2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
111 static inline int SlabFrozen(struct page
*page
)
113 return page
->flags
& FROZEN
;
116 static inline void SetSlabFrozen(struct page
*page
)
118 page
->flags
|= FROZEN
;
121 static inline void ClearSlabFrozen(struct page
*page
)
123 page
->flags
&= ~FROZEN
;
126 static inline int SlabDebug(struct page
*page
)
128 return page
->flags
& SLABDEBUG
;
131 static inline void SetSlabDebug(struct page
*page
)
133 page
->flags
|= SLABDEBUG
;
136 static inline void ClearSlabDebug(struct page
*page
)
138 page
->flags
&= ~SLABDEBUG
;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
153 * Mininum number of partial slabs. These will be left on the partial
154 * lists even if they are empty. kmem_cache_shrink may reclaim them.
156 #define MIN_PARTIAL 5
159 * Maximum number of desirable partial slabs.
160 * The existence of more partial slabs makes kmem_cache_shrink
161 * sort the partial list by the number of objects in the.
163 #define MAX_PARTIAL 10
165 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
166 SLAB_POISON | SLAB_STORE_USER)
169 * Set of flags that will prevent slab merging
171 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
172 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
174 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 #ifndef ARCH_KMALLOC_MINALIGN
178 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
181 #ifndef ARCH_SLAB_MINALIGN
182 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
185 /* Internal SLUB flags */
186 #define __OBJECT_POISON 0x80000000 /* Poison object */
187 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
189 static int kmem_size
= sizeof(struct kmem_cache
);
192 static struct notifier_block slab_notifier
;
196 DOWN
, /* No slab functionality available */
197 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
198 UP
, /* Everything works but does not show up in sysfs */
202 /* A list of all slab caches on the system */
203 static DECLARE_RWSEM(slub_lock
);
204 static LIST_HEAD(slab_caches
);
207 * Tracking user of a slab.
210 void *addr
; /* Called from address */
211 int cpu
; /* Was running on cpu */
212 int pid
; /* Pid context */
213 unsigned long when
; /* When did the operation occur */
216 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
218 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
219 static int sysfs_slab_add(struct kmem_cache
*);
220 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
221 static void sysfs_slab_remove(struct kmem_cache
*);
224 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
225 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
227 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
234 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
236 #ifdef CONFIG_SLUB_STATS
241 /********************************************************************
242 * Core slab cache functions
243 *******************************************************************/
245 int slab_is_available(void)
247 return slab_state
>= UP
;
250 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
253 return s
->node
[node
];
255 return &s
->local_node
;
259 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
262 return s
->cpu_slab
[cpu
];
268 /* Verify that a pointer has an address that is valid within a slab page */
269 static inline int check_valid_pointer(struct kmem_cache
*s
,
270 struct page
*page
, const void *object
)
277 base
= page_address(page
);
278 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
279 (object
- base
) % s
->size
) {
287 * Slow version of get and set free pointer.
289 * This version requires touching the cache lines of kmem_cache which
290 * we avoid to do in the fast alloc free paths. There we obtain the offset
291 * from the page struct.
293 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
295 return *(void **)(object
+ s
->offset
);
298 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
300 *(void **)(object
+ s
->offset
) = fp
;
303 /* Loop over all objects in a slab */
304 #define for_each_object(__p, __s, __addr, __objects) \
305 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
309 #define for_each_free_object(__p, __s, __free) \
310 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
312 /* Determine object index from a given position */
313 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
315 return (p
- addr
) / s
->size
;
318 static inline struct kmem_cache_order_objects
oo_make(int order
,
321 struct kmem_cache_order_objects x
= {
322 (order
<< 16) + (PAGE_SIZE
<< order
) / size
328 static inline int oo_order(struct kmem_cache_order_objects x
)
333 static inline int oo_objects(struct kmem_cache_order_objects x
)
335 return x
.x
& ((1 << 16) - 1);
338 #ifdef CONFIG_SLUB_DEBUG
342 #ifdef CONFIG_SLUB_DEBUG_ON
343 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
345 static int slub_debug
;
348 static char *slub_debug_slabs
;
353 static void print_section(char *text
, u8
*addr
, unsigned int length
)
361 for (i
= 0; i
< length
; i
++) {
363 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
366 printk(KERN_CONT
" %02x", addr
[i
]);
368 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
370 printk(KERN_CONT
" %s\n", ascii
);
377 printk(KERN_CONT
" ");
381 printk(KERN_CONT
" %s\n", ascii
);
385 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
386 enum track_item alloc
)
391 p
= object
+ s
->offset
+ sizeof(void *);
393 p
= object
+ s
->inuse
;
398 static void set_track(struct kmem_cache
*s
, void *object
,
399 enum track_item alloc
, void *addr
)
404 p
= object
+ s
->offset
+ sizeof(void *);
406 p
= object
+ s
->inuse
;
411 p
->cpu
= smp_processor_id();
412 p
->pid
= current
? current
->pid
: -1;
415 memset(p
, 0, sizeof(struct track
));
418 static void init_tracking(struct kmem_cache
*s
, void *object
)
420 if (!(s
->flags
& SLAB_STORE_USER
))
423 set_track(s
, object
, TRACK_FREE
, NULL
);
424 set_track(s
, object
, TRACK_ALLOC
, NULL
);
427 static void print_track(const char *s
, struct track
*t
)
432 printk(KERN_ERR
"INFO: %s in ", s
);
433 __print_symbol("%s", (unsigned long)t
->addr
);
434 printk(" age=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
437 static void print_tracking(struct kmem_cache
*s
, void *object
)
439 if (!(s
->flags
& SLAB_STORE_USER
))
442 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
443 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
446 static void print_page_info(struct page
*page
)
448 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
449 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
453 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
459 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
461 printk(KERN_ERR
"========================================"
462 "=====================================\n");
463 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
464 printk(KERN_ERR
"----------------------------------------"
465 "-------------------------------------\n\n");
468 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
474 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
476 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
479 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
481 unsigned int off
; /* Offset of last byte */
482 u8
*addr
= page_address(page
);
484 print_tracking(s
, p
);
486 print_page_info(page
);
488 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
489 p
, p
- addr
, get_freepointer(s
, p
));
492 print_section("Bytes b4", p
- 16, 16);
494 print_section("Object", p
, min(s
->objsize
, 128));
496 if (s
->flags
& SLAB_RED_ZONE
)
497 print_section("Redzone", p
+ s
->objsize
,
498 s
->inuse
- s
->objsize
);
501 off
= s
->offset
+ sizeof(void *);
505 if (s
->flags
& SLAB_STORE_USER
)
506 off
+= 2 * sizeof(struct track
);
509 /* Beginning of the filler is the free pointer */
510 print_section("Padding", p
+ off
, s
->size
- off
);
515 static void object_err(struct kmem_cache
*s
, struct page
*page
,
516 u8
*object
, char *reason
)
518 slab_bug(s
, "%s", reason
);
519 print_trailer(s
, page
, object
);
522 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
528 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
530 slab_bug(s
, "%s", buf
);
531 print_page_info(page
);
535 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
539 if (s
->flags
& __OBJECT_POISON
) {
540 memset(p
, POISON_FREE
, s
->objsize
- 1);
541 p
[s
->objsize
- 1] = POISON_END
;
544 if (s
->flags
& SLAB_RED_ZONE
)
545 memset(p
+ s
->objsize
,
546 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
547 s
->inuse
- s
->objsize
);
550 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
553 if (*start
!= (u8
)value
)
561 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
562 void *from
, void *to
)
564 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
565 memset(from
, data
, to
- from
);
568 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
569 u8
*object
, char *what
,
570 u8
*start
, unsigned int value
, unsigned int bytes
)
575 fault
= check_bytes(start
, value
, bytes
);
580 while (end
> fault
&& end
[-1] == value
)
583 slab_bug(s
, "%s overwritten", what
);
584 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
585 fault
, end
- 1, fault
[0], value
);
586 print_trailer(s
, page
, object
);
588 restore_bytes(s
, what
, value
, fault
, end
);
596 * Bytes of the object to be managed.
597 * If the freepointer may overlay the object then the free
598 * pointer is the first word of the object.
600 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
603 * object + s->objsize
604 * Padding to reach word boundary. This is also used for Redzoning.
605 * Padding is extended by another word if Redzoning is enabled and
608 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
609 * 0xcc (RED_ACTIVE) for objects in use.
612 * Meta data starts here.
614 * A. Free pointer (if we cannot overwrite object on free)
615 * B. Tracking data for SLAB_STORE_USER
616 * C. Padding to reach required alignment boundary or at mininum
617 * one word if debugging is on to be able to detect writes
618 * before the word boundary.
620 * Padding is done using 0x5a (POISON_INUSE)
623 * Nothing is used beyond s->size.
625 * If slabcaches are merged then the objsize and inuse boundaries are mostly
626 * ignored. And therefore no slab options that rely on these boundaries
627 * may be used with merged slabcaches.
630 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
632 unsigned long off
= s
->inuse
; /* The end of info */
635 /* Freepointer is placed after the object. */
636 off
+= sizeof(void *);
638 if (s
->flags
& SLAB_STORE_USER
)
639 /* We also have user information there */
640 off
+= 2 * sizeof(struct track
);
645 return check_bytes_and_report(s
, page
, p
, "Object padding",
646 p
+ off
, POISON_INUSE
, s
->size
- off
);
649 /* Check the pad bytes at the end of a slab page */
650 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
658 if (!(s
->flags
& SLAB_POISON
))
661 start
= page_address(page
);
662 length
= (PAGE_SIZE
<< compound_order(page
));
663 end
= start
+ length
;
664 remainder
= length
% s
->size
;
668 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
671 while (end
> fault
&& end
[-1] == POISON_INUSE
)
674 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
675 print_section("Padding", end
- remainder
, remainder
);
677 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
681 static int check_object(struct kmem_cache
*s
, struct page
*page
,
682 void *object
, int active
)
685 u8
*endobject
= object
+ s
->objsize
;
687 if (s
->flags
& SLAB_RED_ZONE
) {
689 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
691 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
692 endobject
, red
, s
->inuse
- s
->objsize
))
695 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
696 check_bytes_and_report(s
, page
, p
, "Alignment padding",
697 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
701 if (s
->flags
& SLAB_POISON
) {
702 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
703 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
704 POISON_FREE
, s
->objsize
- 1) ||
705 !check_bytes_and_report(s
, page
, p
, "Poison",
706 p
+ s
->objsize
- 1, POISON_END
, 1)))
709 * check_pad_bytes cleans up on its own.
711 check_pad_bytes(s
, page
, p
);
714 if (!s
->offset
&& active
)
716 * Object and freepointer overlap. Cannot check
717 * freepointer while object is allocated.
721 /* Check free pointer validity */
722 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
723 object_err(s
, page
, p
, "Freepointer corrupt");
725 * No choice but to zap it and thus loose the remainder
726 * of the free objects in this slab. May cause
727 * another error because the object count is now wrong.
729 set_freepointer(s
, p
, NULL
);
735 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
739 VM_BUG_ON(!irqs_disabled());
741 if (!PageSlab(page
)) {
742 slab_err(s
, page
, "Not a valid slab page");
746 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
747 if (page
->objects
> maxobj
) {
748 slab_err(s
, page
, "objects %u > max %u",
749 s
->name
, page
->objects
, maxobj
);
752 if (page
->inuse
> page
->objects
) {
753 slab_err(s
, page
, "inuse %u > max %u",
754 s
->name
, page
->inuse
, page
->objects
);
757 /* Slab_pad_check fixes things up after itself */
758 slab_pad_check(s
, page
);
763 * Determine if a certain object on a page is on the freelist. Must hold the
764 * slab lock to guarantee that the chains are in a consistent state.
766 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
769 void *fp
= page
->freelist
;
771 unsigned long max_objects
;
773 while (fp
&& nr
<= page
->objects
) {
776 if (!check_valid_pointer(s
, page
, fp
)) {
778 object_err(s
, page
, object
,
779 "Freechain corrupt");
780 set_freepointer(s
, object
, NULL
);
783 slab_err(s
, page
, "Freepointer corrupt");
784 page
->freelist
= NULL
;
785 page
->inuse
= page
->objects
;
786 slab_fix(s
, "Freelist cleared");
792 fp
= get_freepointer(s
, object
);
796 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
797 if (max_objects
> 65535)
800 if (page
->objects
!= max_objects
) {
801 slab_err(s
, page
, "Wrong number of objects. Found %d but "
802 "should be %d", page
->objects
, max_objects
);
803 page
->objects
= max_objects
;
804 slab_fix(s
, "Number of objects adjusted.");
806 if (page
->inuse
!= page
->objects
- nr
) {
807 slab_err(s
, page
, "Wrong object count. Counter is %d but "
808 "counted were %d", page
->inuse
, page
->objects
- nr
);
809 page
->inuse
= page
->objects
- nr
;
810 slab_fix(s
, "Object count adjusted.");
812 return search
== NULL
;
815 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
, int alloc
)
817 if (s
->flags
& SLAB_TRACE
) {
818 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
820 alloc
? "alloc" : "free",
825 print_section("Object", (void *)object
, s
->objsize
);
832 * Tracking of fully allocated slabs for debugging purposes.
834 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
836 spin_lock(&n
->list_lock
);
837 list_add(&page
->lru
, &n
->full
);
838 spin_unlock(&n
->list_lock
);
841 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
843 struct kmem_cache_node
*n
;
845 if (!(s
->flags
& SLAB_STORE_USER
))
848 n
= get_node(s
, page_to_nid(page
));
850 spin_lock(&n
->list_lock
);
851 list_del(&page
->lru
);
852 spin_unlock(&n
->list_lock
);
855 /* Tracking of the number of slabs for debugging purposes */
856 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
858 struct kmem_cache_node
*n
= get_node(s
, node
);
860 return atomic_long_read(&n
->nr_slabs
);
863 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
865 struct kmem_cache_node
*n
= get_node(s
, node
);
868 * May be called early in order to allocate a slab for the
869 * kmem_cache_node structure. Solve the chicken-egg
870 * dilemma by deferring the increment of the count during
871 * bootstrap (see early_kmem_cache_node_alloc).
873 if (!NUMA_BUILD
|| n
) {
874 atomic_long_inc(&n
->nr_slabs
);
875 atomic_long_add(objects
, &n
->total_objects
);
878 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
880 struct kmem_cache_node
*n
= get_node(s
, node
);
882 atomic_long_dec(&n
->nr_slabs
);
883 atomic_long_sub(objects
, &n
->total_objects
);
886 /* Object debug checks for alloc/free paths */
887 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
890 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
893 init_object(s
, object
, 0);
894 init_tracking(s
, object
);
897 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
898 void *object
, void *addr
)
900 if (!check_slab(s
, page
))
903 if (!on_freelist(s
, page
, object
)) {
904 object_err(s
, page
, object
, "Object already allocated");
908 if (!check_valid_pointer(s
, page
, object
)) {
909 object_err(s
, page
, object
, "Freelist Pointer check fails");
913 if (!check_object(s
, page
, object
, 0))
916 /* Success perform special debug activities for allocs */
917 if (s
->flags
& SLAB_STORE_USER
)
918 set_track(s
, object
, TRACK_ALLOC
, addr
);
919 trace(s
, page
, object
, 1);
920 init_object(s
, object
, 1);
924 if (PageSlab(page
)) {
926 * If this is a slab page then lets do the best we can
927 * to avoid issues in the future. Marking all objects
928 * as used avoids touching the remaining objects.
930 slab_fix(s
, "Marking all objects used");
931 page
->inuse
= page
->objects
;
932 page
->freelist
= NULL
;
937 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
938 void *object
, void *addr
)
940 if (!check_slab(s
, page
))
943 if (!check_valid_pointer(s
, page
, object
)) {
944 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
948 if (on_freelist(s
, page
, object
)) {
949 object_err(s
, page
, object
, "Object already free");
953 if (!check_object(s
, page
, object
, 1))
956 if (unlikely(s
!= page
->slab
)) {
957 if (!PageSlab(page
)) {
958 slab_err(s
, page
, "Attempt to free object(0x%p) "
959 "outside of slab", object
);
960 } else if (!page
->slab
) {
962 "SLUB <none>: no slab for object 0x%p.\n",
966 object_err(s
, page
, object
,
967 "page slab pointer corrupt.");
971 /* Special debug activities for freeing objects */
972 if (!SlabFrozen(page
) && !page
->freelist
)
973 remove_full(s
, page
);
974 if (s
->flags
& SLAB_STORE_USER
)
975 set_track(s
, object
, TRACK_FREE
, addr
);
976 trace(s
, page
, object
, 0);
977 init_object(s
, object
, 0);
981 slab_fix(s
, "Object at 0x%p not freed", object
);
985 static int __init
setup_slub_debug(char *str
)
987 slub_debug
= DEBUG_DEFAULT_FLAGS
;
988 if (*str
++ != '=' || !*str
)
990 * No options specified. Switch on full debugging.
996 * No options but restriction on slabs. This means full
997 * debugging for slabs matching a pattern.
1004 * Switch off all debugging measures.
1009 * Determine which debug features should be switched on
1011 for (; *str
&& *str
!= ','; str
++) {
1012 switch (tolower(*str
)) {
1014 slub_debug
|= SLAB_DEBUG_FREE
;
1017 slub_debug
|= SLAB_RED_ZONE
;
1020 slub_debug
|= SLAB_POISON
;
1023 slub_debug
|= SLAB_STORE_USER
;
1026 slub_debug
|= SLAB_TRACE
;
1029 printk(KERN_ERR
"slub_debug option '%c' "
1030 "unknown. skipped\n", *str
);
1036 slub_debug_slabs
= str
+ 1;
1041 __setup("slub_debug", setup_slub_debug
);
1043 static unsigned long kmem_cache_flags(unsigned long objsize
,
1044 unsigned long flags
, const char *name
,
1045 void (*ctor
)(struct kmem_cache
*, void *))
1048 * Enable debugging if selected on the kernel commandline.
1050 if (slub_debug
&& (!slub_debug_slabs
||
1051 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1052 flags
|= slub_debug
;
1057 static inline void setup_object_debug(struct kmem_cache
*s
,
1058 struct page
*page
, void *object
) {}
1060 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1061 struct page
*page
, void *object
, void *addr
) { return 0; }
1063 static inline int free_debug_processing(struct kmem_cache
*s
,
1064 struct page
*page
, void *object
, void *addr
) { return 0; }
1066 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1068 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1069 void *object
, int active
) { return 1; }
1070 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1071 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1072 unsigned long flags
, const char *name
,
1073 void (*ctor
)(struct kmem_cache
*, void *))
1077 #define slub_debug 0
1079 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1081 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1083 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1088 * Slab allocation and freeing
1090 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1091 struct kmem_cache_order_objects oo
)
1093 int order
= oo_order(oo
);
1096 return alloc_pages(flags
, order
);
1098 return alloc_pages_node(node
, flags
, order
);
1101 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1104 struct kmem_cache_order_objects oo
= s
->oo
;
1106 flags
|= s
->allocflags
;
1108 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1110 if (unlikely(!page
)) {
1113 * Allocation may have failed due to fragmentation.
1114 * Try a lower order alloc if possible
1116 page
= alloc_slab_page(flags
, node
, oo
);
1120 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1122 page
->objects
= oo_objects(oo
);
1123 mod_zone_page_state(page_zone(page
),
1124 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1125 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1131 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1134 setup_object_debug(s
, page
, object
);
1135 if (unlikely(s
->ctor
))
1139 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1146 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1148 page
= allocate_slab(s
,
1149 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1153 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1155 page
->flags
|= 1 << PG_slab
;
1156 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1157 SLAB_STORE_USER
| SLAB_TRACE
))
1160 start
= page_address(page
);
1162 if (unlikely(s
->flags
& SLAB_POISON
))
1163 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1166 for_each_object(p
, s
, start
, page
->objects
) {
1167 setup_object(s
, page
, last
);
1168 set_freepointer(s
, last
, p
);
1171 setup_object(s
, page
, last
);
1172 set_freepointer(s
, last
, NULL
);
1174 page
->freelist
= start
;
1180 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1182 int order
= compound_order(page
);
1183 int pages
= 1 << order
;
1185 if (unlikely(SlabDebug(page
))) {
1188 slab_pad_check(s
, page
);
1189 for_each_object(p
, s
, page_address(page
),
1191 check_object(s
, page
, p
, 0);
1192 ClearSlabDebug(page
);
1195 mod_zone_page_state(page_zone(page
),
1196 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1197 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1200 __ClearPageSlab(page
);
1201 reset_page_mapcount(page
);
1202 __free_pages(page
, order
);
1205 static void rcu_free_slab(struct rcu_head
*h
)
1209 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1210 __free_slab(page
->slab
, page
);
1213 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1215 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1217 * RCU free overloads the RCU head over the LRU
1219 struct rcu_head
*head
= (void *)&page
->lru
;
1221 call_rcu(head
, rcu_free_slab
);
1223 __free_slab(s
, page
);
1226 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1228 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1233 * Per slab locking using the pagelock
1235 static __always_inline
void slab_lock(struct page
*page
)
1237 bit_spin_lock(PG_locked
, &page
->flags
);
1240 static __always_inline
void slab_unlock(struct page
*page
)
1242 __bit_spin_unlock(PG_locked
, &page
->flags
);
1245 static __always_inline
int slab_trylock(struct page
*page
)
1249 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1254 * Management of partially allocated slabs
1256 static void add_partial(struct kmem_cache_node
*n
,
1257 struct page
*page
, int tail
)
1259 spin_lock(&n
->list_lock
);
1262 list_add_tail(&page
->lru
, &n
->partial
);
1264 list_add(&page
->lru
, &n
->partial
);
1265 spin_unlock(&n
->list_lock
);
1268 static void remove_partial(struct kmem_cache
*s
,
1271 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1273 spin_lock(&n
->list_lock
);
1274 list_del(&page
->lru
);
1276 spin_unlock(&n
->list_lock
);
1280 * Lock slab and remove from the partial list.
1282 * Must hold list_lock.
1284 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
, struct page
*page
)
1286 if (slab_trylock(page
)) {
1287 list_del(&page
->lru
);
1289 SetSlabFrozen(page
);
1296 * Try to allocate a partial slab from a specific node.
1298 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1303 * Racy check. If we mistakenly see no partial slabs then we
1304 * just allocate an empty slab. If we mistakenly try to get a
1305 * partial slab and there is none available then get_partials()
1308 if (!n
|| !n
->nr_partial
)
1311 spin_lock(&n
->list_lock
);
1312 list_for_each_entry(page
, &n
->partial
, lru
)
1313 if (lock_and_freeze_slab(n
, page
))
1317 spin_unlock(&n
->list_lock
);
1322 * Get a page from somewhere. Search in increasing NUMA distances.
1324 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1327 struct zonelist
*zonelist
;
1330 enum zone_type high_zoneidx
= gfp_zone(flags
);
1334 * The defrag ratio allows a configuration of the tradeoffs between
1335 * inter node defragmentation and node local allocations. A lower
1336 * defrag_ratio increases the tendency to do local allocations
1337 * instead of attempting to obtain partial slabs from other nodes.
1339 * If the defrag_ratio is set to 0 then kmalloc() always
1340 * returns node local objects. If the ratio is higher then kmalloc()
1341 * may return off node objects because partial slabs are obtained
1342 * from other nodes and filled up.
1344 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1345 * defrag_ratio = 1000) then every (well almost) allocation will
1346 * first attempt to defrag slab caches on other nodes. This means
1347 * scanning over all nodes to look for partial slabs which may be
1348 * expensive if we do it every time we are trying to find a slab
1349 * with available objects.
1351 if (!s
->remote_node_defrag_ratio
||
1352 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1355 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1356 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1357 struct kmem_cache_node
*n
;
1359 n
= get_node(s
, zone_to_nid(zone
));
1361 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1362 n
->nr_partial
> MIN_PARTIAL
) {
1363 page
= get_partial_node(n
);
1373 * Get a partial page, lock it and return it.
1375 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1378 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1380 page
= get_partial_node(get_node(s
, searchnode
));
1381 if (page
|| (flags
& __GFP_THISNODE
))
1384 return get_any_partial(s
, flags
);
1388 * Move a page back to the lists.
1390 * Must be called with the slab lock held.
1392 * On exit the slab lock will have been dropped.
1394 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1396 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1397 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1399 ClearSlabFrozen(page
);
1402 if (page
->freelist
) {
1403 add_partial(n
, page
, tail
);
1404 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1406 stat(c
, DEACTIVATE_FULL
);
1407 if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1412 stat(c
, DEACTIVATE_EMPTY
);
1413 if (n
->nr_partial
< MIN_PARTIAL
) {
1415 * Adding an empty slab to the partial slabs in order
1416 * to avoid page allocator overhead. This slab needs
1417 * to come after the other slabs with objects in
1418 * so that the others get filled first. That way the
1419 * size of the partial list stays small.
1421 * kmem_cache_shrink can reclaim any empty slabs from the
1424 add_partial(n
, page
, 1);
1428 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1429 discard_slab(s
, page
);
1435 * Remove the cpu slab
1437 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1439 struct page
*page
= c
->page
;
1443 stat(c
, DEACTIVATE_REMOTE_FREES
);
1445 * Merge cpu freelist into slab freelist. Typically we get here
1446 * because both freelists are empty. So this is unlikely
1449 while (unlikely(c
->freelist
)) {
1452 tail
= 0; /* Hot objects. Put the slab first */
1454 /* Retrieve object from cpu_freelist */
1455 object
= c
->freelist
;
1456 c
->freelist
= c
->freelist
[c
->offset
];
1458 /* And put onto the regular freelist */
1459 object
[c
->offset
] = page
->freelist
;
1460 page
->freelist
= object
;
1464 unfreeze_slab(s
, page
, tail
);
1467 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1469 stat(c
, CPUSLAB_FLUSH
);
1471 deactivate_slab(s
, c
);
1477 * Called from IPI handler with interrupts disabled.
1479 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1481 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1483 if (likely(c
&& c
->page
))
1487 static void flush_cpu_slab(void *d
)
1489 struct kmem_cache
*s
= d
;
1491 __flush_cpu_slab(s
, smp_processor_id());
1494 static void flush_all(struct kmem_cache
*s
)
1497 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1499 unsigned long flags
;
1501 local_irq_save(flags
);
1503 local_irq_restore(flags
);
1508 * Check if the objects in a per cpu structure fit numa
1509 * locality expectations.
1511 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1514 if (node
!= -1 && c
->node
!= node
)
1521 * Slow path. The lockless freelist is empty or we need to perform
1524 * Interrupts are disabled.
1526 * Processing is still very fast if new objects have been freed to the
1527 * regular freelist. In that case we simply take over the regular freelist
1528 * as the lockless freelist and zap the regular freelist.
1530 * If that is not working then we fall back to the partial lists. We take the
1531 * first element of the freelist as the object to allocate now and move the
1532 * rest of the freelist to the lockless freelist.
1534 * And if we were unable to get a new slab from the partial slab lists then
1535 * we need to allocate a new slab. This is the slowest path since it involves
1536 * a call to the page allocator and the setup of a new slab.
1538 static void *__slab_alloc(struct kmem_cache
*s
,
1539 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1544 /* We handle __GFP_ZERO in the caller */
1545 gfpflags
&= ~__GFP_ZERO
;
1551 if (unlikely(!node_match(c
, node
)))
1554 stat(c
, ALLOC_REFILL
);
1557 object
= c
->page
->freelist
;
1558 if (unlikely(!object
))
1560 if (unlikely(SlabDebug(c
->page
)))
1563 c
->freelist
= object
[c
->offset
];
1564 c
->page
->inuse
= c
->page
->objects
;
1565 c
->page
->freelist
= NULL
;
1566 c
->node
= page_to_nid(c
->page
);
1568 slab_unlock(c
->page
);
1569 stat(c
, ALLOC_SLOWPATH
);
1573 deactivate_slab(s
, c
);
1576 new = get_partial(s
, gfpflags
, node
);
1579 stat(c
, ALLOC_FROM_PARTIAL
);
1583 if (gfpflags
& __GFP_WAIT
)
1586 new = new_slab(s
, gfpflags
, node
);
1588 if (gfpflags
& __GFP_WAIT
)
1589 local_irq_disable();
1592 c
= get_cpu_slab(s
, smp_processor_id());
1593 stat(c
, ALLOC_SLAB
);
1603 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1607 c
->page
->freelist
= object
[c
->offset
];
1613 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1614 * have the fastpath folded into their functions. So no function call
1615 * overhead for requests that can be satisfied on the fastpath.
1617 * The fastpath works by first checking if the lockless freelist can be used.
1618 * If not then __slab_alloc is called for slow processing.
1620 * Otherwise we can simply pick the next object from the lockless free list.
1622 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1623 gfp_t gfpflags
, int node
, void *addr
)
1626 struct kmem_cache_cpu
*c
;
1627 unsigned long flags
;
1629 local_irq_save(flags
);
1630 c
= get_cpu_slab(s
, smp_processor_id());
1631 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1633 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1636 object
= c
->freelist
;
1637 c
->freelist
= object
[c
->offset
];
1638 stat(c
, ALLOC_FASTPATH
);
1640 local_irq_restore(flags
);
1642 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1643 memset(object
, 0, c
->objsize
);
1648 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1650 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1652 EXPORT_SYMBOL(kmem_cache_alloc
);
1655 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1657 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1659 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1663 * Slow patch handling. This may still be called frequently since objects
1664 * have a longer lifetime than the cpu slabs in most processing loads.
1666 * So we still attempt to reduce cache line usage. Just take the slab
1667 * lock and free the item. If there is no additional partial page
1668 * handling required then we can return immediately.
1670 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1671 void *x
, void *addr
, unsigned int offset
)
1674 void **object
= (void *)x
;
1675 struct kmem_cache_cpu
*c
;
1677 c
= get_cpu_slab(s
, raw_smp_processor_id());
1678 stat(c
, FREE_SLOWPATH
);
1681 if (unlikely(SlabDebug(page
)))
1685 prior
= object
[offset
] = page
->freelist
;
1686 page
->freelist
= object
;
1689 if (unlikely(SlabFrozen(page
))) {
1690 stat(c
, FREE_FROZEN
);
1694 if (unlikely(!page
->inuse
))
1698 * Objects left in the slab. If it was not on the partial list before
1701 if (unlikely(!prior
)) {
1702 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1703 stat(c
, FREE_ADD_PARTIAL
);
1713 * Slab still on the partial list.
1715 remove_partial(s
, page
);
1716 stat(c
, FREE_REMOVE_PARTIAL
);
1720 discard_slab(s
, page
);
1724 if (!free_debug_processing(s
, page
, x
, addr
))
1730 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1731 * can perform fastpath freeing without additional function calls.
1733 * The fastpath is only possible if we are freeing to the current cpu slab
1734 * of this processor. This typically the case if we have just allocated
1737 * If fastpath is not possible then fall back to __slab_free where we deal
1738 * with all sorts of special processing.
1740 static __always_inline
void slab_free(struct kmem_cache
*s
,
1741 struct page
*page
, void *x
, void *addr
)
1743 void **object
= (void *)x
;
1744 struct kmem_cache_cpu
*c
;
1745 unsigned long flags
;
1747 local_irq_save(flags
);
1748 c
= get_cpu_slab(s
, smp_processor_id());
1749 debug_check_no_locks_freed(object
, c
->objsize
);
1750 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1751 object
[c
->offset
] = c
->freelist
;
1752 c
->freelist
= object
;
1753 stat(c
, FREE_FASTPATH
);
1755 __slab_free(s
, page
, x
, addr
, c
->offset
);
1757 local_irq_restore(flags
);
1760 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1764 page
= virt_to_head_page(x
);
1766 slab_free(s
, page
, x
, __builtin_return_address(0));
1768 EXPORT_SYMBOL(kmem_cache_free
);
1770 /* Figure out on which slab object the object resides */
1771 static struct page
*get_object_page(const void *x
)
1773 struct page
*page
= virt_to_head_page(x
);
1775 if (!PageSlab(page
))
1782 * Object placement in a slab is made very easy because we always start at
1783 * offset 0. If we tune the size of the object to the alignment then we can
1784 * get the required alignment by putting one properly sized object after
1787 * Notice that the allocation order determines the sizes of the per cpu
1788 * caches. Each processor has always one slab available for allocations.
1789 * Increasing the allocation order reduces the number of times that slabs
1790 * must be moved on and off the partial lists and is therefore a factor in
1795 * Mininum / Maximum order of slab pages. This influences locking overhead
1796 * and slab fragmentation. A higher order reduces the number of partial slabs
1797 * and increases the number of allocations possible without having to
1798 * take the list_lock.
1800 static int slub_min_order
;
1801 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1802 static int slub_min_objects
;
1805 * Merge control. If this is set then no merging of slab caches will occur.
1806 * (Could be removed. This was introduced to pacify the merge skeptics.)
1808 static int slub_nomerge
;
1811 * Calculate the order of allocation given an slab object size.
1813 * The order of allocation has significant impact on performance and other
1814 * system components. Generally order 0 allocations should be preferred since
1815 * order 0 does not cause fragmentation in the page allocator. Larger objects
1816 * be problematic to put into order 0 slabs because there may be too much
1817 * unused space left. We go to a higher order if more than 1/16th of the slab
1820 * In order to reach satisfactory performance we must ensure that a minimum
1821 * number of objects is in one slab. Otherwise we may generate too much
1822 * activity on the partial lists which requires taking the list_lock. This is
1823 * less a concern for large slabs though which are rarely used.
1825 * slub_max_order specifies the order where we begin to stop considering the
1826 * number of objects in a slab as critical. If we reach slub_max_order then
1827 * we try to keep the page order as low as possible. So we accept more waste
1828 * of space in favor of a small page order.
1830 * Higher order allocations also allow the placement of more objects in a
1831 * slab and thereby reduce object handling overhead. If the user has
1832 * requested a higher mininum order then we start with that one instead of
1833 * the smallest order which will fit the object.
1835 static inline int slab_order(int size
, int min_objects
,
1836 int max_order
, int fract_leftover
)
1840 int min_order
= slub_min_order
;
1842 if ((PAGE_SIZE
<< min_order
) / size
> 65535)
1843 return get_order(size
* 65535) - 1;
1845 for (order
= max(min_order
,
1846 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1847 order
<= max_order
; order
++) {
1849 unsigned long slab_size
= PAGE_SIZE
<< order
;
1851 if (slab_size
< min_objects
* size
)
1854 rem
= slab_size
% size
;
1856 if (rem
<= slab_size
/ fract_leftover
)
1864 static inline int calculate_order(int size
)
1871 * Attempt to find best configuration for a slab. This
1872 * works by first attempting to generate a layout with
1873 * the best configuration and backing off gradually.
1875 * First we reduce the acceptable waste in a slab. Then
1876 * we reduce the minimum objects required in a slab.
1878 min_objects
= slub_min_objects
;
1880 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1881 while (min_objects
> 1) {
1883 while (fraction
>= 4) {
1884 order
= slab_order(size
, min_objects
,
1885 slub_max_order
, fraction
);
1886 if (order
<= slub_max_order
)
1894 * We were unable to place multiple objects in a slab. Now
1895 * lets see if we can place a single object there.
1897 order
= slab_order(size
, 1, slub_max_order
, 1);
1898 if (order
<= slub_max_order
)
1902 * Doh this slab cannot be placed using slub_max_order.
1904 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1905 if (order
<= MAX_ORDER
)
1911 * Figure out what the alignment of the objects will be.
1913 static unsigned long calculate_alignment(unsigned long flags
,
1914 unsigned long align
, unsigned long size
)
1917 * If the user wants hardware cache aligned objects then follow that
1918 * suggestion if the object is sufficiently large.
1920 * The hardware cache alignment cannot override the specified
1921 * alignment though. If that is greater then use it.
1923 if (flags
& SLAB_HWCACHE_ALIGN
) {
1924 unsigned long ralign
= cache_line_size();
1925 while (size
<= ralign
/ 2)
1927 align
= max(align
, ralign
);
1930 if (align
< ARCH_SLAB_MINALIGN
)
1931 align
= ARCH_SLAB_MINALIGN
;
1933 return ALIGN(align
, sizeof(void *));
1936 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1937 struct kmem_cache_cpu
*c
)
1942 c
->offset
= s
->offset
/ sizeof(void *);
1943 c
->objsize
= s
->objsize
;
1944 #ifdef CONFIG_SLUB_STATS
1945 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1949 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1952 spin_lock_init(&n
->list_lock
);
1953 INIT_LIST_HEAD(&n
->partial
);
1954 #ifdef CONFIG_SLUB_DEBUG
1955 atomic_long_set(&n
->nr_slabs
, 0);
1956 INIT_LIST_HEAD(&n
->full
);
1962 * Per cpu array for per cpu structures.
1964 * The per cpu array places all kmem_cache_cpu structures from one processor
1965 * close together meaning that it becomes possible that multiple per cpu
1966 * structures are contained in one cacheline. This may be particularly
1967 * beneficial for the kmalloc caches.
1969 * A desktop system typically has around 60-80 slabs. With 100 here we are
1970 * likely able to get per cpu structures for all caches from the array defined
1971 * here. We must be able to cover all kmalloc caches during bootstrap.
1973 * If the per cpu array is exhausted then fall back to kmalloc
1974 * of individual cachelines. No sharing is possible then.
1976 #define NR_KMEM_CACHE_CPU 100
1978 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1979 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1981 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1982 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1984 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1985 int cpu
, gfp_t flags
)
1987 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1990 per_cpu(kmem_cache_cpu_free
, cpu
) =
1991 (void *)c
->freelist
;
1993 /* Table overflow: So allocate ourselves */
1995 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1996 flags
, cpu_to_node(cpu
));
2001 init_kmem_cache_cpu(s
, c
);
2005 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2007 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2008 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2012 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2013 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2016 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2020 for_each_online_cpu(cpu
) {
2021 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2024 s
->cpu_slab
[cpu
] = NULL
;
2025 free_kmem_cache_cpu(c
, cpu
);
2030 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2034 for_each_online_cpu(cpu
) {
2035 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2040 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2042 free_kmem_cache_cpus(s
);
2045 s
->cpu_slab
[cpu
] = c
;
2051 * Initialize the per cpu array.
2053 static void init_alloc_cpu_cpu(int cpu
)
2057 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
2060 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2061 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2063 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
2066 static void __init
init_alloc_cpu(void)
2070 for_each_online_cpu(cpu
)
2071 init_alloc_cpu_cpu(cpu
);
2075 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2076 static inline void init_alloc_cpu(void) {}
2078 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2080 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2087 * No kmalloc_node yet so do it by hand. We know that this is the first
2088 * slab on the node for this slabcache. There are no concurrent accesses
2091 * Note that this function only works on the kmalloc_node_cache
2092 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2093 * memory on a fresh node that has no slab structures yet.
2095 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2099 struct kmem_cache_node
*n
;
2100 unsigned long flags
;
2102 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2104 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2107 if (page_to_nid(page
) != node
) {
2108 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2110 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2111 "in order to be able to continue\n");
2116 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2118 kmalloc_caches
->node
[node
] = n
;
2119 #ifdef CONFIG_SLUB_DEBUG
2120 init_object(kmalloc_caches
, n
, 1);
2121 init_tracking(kmalloc_caches
, n
);
2123 init_kmem_cache_node(n
);
2124 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2127 * lockdep requires consistent irq usage for each lock
2128 * so even though there cannot be a race this early in
2129 * the boot sequence, we still disable irqs.
2131 local_irq_save(flags
);
2132 add_partial(n
, page
, 0);
2133 local_irq_restore(flags
);
2137 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2141 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2142 struct kmem_cache_node
*n
= s
->node
[node
];
2143 if (n
&& n
!= &s
->local_node
)
2144 kmem_cache_free(kmalloc_caches
, n
);
2145 s
->node
[node
] = NULL
;
2149 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2154 if (slab_state
>= UP
)
2155 local_node
= page_to_nid(virt_to_page(s
));
2159 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2160 struct kmem_cache_node
*n
;
2162 if (local_node
== node
)
2165 if (slab_state
== DOWN
) {
2166 n
= early_kmem_cache_node_alloc(gfpflags
,
2170 n
= kmem_cache_alloc_node(kmalloc_caches
,
2174 free_kmem_cache_nodes(s
);
2180 init_kmem_cache_node(n
);
2185 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2189 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2191 init_kmem_cache_node(&s
->local_node
);
2197 * calculate_sizes() determines the order and the distribution of data within
2200 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2202 unsigned long flags
= s
->flags
;
2203 unsigned long size
= s
->objsize
;
2204 unsigned long align
= s
->align
;
2208 * Round up object size to the next word boundary. We can only
2209 * place the free pointer at word boundaries and this determines
2210 * the possible location of the free pointer.
2212 size
= ALIGN(size
, sizeof(void *));
2214 #ifdef CONFIG_SLUB_DEBUG
2216 * Determine if we can poison the object itself. If the user of
2217 * the slab may touch the object after free or before allocation
2218 * then we should never poison the object itself.
2220 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2222 s
->flags
|= __OBJECT_POISON
;
2224 s
->flags
&= ~__OBJECT_POISON
;
2228 * If we are Redzoning then check if there is some space between the
2229 * end of the object and the free pointer. If not then add an
2230 * additional word to have some bytes to store Redzone information.
2232 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2233 size
+= sizeof(void *);
2237 * With that we have determined the number of bytes in actual use
2238 * by the object. This is the potential offset to the free pointer.
2242 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2245 * Relocate free pointer after the object if it is not
2246 * permitted to overwrite the first word of the object on
2249 * This is the case if we do RCU, have a constructor or
2250 * destructor or are poisoning the objects.
2253 size
+= sizeof(void *);
2256 #ifdef CONFIG_SLUB_DEBUG
2257 if (flags
& SLAB_STORE_USER
)
2259 * Need to store information about allocs and frees after
2262 size
+= 2 * sizeof(struct track
);
2264 if (flags
& SLAB_RED_ZONE
)
2266 * Add some empty padding so that we can catch
2267 * overwrites from earlier objects rather than let
2268 * tracking information or the free pointer be
2269 * corrupted if an user writes before the start
2272 size
+= sizeof(void *);
2276 * Determine the alignment based on various parameters that the
2277 * user specified and the dynamic determination of cache line size
2280 align
= calculate_alignment(flags
, align
, s
->objsize
);
2283 * SLUB stores one object immediately after another beginning from
2284 * offset 0. In order to align the objects we have to simply size
2285 * each object to conform to the alignment.
2287 size
= ALIGN(size
, align
);
2289 if (forced_order
>= 0)
2290 order
= forced_order
;
2292 order
= calculate_order(size
);
2299 s
->allocflags
|= __GFP_COMP
;
2301 if (s
->flags
& SLAB_CACHE_DMA
)
2302 s
->allocflags
|= SLUB_DMA
;
2304 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2305 s
->allocflags
|= __GFP_RECLAIMABLE
;
2308 * Determine the number of objects per slab
2310 s
->oo
= oo_make(order
, size
);
2311 s
->min
= oo_make(get_order(size
), size
);
2312 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2315 return !!oo_objects(s
->oo
);
2319 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2320 const char *name
, size_t size
,
2321 size_t align
, unsigned long flags
,
2322 void (*ctor
)(struct kmem_cache
*, void *))
2324 memset(s
, 0, kmem_size
);
2329 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2331 if (!calculate_sizes(s
, -1))
2336 s
->remote_node_defrag_ratio
= 100;
2338 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2341 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2343 free_kmem_cache_nodes(s
);
2345 if (flags
& SLAB_PANIC
)
2346 panic("Cannot create slab %s size=%lu realsize=%u "
2347 "order=%u offset=%u flags=%lx\n",
2348 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2354 * Check if a given pointer is valid
2356 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2360 page
= get_object_page(object
);
2362 if (!page
|| s
!= page
->slab
)
2363 /* No slab or wrong slab */
2366 if (!check_valid_pointer(s
, page
, object
))
2370 * We could also check if the object is on the slabs freelist.
2371 * But this would be too expensive and it seems that the main
2372 * purpose of kmem_ptr_valid() is to check if the object belongs
2373 * to a certain slab.
2377 EXPORT_SYMBOL(kmem_ptr_validate
);
2380 * Determine the size of a slab object
2382 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2386 EXPORT_SYMBOL(kmem_cache_size
);
2388 const char *kmem_cache_name(struct kmem_cache
*s
)
2392 EXPORT_SYMBOL(kmem_cache_name
);
2394 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2397 #ifdef CONFIG_SLUB_DEBUG
2398 void *addr
= page_address(page
);
2400 DECLARE_BITMAP(map
, page
->objects
);
2402 bitmap_zero(map
, page
->objects
);
2403 slab_err(s
, page
, "%s", text
);
2405 for_each_free_object(p
, s
, page
->freelist
)
2406 set_bit(slab_index(p
, s
, addr
), map
);
2408 for_each_object(p
, s
, addr
, page
->objects
) {
2410 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2411 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2413 print_tracking(s
, p
);
2421 * Attempt to free all partial slabs on a node.
2423 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2425 unsigned long flags
;
2426 struct page
*page
, *h
;
2428 spin_lock_irqsave(&n
->list_lock
, flags
);
2429 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2431 list_del(&page
->lru
);
2432 discard_slab(s
, page
);
2435 list_slab_objects(s
, page
,
2436 "Objects remaining on kmem_cache_close()");
2439 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2443 * Release all resources used by a slab cache.
2445 static inline int kmem_cache_close(struct kmem_cache
*s
)
2451 /* Attempt to free all objects */
2452 free_kmem_cache_cpus(s
);
2453 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2454 struct kmem_cache_node
*n
= get_node(s
, node
);
2457 if (n
->nr_partial
|| slabs_node(s
, node
))
2460 free_kmem_cache_nodes(s
);
2465 * Close a cache and release the kmem_cache structure
2466 * (must be used for caches created using kmem_cache_create)
2468 void kmem_cache_destroy(struct kmem_cache
*s
)
2470 down_write(&slub_lock
);
2474 up_write(&slub_lock
);
2475 if (kmem_cache_close(s
)) {
2476 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2477 "still has objects.\n", s
->name
, __func__
);
2480 sysfs_slab_remove(s
);
2482 up_write(&slub_lock
);
2484 EXPORT_SYMBOL(kmem_cache_destroy
);
2486 /********************************************************************
2488 *******************************************************************/
2490 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
+ 1] __cacheline_aligned
;
2491 EXPORT_SYMBOL(kmalloc_caches
);
2493 static int __init
setup_slub_min_order(char *str
)
2495 get_option(&str
, &slub_min_order
);
2500 __setup("slub_min_order=", setup_slub_min_order
);
2502 static int __init
setup_slub_max_order(char *str
)
2504 get_option(&str
, &slub_max_order
);
2509 __setup("slub_max_order=", setup_slub_max_order
);
2511 static int __init
setup_slub_min_objects(char *str
)
2513 get_option(&str
, &slub_min_objects
);
2518 __setup("slub_min_objects=", setup_slub_min_objects
);
2520 static int __init
setup_slub_nomerge(char *str
)
2526 __setup("slub_nomerge", setup_slub_nomerge
);
2528 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2529 const char *name
, int size
, gfp_t gfp_flags
)
2531 unsigned int flags
= 0;
2533 if (gfp_flags
& SLUB_DMA
)
2534 flags
= SLAB_CACHE_DMA
;
2536 down_write(&slub_lock
);
2537 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2541 list_add(&s
->list
, &slab_caches
);
2542 up_write(&slub_lock
);
2543 if (sysfs_slab_add(s
))
2548 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2551 #ifdef CONFIG_ZONE_DMA
2552 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
+ 1];
2554 static void sysfs_add_func(struct work_struct
*w
)
2556 struct kmem_cache
*s
;
2558 down_write(&slub_lock
);
2559 list_for_each_entry(s
, &slab_caches
, list
) {
2560 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2561 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2565 up_write(&slub_lock
);
2568 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2570 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2572 struct kmem_cache
*s
;
2576 s
= kmalloc_caches_dma
[index
];
2580 /* Dynamically create dma cache */
2581 if (flags
& __GFP_WAIT
)
2582 down_write(&slub_lock
);
2584 if (!down_write_trylock(&slub_lock
))
2588 if (kmalloc_caches_dma
[index
])
2591 realsize
= kmalloc_caches
[index
].objsize
;
2592 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2593 (unsigned int)realsize
);
2594 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2596 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2597 realsize
, ARCH_KMALLOC_MINALIGN
,
2598 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2604 list_add(&s
->list
, &slab_caches
);
2605 kmalloc_caches_dma
[index
] = s
;
2607 schedule_work(&sysfs_add_work
);
2610 up_write(&slub_lock
);
2612 return kmalloc_caches_dma
[index
];
2617 * Conversion table for small slabs sizes / 8 to the index in the
2618 * kmalloc array. This is necessary for slabs < 192 since we have non power
2619 * of two cache sizes there. The size of larger slabs can be determined using
2622 static s8 size_index
[24] = {
2649 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2655 return ZERO_SIZE_PTR
;
2657 index
= size_index
[(size
- 1) / 8];
2659 index
= fls(size
- 1);
2661 #ifdef CONFIG_ZONE_DMA
2662 if (unlikely((flags
& SLUB_DMA
)))
2663 return dma_kmalloc_cache(index
, flags
);
2666 return &kmalloc_caches
[index
];
2669 void *__kmalloc(size_t size
, gfp_t flags
)
2671 struct kmem_cache
*s
;
2673 if (unlikely(size
> PAGE_SIZE
))
2674 return kmalloc_large(size
, flags
);
2676 s
= get_slab(size
, flags
);
2678 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2681 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2683 EXPORT_SYMBOL(__kmalloc
);
2685 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2687 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2691 return page_address(page
);
2697 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2699 struct kmem_cache
*s
;
2701 if (unlikely(size
> PAGE_SIZE
))
2702 return kmalloc_large_node(size
, flags
, node
);
2704 s
= get_slab(size
, flags
);
2706 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2709 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2711 EXPORT_SYMBOL(__kmalloc_node
);
2714 size_t ksize(const void *object
)
2717 struct kmem_cache
*s
;
2719 if (unlikely(object
== ZERO_SIZE_PTR
))
2722 page
= virt_to_head_page(object
);
2724 if (unlikely(!PageSlab(page
)))
2725 return PAGE_SIZE
<< compound_order(page
);
2729 #ifdef CONFIG_SLUB_DEBUG
2731 * Debugging requires use of the padding between object
2732 * and whatever may come after it.
2734 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2739 * If we have the need to store the freelist pointer
2740 * back there or track user information then we can
2741 * only use the space before that information.
2743 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2746 * Else we can use all the padding etc for the allocation
2750 EXPORT_SYMBOL(ksize
);
2752 void kfree(const void *x
)
2755 void *object
= (void *)x
;
2757 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2760 page
= virt_to_head_page(x
);
2761 if (unlikely(!PageSlab(page
))) {
2765 slab_free(page
->slab
, page
, object
, __builtin_return_address(0));
2767 EXPORT_SYMBOL(kfree
);
2770 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2771 * the remaining slabs by the number of items in use. The slabs with the
2772 * most items in use come first. New allocations will then fill those up
2773 * and thus they can be removed from the partial lists.
2775 * The slabs with the least items are placed last. This results in them
2776 * being allocated from last increasing the chance that the last objects
2777 * are freed in them.
2779 int kmem_cache_shrink(struct kmem_cache
*s
)
2783 struct kmem_cache_node
*n
;
2786 int objects
= oo_objects(s
->max
);
2787 struct list_head
*slabs_by_inuse
=
2788 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2789 unsigned long flags
;
2791 if (!slabs_by_inuse
)
2795 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2796 n
= get_node(s
, node
);
2801 for (i
= 0; i
< objects
; i
++)
2802 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2804 spin_lock_irqsave(&n
->list_lock
, flags
);
2807 * Build lists indexed by the items in use in each slab.
2809 * Note that concurrent frees may occur while we hold the
2810 * list_lock. page->inuse here is the upper limit.
2812 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2813 if (!page
->inuse
&& slab_trylock(page
)) {
2815 * Must hold slab lock here because slab_free
2816 * may have freed the last object and be
2817 * waiting to release the slab.
2819 list_del(&page
->lru
);
2822 discard_slab(s
, page
);
2824 list_move(&page
->lru
,
2825 slabs_by_inuse
+ page
->inuse
);
2830 * Rebuild the partial list with the slabs filled up most
2831 * first and the least used slabs at the end.
2833 for (i
= objects
- 1; i
>= 0; i
--)
2834 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2836 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2839 kfree(slabs_by_inuse
);
2842 EXPORT_SYMBOL(kmem_cache_shrink
);
2844 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2845 static int slab_mem_going_offline_callback(void *arg
)
2847 struct kmem_cache
*s
;
2849 down_read(&slub_lock
);
2850 list_for_each_entry(s
, &slab_caches
, list
)
2851 kmem_cache_shrink(s
);
2852 up_read(&slub_lock
);
2857 static void slab_mem_offline_callback(void *arg
)
2859 struct kmem_cache_node
*n
;
2860 struct kmem_cache
*s
;
2861 struct memory_notify
*marg
= arg
;
2864 offline_node
= marg
->status_change_nid
;
2867 * If the node still has available memory. we need kmem_cache_node
2870 if (offline_node
< 0)
2873 down_read(&slub_lock
);
2874 list_for_each_entry(s
, &slab_caches
, list
) {
2875 n
= get_node(s
, offline_node
);
2878 * if n->nr_slabs > 0, slabs still exist on the node
2879 * that is going down. We were unable to free them,
2880 * and offline_pages() function shoudn't call this
2881 * callback. So, we must fail.
2883 BUG_ON(slabs_node(s
, offline_node
));
2885 s
->node
[offline_node
] = NULL
;
2886 kmem_cache_free(kmalloc_caches
, n
);
2889 up_read(&slub_lock
);
2892 static int slab_mem_going_online_callback(void *arg
)
2894 struct kmem_cache_node
*n
;
2895 struct kmem_cache
*s
;
2896 struct memory_notify
*marg
= arg
;
2897 int nid
= marg
->status_change_nid
;
2901 * If the node's memory is already available, then kmem_cache_node is
2902 * already created. Nothing to do.
2908 * We are bringing a node online. No memory is availabe yet. We must
2909 * allocate a kmem_cache_node structure in order to bring the node
2912 down_read(&slub_lock
);
2913 list_for_each_entry(s
, &slab_caches
, list
) {
2915 * XXX: kmem_cache_alloc_node will fallback to other nodes
2916 * since memory is not yet available from the node that
2919 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2924 init_kmem_cache_node(n
);
2928 up_read(&slub_lock
);
2932 static int slab_memory_callback(struct notifier_block
*self
,
2933 unsigned long action
, void *arg
)
2938 case MEM_GOING_ONLINE
:
2939 ret
= slab_mem_going_online_callback(arg
);
2941 case MEM_GOING_OFFLINE
:
2942 ret
= slab_mem_going_offline_callback(arg
);
2945 case MEM_CANCEL_ONLINE
:
2946 slab_mem_offline_callback(arg
);
2949 case MEM_CANCEL_OFFLINE
:
2953 ret
= notifier_from_errno(ret
);
2957 #endif /* CONFIG_MEMORY_HOTPLUG */
2959 /********************************************************************
2960 * Basic setup of slabs
2961 *******************************************************************/
2963 void __init
kmem_cache_init(void)
2972 * Must first have the slab cache available for the allocations of the
2973 * struct kmem_cache_node's. There is special bootstrap code in
2974 * kmem_cache_open for slab_state == DOWN.
2976 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2977 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2978 kmalloc_caches
[0].refcount
= -1;
2981 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
2984 /* Able to allocate the per node structures */
2985 slab_state
= PARTIAL
;
2987 /* Caches that are not of the two-to-the-power-of size */
2988 if (KMALLOC_MIN_SIZE
<= 64) {
2989 create_kmalloc_cache(&kmalloc_caches
[1],
2990 "kmalloc-96", 96, GFP_KERNEL
);
2993 if (KMALLOC_MIN_SIZE
<= 128) {
2994 create_kmalloc_cache(&kmalloc_caches
[2],
2995 "kmalloc-192", 192, GFP_KERNEL
);
2999 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++) {
3000 create_kmalloc_cache(&kmalloc_caches
[i
],
3001 "kmalloc", 1 << i
, GFP_KERNEL
);
3007 * Patch up the size_index table if we have strange large alignment
3008 * requirements for the kmalloc array. This is only the case for
3009 * MIPS it seems. The standard arches will not generate any code here.
3011 * Largest permitted alignment is 256 bytes due to the way we
3012 * handle the index determination for the smaller caches.
3014 * Make sure that nothing crazy happens if someone starts tinkering
3015 * around with ARCH_KMALLOC_MINALIGN
3017 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3018 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3020 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3021 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3025 /* Provide the correct kmalloc names now that the caches are up */
3026 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++)
3027 kmalloc_caches
[i
]. name
=
3028 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3031 register_cpu_notifier(&slab_notifier
);
3032 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3033 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3035 kmem_size
= sizeof(struct kmem_cache
);
3039 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3040 " CPUs=%d, Nodes=%d\n",
3041 caches
, cache_line_size(),
3042 slub_min_order
, slub_max_order
, slub_min_objects
,
3043 nr_cpu_ids
, nr_node_ids
);
3047 * Find a mergeable slab cache
3049 static int slab_unmergeable(struct kmem_cache
*s
)
3051 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3058 * We may have set a slab to be unmergeable during bootstrap.
3060 if (s
->refcount
< 0)
3066 static struct kmem_cache
*find_mergeable(size_t size
,
3067 size_t align
, unsigned long flags
, const char *name
,
3068 void (*ctor
)(struct kmem_cache
*, void *))
3070 struct kmem_cache
*s
;
3072 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3078 size
= ALIGN(size
, sizeof(void *));
3079 align
= calculate_alignment(flags
, align
, size
);
3080 size
= ALIGN(size
, align
);
3081 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3083 list_for_each_entry(s
, &slab_caches
, list
) {
3084 if (slab_unmergeable(s
))
3090 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3093 * Check if alignment is compatible.
3094 * Courtesy of Adrian Drzewiecki
3096 if ((s
->size
& ~(align
- 1)) != s
->size
)
3099 if (s
->size
- size
>= sizeof(void *))
3107 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3108 size_t align
, unsigned long flags
,
3109 void (*ctor
)(struct kmem_cache
*, void *))
3111 struct kmem_cache
*s
;
3113 down_write(&slub_lock
);
3114 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3120 * Adjust the object sizes so that we clear
3121 * the complete object on kzalloc.
3123 s
->objsize
= max(s
->objsize
, (int)size
);
3126 * And then we need to update the object size in the
3127 * per cpu structures
3129 for_each_online_cpu(cpu
)
3130 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3132 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3133 up_write(&slub_lock
);
3135 if (sysfs_slab_alias(s
, name
))
3140 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3142 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3143 size
, align
, flags
, ctor
)) {
3144 list_add(&s
->list
, &slab_caches
);
3145 up_write(&slub_lock
);
3146 if (sysfs_slab_add(s
))
3152 up_write(&slub_lock
);
3155 if (flags
& SLAB_PANIC
)
3156 panic("Cannot create slabcache %s\n", name
);
3161 EXPORT_SYMBOL(kmem_cache_create
);
3165 * Use the cpu notifier to insure that the cpu slabs are flushed when
3168 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3169 unsigned long action
, void *hcpu
)
3171 long cpu
= (long)hcpu
;
3172 struct kmem_cache
*s
;
3173 unsigned long flags
;
3176 case CPU_UP_PREPARE
:
3177 case CPU_UP_PREPARE_FROZEN
:
3178 init_alloc_cpu_cpu(cpu
);
3179 down_read(&slub_lock
);
3180 list_for_each_entry(s
, &slab_caches
, list
)
3181 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3183 up_read(&slub_lock
);
3186 case CPU_UP_CANCELED
:
3187 case CPU_UP_CANCELED_FROZEN
:
3189 case CPU_DEAD_FROZEN
:
3190 down_read(&slub_lock
);
3191 list_for_each_entry(s
, &slab_caches
, list
) {
3192 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3194 local_irq_save(flags
);
3195 __flush_cpu_slab(s
, cpu
);
3196 local_irq_restore(flags
);
3197 free_kmem_cache_cpu(c
, cpu
);
3198 s
->cpu_slab
[cpu
] = NULL
;
3200 up_read(&slub_lock
);
3208 static struct notifier_block __cpuinitdata slab_notifier
= {
3209 .notifier_call
= slab_cpuup_callback
3214 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3216 struct kmem_cache
*s
;
3218 if (unlikely(size
> PAGE_SIZE
))
3219 return kmalloc_large(size
, gfpflags
);
3221 s
= get_slab(size
, gfpflags
);
3223 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3226 return slab_alloc(s
, gfpflags
, -1, caller
);
3229 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3230 int node
, void *caller
)
3232 struct kmem_cache
*s
;
3234 if (unlikely(size
> PAGE_SIZE
))
3235 return kmalloc_large_node(size
, gfpflags
, node
);
3237 s
= get_slab(size
, gfpflags
);
3239 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3242 return slab_alloc(s
, gfpflags
, node
, caller
);
3245 #if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3246 static unsigned long count_partial(struct kmem_cache_node
*n
,
3247 int (*get_count
)(struct page
*))
3249 unsigned long flags
;
3250 unsigned long x
= 0;
3253 spin_lock_irqsave(&n
->list_lock
, flags
);
3254 list_for_each_entry(page
, &n
->partial
, lru
)
3255 x
+= get_count(page
);
3256 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3260 static int count_inuse(struct page
*page
)
3265 static int count_total(struct page
*page
)
3267 return page
->objects
;
3270 static int count_free(struct page
*page
)
3272 return page
->objects
- page
->inuse
;
3276 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3277 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3281 void *addr
= page_address(page
);
3283 if (!check_slab(s
, page
) ||
3284 !on_freelist(s
, page
, NULL
))
3287 /* Now we know that a valid freelist exists */
3288 bitmap_zero(map
, page
->objects
);
3290 for_each_free_object(p
, s
, page
->freelist
) {
3291 set_bit(slab_index(p
, s
, addr
), map
);
3292 if (!check_object(s
, page
, p
, 0))
3296 for_each_object(p
, s
, addr
, page
->objects
)
3297 if (!test_bit(slab_index(p
, s
, addr
), map
))
3298 if (!check_object(s
, page
, p
, 1))
3303 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3306 if (slab_trylock(page
)) {
3307 validate_slab(s
, page
, map
);
3310 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3313 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3314 if (!SlabDebug(page
))
3315 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3316 "on slab 0x%p\n", s
->name
, page
);
3318 if (SlabDebug(page
))
3319 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3320 "slab 0x%p\n", s
->name
, page
);
3324 static int validate_slab_node(struct kmem_cache
*s
,
3325 struct kmem_cache_node
*n
, unsigned long *map
)
3327 unsigned long count
= 0;
3329 unsigned long flags
;
3331 spin_lock_irqsave(&n
->list_lock
, flags
);
3333 list_for_each_entry(page
, &n
->partial
, lru
) {
3334 validate_slab_slab(s
, page
, map
);
3337 if (count
!= n
->nr_partial
)
3338 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3339 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3341 if (!(s
->flags
& SLAB_STORE_USER
))
3344 list_for_each_entry(page
, &n
->full
, lru
) {
3345 validate_slab_slab(s
, page
, map
);
3348 if (count
!= atomic_long_read(&n
->nr_slabs
))
3349 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3350 "counter=%ld\n", s
->name
, count
,
3351 atomic_long_read(&n
->nr_slabs
));
3354 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3358 static long validate_slab_cache(struct kmem_cache
*s
)
3361 unsigned long count
= 0;
3362 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3363 sizeof(unsigned long), GFP_KERNEL
);
3369 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3370 struct kmem_cache_node
*n
= get_node(s
, node
);
3372 count
+= validate_slab_node(s
, n
, map
);
3378 #ifdef SLUB_RESILIENCY_TEST
3379 static void resiliency_test(void)
3383 printk(KERN_ERR
"SLUB resiliency testing\n");
3384 printk(KERN_ERR
"-----------------------\n");
3385 printk(KERN_ERR
"A. Corruption after allocation\n");
3387 p
= kzalloc(16, GFP_KERNEL
);
3389 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3390 " 0x12->0x%p\n\n", p
+ 16);
3392 validate_slab_cache(kmalloc_caches
+ 4);
3394 /* Hmmm... The next two are dangerous */
3395 p
= kzalloc(32, GFP_KERNEL
);
3396 p
[32 + sizeof(void *)] = 0x34;
3397 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3398 " 0x34 -> -0x%p\n", p
);
3400 "If allocated object is overwritten then not detectable\n\n");
3402 validate_slab_cache(kmalloc_caches
+ 5);
3403 p
= kzalloc(64, GFP_KERNEL
);
3404 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3406 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3409 "If allocated object is overwritten then not detectable\n\n");
3410 validate_slab_cache(kmalloc_caches
+ 6);
3412 printk(KERN_ERR
"\nB. Corruption after free\n");
3413 p
= kzalloc(128, GFP_KERNEL
);
3416 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3417 validate_slab_cache(kmalloc_caches
+ 7);
3419 p
= kzalloc(256, GFP_KERNEL
);
3422 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3424 validate_slab_cache(kmalloc_caches
+ 8);
3426 p
= kzalloc(512, GFP_KERNEL
);
3429 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3430 validate_slab_cache(kmalloc_caches
+ 9);
3433 static void resiliency_test(void) {};
3437 * Generate lists of code addresses where slabcache objects are allocated
3442 unsigned long count
;
3455 unsigned long count
;
3456 struct location
*loc
;
3459 static void free_loc_track(struct loc_track
*t
)
3462 free_pages((unsigned long)t
->loc
,
3463 get_order(sizeof(struct location
) * t
->max
));
3466 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3471 order
= get_order(sizeof(struct location
) * max
);
3473 l
= (void *)__get_free_pages(flags
, order
);
3478 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3486 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3487 const struct track
*track
)
3489 long start
, end
, pos
;
3492 unsigned long age
= jiffies
- track
->when
;
3498 pos
= start
+ (end
- start
+ 1) / 2;
3501 * There is nothing at "end". If we end up there
3502 * we need to add something to before end.
3507 caddr
= t
->loc
[pos
].addr
;
3508 if (track
->addr
== caddr
) {
3514 if (age
< l
->min_time
)
3516 if (age
> l
->max_time
)
3519 if (track
->pid
< l
->min_pid
)
3520 l
->min_pid
= track
->pid
;
3521 if (track
->pid
> l
->max_pid
)
3522 l
->max_pid
= track
->pid
;
3524 cpu_set(track
->cpu
, l
->cpus
);
3526 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3530 if (track
->addr
< caddr
)
3537 * Not found. Insert new tracking element.
3539 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3545 (t
->count
- pos
) * sizeof(struct location
));
3548 l
->addr
= track
->addr
;
3552 l
->min_pid
= track
->pid
;
3553 l
->max_pid
= track
->pid
;
3554 cpus_clear(l
->cpus
);
3555 cpu_set(track
->cpu
, l
->cpus
);
3556 nodes_clear(l
->nodes
);
3557 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3561 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3562 struct page
*page
, enum track_item alloc
)
3564 void *addr
= page_address(page
);
3565 DECLARE_BITMAP(map
, page
->objects
);
3568 bitmap_zero(map
, page
->objects
);
3569 for_each_free_object(p
, s
, page
->freelist
)
3570 set_bit(slab_index(p
, s
, addr
), map
);
3572 for_each_object(p
, s
, addr
, page
->objects
)
3573 if (!test_bit(slab_index(p
, s
, addr
), map
))
3574 add_location(t
, s
, get_track(s
, p
, alloc
));
3577 static int list_locations(struct kmem_cache
*s
, char *buf
,
3578 enum track_item alloc
)
3582 struct loc_track t
= { 0, 0, NULL
};
3585 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3587 return sprintf(buf
, "Out of memory\n");
3589 /* Push back cpu slabs */
3592 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3593 struct kmem_cache_node
*n
= get_node(s
, node
);
3594 unsigned long flags
;
3597 if (!atomic_long_read(&n
->nr_slabs
))
3600 spin_lock_irqsave(&n
->list_lock
, flags
);
3601 list_for_each_entry(page
, &n
->partial
, lru
)
3602 process_slab(&t
, s
, page
, alloc
);
3603 list_for_each_entry(page
, &n
->full
, lru
)
3604 process_slab(&t
, s
, page
, alloc
);
3605 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3608 for (i
= 0; i
< t
.count
; i
++) {
3609 struct location
*l
= &t
.loc
[i
];
3611 if (len
> PAGE_SIZE
- 100)
3613 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3616 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3618 len
+= sprintf(buf
+ len
, "<not-available>");
3620 if (l
->sum_time
!= l
->min_time
) {
3621 unsigned long remainder
;
3623 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3625 div_long_long_rem(l
->sum_time
, l
->count
, &remainder
),
3628 len
+= sprintf(buf
+ len
, " age=%ld",
3631 if (l
->min_pid
!= l
->max_pid
)
3632 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3633 l
->min_pid
, l
->max_pid
);
3635 len
+= sprintf(buf
+ len
, " pid=%ld",
3638 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3639 len
< PAGE_SIZE
- 60) {
3640 len
+= sprintf(buf
+ len
, " cpus=");
3641 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3645 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3646 len
< PAGE_SIZE
- 60) {
3647 len
+= sprintf(buf
+ len
, " nodes=");
3648 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3652 len
+= sprintf(buf
+ len
, "\n");
3657 len
+= sprintf(buf
, "No data\n");
3661 enum slab_stat_type
{
3662 SL_ALL
, /* All slabs */
3663 SL_PARTIAL
, /* Only partially allocated slabs */
3664 SL_CPU
, /* Only slabs used for cpu caches */
3665 SL_OBJECTS
, /* Determine allocated objects not slabs */
3666 SL_TOTAL
/* Determine object capacity not slabs */
3669 #define SO_ALL (1 << SL_ALL)
3670 #define SO_PARTIAL (1 << SL_PARTIAL)
3671 #define SO_CPU (1 << SL_CPU)
3672 #define SO_OBJECTS (1 << SL_OBJECTS)
3673 #define SO_TOTAL (1 << SL_TOTAL)
3675 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3676 char *buf
, unsigned long flags
)
3678 unsigned long total
= 0;
3681 unsigned long *nodes
;
3682 unsigned long *per_cpu
;
3684 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3687 per_cpu
= nodes
+ nr_node_ids
;
3689 if (flags
& SO_CPU
) {
3692 for_each_possible_cpu(cpu
) {
3693 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3695 if (!c
|| c
->node
< 0)
3699 if (flags
& SO_TOTAL
)
3700 x
= c
->page
->objects
;
3701 else if (flags
& SO_OBJECTS
)
3707 nodes
[c
->node
] += x
;
3713 if (flags
& SO_ALL
) {
3714 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3715 struct kmem_cache_node
*n
= get_node(s
, node
);
3717 if (flags
& SO_TOTAL
)
3718 x
= atomic_long_read(&n
->total_objects
);
3719 else if (flags
& SO_OBJECTS
)
3720 x
= atomic_long_read(&n
->total_objects
) -
3721 count_partial(n
, count_free
);
3724 x
= atomic_long_read(&n
->nr_slabs
);
3729 } else if (flags
& SO_PARTIAL
) {
3730 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3731 struct kmem_cache_node
*n
= get_node(s
, node
);
3733 if (flags
& SO_TOTAL
)
3734 x
= count_partial(n
, count_total
);
3735 else if (flags
& SO_OBJECTS
)
3736 x
= count_partial(n
, count_inuse
);
3743 x
= sprintf(buf
, "%lu", total
);
3745 for_each_node_state(node
, N_NORMAL_MEMORY
)
3747 x
+= sprintf(buf
+ x
, " N%d=%lu",
3751 return x
+ sprintf(buf
+ x
, "\n");
3754 static int any_slab_objects(struct kmem_cache
*s
)
3758 for_each_online_node(node
) {
3759 struct kmem_cache_node
*n
= get_node(s
, node
);
3764 if (atomic_read(&n
->total_objects
))
3770 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3771 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3773 struct slab_attribute
{
3774 struct attribute attr
;
3775 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3776 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3779 #define SLAB_ATTR_RO(_name) \
3780 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3782 #define SLAB_ATTR(_name) \
3783 static struct slab_attribute _name##_attr = \
3784 __ATTR(_name, 0644, _name##_show, _name##_store)
3786 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3788 return sprintf(buf
, "%d\n", s
->size
);
3790 SLAB_ATTR_RO(slab_size
);
3792 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3794 return sprintf(buf
, "%d\n", s
->align
);
3796 SLAB_ATTR_RO(align
);
3798 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3800 return sprintf(buf
, "%d\n", s
->objsize
);
3802 SLAB_ATTR_RO(object_size
);
3804 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3806 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3808 SLAB_ATTR_RO(objs_per_slab
);
3810 static ssize_t
order_store(struct kmem_cache
*s
,
3811 const char *buf
, size_t length
)
3813 int order
= simple_strtoul(buf
, NULL
, 10);
3815 if (order
> slub_max_order
|| order
< slub_min_order
)
3818 calculate_sizes(s
, order
);
3822 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3824 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3828 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3831 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3833 return n
+ sprintf(buf
+ n
, "\n");
3839 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3841 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3843 SLAB_ATTR_RO(aliases
);
3845 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3847 return show_slab_objects(s
, buf
, SO_ALL
);
3849 SLAB_ATTR_RO(slabs
);
3851 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3853 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3855 SLAB_ATTR_RO(partial
);
3857 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3859 return show_slab_objects(s
, buf
, SO_CPU
);
3861 SLAB_ATTR_RO(cpu_slabs
);
3863 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3865 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3867 SLAB_ATTR_RO(objects
);
3869 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3871 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3873 SLAB_ATTR_RO(objects_partial
);
3875 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3877 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3879 SLAB_ATTR_RO(total_objects
);
3881 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3883 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3886 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3887 const char *buf
, size_t length
)
3889 s
->flags
&= ~SLAB_DEBUG_FREE
;
3891 s
->flags
|= SLAB_DEBUG_FREE
;
3894 SLAB_ATTR(sanity_checks
);
3896 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3898 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3901 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3904 s
->flags
&= ~SLAB_TRACE
;
3906 s
->flags
|= SLAB_TRACE
;
3911 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3913 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3916 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3917 const char *buf
, size_t length
)
3919 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3921 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3924 SLAB_ATTR(reclaim_account
);
3926 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3928 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3930 SLAB_ATTR_RO(hwcache_align
);
3932 #ifdef CONFIG_ZONE_DMA
3933 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3935 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3937 SLAB_ATTR_RO(cache_dma
);
3940 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3942 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3944 SLAB_ATTR_RO(destroy_by_rcu
);
3946 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3948 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3951 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3952 const char *buf
, size_t length
)
3954 if (any_slab_objects(s
))
3957 s
->flags
&= ~SLAB_RED_ZONE
;
3959 s
->flags
|= SLAB_RED_ZONE
;
3960 calculate_sizes(s
, -1);
3963 SLAB_ATTR(red_zone
);
3965 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3967 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3970 static ssize_t
poison_store(struct kmem_cache
*s
,
3971 const char *buf
, size_t length
)
3973 if (any_slab_objects(s
))
3976 s
->flags
&= ~SLAB_POISON
;
3978 s
->flags
|= SLAB_POISON
;
3979 calculate_sizes(s
, -1);
3984 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3986 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3989 static ssize_t
store_user_store(struct kmem_cache
*s
,
3990 const char *buf
, size_t length
)
3992 if (any_slab_objects(s
))
3995 s
->flags
&= ~SLAB_STORE_USER
;
3997 s
->flags
|= SLAB_STORE_USER
;
3998 calculate_sizes(s
, -1);
4001 SLAB_ATTR(store_user
);
4003 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4008 static ssize_t
validate_store(struct kmem_cache
*s
,
4009 const char *buf
, size_t length
)
4013 if (buf
[0] == '1') {
4014 ret
= validate_slab_cache(s
);
4020 SLAB_ATTR(validate
);
4022 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4027 static ssize_t
shrink_store(struct kmem_cache
*s
,
4028 const char *buf
, size_t length
)
4030 if (buf
[0] == '1') {
4031 int rc
= kmem_cache_shrink(s
);
4041 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4043 if (!(s
->flags
& SLAB_STORE_USER
))
4045 return list_locations(s
, buf
, TRACK_ALLOC
);
4047 SLAB_ATTR_RO(alloc_calls
);
4049 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4051 if (!(s
->flags
& SLAB_STORE_USER
))
4053 return list_locations(s
, buf
, TRACK_FREE
);
4055 SLAB_ATTR_RO(free_calls
);
4058 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4060 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4063 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4064 const char *buf
, size_t length
)
4066 int n
= simple_strtoul(buf
, NULL
, 10);
4069 s
->remote_node_defrag_ratio
= n
* 10;
4072 SLAB_ATTR(remote_node_defrag_ratio
);
4075 #ifdef CONFIG_SLUB_STATS
4076 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4078 unsigned long sum
= 0;
4081 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4086 for_each_online_cpu(cpu
) {
4087 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4093 len
= sprintf(buf
, "%lu", sum
);
4096 for_each_online_cpu(cpu
) {
4097 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4098 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4102 return len
+ sprintf(buf
+ len
, "\n");
4105 #define STAT_ATTR(si, text) \
4106 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4108 return show_stat(s, buf, si); \
4110 SLAB_ATTR_RO(text); \
4112 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4113 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4114 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4115 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4116 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4117 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4118 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4119 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4120 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4121 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4122 STAT_ATTR(FREE_SLAB
, free_slab
);
4123 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4124 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4125 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4126 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4127 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4128 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4129 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4132 static struct attribute
*slab_attrs
[] = {
4133 &slab_size_attr
.attr
,
4134 &object_size_attr
.attr
,
4135 &objs_per_slab_attr
.attr
,
4138 &objects_partial_attr
.attr
,
4139 &total_objects_attr
.attr
,
4142 &cpu_slabs_attr
.attr
,
4146 &sanity_checks_attr
.attr
,
4148 &hwcache_align_attr
.attr
,
4149 &reclaim_account_attr
.attr
,
4150 &destroy_by_rcu_attr
.attr
,
4151 &red_zone_attr
.attr
,
4153 &store_user_attr
.attr
,
4154 &validate_attr
.attr
,
4156 &alloc_calls_attr
.attr
,
4157 &free_calls_attr
.attr
,
4158 #ifdef CONFIG_ZONE_DMA
4159 &cache_dma_attr
.attr
,
4162 &remote_node_defrag_ratio_attr
.attr
,
4164 #ifdef CONFIG_SLUB_STATS
4165 &alloc_fastpath_attr
.attr
,
4166 &alloc_slowpath_attr
.attr
,
4167 &free_fastpath_attr
.attr
,
4168 &free_slowpath_attr
.attr
,
4169 &free_frozen_attr
.attr
,
4170 &free_add_partial_attr
.attr
,
4171 &free_remove_partial_attr
.attr
,
4172 &alloc_from_partial_attr
.attr
,
4173 &alloc_slab_attr
.attr
,
4174 &alloc_refill_attr
.attr
,
4175 &free_slab_attr
.attr
,
4176 &cpuslab_flush_attr
.attr
,
4177 &deactivate_full_attr
.attr
,
4178 &deactivate_empty_attr
.attr
,
4179 &deactivate_to_head_attr
.attr
,
4180 &deactivate_to_tail_attr
.attr
,
4181 &deactivate_remote_frees_attr
.attr
,
4182 &order_fallback_attr
.attr
,
4187 static struct attribute_group slab_attr_group
= {
4188 .attrs
= slab_attrs
,
4191 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4192 struct attribute
*attr
,
4195 struct slab_attribute
*attribute
;
4196 struct kmem_cache
*s
;
4199 attribute
= to_slab_attr(attr
);
4202 if (!attribute
->show
)
4205 err
= attribute
->show(s
, buf
);
4210 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4211 struct attribute
*attr
,
4212 const char *buf
, size_t len
)
4214 struct slab_attribute
*attribute
;
4215 struct kmem_cache
*s
;
4218 attribute
= to_slab_attr(attr
);
4221 if (!attribute
->store
)
4224 err
= attribute
->store(s
, buf
, len
);
4229 static void kmem_cache_release(struct kobject
*kobj
)
4231 struct kmem_cache
*s
= to_slab(kobj
);
4236 static struct sysfs_ops slab_sysfs_ops
= {
4237 .show
= slab_attr_show
,
4238 .store
= slab_attr_store
,
4241 static struct kobj_type slab_ktype
= {
4242 .sysfs_ops
= &slab_sysfs_ops
,
4243 .release
= kmem_cache_release
4246 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4248 struct kobj_type
*ktype
= get_ktype(kobj
);
4250 if (ktype
== &slab_ktype
)
4255 static struct kset_uevent_ops slab_uevent_ops
= {
4256 .filter
= uevent_filter
,
4259 static struct kset
*slab_kset
;
4261 #define ID_STR_LENGTH 64
4263 /* Create a unique string id for a slab cache:
4265 * Format :[flags-]size
4267 static char *create_unique_id(struct kmem_cache
*s
)
4269 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4276 * First flags affecting slabcache operations. We will only
4277 * get here for aliasable slabs so we do not need to support
4278 * too many flags. The flags here must cover all flags that
4279 * are matched during merging to guarantee that the id is
4282 if (s
->flags
& SLAB_CACHE_DMA
)
4284 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4286 if (s
->flags
& SLAB_DEBUG_FREE
)
4290 p
+= sprintf(p
, "%07d", s
->size
);
4291 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4295 static int sysfs_slab_add(struct kmem_cache
*s
)
4301 if (slab_state
< SYSFS
)
4302 /* Defer until later */
4305 unmergeable
= slab_unmergeable(s
);
4308 * Slabcache can never be merged so we can use the name proper.
4309 * This is typically the case for debug situations. In that
4310 * case we can catch duplicate names easily.
4312 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4316 * Create a unique name for the slab as a target
4319 name
= create_unique_id(s
);
4322 s
->kobj
.kset
= slab_kset
;
4323 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4325 kobject_put(&s
->kobj
);
4329 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4332 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4334 /* Setup first alias */
4335 sysfs_slab_alias(s
, s
->name
);
4341 static void sysfs_slab_remove(struct kmem_cache
*s
)
4343 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4344 kobject_del(&s
->kobj
);
4345 kobject_put(&s
->kobj
);
4349 * Need to buffer aliases during bootup until sysfs becomes
4350 * available lest we loose that information.
4352 struct saved_alias
{
4353 struct kmem_cache
*s
;
4355 struct saved_alias
*next
;
4358 static struct saved_alias
*alias_list
;
4360 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4362 struct saved_alias
*al
;
4364 if (slab_state
== SYSFS
) {
4366 * If we have a leftover link then remove it.
4368 sysfs_remove_link(&slab_kset
->kobj
, name
);
4369 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4372 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4378 al
->next
= alias_list
;
4383 static int __init
slab_sysfs_init(void)
4385 struct kmem_cache
*s
;
4388 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4390 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4396 list_for_each_entry(s
, &slab_caches
, list
) {
4397 err
= sysfs_slab_add(s
);
4399 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4400 " to sysfs\n", s
->name
);
4403 while (alias_list
) {
4404 struct saved_alias
*al
= alias_list
;
4406 alias_list
= alias_list
->next
;
4407 err
= sysfs_slab_alias(al
->s
, al
->name
);
4409 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4410 " %s to sysfs\n", s
->name
);
4418 __initcall(slab_sysfs_init
);
4422 * The /proc/slabinfo ABI
4424 #ifdef CONFIG_SLABINFO
4426 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4427 size_t count
, loff_t
*ppos
)
4433 static void print_slabinfo_header(struct seq_file
*m
)
4435 seq_puts(m
, "slabinfo - version: 2.1\n");
4436 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4437 "<objperslab> <pagesperslab>");
4438 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4439 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4443 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4447 down_read(&slub_lock
);
4449 print_slabinfo_header(m
);
4451 return seq_list_start(&slab_caches
, *pos
);
4454 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4456 return seq_list_next(p
, &slab_caches
, pos
);
4459 static void s_stop(struct seq_file
*m
, void *p
)
4461 up_read(&slub_lock
);
4464 static int s_show(struct seq_file
*m
, void *p
)
4466 unsigned long nr_partials
= 0;
4467 unsigned long nr_slabs
= 0;
4468 unsigned long nr_inuse
= 0;
4469 unsigned long nr_objs
= 0;
4470 unsigned long nr_free
= 0;
4471 struct kmem_cache
*s
;
4474 s
= list_entry(p
, struct kmem_cache
, list
);
4476 for_each_online_node(node
) {
4477 struct kmem_cache_node
*n
= get_node(s
, node
);
4482 nr_partials
+= n
->nr_partial
;
4483 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4484 nr_objs
+= atomic_long_read(&n
->total_objects
);
4485 nr_free
+= count_partial(n
, count_free
);
4488 nr_inuse
= nr_objs
- nr_free
;
4490 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4491 nr_objs
, s
->size
, oo_objects(s
->oo
),
4492 (1 << oo_order(s
->oo
)));
4493 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4494 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4500 const struct seq_operations slabinfo_op
= {
4507 #endif /* CONFIG_SLABINFO */