct kvm_vcpu *vcpu)
2232 /* Crossing a page boundary? */
2233 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2234 int rc, now;
2236 now = -addr & ~PAGE_MASK;
2237 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2238 if (rc != X86EMUL_CONTINUE)
2239 return rc;
2240 addr += now;
2241 val += now;
2242 bytes -= now;
2244 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2246 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2248 static int emulator_cmpxchg_emulated(unsigned long addr,
2249 const void *old,
2250 const void *new,
2251 unsigned int bytes,
2252 struct kvm_vcpu *vcpu)
2254 static int reported;
2256 if (!reported) {
2257 reported = 1;
2258 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2260 #ifndef CONFIG_X86_64
2261 /* guests cmpxchg8b have to be emulated atomically */
2262 if (bytes == 8) {
2263 gpa_t gpa;
2264 struct page *page;
2265 char *kaddr;
2266 u64 val;
2268 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2270 if (gpa == UNMAPPED_GVA ||
2271 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2272 goto emul_write;
2274 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2275 goto emul_write;
2277 val = *(u64 *)new;
2279 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2281 kaddr = kmap_atomic(page, KM_USER0);
2282 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2283 kunmap_atomic(kaddr, KM_USER0);
2284 kvm_release_page_dirty(page);
2286 emul_write:
2287 #endif
2289 return emulator_write_emulated(addr, new, bytes, vcpu);
2292 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2294 return kvm_x86_ops->get_segment_base(vcpu, seg);
2297 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2299 kvm_mmu_invlpg(vcpu, address);
2300 return X86EMUL_CONTINUE;
2303 int emulate_clts(struct kvm_vcpu *vcpu)
2305 KVMTRACE_0D(CLTS, vcpu, handler);
2306 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2307 return X86EMUL_CONTINUE;
2310 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2312 struct kvm_vcpu *vcpu = ctxt->vcpu;
2314 switch (dr) {
2315 case 0 ... 3:
2316 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2317 return X86EMUL_CONTINUE;
2318 default:
2319 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2320 return X86EMUL_UNHANDLEABLE;
2324 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2326 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2327 int exception;
2329 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2330 if (exception) {
2331 /* FIXME: better handling */
2332 return X86EMUL_UNHANDLEABLE;
2334 return X86EMUL_CONTINUE;
2337 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2339 u8 opcodes[4];
2340 unsigned long rip = kvm_rip_read(vcpu);
2341 unsigned long rip_linear;
2343 if (!printk_ratelimit())
2344 return;
2346 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2348 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2350 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2351 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2353 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2355 static struct x86_emulate_ops emulate_ops = {
2356 .read_std = kvm_read_guest_virt,
2357 .read_emulated = emulator_read_emulated,
2358 .write_emulated = emulator_write_emulated,
2359 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2362 static void cache_all_regs(struct kvm_vcpu *vcpu)
2364 kvm_register_read(vcpu, VCPU_REGS_RAX);
2365 kvm_register_read(vcpu, VCPU_REGS_RSP);
2366 kvm_register_read(vcpu, VCPU_REGS_RIP);
2367 vcpu->arch.regs_dirty = ~0;
2370 int emulate_instruction(struct kvm_vcpu *vcpu,
2371 struct kvm_run *run,
2372 unsigned long cr2,
2373 u16 error_code,
2374 int emulation_type)
2376 int r;
2377 struct decode_cache *c;
2379 kvm_clear_exception_queue(vcpu);
2380 vcpu->arch.mmio_fault_cr2 = cr2;
2382 * TODO: fix x86_emulate.c to use guest_read/write_register
2383 * instead of direct ->regs accesses, can save hundred cycles
2384 * on Intel for instructions that don't read/change RSP, for
2385 * for example.
2387 cache_all_regs(vcpu);
2389 vcpu->mmio_is_write = 0;
2390 vcpu->arch.pio.string = 0;
2392 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2393 int cs_db, cs_l;
2394 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2396 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2397 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2398 vcpu->arch.emulate_ctxt.mode =
2399 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2400 ? X86EMUL_MODE_REAL : cs_l
2401 ? X86EMUL_MODE_PROT64 : cs_db
2402 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2404 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2406 /* Reject the instructions other than VMCALL/VMMCALL when
2407 * try to emulate invalid opcode */
2408 c = &vcpu->arch.emulate_ctxt.decode;
2409 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2410 (!(c->twobyte && c->b == 0x01 &&
2411 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2412 c->modrm_mod == 3 && c->modrm_rm == 1)))
2413 return EMULATE_FAIL;
2415 ++vcpu->stat.insn_emulation;
2416 if (r) {
2417 ++vcpu->stat.insn_emulation_fail;
2418 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2419 return EMULATE_DONE;
2420 return EMULATE_FAIL;
2424 if (emulation_type & EMULTYPE_SKIP) {
2425 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2426 return EMULATE_DONE;
2429 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2431 if (vcpu->arch.pio.string)
2432 return EMULATE_DO_MMIO;
2434 if ((r || vcpu->mmio_is_write) && run) {
2435 run->exit_reason = KVM_EXIT_MMIO;
2436 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2437 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2438 run->mmio.len = vcpu->mmio_size;
2439 run->mmio.is_write = vcpu->mmio_is_write;
2442 if (r) {
2443 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2444 return EMULATE_DONE;
2445 if (!vcpu->mmio_needed) {
2446 kvm_report_emulation_failure(vcpu, "mmio");
2447 return EMULATE_FAIL;
2449 return EMULATE_DO_MMIO;
2452 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2454 if (vcpu->mmio_is_write) {
2455 vcpu->mmio_needed = 0;
2456 return EMULATE_DO_MMIO;
2459 return EMULATE_DONE;
2461 EXPORT_SYMBOL_GPL(emulate_instruction);
2463 static int pio_copy_data(struct kvm_vcpu *vcpu)
2465 void *p = vcpu->arch.pio_data;
2466 gva_t q = vcpu->arch.pio.guest_gva;
2467 unsigned bytes;
2468 int ret;
2470 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2471 if (vcpu->arch.pio.in)
2472 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2473 else
2474 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2475 return ret;
2478 int complete_pio(struct kvm_vcpu *vcpu)
2480 struct kvm_pio_request *io = &vcpu->arch.pio;
2481 long delta;
2482 int r;
2483 unsigned long val;
2485 if (!io->string) {
2486 if (io->in) {
2487 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2488 memcpy(&val, vcpu->arch.pio_data, io->size);
2489 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2491 } else {
2492 if (io->in) {
2493 r = pio_copy_data(vcpu);
2494 if (r)
2495 return r;
2498 delta = 1;
2499 if (io->rep) {
2500 delta *= io->cur_count;
2502 * The size of the register should really depend on
2503 * current address size.
2505 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2506 val -= delta;
2507 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2509 if (io->down)
2510 delta = -delta;
2511 delta *= io->size;
2512 if (io->in) {
2513 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2514 val += delta;
2515 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2516 } else {
2517 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2518 val += delta;
2519 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2523 io->count -= io->cur_count;
2524 io->cur_count = 0;
2526 return 0;
2529 static void kernel_pio(struct kvm_io_device *pio_dev,
2530 struct kvm_vcpu *vcpu,
2531 void *pd)
2533 /* TODO: String I/O for in kernel device */
2535 mutex_lock(&vcpu->kvm->lock);
2536 if (vcpu->arch.pio.in)
2537 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2538 vcpu->arch.pio.size,
2539 pd);
2540 else
2541 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2542 vcpu->arch.pio.size,
2543 pd);
2544 mutex_unlock(&vcpu->kvm->lock);
2547 static void pio_string_write(struct kvm_io_device *pio_dev,
2548 struct kvm_vcpu *vcpu)
2550 struct kvm_pio_request *io = &vcpu->arch.pio;
2551 void *pd = vcpu->arch.pio_data;
2552 int i;
2554 mutex_lock(&vcpu->kvm->lock);
2555 for (i = 0; i < io->cur_count; i++) {
2556 kvm_iodevice_write(pio_dev, io->port,
2557 io->size,
2558 pd);
2559 pd += io->size;
2561 mutex_unlock(&vcpu->kvm->lock);
2564 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2565 gpa_t addr, int len,
2566 int is_write)
2568 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2571 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2572 int size, unsigned port)
2574 struct kvm_io_device *pio_dev;
2575 unsigned long val;
2577 vcpu->run->exit_reason = KVM_EXIT_IO;
2578 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2579 vcpu->run->io.size = vcpu->arch.pio.size = size;
2580 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2581 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2582 vcpu->run->io.port = vcpu->arch.pio.port = port;
2583 vcpu->arch.pio.in = in;
2584 vcpu->arch.pio.string = 0;
2585 vcpu->arch.pio.down = 0;
2586 vcpu->arch.pio.rep = 0;
2588 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2589 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2590 handler);
2591 else
2592 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2593 handler);
2595 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2596 memcpy(vcpu->arch.pio_data, &val, 4);
2598 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2599 if (pio_dev) {
2600 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2601 complete_pio(vcpu);
2602 return 1;
2604 return 0;
2606 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2608 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2609 int size, unsigned long count, int down,
2610 gva_t address, int rep, unsigned port)
2612 unsigned now, in_page;
2613 int ret = 0;
2614 struct kvm_io_device *pio_dev;
2616 vcpu->run->exit_reason = KVM_EXIT_IO;
2617 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2618 vcpu->run->io.size = vcpu->arch.pio.size = size;
2619 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2620 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2621 vcpu->run->io.port = vcpu->arch.pio.port = port;
2622 vcpu->arch.pio.in = in;
2623 vcpu->arch.pio.string = 1;
2624 vcpu->arch.pio.down = down;
2625 vcpu->arch.pio.rep = rep;
2627 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2628 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2629 handler);
2630 else
2631 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2632 handler);
2634 if (!count) {
2635 kvm_x86_ops->skip_emulated_instruction(vcpu);
2636 return 1;
2639 if (!down)
2640 in_page = PAGE_SIZE - offset_in_page(address);
2641 else
2642 in_page = offset_in_page(address) + size;
2643 now = min(count, (unsigned long)in_page / size);
2644 if (!now)
2645 now = 1;
2646 if (down) {
2648 * String I/O in reverse. Yuck. Kill the guest, fix later.
2650 pr_unimpl(vcpu, "guest string pio down\n");
2651 kvm_inject_gp(vcpu, 0);
2652 return 1;
2654 vcpu->run->io.count = now;
2655 vcpu->arch.pio.cur_count = now;
2657 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2658 kvm_x86_ops->skip_emulated_instruction(vcpu);
2660 vcpu->arch.pio.guest_gva = address;
2662 pio_dev = vcpu_find_pio_dev(vcpu, port,
2663 vcpu->arch.pio.cur_count,
2664 !vcpu->arch.pio.in);
2665 if (!vcpu->arch.pio.in) {
2666 /* string PIO write */
2667 ret = pio_copy_data(vcpu);
2668 if (ret == X86EMUL_PROPAGATE_FAULT) {
2669 kvm_inject_gp(vcpu, 0);
2670 return 1;
2672 if (ret == 0 && pio_dev) {
2673 pio_string_write(pio_dev, vcpu);
2674 complete_pio(vcpu);
2675 if (vcpu->arch.pio.count == 0)
2676 ret = 1;
2678 } else if (pio_dev)
2679 pr_unimpl(vcpu, "no string pio read support yet, "
2680 "port %x size %d count %ld\n",
2681 port, size, count);
2683 return ret;
2685 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2687 static void bounce_off(void *info)
2689 /* nothing */
2692 static unsigned int ref_freq;
2693 static unsigned long tsc_khz_ref;
2695 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2696 void *data)
2698 struct cpufreq_freqs *freq = data;
2699 struct kvm *kvm;
2700 struct kvm_vcpu *vcpu;
2701 int i, send_ipi = 0;
2703 if (!ref_freq)
2704 ref_freq = freq->old;
2706 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2707 return 0;
2708 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2709 return 0;
2710 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2712 spin_lock(&kvm_lock);
2713 list_for_each_entry(kvm, &vm_list, vm_list) {
2714 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2715 vcpu = kvm->vcpus[i];
2716 if (!vcpu)
2717 continue;
2718 if (vcpu->cpu != freq->cpu)
2719 continue;
2720 if (!kvm_request_guest_time_update(vcpu))
2721 continue;
2722 if (vcpu->cpu != smp_processor_id())
2723 send_ipi++;
2726 spin_unlock(&kvm_lock);
2728 if (freq->old < freq->new && send_ipi) {
2730 * We upscale the frequency. Must make the guest
2731 * doesn't see old kvmclock values while running with
2732 * the new frequency, otherwise we risk the guest sees
2733 * time go backwards.
2735 * In case we update the frequency for another cpu
2736 * (which might be in guest context) send an interrupt
2737 * to kick the cpu out of guest context. Next time
2738 * guest context is entered kvmclock will be updated,
2739 * so the guest will not see stale values.
2741 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2743 return 0;
2746 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2747 .notifier_call = kvmclock_cpufreq_notifier
2750 int kvm_arch_init(void *opaque)
2752 int r, cpu;
2753 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2755 if (kvm_x86_ops) {
2756 printk(KERN_ERR "kvm: already loaded the other module\n");
2757 r = -EEXIST;
2758 goto out;
2761 if (!ops->cpu_has_kvm_support()) {
2762 printk(KERN_ERR "kvm: no hardware support\n");
2763 r = -EOPNOTSUPP;
2764 goto out;
2766 if (ops->disabled_by_bios()) {
2767 printk(KERN_ERR "kvm: disabled by bios\n");
2768 r = -EOPNOTSUPP;
2769 goto out;
2772 r = kvm_mmu_module_init();
2773 if (r)
2774 goto out;
2776 kvm_init_msr_list();
2778 kvm_x86_ops = ops;
2779 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2780 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2781 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2782 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2784 for_each_possible_cpu(cpu)
2785 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2786 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2787 tsc_khz_ref = tsc_khz;
2788 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2789 CPUFREQ_TRANSITION_NOTIFIER);
2792 return 0;
2794 out:
2795 return r;
2798 void kvm_arch_exit(void)
2800 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2801 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2802 CPUFREQ_TRANSITION_NOTIFIER);
2803 kvm_x86_ops = NULL;
2804 kvm_mmu_module_exit();
2807 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2809 ++vcpu->stat.halt_exits;
2810 KVMTRACE_0D(HLT, vcpu, handler);
2811 if (irqchip_in_kernel(vcpu->kvm)) {
2812 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2813 return 1;
2814 } else {
2815 vcpu->run->exit_reason = KVM_EXIT_HLT;
2816 return 0;
2819 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2821 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2822 unsigned long a1)
2824 if (is_long_mode(vcpu))
2825 return a0;
2826 else
2827 return a0 | ((gpa_t)a1 << 32);
2830 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2832 unsigned long nr, a0, a1, a2, a3, ret;
2833 int r = 1;
2835 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2836 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2837 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2838 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2839 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2841 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2843 if (!is_long_mode(vcpu)) {
2844 nr &= 0xFFFFFFFF;
2845 a0 &= 0xFFFFFFFF;
2846 a1 &= 0xFFFFFFFF;
2847 a2 &= 0xFFFFFFFF;
2848 a3 &= 0xFFFFFFFF;
2851 switch (nr) {
2852 case KVM_HC_VAPIC_POLL_IRQ:
2853 ret = 0;
2854 break;
2855 case KVM_HC_MMU_OP:
2856 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2857 break;
2858 default:
2859 ret = -KVM_ENOSYS;
2860 break;
2862 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2863 ++vcpu->stat.hypercalls;
2864 return r;
2866 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2868 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2870 char instruction[3];
2871 int ret = 0;
2872 unsigned long rip = kvm_rip_read(vcpu);
2876 * Blow out the MMU to ensure that no other VCPU has an active mapping
2877 * to ensure that the updated hypercall appears atomically across all
2878 * VCPUs.
2880 kvm_mmu_zap_all(vcpu->kvm);
2882 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2883 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2884 != X86EMUL_CONTINUE)
2885 ret = -EFAULT;
2887 return ret;
2890 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2892 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2895 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2897 struct descriptor_table dt = { limit, base };
2899 kvm_x86_ops->set_gdt(vcpu, &dt);
2902 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2904 struct descriptor_table dt = { limit, base };
2906 kvm_x86_ops->set_idt(vcpu, &dt);
2909 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2910 unsigned long *rflags)
2912 kvm_lmsw(vcpu, msw);
2913 *rflags = kvm_x86_ops->get_rflags(vcpu);
2916 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2918 unsigned long value;
2920 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2921 switch (cr) {
2922 case 0:
2923 value = vcpu->arch.cr0;
2924 break;
2925 case 2:
2926 value = vcpu->arch.cr2;
2927 break;
2928 case 3:
2929 value = vcpu->arch.cr3;
2930 break;
2931 case 4:
2932 value = vcpu->arch.cr4;
2933 break;
2934 case 8:
2935 value = kvm_get_cr8(vcpu);
2936 break;
2937 default:
2938 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2939 return 0;
2941 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2942 (u32)((u64)value >> 32), handler);
2944 return value;
2947 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2948 unsigned long *rflags)
2950 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2951 (u32)((u64)val >> 32), handler);
2953 switch (cr) {
2954 case 0:
2955 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2956 *rflags = kvm_x86_ops->get_rflags(vcpu);
2957 break;
2958 case 2:
2959 vcpu->arch.cr2 = val;
2960 break;
2961 case 3:
2962 kvm_set_cr3(vcpu, val);
2963 break;
2964 case 4:
2965 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2966 break;
2967 case 8:
2968 kvm_set_cr8(vcpu, val & 0xfUL);
2969 break;
2970 default:
2971 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2975 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2977 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2978 int j, nent = vcpu->arch.cpuid_nent;
2980 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2981 /* when no next entry is found, the current entry[i] is reselected */
2982 for (j = i + 1; ; j = (j + 1) % nent) {
2983 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2984 if (ej->function == e->function) {
2985 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2986 return j;
2989 return 0; /* silence gcc, even though control never reaches here */
2992 /* find an entry with matching function, matching index (if needed), and that
2993 * should be read next (if it's stateful) */
2994 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2995 u32 function, u32 index)
2997 if (e->function != function)
2998 return 0;
2999 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3000 return 0;
3001 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3002 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3003 return 0;
3004 return 1;
3007 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3008 u32 function, u32 index)
3010 int i;
3011 struct kvm_cpuid_entry2 *best = NULL;
3013 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3014 struct kvm_cpuid_entry2 *e;
3016 e = &vcpu->arch.cpuid_entries[i];
3017 if (is_matching_cpuid_entry(e, function, index)) {
3018 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3019 move_to_next_stateful_cpuid_entry(vcpu, i);
3020 best = e;
3021 break;
3024 * Both basic or both extended?
3026 if (((e->function ^ function) & 0x80000000) == 0)
3027 if (!best || e->function > best->function)
3028 best = e;
3030 return best;
3033 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3035 struct kvm_cpuid_entry2 *best;
3037 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3038 if (best)
3039 return best->eax & 0xff;
3040 return 36;
3043 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3045 u32 function, index;
3046 struct kvm_cpuid_entry2 *best;
3048 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3049 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3050 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3051 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3052 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3053 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3054 best = kvm_find_cpuid_entry(vcpu, function, index);
3055 if (best) {
3056 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3057 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3058 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3059 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3061 kvm_x86_ops->skip_emulated_instruction(vcpu);
3062 KVMTRACE_5D(CPUID, vcpu, function,
3063 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3064 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3065 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3066 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3068 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3071 * Check if userspace requested an interrupt window, and that the
3072 * interrupt window is open.
3074 * No need to exit to userspace if we already have an interrupt queued.
3076 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3077 struct kvm_run *kvm_run)
3079 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3080 kvm_run->request_interrupt_window &&
3081 kvm_arch_interrupt_allowed(vcpu));
3084 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3085 struct kvm_run *kvm_run)
3087 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3088 kvm_run->cr8 = kvm_get_cr8(vcpu);
3089 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3090 if (irqchip_in_kernel(vcpu->kvm))
3091 kvm_run->ready_for_interrupt_injection = 1;
3092 else
3093 kvm_run->ready_for_interrupt_injection =
3094 (kvm_arch_interrupt_allowed(vcpu) &&
3095 !kvm_cpu_has_interrupt(vcpu));
3098 static void vapic_enter(struct kvm_vcpu *vcpu)
3100 struct kvm_lapic *apic = vcpu->arch.apic;
3101 struct page *page;
3103 if (!apic || !apic->vapic_addr)
3104 return;
3106 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3108 vcpu->arch.apic->vapic_page = page;
3111 static void vapic_exit(struct kvm_vcpu *vcpu)
3113 struct kvm_lapic *apic = vcpu->arch.apic;
3115 if (!apic || !apic->vapic_addr)
3116 return;
3118 down_read(&vcpu->kvm->slots_lock);
3119 kvm_release_page_dirty(apic->vapic_page);
3120 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3121 up_read(&vcpu->kvm->slots_lock);
3124 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3126 int max_irr, tpr;
3128 if (!kvm_x86_ops->update_cr8_intercept)
3129 return;
3131 max_irr = kvm_lapic_find_highest_irr(vcpu);
3133 if (max_irr != -1)
3134 max_irr >>= 4;
3136 tpr = kvm_lapic_get_cr8(vcpu);
3138 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3141 static void inject_irq(struct kvm_vcpu *vcpu)
3143 /* try to reinject previous events if any */
3144 if (vcpu->arch.nmi_injected) {
3145 kvm_x86_ops->set_nmi(vcpu);
3146 return;
3149 if (vcpu->arch.interrupt.pending) {
3150 kvm_x86_ops->set_irq(vcpu, vcpu->arch.interrupt.nr);
3151 return;
3154 /* try to inject new event if pending */
3155 if (vcpu->arch.nmi_pending) {
3156 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3157 vcpu->arch.nmi_pending = false;
3158 vcpu->arch.nmi_injected = true;
3159 kvm_x86_ops->set_nmi(vcpu);
3161 } else if (kvm_cpu_has_interrupt(vcpu)) {
3162 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3163 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3164 kvm_x86_ops->set_irq(vcpu, vcpu->arch.interrupt.nr);
3169 static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3171 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3172 kvm_run->request_interrupt_window;
3174 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3175 kvm_x86_ops->drop_interrupt_shadow(vcpu);
3177 inject_irq(vcpu);
3179 /* enable NMI/IRQ window open exits if needed */
3180 if (vcpu->arch.nmi_pending)
3181 kvm_x86_ops->enable_nmi_window(vcpu);
3182 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3183 kvm_x86_ops->enable_irq_window(vcpu);
3186 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3188 int r;
3190 if (vcpu->requests)
3191 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3192 kvm_mmu_unload(vcpu);
3194 r = kvm_mmu_reload(vcpu);
3195 if (unlikely(r))
3196 goto out;
3198 if (vcpu->requests) {
3199 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3200 __kvm_migrate_timers(vcpu);
3201 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3202 kvm_write_guest_time(vcpu);
3203 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3204 kvm_mmu_sync_roots(vcpu);
3205 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3206 kvm_x86_ops->tlb_flush(vcpu);
3207 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3208 &vcpu->requests)) {
3209 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3210 r = 0;
3211 goto out;
3213 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3214 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3215 r = 0;
3216 goto out;
3220 preempt_disable();
3222 kvm_x86_ops->prepare_guest_switch(vcpu);
3223 kvm_load_guest_fpu(vcpu);
3225 local_irq_disable();
3227 if (vcpu->requests || need_resched() || signal_pending(current)) {
3228 local_irq_enable();
3229 preempt_enable();
3230 r = 1;
3231 goto out;
3234 vcpu->guest_mode = 1;
3236 * Make sure that guest_mode assignment won't happen after
3237 * testing the pending IRQ vector bitmap.
3239 smp_wmb();
3241 if (vcpu->arch.exception.pending)
3242 __queue_exception(vcpu);
3243 else
3244 inject_pending_irq(vcpu, kvm_run);
3246 if (kvm_lapic_enabled(vcpu)) {
3247 if (!vcpu->arch.apic->vapic_addr)
3248 update_cr8_intercept(vcpu);
3249 else
3250 kvm_lapic_sync_to_vapic(vcpu);
3253 up_read(&vcpu->kvm->slots_lock);
3255 kvm_guest_enter();
3257 get_debugreg(vcpu->arch.host_dr6, 6);
3258 get_debugreg(vcpu->arch.host_dr7, 7);
3259 if (unlikely(vcpu->arch.switch_db_regs)) {
3260 get_debugreg(vcpu->arch.host_db[0], 0);
3261 get_debugreg(vcpu->arch.host_db[1], 1);
3262 get_debugreg(vcpu->arch.host_db[2], 2);
3263 get_debugreg(vcpu->arch.host_db[3], 3);
3265 set_debugreg(0, 7);
3266 set_debugreg(vcpu->arch.eff_db[0], 0);
3267 set_debugreg(vcpu->arch.eff_db[1], 1);
3268 set_debugreg(vcpu->arch.eff_db[2], 2);
3269 set_debugreg(vcpu->arch.eff_db[3], 3);
3272 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3273 kvm_x86_ops->run(vcpu, kvm_run);
3275 if (unlikely(vcpu->arch.switch_db_regs)) {
3276 set_debugreg(0, 7);
3277 set_debugreg(vcpu->arch.host_db[0], 0);
3278 set_debugreg(vcpu->arch.host_db[1], 1);
3279 set_debugreg(vcpu->arch.host_db[2], 2);
3280 set_debugreg(vcpu->arch.host_db[3], 3);
3282 set_debugreg(vcpu->arch.host_dr6, 6);
3283 set_debugreg(vcpu->arch.host_dr7, 7);
3285 vcpu->guest_mode = 0;
3286 local_irq_enable();
3288 ++vcpu->stat.exits;
3291 * We must have an instruction between local_irq_enable() and
3292 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3293 * the interrupt shadow. The stat.exits increment will do nicely.
3294 * But we need to prevent reordering, hence this barrier():
3296 barrier();
3298 kvm_guest_exit();
3300 preempt_enable();
3302 down_read(&vcpu->kvm->slots_lock);
3305 * Profile KVM exit RIPs:
3307 if (unlikely(prof_on == KVM_PROFILING)) {
3308 unsigned long rip = kvm_rip_read(vcpu);
3309 profile_hit(KVM_PROFILING, (void *)rip);
3313 kvm_lapic_sync_from_vapic(vcpu);
3315 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3316 out:
3317 return r;
3321 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3323 int r;
3325 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3326 pr_debug("vcpu %d received sipi with vector # %x\n",
3327 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3328 kvm_lapic_reset(vcpu);
3329 r = kvm_arch_vcpu_reset(vcpu);
3330 if (r)
3331 return r;
3332 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3335 down_read(&vcpu->kvm->slots_lock);
3336 vapic_enter(vcpu);
3338 r = 1;
3339 while (r > 0) {
3340 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3341 r = vcpu_enter_guest(vcpu, kvm_run);
3342 else {
3343 up_read(&vcpu->kvm->slots_lock);
3344 kvm_vcpu_block(vcpu);
3345 down_read(&vcpu->kvm->slots_lock);
3346 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3348 switch(vcpu->arch.mp_state) {
3349 case KVM_MP_STATE_HALTED:
3350 vcpu->arch.mp_state =
3351 KVM_MP_STATE_RUNNABLE;
3352 case KVM_MP_STATE_RUNNABLE:
3353 break;
3354 case KVM_MP_STATE_SIPI_RECEIVED:
3355 default:
3356 r = -EINTR;
3357 break;
3362 if (r <= 0)
3363 break;
3365 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3366 if (kvm_cpu_has_pending_timer(vcpu))
3367 kvm_inject_pending_timer_irqs(vcpu);
3369 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3370 r = -EINTR;
3371 kvm_run->exit_reason = KVM_EXIT_INTR;
3372 ++vcpu->stat.request_irq_exits;
3374 if (signal_pending(current)) {
3375 r = -EINTR;
3376 kvm_run->exit_reason = KVM_EXIT_INTR;
3377 ++vcpu->stat.signal_exits;
3379 if (need_resched()) {
3380 up_read(&vcpu->kvm->slots_lock);
3381 kvm_resched(vcpu);
3382 down_read(&vcpu->kvm->slots_lock);
3386 up_read(&vcpu->kvm->slots_lock);
3387 post_kvm_run_save(vcpu, kvm_run);
3389 vapic_exit(vcpu);
3391 return r;
3394 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3396 int r;
3397 sigset_t sigsaved;
3399 vcpu_load(vcpu);
3401 if (vcpu->sigset_active)
3402 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3404 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3405 kvm_vcpu_block(vcpu);
3406 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3407 r = -EAGAIN;
3408 goto out;
3411 /* re-sync apic's tpr */
3412 if (!irqchip_in_kernel(vcpu->kvm))
3413 kvm_set_cr8(vcpu, kvm_run->cr8);
3415 if (vcpu->arch.pio.cur_count) {
3416 r = complete_pio(vcpu);
3417 if (r)
3418 goto out;
3420 #if CONFIG_HAS_IOMEM
3421 if (vcpu->mmio_needed) {
3422 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3423 vcpu->mmio_read_completed = 1;
3424 vcpu->mmio_needed = 0;
3426 down_read(&vcpu->kvm->slots_lock);
3427 r = emulate_instruction(vcpu, kvm_run,
3428 vcpu->arch.mmio_fault_cr2, 0,
3429 EMULTYPE_NO_DECODE);
3430 up_read(&vcpu->kvm->slots_lock);
3431 if (r == EMULATE_DO_MMIO) {
3433 * Read-modify-write. Back to userspace.
3435 r = 0;
3436 goto out;
3439 #endif
3440 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3441 kvm_register_write(vcpu, VCPU_REGS_RAX,
3442 kvm_run->hypercall.ret);
3444 r = __vcpu_run(vcpu, kvm_run);
3446 out:
3447 if (vcpu->sigset_active)
3448 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3450 vcpu_put(vcpu);
3451 return r;
3454 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3456 vcpu_load(vcpu);
3458 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3459 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3460 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3461 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3462 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3463 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3464 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3465 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3466 #ifdef CONFIG_X86_64
3467 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3468 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3469 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3470 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3471 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3472 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3473 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3474 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3475 #endif
3477 regs->rip = kvm_rip_read(vcpu);
3478 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3481 * Don't leak debug flags in case they were set for guest debugging
3483 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3484 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3486 vcpu_put(vcpu);
3488 return 0;
3491 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3493 vcpu_load(vcpu);
3495 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3496 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3497 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3498 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3499 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3500 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3501 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3502 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3503 #ifdef CONFIG_X86_64
3504 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3505 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3506 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3507 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3508 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3509 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3510 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3511 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3513 #endif
3515 kvm_rip_write(vcpu, regs->rip);
3516 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3519 vcpu->arch.exception.pending = false;
3521 vcpu_put(vcpu);
3523 return 0;
3526 void kvm_get_segment(struct kvm_vcpu *vcpu,
3527 struct kvm_segment *var, int seg)
3529 kvm_x86_ops->get_segment(vcpu, var, seg);
3532 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3534 struct kvm_segment cs;
3536 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3537 *db = cs.db;
3538 *l = cs.l;
3540 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3542 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3543 struct kvm_sregs *sregs)
3545 struct descriptor_table dt;
3547 vcpu_load(vcpu);
3549 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3550 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3551 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3552 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3553 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3554 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3556 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3557 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3559 kvm_x86_ops->get_idt(vcpu, &dt);
3560 sregs->idt.limit = dt.limit;
3561 sregs->idt.base = dt.base;
3562 kvm_x86_ops->get_gdt(vcpu, &dt);
3563 sregs->gdt.limit = dt.limit;
3564 sregs->gdt.base = dt.base;
3566 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3567 sregs->cr0 = vcpu->arch.cr0;
3568 sregs->cr2 = vcpu->arch.cr2;
3569 sregs->cr3 = vcpu->arch.cr3;
3570 sregs->cr4 = vcpu->arch.cr4;
3571 sregs->cr8 = kvm_get_cr8(vcpu);
3572 sregs->efer = vcpu->arch.shadow_efer;
3573 sregs->apic_base = kvm_get_apic_base(vcpu);
3575 if (irqchip_in_kernel(vcpu->kvm))
3576 memset(sregs->interrupt_bitmap, 0,
3577 sizeof sregs->interrupt_bitmap);
3578 else
3579 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3580 sizeof sregs->interrupt_bitmap);
3582 if (vcpu->arch.interrupt.pending)
3583 set_bit(vcpu->arch.interrupt.nr,
3584 (unsigned long *)sregs->interrupt_bitmap);
3586 vcpu_put(vcpu);
3588 return 0;
3591 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3592 struct kvm_mp_state *mp_state)
3594 vcpu_load(vcpu);
3595 mp_state->mp_state = vcpu->arch.mp_state;
3596 vcpu_put(vcpu);
3597 return 0;
3600 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3601 struct kvm_mp_state *mp_state)
3603 vcpu_load(vcpu);
3604 vcpu->arch.mp_state = mp_state->mp_state;
3605 vcpu_put(vcpu);
3606 return 0;
3609 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3610 struct kvm_segment *var, int seg)
3612 kvm_x86_ops->set_segment(vcpu, var, seg);
3615 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3616 struct kvm_segment *kvm_desct)
3618 kvm_desct->base = seg_desc->base0;
3619 kvm_desct->base |= seg_desc->base1 << 16;
3620 kvm_desct->base |= seg_desc->base2 << 24;
3621 kvm_desct->limit = seg_desc->limit0;
3622 kvm_desct->limit |= seg_desc->limit << 16;
3623 if (seg_desc->g) {
3624 kvm_desct->limit <<= 12;
3625 kvm_desct->limit |= 0xfff;
3627 kvm_desct->selector = selector;
3628 kvm_desct->type = seg_desc->type;
3629 kvm_desct->present = seg_desc->p;
3630 kvm_desct->dpl = seg_desc->dpl;
3631 kvm_desct->db = seg_desc->d;
3632 kvm_desct->s = seg_desc->s;
3633 kvm_desct->l = seg_desc->l;
3634 kvm_desct->g = seg_desc->g;
3635 kvm_desct->avl = seg_desc->avl;
3636 if (!selector)
3637 kvm_desct->unusable = 1;
3638 else
3639 kvm_desct->unusable = 0;
3640 kvm_desct->padding = 0;
3643 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3644 u16 selector,
3645 struct descriptor_table *dtable)
3647 if (selector & 1 << 2) {
3648 struct kvm_segment kvm_seg;
3650 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3652 if (kvm_seg.unusable)
3653 dtable->limit = 0;
3654 else
3655 dtable->limit = kvm_seg.limit;
3656 dtable->base = kvm_seg.base;
3658 else
3659 kvm_x86_ops->get_gdt(vcpu, dtable);
3662 /* allowed just for 8 bytes segments */
3663 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3664 struct desc_struct *seg_desc)
3666 gpa_t gpa;
3667 struct descriptor_table dtable;
3668 u16 index = selector >> 3;
3670 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3672 if (dtable.limit < index * 8 + 7) {
3673 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3674 return 1;
3676 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3677 gpa += index * 8;
3678 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3681 /* allowed just for 8 bytes segments */
3682 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3683 struct desc_struct *seg_desc)
3685 gpa_t gpa;
3686 struct descriptor_table dtable;
3687 u16 index = selector >> 3;
3689 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3691 if (dtable.limit < index * 8 + 7)
3692 return 1;
3693 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3694 gpa += index * 8;
3695 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3698 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3699 struct desc_struct *seg_desc)
3701 u32 base_addr;
3703 base_addr = seg_desc->base0;
3704 base_addr |= (seg_desc->base1 << 16);
3705 base_addr |= (seg_desc->base2 << 24);
3707 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3710 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3712 struct kvm_segment kvm_seg;
3714 kvm_get_segment(vcpu, &kvm_seg, seg);
3715 return kvm_seg.selector;
3718 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3719 u16 selector,
3720 struct kvm_segment *kvm_seg)
3722 struct desc_struct seg_desc;
3724 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3725 return 1;
3726 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3727 return 0;
3730 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3732 struct kvm_segment segvar = {
3733 .base = selector << 4,
3734 .limit = 0xffff,
3735 .selector = selector,
3736 .type = 3,
3737 .present = 1,
3738 .dpl = 3,
3739 .db = 0,
3740 .s = 1,
3741 .l = 0,
3742 .g = 0,
3743 .avl = 0,
3744 .unusable = 0,
3746 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3747 return 0;
3750 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3751 int type_bits, int seg)
3753 struct kvm_segment kvm_seg;
3755 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3756 return kvm_load_realmode_segment(vcpu, selector, seg);
3757 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3758 return 1;
3759 kvm_seg.type |= type_bits;
3761 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3762 seg != VCPU_SREG_LDTR)
3763 if (!kvm_seg.s)
3764 kvm_seg.unusable = 1;
3766 kvm_set_segment(vcpu, &kvm_seg, seg);
3767 return 0;
3770 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3771 struct tss_segment_32 *tss)
3773 tss->cr3 = vcpu->arch.cr3;
3774 tss->eip = kvm_rip_read(vcpu);
3775 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3776 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3777 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3778 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3779 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3780 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3781 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3782 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3783 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3784 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3785 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3786 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3787 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3788 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3789 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3790 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3793 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3794 struct tss_segment_32 *tss)
3796 kvm_set_cr3(vcpu, tss->cr3);
3798 kvm_rip_write(vcpu, tss->eip);
3799 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3801 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3802 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3803 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3804 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3805 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3806 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3807 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3808 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3810 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3811 return 1;
3813 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3814 return 1;
3816 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3817 return 1;
3819 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3820 return 1;
3822 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3823 return 1;
3825 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3826 return 1;
3828 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3829 return 1;
3830 return 0;
3833 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3834 struct tss_segment_16 *tss)
3836 tss->ip = kvm_rip_read(vcpu);
3837 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3838 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3839 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3840 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3841 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3842 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3843 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3844 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3845 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3847 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3848 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3849 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3850 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3851 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3852 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3855 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3856 struct tss_segment_16 *tss)
3858 kvm_rip_write(vcpu, tss->ip);
3859 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3860 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3861 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3862 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3863 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3864 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3865 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3866 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3867 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3869 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3870 return 1;
3872 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3873 return 1;
3875 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3876 return 1;
3878 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3879 return 1;
3881 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3882 return 1;
3883 return 0;
3886 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3887 u16 old_tss_sel, u32 old_tss_base,
3888 struct desc_struct *nseg_desc)
3890 struct tss_segment_16 tss_segment_16;
3891 int ret = 0;
3893 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3894 sizeof tss_segment_16))
3895 goto out;
3897 save_state_to_tss16(vcpu, &tss_segment_16);
3899 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3900 sizeof tss_segment_16))
3901 goto out;
3903 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3904 &tss_segment_16, sizeof tss_segment_16))
3905 goto out;
3907 if (old_tss_sel != 0xffff) {
3908 tss_segment_16.prev_task_link = old_tss_sel;
3910 if (kvm_write_guest(vcpu->kvm,
3911 get_tss_base_addr(vcpu, nseg_desc),
3912 &tss_segment_16.prev_task_link,
3913 sizeof tss_segment_16.prev_task_link))
3914 goto out;
3917 if (load_state_from_tss16(vcpu, &tss_segment_16))
3918 goto out;
3920 ret = 1;
3921 out:
3922 return ret;
3925 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3926 u16 old_tss_sel, u32 old_tss_base,
3927 struct desc_struct *nseg_desc)
3929 struct tss_segment_32 tss_segment_32;
3930 int ret = 0;
3932 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3933 sizeof tss_segment_32))
3934 goto out;
3936 save_state_to_tss32(vcpu, &tss_segment_32);
3938 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3939 sizeof tss_segment_32))
3940 goto out;
3942 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3943 &tss_segment_32, sizeof tss_segment_32))
3944 goto out;
3946 if (old_tss_sel != 0xffff) {
3947 tss_segment_32.prev_task_link = old_tss_sel;
3949 if (kvm_write_guest(vcpu->kvm,
3950 get_tss_base_addr(vcpu, nseg_desc),
3951 &tss_segment_32.prev_task_link,
3952 sizeof tss_segment_32.prev_task_link))
3953 goto out;
3956 if (load_state_from_tss32(vcpu, &tss_segment_32))
3957 goto out;
3959 ret = 1;
3960 out:
3961 return ret;
3964 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3966 struct kvm_segment tr_seg;
3967 struct desc_struct cseg_desc;
3968 struct desc_struct nseg_desc;
3969 int ret = 0;
3970 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3971 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3973 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3975 /* FIXME: Handle errors. Failure to read either TSS or their
3976 * descriptors should generate a pagefault.
3978 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3979 goto out;
3981 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3982 goto out;
3984 if (reason != TASK_SWITCH_IRET) {
3985 int cpl;
3987 cpl = kvm_x86_ops->get_cpl(vcpu);
3988 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3989 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3990 return 1;
3994 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3995 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3996 return 1;
3999 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4000 cseg_desc.type &= ~(1 << 1); //clear the B flag
4001 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4004 if (reason == TASK_SWITCH_IRET) {
4005 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4006 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4009 /* set back link to prev task only if NT bit is set in eflags
4010 note that old_tss_sel is not used afetr this point */
4011 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4012 old_tss_sel = 0xffff;
4014 /* set back link to prev task only if NT bit is set in eflags
4015 note that old_tss_sel is not used afetr this point */
4016 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4017 old_tss_sel = 0xffff;
4019 if (nseg_desc.type & 8)
4020 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4021 old_tss_base, &nseg_desc);
4022 else
4023 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4024 old_tss_base, &nseg_desc);
4026 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4027 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4028 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4031 if (reason != TASK_SWITCH_IRET) {
4032 nseg_desc.type |= (1 << 1);
4033 save_guest_segment_descriptor(vcpu, tss_selector,
4034 &nseg_desc);
4037 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4038 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4039 tr_seg.type = 11;
4040 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4041 out:
4042 return ret;
4044 EXPORT_SYMBOL_GPL(kvm_task_switch);
4046 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4047 struct kvm_sregs *sregs)
4049 int mmu_reset_needed = 0;
4050 int i, pending_vec, max_bits;
4051 struct descriptor_table dt;
4053 vcpu_load(vcpu);
4055 dt.limit = sregs->idt.limit;
4056 dt.base = sregs->idt.base;
4057 kvm_x86_ops->set_idt(vcpu, &dt);
4058 dt.limit = sregs->gdt.limit;
4059 dt.base = sregs->gdt.base;
4060 kvm_x86_ops->set_gdt(vcpu, &dt);
4062 vcpu->arch.cr2 = sregs->cr2;
4063 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4065 down_read(&vcpu->kvm->slots_lock);
4066 if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
4067 vcpu->arch.cr3 = sregs->cr3;
4068 else
4069 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
4070 up_read(&vcpu->kvm->slots_lock);
4072 kvm_set_cr8(vcpu, sregs->cr8);
4074 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4075 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4076 kvm_set_apic_base(vcpu, sregs->apic_base);
4078 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4080 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4081 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4082 vcpu->arch.cr0 = sregs->cr0;
4084 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4085 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4086 if (!is_long_mode(vcpu) && is_pae(vcpu))
4087 load_pdptrs(vcpu, vcpu->arch.cr3);
4089 if (mmu_reset_needed)
4090 kvm_mmu_reset_context(vcpu);
4092 if (!irqchip_in_kernel(vcpu->kvm)) {
4093 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
4094 sizeof vcpu->arch.irq_pending);
4095 vcpu->arch.irq_summary = 0;
4096 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
4097 if (vcpu->arch.irq_pending[i])
4098 __set_bit(i, &vcpu->arch.irq_summary);
4099 } else {
4100 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4101 pending_vec = find_first_bit(
4102 (const unsigned long *)sregs->interrupt_bitmap,
4103 max_bits);
4104 /* Only pending external irq is handled here */
4105 if (pending_vec < max_bits) {
4106 kvm_queue_interrupt(vcpu, pending_vec);
4107 pr_debug("Set back pending irq %d\n", pending_vec);
4109 kvm_pic_clear_isr_ack(vcpu->kvm);
4112 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4113 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4114 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4115 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4116 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4117 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4119 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4120 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4122 /* Older userspace won't unhalt the vcpu on reset. */
4123 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
4124 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4125 !(vcpu->arch.cr0 & X86_CR0_PE))
4126 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4128 vcpu_put(vcpu);
4130 return 0;
4133 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4134 struct kvm_guest_debug *dbg)
4136 int i, r;
4138 vcpu_load(vcpu);
4140 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4141 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4142 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4143 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4144 vcpu->arch.switch_db_regs =
4145 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4146 } else {
4147 for (i = 0; i < KVM_NR_DB_REGS; i++)
4148 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4149 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4152 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4154 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4155 kvm_queue_exception(vcpu, DB_VECTOR);
4156 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4157 kvm_queue_exception(vcpu, BP_VECTOR);
4159 vcpu_put(vcpu);
4161 return r;
4165 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4166 * we have asm/x86/processor.h
4168 struct fxsave {
4169 u16 cwd;
4170 u16 swd;
4171 u16 twd;
4172 u16 fop;
4173 u64 rip;
4174 u64 rdp;
4175 u32 mxcsr;
4176 u32 mxcsr_mask;
4177 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4178 #ifdef CONFIG_X86_64
4179 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4180 #else
4181 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4182 #endif
4186 * Translate a guest virtual address to a guest physical address.
4188 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4189 struct kvm_translation *tr)
4191 unsigned long vaddr = tr->linear_address;
4192 gpa_t gpa;
4194 vcpu_load(vcpu);
4195 down_read(&vcpu->kvm->slots_lock);
4196 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4197 up_read(&vcpu->kvm->slots_lock);
4198 tr->physical_address = gpa;
4199 tr->valid = gpa != UNMAPPED_GVA;
4200 tr->writeable = 1;
4201 tr->usermode = 0;
4202 vcpu_put(vcpu);
4204 return 0;
4207 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4209 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4211 vcpu_load(vcpu);
4213 memcpy(fpu->fpr, fxsave->st_space, 128);
4214 fpu->fcw = fxsave->cwd;
4215 fpu->fsw = fxsave->swd;
4216 fpu->ftwx = fxsave->twd;
4217 fpu->last_opcode = fxsave->fop;
4218 fpu->last_ip = fxsave->rip;
4219 fpu->last_dp = fxsave->rdp;
4220 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4222 vcpu_put(vcpu);
4224 return 0;
4227 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4229 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4231 vcpu_load(vcpu);
4233 memcpy(fxsave->st_space, fpu->fpr, 128);
4234 fxsave->cwd = fpu->fcw;
4235 fxsave->swd = fpu->fsw;
4236 fxsave->twd = fpu->ftwx;
4237 fxsave->fop = fpu->last_opcode;
4238 fxsave->rip = fpu->last_ip;
4239 fxsave->rdp = fpu->last_dp;
4240 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4242 vcpu_put(vcpu);
4244 return 0;
4247 void fx_init(struct kvm_vcpu *vcpu)
4249 unsigned after_mxcsr_mask;
4252 * Touch the fpu the first time in non atomic context as if
4253 * this is the first fpu instruction the exception handler
4254 * will fire before the instruction returns and it'll have to
4255 * allocate ram with GFP_KERNEL.
4257 if (!used_math())
4258 kvm_fx_save(&vcpu->arch.host_fx_image);
4260 /* Initialize guest FPU by resetting ours and saving into guest's */
4261 preempt_disable();
4262 kvm_fx_save(&vcpu->arch.host_fx_image);
4263 kvm_fx_finit();
4264 kvm_fx_save(&vcpu->arch.guest_fx_image);
4265 kvm_fx_restore(&vcpu->arch.host_fx_image);
4266 preempt_enable();
4268 vcpu->arch.cr0 |= X86_CR0_ET;
4269 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4270 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4271 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4272 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4274 EXPORT_SYMBOL_GPL(fx_init);
4276 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4278 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4279 return;
4281 vcpu->guest_fpu_loaded = 1;
4282 kvm_fx_save(&vcpu->arch.host_fx_image);
4283 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4285 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4287 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4289 if (!vcpu->guest_fpu_loaded)
4290 return;
4292 vcpu->guest_fpu_loaded = 0;
4293 kvm_fx_save(&vcpu->arch.guest_fx_image);
4294 kvm_fx_restore(&vcpu->arch.host_fx_image);
4295 ++vcpu->stat.fpu_reload;
4297 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4299 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4301 if (vcpu->arch.time_page) {
4302 kvm_release_page_dirty(vcpu->arch.time_page);
4303 vcpu->arch.time_page = NULL;
4306 kvm_x86_ops->vcpu_free(vcpu);
4309 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4310 unsigned int id)
4312 return kvm_x86_ops->vcpu_create(kvm, id);
4315 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4317 int r;
4319 /* We do fxsave: this must be aligned. */
4320 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4322 vcpu->arch.mtrr_state.have_fixed = 1;
4323 vcpu_load(vcpu);
4324 r = kvm_arch_vcpu_reset(vcpu);
4325 if (r == 0)
4326 r = kvm_mmu_setup(vcpu);
4327 vcpu_put(vcpu);
4328 if (r < 0)
4329 goto free_vcpu;
4331 return 0;
4332 free_vcpu:
4333 kvm_x86_ops->vcpu_free(vcpu);
4334 return r;
4337 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4339 vcpu_load(vcpu);
4340 kvm_mmu_unload(vcpu);
4341 vcpu_put(vcpu);
4343 kvm_x86_ops->vcpu_free(vcpu);
4346 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4348 vcpu->arch.nmi_pending = false;
4349 vcpu->arch.nmi_injected = false;
4351 vcpu->arch.switch_db_regs = 0;
4352 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4353 vcpu->arch.dr6 = DR6_FIXED_1;
4354 vcpu->arch.dr7 = DR7_FIXED_1;
4356 return kvm_x86_ops->vcpu_reset(vcpu);
4359 void kvm_arch_hardware_enable(void *garbage)
4361 kvm_x86_ops->hardware_enable(garbage);
4364 void kvm_arch_hardware_disable(void *garbage)
4366 kvm_x86_ops->hardware_disable(garbage);
4369 int kvm_arch_hardware_setup(void)
4371 return kvm_x86_ops->hardware_setup();
4374 void kvm_arch_hardware_unsetup(void)
4376 kvm_x86_ops->hardware_unsetup();
4379 void kvm_arch_check_processor_compat(void *rtn)
4381 kvm_x86_ops->check_processor_compatibility(rtn);
4384 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4386 struct page *page;
4387 struct kvm *kvm;
4388 int r;
4390 BUG_ON(vcpu->kvm == NULL);
4391 kvm = vcpu->kvm;
4393 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4394 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4395 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4396 else
4397 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4399 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4400 if (!page) {
4401 r = -ENOMEM;
4402 goto fail;
4404 vcpu->arch.pio_data = page_address(page);
4406 r = kvm_mmu_create(vcpu);
4407 if (r < 0)
4408 goto fail_free_pio_data;
4410 if (irqchip_in_kernel(kvm)) {
4411 r = kvm_create_lapic(vcpu);
4412 if (r < 0)
4413 goto fail_mmu_destroy;
4416 return 0;
4418 fail_mmu_destroy:
4419 kvm_mmu_destroy(vcpu);
4420 fail_free_pio_data:
4421 free_page((unsigned long)vcpu->arch.pio_data);
4422 fail:
4423 return r;
4426 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4428 kvm_free_lapic(vcpu);
4429 down_read(&vcpu->kvm->slots_lock);
4430 kvm_mmu_destroy(vcpu);
4431 up_read(&vcpu->kvm->slots_lock);
4432 free_page((unsigned long)vcpu->arch.pio_data);
4435 struct kvm *kvm_arch_create_vm(void)
4437 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4439 if (!kvm)
4440 return ERR_PTR(-ENOMEM);
4442 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4443 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4445 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4446 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4448 rdtscll(kvm->arch.vm_init_tsc);
4450 return kvm;
4453 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4455 vcpu_load(vcpu);
4456 kvm_mmu_unload(vcpu);
4457 vcpu_put(vcpu);
4460 static void kvm_free_vcpus(struct kvm *kvm)
4462 unsigned int i;
4465 * Unpin any mmu pages first.
4467 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4468 if (kvm->vcpus[i])
4469 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4470 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4471 if (kvm->vcpus[i]) {
4472 kvm_arch_vcpu_free(kvm->vcpus[i]);
4473 kvm->vcpus[i] = NULL;
4479 void kvm_arch_sync_events(struct kvm *kvm)
4481 kvm_free_all_assigned_devices(kvm);
4484 void kvm_arch_destroy_vm(struct kvm *kvm)
4486 kvm_iommu_unmap_guest(kvm);
4487 kvm_free_pit(kvm);
4488 kfree(kvm->arch.vpic);
4489 kfree(kvm->arch.vioapic);
4490 kvm_free_vcpus(kvm);
4491 kvm_free_physmem(kvm);
4492 if (kvm->arch.apic_access_page)
4493 put_page(kvm->arch.apic_access_page);
4494 if (kvm->arch.ept_identity_pagetable)
4495 put_page(kvm->arch.ept_identity_pagetable);
4496 kfree(kvm);
4499 int kvm_arch_set_memory_region(struct kvm *kvm,
4500 struct kvm_userspace_memory_region *mem,
4501 struct kvm_memory_slot old,
4502 int user_alloc)
4504 int npages = mem->memory_size >> PAGE_SHIFT;
4505 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4507 /*To keep backward compatibility with older userspace,
4508 *x86 needs to hanlde !user_alloc case.
4510 if (!user_alloc) {
4511 if (npages && !old.rmap) {
4512 unsigned long userspace_addr;
4514 down_write(&current->mm->mmap_sem);
4515 userspace_addr = do_mmap(NULL, 0,
4516 npages * PAGE_SIZE,
4517 PROT_READ | PROT_WRITE,
4518 MAP_PRIVATE | MAP_ANONYMOUS,
4520 up_write(&current->mm->mmap_sem);
4522 if (IS_ERR((void *)userspace_addr))
4523 return PTR_ERR((void *)userspace_addr);
4525 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4526 spin_lock(&kvm->mmu_lock);
4527 memslot->userspace_addr = userspace_addr;
4528 spin_unlock(&kvm->mmu_lock);
4529 } else {
4530 if (!old.user_alloc && old.rmap) {
4531 int ret;
4533 down_write(&current->mm->mmap_sem);
4534 ret = do_munmap(current->mm, old.userspace_addr,
4535 old.npages * PAGE_SIZE);
4536 up_write(&current->mm->mmap_sem);
4537 if (ret < 0)
4538 printk(KERN_WARNING
4539 "kvm_vm_ioctl_set_memory_region: "
4540 "failed to munmap memory\n");
4545 if (!kvm->arch.n_requested_mmu_pages) {
4546 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4547 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4550 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4551 kvm_flush_remote_tlbs(kvm);
4553 return 0;
4556 void kvm_arch_flush_shadow(struct kvm *kvm)
4558 kvm_mmu_zap_all(kvm);
4561 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4563 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4564 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4565 || vcpu->arch.nmi_pending;
4568 static void vcpu_kick_intr(void *info)
4570 #ifdef DEBUG
4571 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4572 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4573 #endif
4576 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4578 int ipi_pcpu = vcpu->cpu;
4579 int cpu;
4581 if (waitqueue_active(&vcpu->wq)) {
4582 wake_up_interruptible(&vcpu->wq);
4583 ++vcpu->stat.halt_wakeup;
4586 * We may be called synchronously with irqs disabled in guest mode,
4587 * So need not to call smp_call_function_single() in that case.
4589 cpu = get_cpu();
4590 if (vcpu->guest_mode && vcpu->cpu != cpu)
4591 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4592 put_cpu();
4595 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4597 return kvm_x86_ops->interrupt_allowed(vcpu);