Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[linux-2.6/linux-2.6-openrd.git] / kernel / perf_event.c
blob8ab86988bd249e2368068d841520bb0e47f9ca29
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid > -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid > 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid > 1;
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
81 static atomic64_t perf_event_id;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock);
89 * Architecture provided APIs - weak aliases:
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
93 return NULL;
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
107 return 0;
110 void __weak perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count);
124 void perf_disable(void)
126 __perf_disable();
127 hw_perf_disable();
130 void perf_enable(void)
132 if (__perf_enable())
133 hw_perf_enable();
136 static void get_ctx(struct perf_event_context *ctx)
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
141 static void free_ctx(struct rcu_head *head)
143 struct perf_event_context *ctx;
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
149 static void put_ctx(struct perf_event_context *ctx)
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
160 static void unclone_ctx(struct perf_event_context *ctx)
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
169 * If we inherit events we want to return the parent event id
170 * to userspace.
172 static u64 primary_event_id(struct perf_event *event)
174 u64 id = event->id;
176 if (event->parent)
177 id = event->parent->id;
179 return id;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
190 struct perf_event_context *ctx;
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 raw_spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
217 rcu_read_unlock();
218 return ctx;
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
228 struct perf_event_context *ctx;
229 unsigned long flags;
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
236 return ctx;
239 static void perf_unpin_context(struct perf_event_context *ctx)
241 unsigned long flags;
243 raw_spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
249 static inline u64 perf_clock(void)
251 return cpu_clock(smp_processor_id());
255 * Update the record of the current time in a context.
257 static void update_context_time(struct perf_event_context *ctx)
259 u64 now = perf_clock();
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
266 * Update the total_time_enabled and total_time_running fields for a event.
268 static void update_event_times(struct perf_event *event)
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
282 event->total_time_enabled = run_end - event->tstamp_enabled;
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
289 event->total_time_running = run_end - event->tstamp_running;
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
296 static void
297 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
299 struct perf_event *group_leader = event->group_leader;
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
306 if (group_leader == event)
307 list_add_tail(&event->group_entry, &ctx->group_list);
308 else {
309 list_add_tail(&event->group_entry, &group_leader->sibling_list);
310 group_leader->nr_siblings++;
313 list_add_rcu(&event->event_entry, &ctx->event_list);
314 ctx->nr_events++;
315 if (event->attr.inherit_stat)
316 ctx->nr_stat++;
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
323 static void
324 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
326 struct perf_event *sibling, *tmp;
328 if (list_empty(&event->group_entry))
329 return;
330 ctx->nr_events--;
331 if (event->attr.inherit_stat)
332 ctx->nr_stat--;
334 list_del_init(&event->group_entry);
335 list_del_rcu(&event->event_entry);
337 if (event->group_leader != event)
338 event->group_leader->nr_siblings--;
340 update_event_times(event);
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
347 * of the event
349 if (event->state > PERF_EVENT_STATE_OFF)
350 event->state = PERF_EVENT_STATE_OFF;
353 * If this was a group event with sibling events then
354 * upgrade the siblings to singleton events by adding them
355 * to the context list directly:
357 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
359 list_move_tail(&sibling->group_entry, &ctx->group_list);
360 sibling->group_leader = sibling;
364 static void
365 event_sched_out(struct perf_event *event,
366 struct perf_cpu_context *cpuctx,
367 struct perf_event_context *ctx)
369 if (event->state != PERF_EVENT_STATE_ACTIVE)
370 return;
372 event->state = PERF_EVENT_STATE_INACTIVE;
373 if (event->pending_disable) {
374 event->pending_disable = 0;
375 event->state = PERF_EVENT_STATE_OFF;
377 event->tstamp_stopped = ctx->time;
378 event->pmu->disable(event);
379 event->oncpu = -1;
381 if (!is_software_event(event))
382 cpuctx->active_oncpu--;
383 ctx->nr_active--;
384 if (event->attr.exclusive || !cpuctx->active_oncpu)
385 cpuctx->exclusive = 0;
388 static void
389 group_sched_out(struct perf_event *group_event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
393 struct perf_event *event;
395 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 return;
398 event_sched_out(group_event, cpuctx, ctx);
401 * Schedule out siblings (if any):
403 list_for_each_entry(event, &group_event->sibling_list, group_entry)
404 event_sched_out(event, cpuctx, ctx);
406 if (group_event->attr.exclusive)
407 cpuctx->exclusive = 0;
411 * Cross CPU call to remove a performance event
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
416 static void __perf_event_remove_from_context(void *info)
418 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 struct perf_event *event = info;
420 struct perf_event_context *ctx = event->ctx;
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
427 if (ctx->task && cpuctx->task_ctx != ctx)
428 return;
430 raw_spin_lock(&ctx->lock);
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
435 perf_disable();
437 event_sched_out(event, cpuctx, ctx);
439 list_del_event(event, ctx);
441 if (!ctx->task) {
443 * Allow more per task events with respect to the
444 * reservation:
446 cpuctx->max_pertask =
447 min(perf_max_events - ctx->nr_events,
448 perf_max_events - perf_reserved_percpu);
451 perf_enable();
452 raw_spin_unlock(&ctx->lock);
457 * Remove the event from a task's (or a CPU's) list of events.
459 * Must be called with ctx->mutex held.
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
471 static void perf_event_remove_from_context(struct perf_event *event)
473 struct perf_event_context *ctx = event->ctx;
474 struct task_struct *task = ctx->task;
476 if (!task) {
478 * Per cpu events are removed via an smp call and
479 * the removal is always successful.
481 smp_call_function_single(event->cpu,
482 __perf_event_remove_from_context,
483 event, 1);
484 return;
487 retry:
488 task_oncpu_function_call(task, __perf_event_remove_from_context,
489 event);
491 raw_spin_lock_irq(&ctx->lock);
493 * If the context is active we need to retry the smp call.
495 if (ctx->nr_active && !list_empty(&event->group_entry)) {
496 raw_spin_unlock_irq(&ctx->lock);
497 goto retry;
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
503 * succeed.
505 if (!list_empty(&event->group_entry))
506 list_del_event(event, ctx);
507 raw_spin_unlock_irq(&ctx->lock);
511 * Update total_time_enabled and total_time_running for all events in a group.
513 static void update_group_times(struct perf_event *leader)
515 struct perf_event *event;
517 update_event_times(leader);
518 list_for_each_entry(event, &leader->sibling_list, group_entry)
519 update_event_times(event);
523 * Cross CPU call to disable a performance event
525 static void __perf_event_disable(void *info)
527 struct perf_event *event = info;
528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529 struct perf_event_context *ctx = event->ctx;
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
535 if (ctx->task && cpuctx->task_ctx != ctx)
536 return;
538 raw_spin_lock(&ctx->lock);
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
544 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545 update_context_time(ctx);
546 update_group_times(event);
547 if (event == event->group_leader)
548 group_sched_out(event, cpuctx, ctx);
549 else
550 event_sched_out(event, cpuctx, ctx);
551 event->state = PERF_EVENT_STATE_OFF;
554 raw_spin_unlock(&ctx->lock);
558 * Disable a event.
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
570 void perf_event_disable(struct perf_event *event)
572 struct perf_event_context *ctx = event->ctx;
573 struct task_struct *task = ctx->task;
575 if (!task) {
577 * Disable the event on the cpu that it's on
579 smp_call_function_single(event->cpu, __perf_event_disable,
580 event, 1);
581 return;
584 retry:
585 task_oncpu_function_call(task, __perf_event_disable, event);
587 raw_spin_lock_irq(&ctx->lock);
589 * If the event is still active, we need to retry the cross-call.
591 if (event->state == PERF_EVENT_STATE_ACTIVE) {
592 raw_spin_unlock_irq(&ctx->lock);
593 goto retry;
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
600 if (event->state == PERF_EVENT_STATE_INACTIVE) {
601 update_group_times(event);
602 event->state = PERF_EVENT_STATE_OFF;
605 raw_spin_unlock_irq(&ctx->lock);
608 static int
609 event_sched_in(struct perf_event *event,
610 struct perf_cpu_context *cpuctx,
611 struct perf_event_context *ctx,
612 int cpu)
614 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0;
617 event->state = PERF_EVENT_STATE_ACTIVE;
618 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
620 * The new state must be visible before we turn it on in the hardware:
622 smp_wmb();
624 if (event->pmu->enable(event)) {
625 event->state = PERF_EVENT_STATE_INACTIVE;
626 event->oncpu = -1;
627 return -EAGAIN;
630 event->tstamp_running += ctx->time - event->tstamp_stopped;
632 if (!is_software_event(event))
633 cpuctx->active_oncpu++;
634 ctx->nr_active++;
636 if (event->attr.exclusive)
637 cpuctx->exclusive = 1;
639 return 0;
642 static int
643 group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx,
645 struct perf_event_context *ctx,
646 int cpu)
648 struct perf_event *event, *partial_group;
649 int ret;
651 if (group_event->state == PERF_EVENT_STATE_OFF)
652 return 0;
654 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 if (ret)
656 return ret < 0 ? ret : 0;
658 if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 return -EAGAIN;
662 * Schedule in siblings as one group (if any):
664 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
665 if (event_sched_in(event, cpuctx, ctx, cpu)) {
666 partial_group = event;
667 goto group_error;
671 return 0;
673 group_error:
675 * Groups can be scheduled in as one unit only, so undo any
676 * partial group before returning:
678 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
679 if (event == partial_group)
680 break;
681 event_sched_out(event, cpuctx, ctx);
683 event_sched_out(group_event, cpuctx, ctx);
685 return -EAGAIN;
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
692 static int is_software_only_group(struct perf_event *leader)
694 struct perf_event *event;
696 if (!is_software_event(leader))
697 return 0;
699 list_for_each_entry(event, &leader->sibling_list, group_entry)
700 if (!is_software_event(event))
701 return 0;
703 return 1;
707 * Work out whether we can put this event group on the CPU now.
709 static int group_can_go_on(struct perf_event *event,
710 struct perf_cpu_context *cpuctx,
711 int can_add_hw)
714 * Groups consisting entirely of software events can always go on.
716 if (is_software_only_group(event))
717 return 1;
719 * If an exclusive group is already on, no other hardware
720 * events can go on.
722 if (cpuctx->exclusive)
723 return 0;
725 * If this group is exclusive and there are already
726 * events on the CPU, it can't go on.
728 if (event->attr.exclusive && cpuctx->active_oncpu)
729 return 0;
731 * Otherwise, try to add it if all previous groups were able
732 * to go on.
734 return can_add_hw;
737 static void add_event_to_ctx(struct perf_event *event,
738 struct perf_event_context *ctx)
740 list_add_event(event, ctx);
741 event->tstamp_enabled = ctx->time;
742 event->tstamp_running = ctx->time;
743 event->tstamp_stopped = ctx->time;
747 * Cross CPU call to install and enable a performance event
749 * Must be called with ctx->mutex held
751 static void __perf_install_in_context(void *info)
753 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 struct perf_event *event = info;
755 struct perf_event_context *ctx = event->ctx;
756 struct perf_event *leader = event->group_leader;
757 int cpu = smp_processor_id();
758 int err;
761 * If this is a task context, we need to check whether it is
762 * the current task context of this cpu. If not it has been
763 * scheduled out before the smp call arrived.
764 * Or possibly this is the right context but it isn't
765 * on this cpu because it had no events.
767 if (ctx->task && cpuctx->task_ctx != ctx) {
768 if (cpuctx->task_ctx || ctx->task != current)
769 return;
770 cpuctx->task_ctx = ctx;
773 raw_spin_lock(&ctx->lock);
774 ctx->is_active = 1;
775 update_context_time(ctx);
778 * Protect the list operation against NMI by disabling the
779 * events on a global level. NOP for non NMI based events.
781 perf_disable();
783 add_event_to_ctx(event, ctx);
785 if (event->cpu != -1 && event->cpu != smp_processor_id())
786 goto unlock;
789 * Don't put the event on if it is disabled or if
790 * it is in a group and the group isn't on.
792 if (event->state != PERF_EVENT_STATE_INACTIVE ||
793 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
794 goto unlock;
797 * An exclusive event can't go on if there are already active
798 * hardware events, and no hardware event can go on if there
799 * is already an exclusive event on.
801 if (!group_can_go_on(event, cpuctx, 1))
802 err = -EEXIST;
803 else
804 err = event_sched_in(event, cpuctx, ctx, cpu);
806 if (err) {
808 * This event couldn't go on. If it is in a group
809 * then we have to pull the whole group off.
810 * If the event group is pinned then put it in error state.
812 if (leader != event)
813 group_sched_out(leader, cpuctx, ctx);
814 if (leader->attr.pinned) {
815 update_group_times(leader);
816 leader->state = PERF_EVENT_STATE_ERROR;
820 if (!err && !ctx->task && cpuctx->max_pertask)
821 cpuctx->max_pertask--;
823 unlock:
824 perf_enable();
826 raw_spin_unlock(&ctx->lock);
830 * Attach a performance event to a context
832 * First we add the event to the list with the hardware enable bit
833 * in event->hw_config cleared.
835 * If the event is attached to a task which is on a CPU we use a smp
836 * call to enable it in the task context. The task might have been
837 * scheduled away, but we check this in the smp call again.
839 * Must be called with ctx->mutex held.
841 static void
842 perf_install_in_context(struct perf_event_context *ctx,
843 struct perf_event *event,
844 int cpu)
846 struct task_struct *task = ctx->task;
848 if (!task) {
850 * Per cpu events are installed via an smp call and
851 * the install is always successful.
853 smp_call_function_single(cpu, __perf_install_in_context,
854 event, 1);
855 return;
858 retry:
859 task_oncpu_function_call(task, __perf_install_in_context,
860 event);
862 raw_spin_lock_irq(&ctx->lock);
864 * we need to retry the smp call.
866 if (ctx->is_active && list_empty(&event->group_entry)) {
867 raw_spin_unlock_irq(&ctx->lock);
868 goto retry;
872 * The lock prevents that this context is scheduled in so we
873 * can add the event safely, if it the call above did not
874 * succeed.
876 if (list_empty(&event->group_entry))
877 add_event_to_ctx(event, ctx);
878 raw_spin_unlock_irq(&ctx->lock);
882 * Put a event into inactive state and update time fields.
883 * Enabling the leader of a group effectively enables all
884 * the group members that aren't explicitly disabled, so we
885 * have to update their ->tstamp_enabled also.
886 * Note: this works for group members as well as group leaders
887 * since the non-leader members' sibling_lists will be empty.
889 static void __perf_event_mark_enabled(struct perf_event *event,
890 struct perf_event_context *ctx)
892 struct perf_event *sub;
894 event->state = PERF_EVENT_STATE_INACTIVE;
895 event->tstamp_enabled = ctx->time - event->total_time_enabled;
896 list_for_each_entry(sub, &event->sibling_list, group_entry)
897 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
898 sub->tstamp_enabled =
899 ctx->time - sub->total_time_enabled;
903 * Cross CPU call to enable a performance event
905 static void __perf_event_enable(void *info)
907 struct perf_event *event = info;
908 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
909 struct perf_event_context *ctx = event->ctx;
910 struct perf_event *leader = event->group_leader;
911 int err;
914 * If this is a per-task event, need to check whether this
915 * event's task is the current task on this cpu.
917 if (ctx->task && cpuctx->task_ctx != ctx) {
918 if (cpuctx->task_ctx || ctx->task != current)
919 return;
920 cpuctx->task_ctx = ctx;
923 raw_spin_lock(&ctx->lock);
924 ctx->is_active = 1;
925 update_context_time(ctx);
927 if (event->state >= PERF_EVENT_STATE_INACTIVE)
928 goto unlock;
929 __perf_event_mark_enabled(event, ctx);
931 if (event->cpu != -1 && event->cpu != smp_processor_id())
932 goto unlock;
935 * If the event is in a group and isn't the group leader,
936 * then don't put it on unless the group is on.
938 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
939 goto unlock;
941 if (!group_can_go_on(event, cpuctx, 1)) {
942 err = -EEXIST;
943 } else {
944 perf_disable();
945 if (event == leader)
946 err = group_sched_in(event, cpuctx, ctx,
947 smp_processor_id());
948 else
949 err = event_sched_in(event, cpuctx, ctx,
950 smp_processor_id());
951 perf_enable();
954 if (err) {
956 * If this event can't go on and it's part of a
957 * group, then the whole group has to come off.
959 if (leader != event)
960 group_sched_out(leader, cpuctx, ctx);
961 if (leader->attr.pinned) {
962 update_group_times(leader);
963 leader->state = PERF_EVENT_STATE_ERROR;
967 unlock:
968 raw_spin_unlock(&ctx->lock);
972 * Enable a event.
974 * If event->ctx is a cloned context, callers must make sure that
975 * every task struct that event->ctx->task could possibly point to
976 * remains valid. This condition is satisfied when called through
977 * perf_event_for_each_child or perf_event_for_each as described
978 * for perf_event_disable.
980 void perf_event_enable(struct perf_event *event)
982 struct perf_event_context *ctx = event->ctx;
983 struct task_struct *task = ctx->task;
985 if (!task) {
987 * Enable the event on the cpu that it's on
989 smp_call_function_single(event->cpu, __perf_event_enable,
990 event, 1);
991 return;
994 raw_spin_lock_irq(&ctx->lock);
995 if (event->state >= PERF_EVENT_STATE_INACTIVE)
996 goto out;
999 * If the event is in error state, clear that first.
1000 * That way, if we see the event in error state below, we
1001 * know that it has gone back into error state, as distinct
1002 * from the task having been scheduled away before the
1003 * cross-call arrived.
1005 if (event->state == PERF_EVENT_STATE_ERROR)
1006 event->state = PERF_EVENT_STATE_OFF;
1008 retry:
1009 raw_spin_unlock_irq(&ctx->lock);
1010 task_oncpu_function_call(task, __perf_event_enable, event);
1012 raw_spin_lock_irq(&ctx->lock);
1015 * If the context is active and the event is still off,
1016 * we need to retry the cross-call.
1018 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1019 goto retry;
1022 * Since we have the lock this context can't be scheduled
1023 * in, so we can change the state safely.
1025 if (event->state == PERF_EVENT_STATE_OFF)
1026 __perf_event_mark_enabled(event, ctx);
1028 out:
1029 raw_spin_unlock_irq(&ctx->lock);
1032 static int perf_event_refresh(struct perf_event *event, int refresh)
1035 * not supported on inherited events
1037 if (event->attr.inherit)
1038 return -EINVAL;
1040 atomic_add(refresh, &event->event_limit);
1041 perf_event_enable(event);
1043 return 0;
1046 void __perf_event_sched_out(struct perf_event_context *ctx,
1047 struct perf_cpu_context *cpuctx)
1049 struct perf_event *event;
1051 raw_spin_lock(&ctx->lock);
1052 ctx->is_active = 0;
1053 if (likely(!ctx->nr_events))
1054 goto out;
1055 update_context_time(ctx);
1057 perf_disable();
1058 if (ctx->nr_active) {
1059 list_for_each_entry(event, &ctx->group_list, group_entry)
1060 group_sched_out(event, cpuctx, ctx);
1062 perf_enable();
1063 out:
1064 raw_spin_unlock(&ctx->lock);
1068 * Test whether two contexts are equivalent, i.e. whether they
1069 * have both been cloned from the same version of the same context
1070 * and they both have the same number of enabled events.
1071 * If the number of enabled events is the same, then the set
1072 * of enabled events should be the same, because these are both
1073 * inherited contexts, therefore we can't access individual events
1074 * in them directly with an fd; we can only enable/disable all
1075 * events via prctl, or enable/disable all events in a family
1076 * via ioctl, which will have the same effect on both contexts.
1078 static int context_equiv(struct perf_event_context *ctx1,
1079 struct perf_event_context *ctx2)
1081 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1082 && ctx1->parent_gen == ctx2->parent_gen
1083 && !ctx1->pin_count && !ctx2->pin_count;
1086 static void __perf_event_sync_stat(struct perf_event *event,
1087 struct perf_event *next_event)
1089 u64 value;
1091 if (!event->attr.inherit_stat)
1092 return;
1095 * Update the event value, we cannot use perf_event_read()
1096 * because we're in the middle of a context switch and have IRQs
1097 * disabled, which upsets smp_call_function_single(), however
1098 * we know the event must be on the current CPU, therefore we
1099 * don't need to use it.
1101 switch (event->state) {
1102 case PERF_EVENT_STATE_ACTIVE:
1103 event->pmu->read(event);
1104 /* fall-through */
1106 case PERF_EVENT_STATE_INACTIVE:
1107 update_event_times(event);
1108 break;
1110 default:
1111 break;
1115 * In order to keep per-task stats reliable we need to flip the event
1116 * values when we flip the contexts.
1118 value = atomic64_read(&next_event->count);
1119 value = atomic64_xchg(&event->count, value);
1120 atomic64_set(&next_event->count, value);
1122 swap(event->total_time_enabled, next_event->total_time_enabled);
1123 swap(event->total_time_running, next_event->total_time_running);
1126 * Since we swizzled the values, update the user visible data too.
1128 perf_event_update_userpage(event);
1129 perf_event_update_userpage(next_event);
1132 #define list_next_entry(pos, member) \
1133 list_entry(pos->member.next, typeof(*pos), member)
1135 static void perf_event_sync_stat(struct perf_event_context *ctx,
1136 struct perf_event_context *next_ctx)
1138 struct perf_event *event, *next_event;
1140 if (!ctx->nr_stat)
1141 return;
1143 update_context_time(ctx);
1145 event = list_first_entry(&ctx->event_list,
1146 struct perf_event, event_entry);
1148 next_event = list_first_entry(&next_ctx->event_list,
1149 struct perf_event, event_entry);
1151 while (&event->event_entry != &ctx->event_list &&
1152 &next_event->event_entry != &next_ctx->event_list) {
1154 __perf_event_sync_stat(event, next_event);
1156 event = list_next_entry(event, event_entry);
1157 next_event = list_next_entry(next_event, event_entry);
1162 * Called from scheduler to remove the events of the current task,
1163 * with interrupts disabled.
1165 * We stop each event and update the event value in event->count.
1167 * This does not protect us against NMI, but disable()
1168 * sets the disabled bit in the control field of event _before_
1169 * accessing the event control register. If a NMI hits, then it will
1170 * not restart the event.
1172 void perf_event_task_sched_out(struct task_struct *task,
1173 struct task_struct *next, int cpu)
1175 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1176 struct perf_event_context *ctx = task->perf_event_ctxp;
1177 struct perf_event_context *next_ctx;
1178 struct perf_event_context *parent;
1179 struct pt_regs *regs;
1180 int do_switch = 1;
1182 regs = task_pt_regs(task);
1183 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1185 if (likely(!ctx || !cpuctx->task_ctx))
1186 return;
1188 rcu_read_lock();
1189 parent = rcu_dereference(ctx->parent_ctx);
1190 next_ctx = next->perf_event_ctxp;
1191 if (parent && next_ctx &&
1192 rcu_dereference(next_ctx->parent_ctx) == parent) {
1194 * Looks like the two contexts are clones, so we might be
1195 * able to optimize the context switch. We lock both
1196 * contexts and check that they are clones under the
1197 * lock (including re-checking that neither has been
1198 * uncloned in the meantime). It doesn't matter which
1199 * order we take the locks because no other cpu could
1200 * be trying to lock both of these tasks.
1202 raw_spin_lock(&ctx->lock);
1203 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1204 if (context_equiv(ctx, next_ctx)) {
1206 * XXX do we need a memory barrier of sorts
1207 * wrt to rcu_dereference() of perf_event_ctxp
1209 task->perf_event_ctxp = next_ctx;
1210 next->perf_event_ctxp = ctx;
1211 ctx->task = next;
1212 next_ctx->task = task;
1213 do_switch = 0;
1215 perf_event_sync_stat(ctx, next_ctx);
1217 raw_spin_unlock(&next_ctx->lock);
1218 raw_spin_unlock(&ctx->lock);
1220 rcu_read_unlock();
1222 if (do_switch) {
1223 __perf_event_sched_out(ctx, cpuctx);
1224 cpuctx->task_ctx = NULL;
1229 * Called with IRQs disabled
1231 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1233 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1235 if (!cpuctx->task_ctx)
1236 return;
1238 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1239 return;
1241 __perf_event_sched_out(ctx, cpuctx);
1242 cpuctx->task_ctx = NULL;
1246 * Called with IRQs disabled
1248 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1250 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1253 static void
1254 __perf_event_sched_in(struct perf_event_context *ctx,
1255 struct perf_cpu_context *cpuctx, int cpu)
1257 struct perf_event *event;
1258 int can_add_hw = 1;
1260 raw_spin_lock(&ctx->lock);
1261 ctx->is_active = 1;
1262 if (likely(!ctx->nr_events))
1263 goto out;
1265 ctx->timestamp = perf_clock();
1267 perf_disable();
1270 * First go through the list and put on any pinned groups
1271 * in order to give them the best chance of going on.
1273 list_for_each_entry(event, &ctx->group_list, group_entry) {
1274 if (event->state <= PERF_EVENT_STATE_OFF ||
1275 !event->attr.pinned)
1276 continue;
1277 if (event->cpu != -1 && event->cpu != cpu)
1278 continue;
1280 if (group_can_go_on(event, cpuctx, 1))
1281 group_sched_in(event, cpuctx, ctx, cpu);
1284 * If this pinned group hasn't been scheduled,
1285 * put it in error state.
1287 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1288 update_group_times(event);
1289 event->state = PERF_EVENT_STATE_ERROR;
1293 list_for_each_entry(event, &ctx->group_list, group_entry) {
1295 * Ignore events in OFF or ERROR state, and
1296 * ignore pinned events since we did them already.
1298 if (event->state <= PERF_EVENT_STATE_OFF ||
1299 event->attr.pinned)
1300 continue;
1303 * Listen to the 'cpu' scheduling filter constraint
1304 * of events:
1306 if (event->cpu != -1 && event->cpu != cpu)
1307 continue;
1309 if (group_can_go_on(event, cpuctx, can_add_hw))
1310 if (group_sched_in(event, cpuctx, ctx, cpu))
1311 can_add_hw = 0;
1313 perf_enable();
1314 out:
1315 raw_spin_unlock(&ctx->lock);
1319 * Called from scheduler to add the events of the current task
1320 * with interrupts disabled.
1322 * We restore the event value and then enable it.
1324 * This does not protect us against NMI, but enable()
1325 * sets the enabled bit in the control field of event _before_
1326 * accessing the event control register. If a NMI hits, then it will
1327 * keep the event running.
1329 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1331 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1332 struct perf_event_context *ctx = task->perf_event_ctxp;
1334 if (likely(!ctx))
1335 return;
1336 if (cpuctx->task_ctx == ctx)
1337 return;
1338 __perf_event_sched_in(ctx, cpuctx, cpu);
1339 cpuctx->task_ctx = ctx;
1342 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1344 struct perf_event_context *ctx = &cpuctx->ctx;
1346 __perf_event_sched_in(ctx, cpuctx, cpu);
1349 #define MAX_INTERRUPTS (~0ULL)
1351 static void perf_log_throttle(struct perf_event *event, int enable);
1353 static void perf_adjust_period(struct perf_event *event, u64 events)
1355 struct hw_perf_event *hwc = &event->hw;
1356 u64 period, sample_period;
1357 s64 delta;
1359 events *= hwc->sample_period;
1360 period = div64_u64(events, event->attr.sample_freq);
1362 delta = (s64)(period - hwc->sample_period);
1363 delta = (delta + 7) / 8; /* low pass filter */
1365 sample_period = hwc->sample_period + delta;
1367 if (!sample_period)
1368 sample_period = 1;
1370 hwc->sample_period = sample_period;
1373 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1375 struct perf_event *event;
1376 struct hw_perf_event *hwc;
1377 u64 interrupts, freq;
1379 raw_spin_lock(&ctx->lock);
1380 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1381 if (event->state != PERF_EVENT_STATE_ACTIVE)
1382 continue;
1384 hwc = &event->hw;
1386 interrupts = hwc->interrupts;
1387 hwc->interrupts = 0;
1390 * unthrottle events on the tick
1392 if (interrupts == MAX_INTERRUPTS) {
1393 perf_log_throttle(event, 1);
1394 event->pmu->unthrottle(event);
1395 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1398 if (!event->attr.freq || !event->attr.sample_freq)
1399 continue;
1402 * if the specified freq < HZ then we need to skip ticks
1404 if (event->attr.sample_freq < HZ) {
1405 freq = event->attr.sample_freq;
1407 hwc->freq_count += freq;
1408 hwc->freq_interrupts += interrupts;
1410 if (hwc->freq_count < HZ)
1411 continue;
1413 interrupts = hwc->freq_interrupts;
1414 hwc->freq_interrupts = 0;
1415 hwc->freq_count -= HZ;
1416 } else
1417 freq = HZ;
1419 perf_adjust_period(event, freq * interrupts);
1422 * In order to avoid being stalled by an (accidental) huge
1423 * sample period, force reset the sample period if we didn't
1424 * get any events in this freq period.
1426 if (!interrupts) {
1427 perf_disable();
1428 event->pmu->disable(event);
1429 atomic64_set(&hwc->period_left, 0);
1430 event->pmu->enable(event);
1431 perf_enable();
1434 raw_spin_unlock(&ctx->lock);
1438 * Round-robin a context's events:
1440 static void rotate_ctx(struct perf_event_context *ctx)
1442 struct perf_event *event;
1444 if (!ctx->nr_events)
1445 return;
1447 raw_spin_lock(&ctx->lock);
1449 * Rotate the first entry last (works just fine for group events too):
1451 perf_disable();
1452 list_for_each_entry(event, &ctx->group_list, group_entry) {
1453 list_move_tail(&event->group_entry, &ctx->group_list);
1454 break;
1456 perf_enable();
1458 raw_spin_unlock(&ctx->lock);
1461 void perf_event_task_tick(struct task_struct *curr, int cpu)
1463 struct perf_cpu_context *cpuctx;
1464 struct perf_event_context *ctx;
1466 if (!atomic_read(&nr_events))
1467 return;
1469 cpuctx = &per_cpu(perf_cpu_context, cpu);
1470 ctx = curr->perf_event_ctxp;
1472 perf_ctx_adjust_freq(&cpuctx->ctx);
1473 if (ctx)
1474 perf_ctx_adjust_freq(ctx);
1476 perf_event_cpu_sched_out(cpuctx);
1477 if (ctx)
1478 __perf_event_task_sched_out(ctx);
1480 rotate_ctx(&cpuctx->ctx);
1481 if (ctx)
1482 rotate_ctx(ctx);
1484 perf_event_cpu_sched_in(cpuctx, cpu);
1485 if (ctx)
1486 perf_event_task_sched_in(curr, cpu);
1490 * Enable all of a task's events that have been marked enable-on-exec.
1491 * This expects task == current.
1493 static void perf_event_enable_on_exec(struct task_struct *task)
1495 struct perf_event_context *ctx;
1496 struct perf_event *event;
1497 unsigned long flags;
1498 int enabled = 0;
1500 local_irq_save(flags);
1501 ctx = task->perf_event_ctxp;
1502 if (!ctx || !ctx->nr_events)
1503 goto out;
1505 __perf_event_task_sched_out(ctx);
1507 raw_spin_lock(&ctx->lock);
1509 list_for_each_entry(event, &ctx->group_list, group_entry) {
1510 if (!event->attr.enable_on_exec)
1511 continue;
1512 event->attr.enable_on_exec = 0;
1513 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1514 continue;
1515 __perf_event_mark_enabled(event, ctx);
1516 enabled = 1;
1520 * Unclone this context if we enabled any event.
1522 if (enabled)
1523 unclone_ctx(ctx);
1525 raw_spin_unlock(&ctx->lock);
1527 perf_event_task_sched_in(task, smp_processor_id());
1528 out:
1529 local_irq_restore(flags);
1533 * Cross CPU call to read the hardware event
1535 static void __perf_event_read(void *info)
1537 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1538 struct perf_event *event = info;
1539 struct perf_event_context *ctx = event->ctx;
1542 * If this is a task context, we need to check whether it is
1543 * the current task context of this cpu. If not it has been
1544 * scheduled out before the smp call arrived. In that case
1545 * event->count would have been updated to a recent sample
1546 * when the event was scheduled out.
1548 if (ctx->task && cpuctx->task_ctx != ctx)
1549 return;
1551 raw_spin_lock(&ctx->lock);
1552 update_context_time(ctx);
1553 update_event_times(event);
1554 raw_spin_unlock(&ctx->lock);
1556 event->pmu->read(event);
1559 static u64 perf_event_read(struct perf_event *event)
1562 * If event is enabled and currently active on a CPU, update the
1563 * value in the event structure:
1565 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1566 smp_call_function_single(event->oncpu,
1567 __perf_event_read, event, 1);
1568 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1569 struct perf_event_context *ctx = event->ctx;
1570 unsigned long flags;
1572 raw_spin_lock_irqsave(&ctx->lock, flags);
1573 update_context_time(ctx);
1574 update_event_times(event);
1575 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1578 return atomic64_read(&event->count);
1582 * Initialize the perf_event context in a task_struct:
1584 static void
1585 __perf_event_init_context(struct perf_event_context *ctx,
1586 struct task_struct *task)
1588 raw_spin_lock_init(&ctx->lock);
1589 mutex_init(&ctx->mutex);
1590 INIT_LIST_HEAD(&ctx->group_list);
1591 INIT_LIST_HEAD(&ctx->event_list);
1592 atomic_set(&ctx->refcount, 1);
1593 ctx->task = task;
1596 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1598 struct perf_event_context *ctx;
1599 struct perf_cpu_context *cpuctx;
1600 struct task_struct *task;
1601 unsigned long flags;
1602 int err;
1604 if (pid == -1 && cpu != -1) {
1605 /* Must be root to operate on a CPU event: */
1606 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1607 return ERR_PTR(-EACCES);
1609 if (cpu < 0 || cpu >= nr_cpumask_bits)
1610 return ERR_PTR(-EINVAL);
1613 * We could be clever and allow to attach a event to an
1614 * offline CPU and activate it when the CPU comes up, but
1615 * that's for later.
1617 if (!cpu_isset(cpu, cpu_online_map))
1618 return ERR_PTR(-ENODEV);
1620 cpuctx = &per_cpu(perf_cpu_context, cpu);
1621 ctx = &cpuctx->ctx;
1622 get_ctx(ctx);
1624 return ctx;
1627 rcu_read_lock();
1628 if (!pid)
1629 task = current;
1630 else
1631 task = find_task_by_vpid(pid);
1632 if (task)
1633 get_task_struct(task);
1634 rcu_read_unlock();
1636 if (!task)
1637 return ERR_PTR(-ESRCH);
1640 * Can't attach events to a dying task.
1642 err = -ESRCH;
1643 if (task->flags & PF_EXITING)
1644 goto errout;
1646 /* Reuse ptrace permission checks for now. */
1647 err = -EACCES;
1648 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1649 goto errout;
1651 retry:
1652 ctx = perf_lock_task_context(task, &flags);
1653 if (ctx) {
1654 unclone_ctx(ctx);
1655 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1658 if (!ctx) {
1659 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1660 err = -ENOMEM;
1661 if (!ctx)
1662 goto errout;
1663 __perf_event_init_context(ctx, task);
1664 get_ctx(ctx);
1665 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1667 * We raced with some other task; use
1668 * the context they set.
1670 kfree(ctx);
1671 goto retry;
1673 get_task_struct(task);
1676 put_task_struct(task);
1677 return ctx;
1679 errout:
1680 put_task_struct(task);
1681 return ERR_PTR(err);
1684 static void perf_event_free_filter(struct perf_event *event);
1686 static void free_event_rcu(struct rcu_head *head)
1688 struct perf_event *event;
1690 event = container_of(head, struct perf_event, rcu_head);
1691 if (event->ns)
1692 put_pid_ns(event->ns);
1693 perf_event_free_filter(event);
1694 kfree(event);
1697 static void perf_pending_sync(struct perf_event *event);
1699 static void free_event(struct perf_event *event)
1701 perf_pending_sync(event);
1703 if (!event->parent) {
1704 atomic_dec(&nr_events);
1705 if (event->attr.mmap)
1706 atomic_dec(&nr_mmap_events);
1707 if (event->attr.comm)
1708 atomic_dec(&nr_comm_events);
1709 if (event->attr.task)
1710 atomic_dec(&nr_task_events);
1713 if (event->output) {
1714 fput(event->output->filp);
1715 event->output = NULL;
1718 if (event->destroy)
1719 event->destroy(event);
1721 put_ctx(event->ctx);
1722 call_rcu(&event->rcu_head, free_event_rcu);
1725 int perf_event_release_kernel(struct perf_event *event)
1727 struct perf_event_context *ctx = event->ctx;
1729 WARN_ON_ONCE(ctx->parent_ctx);
1730 mutex_lock(&ctx->mutex);
1731 perf_event_remove_from_context(event);
1732 mutex_unlock(&ctx->mutex);
1734 mutex_lock(&event->owner->perf_event_mutex);
1735 list_del_init(&event->owner_entry);
1736 mutex_unlock(&event->owner->perf_event_mutex);
1737 put_task_struct(event->owner);
1739 free_event(event);
1741 return 0;
1743 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1746 * Called when the last reference to the file is gone.
1748 static int perf_release(struct inode *inode, struct file *file)
1750 struct perf_event *event = file->private_data;
1752 file->private_data = NULL;
1754 return perf_event_release_kernel(event);
1757 static int perf_event_read_size(struct perf_event *event)
1759 int entry = sizeof(u64); /* value */
1760 int size = 0;
1761 int nr = 1;
1763 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1764 size += sizeof(u64);
1766 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1767 size += sizeof(u64);
1769 if (event->attr.read_format & PERF_FORMAT_ID)
1770 entry += sizeof(u64);
1772 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1773 nr += event->group_leader->nr_siblings;
1774 size += sizeof(u64);
1777 size += entry * nr;
1779 return size;
1782 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1784 struct perf_event *child;
1785 u64 total = 0;
1787 *enabled = 0;
1788 *running = 0;
1790 mutex_lock(&event->child_mutex);
1791 total += perf_event_read(event);
1792 *enabled += event->total_time_enabled +
1793 atomic64_read(&event->child_total_time_enabled);
1794 *running += event->total_time_running +
1795 atomic64_read(&event->child_total_time_running);
1797 list_for_each_entry(child, &event->child_list, child_list) {
1798 total += perf_event_read(child);
1799 *enabled += child->total_time_enabled;
1800 *running += child->total_time_running;
1802 mutex_unlock(&event->child_mutex);
1804 return total;
1806 EXPORT_SYMBOL_GPL(perf_event_read_value);
1808 static int perf_event_read_group(struct perf_event *event,
1809 u64 read_format, char __user *buf)
1811 struct perf_event *leader = event->group_leader, *sub;
1812 int n = 0, size = 0, ret = -EFAULT;
1813 struct perf_event_context *ctx = leader->ctx;
1814 u64 values[5];
1815 u64 count, enabled, running;
1817 mutex_lock(&ctx->mutex);
1818 count = perf_event_read_value(leader, &enabled, &running);
1820 values[n++] = 1 + leader->nr_siblings;
1821 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1822 values[n++] = enabled;
1823 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1824 values[n++] = running;
1825 values[n++] = count;
1826 if (read_format & PERF_FORMAT_ID)
1827 values[n++] = primary_event_id(leader);
1829 size = n * sizeof(u64);
1831 if (copy_to_user(buf, values, size))
1832 goto unlock;
1834 ret = size;
1836 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1837 n = 0;
1839 values[n++] = perf_event_read_value(sub, &enabled, &running);
1840 if (read_format & PERF_FORMAT_ID)
1841 values[n++] = primary_event_id(sub);
1843 size = n * sizeof(u64);
1845 if (copy_to_user(buf + ret, values, size)) {
1846 ret = -EFAULT;
1847 goto unlock;
1850 ret += size;
1852 unlock:
1853 mutex_unlock(&ctx->mutex);
1855 return ret;
1858 static int perf_event_read_one(struct perf_event *event,
1859 u64 read_format, char __user *buf)
1861 u64 enabled, running;
1862 u64 values[4];
1863 int n = 0;
1865 values[n++] = perf_event_read_value(event, &enabled, &running);
1866 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1867 values[n++] = enabled;
1868 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1869 values[n++] = running;
1870 if (read_format & PERF_FORMAT_ID)
1871 values[n++] = primary_event_id(event);
1873 if (copy_to_user(buf, values, n * sizeof(u64)))
1874 return -EFAULT;
1876 return n * sizeof(u64);
1880 * Read the performance event - simple non blocking version for now
1882 static ssize_t
1883 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1885 u64 read_format = event->attr.read_format;
1886 int ret;
1889 * Return end-of-file for a read on a event that is in
1890 * error state (i.e. because it was pinned but it couldn't be
1891 * scheduled on to the CPU at some point).
1893 if (event->state == PERF_EVENT_STATE_ERROR)
1894 return 0;
1896 if (count < perf_event_read_size(event))
1897 return -ENOSPC;
1899 WARN_ON_ONCE(event->ctx->parent_ctx);
1900 if (read_format & PERF_FORMAT_GROUP)
1901 ret = perf_event_read_group(event, read_format, buf);
1902 else
1903 ret = perf_event_read_one(event, read_format, buf);
1905 return ret;
1908 static ssize_t
1909 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1911 struct perf_event *event = file->private_data;
1913 return perf_read_hw(event, buf, count);
1916 static unsigned int perf_poll(struct file *file, poll_table *wait)
1918 struct perf_event *event = file->private_data;
1919 struct perf_mmap_data *data;
1920 unsigned int events = POLL_HUP;
1922 rcu_read_lock();
1923 data = rcu_dereference(event->data);
1924 if (data)
1925 events = atomic_xchg(&data->poll, 0);
1926 rcu_read_unlock();
1928 poll_wait(file, &event->waitq, wait);
1930 return events;
1933 static void perf_event_reset(struct perf_event *event)
1935 (void)perf_event_read(event);
1936 atomic64_set(&event->count, 0);
1937 perf_event_update_userpage(event);
1941 * Holding the top-level event's child_mutex means that any
1942 * descendant process that has inherited this event will block
1943 * in sync_child_event if it goes to exit, thus satisfying the
1944 * task existence requirements of perf_event_enable/disable.
1946 static void perf_event_for_each_child(struct perf_event *event,
1947 void (*func)(struct perf_event *))
1949 struct perf_event *child;
1951 WARN_ON_ONCE(event->ctx->parent_ctx);
1952 mutex_lock(&event->child_mutex);
1953 func(event);
1954 list_for_each_entry(child, &event->child_list, child_list)
1955 func(child);
1956 mutex_unlock(&event->child_mutex);
1959 static void perf_event_for_each(struct perf_event *event,
1960 void (*func)(struct perf_event *))
1962 struct perf_event_context *ctx = event->ctx;
1963 struct perf_event *sibling;
1965 WARN_ON_ONCE(ctx->parent_ctx);
1966 mutex_lock(&ctx->mutex);
1967 event = event->group_leader;
1969 perf_event_for_each_child(event, func);
1970 func(event);
1971 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1972 perf_event_for_each_child(event, func);
1973 mutex_unlock(&ctx->mutex);
1976 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1978 struct perf_event_context *ctx = event->ctx;
1979 unsigned long size;
1980 int ret = 0;
1981 u64 value;
1983 if (!event->attr.sample_period)
1984 return -EINVAL;
1986 size = copy_from_user(&value, arg, sizeof(value));
1987 if (size != sizeof(value))
1988 return -EFAULT;
1990 if (!value)
1991 return -EINVAL;
1993 raw_spin_lock_irq(&ctx->lock);
1994 if (event->attr.freq) {
1995 if (value > sysctl_perf_event_sample_rate) {
1996 ret = -EINVAL;
1997 goto unlock;
2000 event->attr.sample_freq = value;
2001 } else {
2002 event->attr.sample_period = value;
2003 event->hw.sample_period = value;
2005 unlock:
2006 raw_spin_unlock_irq(&ctx->lock);
2008 return ret;
2011 static int perf_event_set_output(struct perf_event *event, int output_fd);
2012 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2014 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2016 struct perf_event *event = file->private_data;
2017 void (*func)(struct perf_event *);
2018 u32 flags = arg;
2020 switch (cmd) {
2021 case PERF_EVENT_IOC_ENABLE:
2022 func = perf_event_enable;
2023 break;
2024 case PERF_EVENT_IOC_DISABLE:
2025 func = perf_event_disable;
2026 break;
2027 case PERF_EVENT_IOC_RESET:
2028 func = perf_event_reset;
2029 break;
2031 case PERF_EVENT_IOC_REFRESH:
2032 return perf_event_refresh(event, arg);
2034 case PERF_EVENT_IOC_PERIOD:
2035 return perf_event_period(event, (u64 __user *)arg);
2037 case PERF_EVENT_IOC_SET_OUTPUT:
2038 return perf_event_set_output(event, arg);
2040 case PERF_EVENT_IOC_SET_FILTER:
2041 return perf_event_set_filter(event, (void __user *)arg);
2043 default:
2044 return -ENOTTY;
2047 if (flags & PERF_IOC_FLAG_GROUP)
2048 perf_event_for_each(event, func);
2049 else
2050 perf_event_for_each_child(event, func);
2052 return 0;
2055 int perf_event_task_enable(void)
2057 struct perf_event *event;
2059 mutex_lock(&current->perf_event_mutex);
2060 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2061 perf_event_for_each_child(event, perf_event_enable);
2062 mutex_unlock(&current->perf_event_mutex);
2064 return 0;
2067 int perf_event_task_disable(void)
2069 struct perf_event *event;
2071 mutex_lock(&current->perf_event_mutex);
2072 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2073 perf_event_for_each_child(event, perf_event_disable);
2074 mutex_unlock(&current->perf_event_mutex);
2076 return 0;
2079 #ifndef PERF_EVENT_INDEX_OFFSET
2080 # define PERF_EVENT_INDEX_OFFSET 0
2081 #endif
2083 static int perf_event_index(struct perf_event *event)
2085 if (event->state != PERF_EVENT_STATE_ACTIVE)
2086 return 0;
2088 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2092 * Callers need to ensure there can be no nesting of this function, otherwise
2093 * the seqlock logic goes bad. We can not serialize this because the arch
2094 * code calls this from NMI context.
2096 void perf_event_update_userpage(struct perf_event *event)
2098 struct perf_event_mmap_page *userpg;
2099 struct perf_mmap_data *data;
2101 rcu_read_lock();
2102 data = rcu_dereference(event->data);
2103 if (!data)
2104 goto unlock;
2106 userpg = data->user_page;
2109 * Disable preemption so as to not let the corresponding user-space
2110 * spin too long if we get preempted.
2112 preempt_disable();
2113 ++userpg->lock;
2114 barrier();
2115 userpg->index = perf_event_index(event);
2116 userpg->offset = atomic64_read(&event->count);
2117 if (event->state == PERF_EVENT_STATE_ACTIVE)
2118 userpg->offset -= atomic64_read(&event->hw.prev_count);
2120 userpg->time_enabled = event->total_time_enabled +
2121 atomic64_read(&event->child_total_time_enabled);
2123 userpg->time_running = event->total_time_running +
2124 atomic64_read(&event->child_total_time_running);
2126 barrier();
2127 ++userpg->lock;
2128 preempt_enable();
2129 unlock:
2130 rcu_read_unlock();
2133 static unsigned long perf_data_size(struct perf_mmap_data *data)
2135 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2138 #ifndef CONFIG_PERF_USE_VMALLOC
2141 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2144 static struct page *
2145 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2147 if (pgoff > data->nr_pages)
2148 return NULL;
2150 if (pgoff == 0)
2151 return virt_to_page(data->user_page);
2153 return virt_to_page(data->data_pages[pgoff - 1]);
2156 static struct perf_mmap_data *
2157 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2159 struct perf_mmap_data *data;
2160 unsigned long size;
2161 int i;
2163 WARN_ON(atomic_read(&event->mmap_count));
2165 size = sizeof(struct perf_mmap_data);
2166 size += nr_pages * sizeof(void *);
2168 data = kzalloc(size, GFP_KERNEL);
2169 if (!data)
2170 goto fail;
2172 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2173 if (!data->user_page)
2174 goto fail_user_page;
2176 for (i = 0; i < nr_pages; i++) {
2177 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2178 if (!data->data_pages[i])
2179 goto fail_data_pages;
2182 data->data_order = 0;
2183 data->nr_pages = nr_pages;
2185 return data;
2187 fail_data_pages:
2188 for (i--; i >= 0; i--)
2189 free_page((unsigned long)data->data_pages[i]);
2191 free_page((unsigned long)data->user_page);
2193 fail_user_page:
2194 kfree(data);
2196 fail:
2197 return NULL;
2200 static void perf_mmap_free_page(unsigned long addr)
2202 struct page *page = virt_to_page((void *)addr);
2204 page->mapping = NULL;
2205 __free_page(page);
2208 static void perf_mmap_data_free(struct perf_mmap_data *data)
2210 int i;
2212 perf_mmap_free_page((unsigned long)data->user_page);
2213 for (i = 0; i < data->nr_pages; i++)
2214 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2215 kfree(data);
2218 #else
2221 * Back perf_mmap() with vmalloc memory.
2223 * Required for architectures that have d-cache aliasing issues.
2226 static struct page *
2227 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2229 if (pgoff > (1UL << data->data_order))
2230 return NULL;
2232 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2235 static void perf_mmap_unmark_page(void *addr)
2237 struct page *page = vmalloc_to_page(addr);
2239 page->mapping = NULL;
2242 static void perf_mmap_data_free_work(struct work_struct *work)
2244 struct perf_mmap_data *data;
2245 void *base;
2246 int i, nr;
2248 data = container_of(work, struct perf_mmap_data, work);
2249 nr = 1 << data->data_order;
2251 base = data->user_page;
2252 for (i = 0; i < nr + 1; i++)
2253 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2255 vfree(base);
2256 kfree(data);
2259 static void perf_mmap_data_free(struct perf_mmap_data *data)
2261 schedule_work(&data->work);
2264 static struct perf_mmap_data *
2265 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2267 struct perf_mmap_data *data;
2268 unsigned long size;
2269 void *all_buf;
2271 WARN_ON(atomic_read(&event->mmap_count));
2273 size = sizeof(struct perf_mmap_data);
2274 size += sizeof(void *);
2276 data = kzalloc(size, GFP_KERNEL);
2277 if (!data)
2278 goto fail;
2280 INIT_WORK(&data->work, perf_mmap_data_free_work);
2282 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2283 if (!all_buf)
2284 goto fail_all_buf;
2286 data->user_page = all_buf;
2287 data->data_pages[0] = all_buf + PAGE_SIZE;
2288 data->data_order = ilog2(nr_pages);
2289 data->nr_pages = 1;
2291 return data;
2293 fail_all_buf:
2294 kfree(data);
2296 fail:
2297 return NULL;
2300 #endif
2302 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2304 struct perf_event *event = vma->vm_file->private_data;
2305 struct perf_mmap_data *data;
2306 int ret = VM_FAULT_SIGBUS;
2308 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2309 if (vmf->pgoff == 0)
2310 ret = 0;
2311 return ret;
2314 rcu_read_lock();
2315 data = rcu_dereference(event->data);
2316 if (!data)
2317 goto unlock;
2319 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2320 goto unlock;
2322 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2323 if (!vmf->page)
2324 goto unlock;
2326 get_page(vmf->page);
2327 vmf->page->mapping = vma->vm_file->f_mapping;
2328 vmf->page->index = vmf->pgoff;
2330 ret = 0;
2331 unlock:
2332 rcu_read_unlock();
2334 return ret;
2337 static void
2338 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2340 long max_size = perf_data_size(data);
2342 atomic_set(&data->lock, -1);
2344 if (event->attr.watermark) {
2345 data->watermark = min_t(long, max_size,
2346 event->attr.wakeup_watermark);
2349 if (!data->watermark)
2350 data->watermark = max_size / 2;
2353 rcu_assign_pointer(event->data, data);
2356 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2358 struct perf_mmap_data *data;
2360 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2361 perf_mmap_data_free(data);
2364 static void perf_mmap_data_release(struct perf_event *event)
2366 struct perf_mmap_data *data = event->data;
2368 WARN_ON(atomic_read(&event->mmap_count));
2370 rcu_assign_pointer(event->data, NULL);
2371 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2374 static void perf_mmap_open(struct vm_area_struct *vma)
2376 struct perf_event *event = vma->vm_file->private_data;
2378 atomic_inc(&event->mmap_count);
2381 static void perf_mmap_close(struct vm_area_struct *vma)
2383 struct perf_event *event = vma->vm_file->private_data;
2385 WARN_ON_ONCE(event->ctx->parent_ctx);
2386 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2387 unsigned long size = perf_data_size(event->data);
2388 struct user_struct *user = current_user();
2390 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2391 vma->vm_mm->locked_vm -= event->data->nr_locked;
2392 perf_mmap_data_release(event);
2393 mutex_unlock(&event->mmap_mutex);
2397 static const struct vm_operations_struct perf_mmap_vmops = {
2398 .open = perf_mmap_open,
2399 .close = perf_mmap_close,
2400 .fault = perf_mmap_fault,
2401 .page_mkwrite = perf_mmap_fault,
2404 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2406 struct perf_event *event = file->private_data;
2407 unsigned long user_locked, user_lock_limit;
2408 struct user_struct *user = current_user();
2409 unsigned long locked, lock_limit;
2410 struct perf_mmap_data *data;
2411 unsigned long vma_size;
2412 unsigned long nr_pages;
2413 long user_extra, extra;
2414 int ret = 0;
2416 if (!(vma->vm_flags & VM_SHARED))
2417 return -EINVAL;
2419 vma_size = vma->vm_end - vma->vm_start;
2420 nr_pages = (vma_size / PAGE_SIZE) - 1;
2423 * If we have data pages ensure they're a power-of-two number, so we
2424 * can do bitmasks instead of modulo.
2426 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2427 return -EINVAL;
2429 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2430 return -EINVAL;
2432 if (vma->vm_pgoff != 0)
2433 return -EINVAL;
2435 WARN_ON_ONCE(event->ctx->parent_ctx);
2436 mutex_lock(&event->mmap_mutex);
2437 if (event->output) {
2438 ret = -EINVAL;
2439 goto unlock;
2442 if (atomic_inc_not_zero(&event->mmap_count)) {
2443 if (nr_pages != event->data->nr_pages)
2444 ret = -EINVAL;
2445 goto unlock;
2448 user_extra = nr_pages + 1;
2449 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2452 * Increase the limit linearly with more CPUs:
2454 user_lock_limit *= num_online_cpus();
2456 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2458 extra = 0;
2459 if (user_locked > user_lock_limit)
2460 extra = user_locked - user_lock_limit;
2462 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2463 lock_limit >>= PAGE_SHIFT;
2464 locked = vma->vm_mm->locked_vm + extra;
2466 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2467 !capable(CAP_IPC_LOCK)) {
2468 ret = -EPERM;
2469 goto unlock;
2472 WARN_ON(event->data);
2474 data = perf_mmap_data_alloc(event, nr_pages);
2475 ret = -ENOMEM;
2476 if (!data)
2477 goto unlock;
2479 ret = 0;
2480 perf_mmap_data_init(event, data);
2482 atomic_set(&event->mmap_count, 1);
2483 atomic_long_add(user_extra, &user->locked_vm);
2484 vma->vm_mm->locked_vm += extra;
2485 event->data->nr_locked = extra;
2486 if (vma->vm_flags & VM_WRITE)
2487 event->data->writable = 1;
2489 unlock:
2490 mutex_unlock(&event->mmap_mutex);
2492 vma->vm_flags |= VM_RESERVED;
2493 vma->vm_ops = &perf_mmap_vmops;
2495 return ret;
2498 static int perf_fasync(int fd, struct file *filp, int on)
2500 struct inode *inode = filp->f_path.dentry->d_inode;
2501 struct perf_event *event = filp->private_data;
2502 int retval;
2504 mutex_lock(&inode->i_mutex);
2505 retval = fasync_helper(fd, filp, on, &event->fasync);
2506 mutex_unlock(&inode->i_mutex);
2508 if (retval < 0)
2509 return retval;
2511 return 0;
2514 static const struct file_operations perf_fops = {
2515 .release = perf_release,
2516 .read = perf_read,
2517 .poll = perf_poll,
2518 .unlocked_ioctl = perf_ioctl,
2519 .compat_ioctl = perf_ioctl,
2520 .mmap = perf_mmap,
2521 .fasync = perf_fasync,
2525 * Perf event wakeup
2527 * If there's data, ensure we set the poll() state and publish everything
2528 * to user-space before waking everybody up.
2531 void perf_event_wakeup(struct perf_event *event)
2533 wake_up_all(&event->waitq);
2535 if (event->pending_kill) {
2536 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2537 event->pending_kill = 0;
2542 * Pending wakeups
2544 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2546 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2547 * single linked list and use cmpxchg() to add entries lockless.
2550 static void perf_pending_event(struct perf_pending_entry *entry)
2552 struct perf_event *event = container_of(entry,
2553 struct perf_event, pending);
2555 if (event->pending_disable) {
2556 event->pending_disable = 0;
2557 __perf_event_disable(event);
2560 if (event->pending_wakeup) {
2561 event->pending_wakeup = 0;
2562 perf_event_wakeup(event);
2566 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2568 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2569 PENDING_TAIL,
2572 static void perf_pending_queue(struct perf_pending_entry *entry,
2573 void (*func)(struct perf_pending_entry *))
2575 struct perf_pending_entry **head;
2577 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2578 return;
2580 entry->func = func;
2582 head = &get_cpu_var(perf_pending_head);
2584 do {
2585 entry->next = *head;
2586 } while (cmpxchg(head, entry->next, entry) != entry->next);
2588 set_perf_event_pending();
2590 put_cpu_var(perf_pending_head);
2593 static int __perf_pending_run(void)
2595 struct perf_pending_entry *list;
2596 int nr = 0;
2598 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2599 while (list != PENDING_TAIL) {
2600 void (*func)(struct perf_pending_entry *);
2601 struct perf_pending_entry *entry = list;
2603 list = list->next;
2605 func = entry->func;
2606 entry->next = NULL;
2608 * Ensure we observe the unqueue before we issue the wakeup,
2609 * so that we won't be waiting forever.
2610 * -- see perf_not_pending().
2612 smp_wmb();
2614 func(entry);
2615 nr++;
2618 return nr;
2621 static inline int perf_not_pending(struct perf_event *event)
2624 * If we flush on whatever cpu we run, there is a chance we don't
2625 * need to wait.
2627 get_cpu();
2628 __perf_pending_run();
2629 put_cpu();
2632 * Ensure we see the proper queue state before going to sleep
2633 * so that we do not miss the wakeup. -- see perf_pending_handle()
2635 smp_rmb();
2636 return event->pending.next == NULL;
2639 static void perf_pending_sync(struct perf_event *event)
2641 wait_event(event->waitq, perf_not_pending(event));
2644 void perf_event_do_pending(void)
2646 __perf_pending_run();
2650 * Callchain support -- arch specific
2653 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2655 return NULL;
2659 * Output
2661 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2662 unsigned long offset, unsigned long head)
2664 unsigned long mask;
2666 if (!data->writable)
2667 return true;
2669 mask = perf_data_size(data) - 1;
2671 offset = (offset - tail) & mask;
2672 head = (head - tail) & mask;
2674 if ((int)(head - offset) < 0)
2675 return false;
2677 return true;
2680 static void perf_output_wakeup(struct perf_output_handle *handle)
2682 atomic_set(&handle->data->poll, POLL_IN);
2684 if (handle->nmi) {
2685 handle->event->pending_wakeup = 1;
2686 perf_pending_queue(&handle->event->pending,
2687 perf_pending_event);
2688 } else
2689 perf_event_wakeup(handle->event);
2693 * Curious locking construct.
2695 * We need to ensure a later event_id doesn't publish a head when a former
2696 * event_id isn't done writing. However since we need to deal with NMIs we
2697 * cannot fully serialize things.
2699 * What we do is serialize between CPUs so we only have to deal with NMI
2700 * nesting on a single CPU.
2702 * We only publish the head (and generate a wakeup) when the outer-most
2703 * event_id completes.
2705 static void perf_output_lock(struct perf_output_handle *handle)
2707 struct perf_mmap_data *data = handle->data;
2708 int cur, cpu = get_cpu();
2710 handle->locked = 0;
2712 for (;;) {
2713 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2714 if (cur == -1) {
2715 handle->locked = 1;
2716 break;
2718 if (cur == cpu)
2719 break;
2721 cpu_relax();
2725 static void perf_output_unlock(struct perf_output_handle *handle)
2727 struct perf_mmap_data *data = handle->data;
2728 unsigned long head;
2729 int cpu;
2731 data->done_head = data->head;
2733 if (!handle->locked)
2734 goto out;
2736 again:
2738 * The xchg implies a full barrier that ensures all writes are done
2739 * before we publish the new head, matched by a rmb() in userspace when
2740 * reading this position.
2742 while ((head = atomic_long_xchg(&data->done_head, 0)))
2743 data->user_page->data_head = head;
2746 * NMI can happen here, which means we can miss a done_head update.
2749 cpu = atomic_xchg(&data->lock, -1);
2750 WARN_ON_ONCE(cpu != smp_processor_id());
2753 * Therefore we have to validate we did not indeed do so.
2755 if (unlikely(atomic_long_read(&data->done_head))) {
2757 * Since we had it locked, we can lock it again.
2759 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2760 cpu_relax();
2762 goto again;
2765 if (atomic_xchg(&data->wakeup, 0))
2766 perf_output_wakeup(handle);
2767 out:
2768 put_cpu();
2771 void perf_output_copy(struct perf_output_handle *handle,
2772 const void *buf, unsigned int len)
2774 unsigned int pages_mask;
2775 unsigned long offset;
2776 unsigned int size;
2777 void **pages;
2779 offset = handle->offset;
2780 pages_mask = handle->data->nr_pages - 1;
2781 pages = handle->data->data_pages;
2783 do {
2784 unsigned long page_offset;
2785 unsigned long page_size;
2786 int nr;
2788 nr = (offset >> PAGE_SHIFT) & pages_mask;
2789 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2790 page_offset = offset & (page_size - 1);
2791 size = min_t(unsigned int, page_size - page_offset, len);
2793 memcpy(pages[nr] + page_offset, buf, size);
2795 len -= size;
2796 buf += size;
2797 offset += size;
2798 } while (len);
2800 handle->offset = offset;
2803 * Check we didn't copy past our reservation window, taking the
2804 * possible unsigned int wrap into account.
2806 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2809 int perf_output_begin(struct perf_output_handle *handle,
2810 struct perf_event *event, unsigned int size,
2811 int nmi, int sample)
2813 struct perf_event *output_event;
2814 struct perf_mmap_data *data;
2815 unsigned long tail, offset, head;
2816 int have_lost;
2817 struct {
2818 struct perf_event_header header;
2819 u64 id;
2820 u64 lost;
2821 } lost_event;
2823 rcu_read_lock();
2825 * For inherited events we send all the output towards the parent.
2827 if (event->parent)
2828 event = event->parent;
2830 output_event = rcu_dereference(event->output);
2831 if (output_event)
2832 event = output_event;
2834 data = rcu_dereference(event->data);
2835 if (!data)
2836 goto out;
2838 handle->data = data;
2839 handle->event = event;
2840 handle->nmi = nmi;
2841 handle->sample = sample;
2843 if (!data->nr_pages)
2844 goto fail;
2846 have_lost = atomic_read(&data->lost);
2847 if (have_lost)
2848 size += sizeof(lost_event);
2850 perf_output_lock(handle);
2852 do {
2854 * Userspace could choose to issue a mb() before updating the
2855 * tail pointer. So that all reads will be completed before the
2856 * write is issued.
2858 tail = ACCESS_ONCE(data->user_page->data_tail);
2859 smp_rmb();
2860 offset = head = atomic_long_read(&data->head);
2861 head += size;
2862 if (unlikely(!perf_output_space(data, tail, offset, head)))
2863 goto fail;
2864 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2866 handle->offset = offset;
2867 handle->head = head;
2869 if (head - tail > data->watermark)
2870 atomic_set(&data->wakeup, 1);
2872 if (have_lost) {
2873 lost_event.header.type = PERF_RECORD_LOST;
2874 lost_event.header.misc = 0;
2875 lost_event.header.size = sizeof(lost_event);
2876 lost_event.id = event->id;
2877 lost_event.lost = atomic_xchg(&data->lost, 0);
2879 perf_output_put(handle, lost_event);
2882 return 0;
2884 fail:
2885 atomic_inc(&data->lost);
2886 perf_output_unlock(handle);
2887 out:
2888 rcu_read_unlock();
2890 return -ENOSPC;
2893 void perf_output_end(struct perf_output_handle *handle)
2895 struct perf_event *event = handle->event;
2896 struct perf_mmap_data *data = handle->data;
2898 int wakeup_events = event->attr.wakeup_events;
2900 if (handle->sample && wakeup_events) {
2901 int events = atomic_inc_return(&data->events);
2902 if (events >= wakeup_events) {
2903 atomic_sub(wakeup_events, &data->events);
2904 atomic_set(&data->wakeup, 1);
2908 perf_output_unlock(handle);
2909 rcu_read_unlock();
2912 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2915 * only top level events have the pid namespace they were created in
2917 if (event->parent)
2918 event = event->parent;
2920 return task_tgid_nr_ns(p, event->ns);
2923 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2926 * only top level events have the pid namespace they were created in
2928 if (event->parent)
2929 event = event->parent;
2931 return task_pid_nr_ns(p, event->ns);
2934 static void perf_output_read_one(struct perf_output_handle *handle,
2935 struct perf_event *event)
2937 u64 read_format = event->attr.read_format;
2938 u64 values[4];
2939 int n = 0;
2941 values[n++] = atomic64_read(&event->count);
2942 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2943 values[n++] = event->total_time_enabled +
2944 atomic64_read(&event->child_total_time_enabled);
2946 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2947 values[n++] = event->total_time_running +
2948 atomic64_read(&event->child_total_time_running);
2950 if (read_format & PERF_FORMAT_ID)
2951 values[n++] = primary_event_id(event);
2953 perf_output_copy(handle, values, n * sizeof(u64));
2957 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2959 static void perf_output_read_group(struct perf_output_handle *handle,
2960 struct perf_event *event)
2962 struct perf_event *leader = event->group_leader, *sub;
2963 u64 read_format = event->attr.read_format;
2964 u64 values[5];
2965 int n = 0;
2967 values[n++] = 1 + leader->nr_siblings;
2969 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2970 values[n++] = leader->total_time_enabled;
2972 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2973 values[n++] = leader->total_time_running;
2975 if (leader != event)
2976 leader->pmu->read(leader);
2978 values[n++] = atomic64_read(&leader->count);
2979 if (read_format & PERF_FORMAT_ID)
2980 values[n++] = primary_event_id(leader);
2982 perf_output_copy(handle, values, n * sizeof(u64));
2984 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2985 n = 0;
2987 if (sub != event)
2988 sub->pmu->read(sub);
2990 values[n++] = atomic64_read(&sub->count);
2991 if (read_format & PERF_FORMAT_ID)
2992 values[n++] = primary_event_id(sub);
2994 perf_output_copy(handle, values, n * sizeof(u64));
2998 static void perf_output_read(struct perf_output_handle *handle,
2999 struct perf_event *event)
3001 if (event->attr.read_format & PERF_FORMAT_GROUP)
3002 perf_output_read_group(handle, event);
3003 else
3004 perf_output_read_one(handle, event);
3007 void perf_output_sample(struct perf_output_handle *handle,
3008 struct perf_event_header *header,
3009 struct perf_sample_data *data,
3010 struct perf_event *event)
3012 u64 sample_type = data->type;
3014 perf_output_put(handle, *header);
3016 if (sample_type & PERF_SAMPLE_IP)
3017 perf_output_put(handle, data->ip);
3019 if (sample_type & PERF_SAMPLE_TID)
3020 perf_output_put(handle, data->tid_entry);
3022 if (sample_type & PERF_SAMPLE_TIME)
3023 perf_output_put(handle, data->time);
3025 if (sample_type & PERF_SAMPLE_ADDR)
3026 perf_output_put(handle, data->addr);
3028 if (sample_type & PERF_SAMPLE_ID)
3029 perf_output_put(handle, data->id);
3031 if (sample_type & PERF_SAMPLE_STREAM_ID)
3032 perf_output_put(handle, data->stream_id);
3034 if (sample_type & PERF_SAMPLE_CPU)
3035 perf_output_put(handle, data->cpu_entry);
3037 if (sample_type & PERF_SAMPLE_PERIOD)
3038 perf_output_put(handle, data->period);
3040 if (sample_type & PERF_SAMPLE_READ)
3041 perf_output_read(handle, event);
3043 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3044 if (data->callchain) {
3045 int size = 1;
3047 if (data->callchain)
3048 size += data->callchain->nr;
3050 size *= sizeof(u64);
3052 perf_output_copy(handle, data->callchain, size);
3053 } else {
3054 u64 nr = 0;
3055 perf_output_put(handle, nr);
3059 if (sample_type & PERF_SAMPLE_RAW) {
3060 if (data->raw) {
3061 perf_output_put(handle, data->raw->size);
3062 perf_output_copy(handle, data->raw->data,
3063 data->raw->size);
3064 } else {
3065 struct {
3066 u32 size;
3067 u32 data;
3068 } raw = {
3069 .size = sizeof(u32),
3070 .data = 0,
3072 perf_output_put(handle, raw);
3077 void perf_prepare_sample(struct perf_event_header *header,
3078 struct perf_sample_data *data,
3079 struct perf_event *event,
3080 struct pt_regs *regs)
3082 u64 sample_type = event->attr.sample_type;
3084 data->type = sample_type;
3086 header->type = PERF_RECORD_SAMPLE;
3087 header->size = sizeof(*header);
3089 header->misc = 0;
3090 header->misc |= perf_misc_flags(regs);
3092 if (sample_type & PERF_SAMPLE_IP) {
3093 data->ip = perf_instruction_pointer(regs);
3095 header->size += sizeof(data->ip);
3098 if (sample_type & PERF_SAMPLE_TID) {
3099 /* namespace issues */
3100 data->tid_entry.pid = perf_event_pid(event, current);
3101 data->tid_entry.tid = perf_event_tid(event, current);
3103 header->size += sizeof(data->tid_entry);
3106 if (sample_type & PERF_SAMPLE_TIME) {
3107 data->time = perf_clock();
3109 header->size += sizeof(data->time);
3112 if (sample_type & PERF_SAMPLE_ADDR)
3113 header->size += sizeof(data->addr);
3115 if (sample_type & PERF_SAMPLE_ID) {
3116 data->id = primary_event_id(event);
3118 header->size += sizeof(data->id);
3121 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3122 data->stream_id = event->id;
3124 header->size += sizeof(data->stream_id);
3127 if (sample_type & PERF_SAMPLE_CPU) {
3128 data->cpu_entry.cpu = raw_smp_processor_id();
3129 data->cpu_entry.reserved = 0;
3131 header->size += sizeof(data->cpu_entry);
3134 if (sample_type & PERF_SAMPLE_PERIOD)
3135 header->size += sizeof(data->period);
3137 if (sample_type & PERF_SAMPLE_READ)
3138 header->size += perf_event_read_size(event);
3140 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3141 int size = 1;
3143 data->callchain = perf_callchain(regs);
3145 if (data->callchain)
3146 size += data->callchain->nr;
3148 header->size += size * sizeof(u64);
3151 if (sample_type & PERF_SAMPLE_RAW) {
3152 int size = sizeof(u32);
3154 if (data->raw)
3155 size += data->raw->size;
3156 else
3157 size += sizeof(u32);
3159 WARN_ON_ONCE(size & (sizeof(u64)-1));
3160 header->size += size;
3164 static void perf_event_output(struct perf_event *event, int nmi,
3165 struct perf_sample_data *data,
3166 struct pt_regs *regs)
3168 struct perf_output_handle handle;
3169 struct perf_event_header header;
3171 perf_prepare_sample(&header, data, event, regs);
3173 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3174 return;
3176 perf_output_sample(&handle, &header, data, event);
3178 perf_output_end(&handle);
3182 * read event_id
3185 struct perf_read_event {
3186 struct perf_event_header header;
3188 u32 pid;
3189 u32 tid;
3192 static void
3193 perf_event_read_event(struct perf_event *event,
3194 struct task_struct *task)
3196 struct perf_output_handle handle;
3197 struct perf_read_event read_event = {
3198 .header = {
3199 .type = PERF_RECORD_READ,
3200 .misc = 0,
3201 .size = sizeof(read_event) + perf_event_read_size(event),
3203 .pid = perf_event_pid(event, task),
3204 .tid = perf_event_tid(event, task),
3206 int ret;
3208 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3209 if (ret)
3210 return;
3212 perf_output_put(&handle, read_event);
3213 perf_output_read(&handle, event);
3215 perf_output_end(&handle);
3219 * task tracking -- fork/exit
3221 * enabled by: attr.comm | attr.mmap | attr.task
3224 struct perf_task_event {
3225 struct task_struct *task;
3226 struct perf_event_context *task_ctx;
3228 struct {
3229 struct perf_event_header header;
3231 u32 pid;
3232 u32 ppid;
3233 u32 tid;
3234 u32 ptid;
3235 u64 time;
3236 } event_id;
3239 static void perf_event_task_output(struct perf_event *event,
3240 struct perf_task_event *task_event)
3242 struct perf_output_handle handle;
3243 int size;
3244 struct task_struct *task = task_event->task;
3245 int ret;
3247 size = task_event->event_id.header.size;
3248 ret = perf_output_begin(&handle, event, size, 0, 0);
3250 if (ret)
3251 return;
3253 task_event->event_id.pid = perf_event_pid(event, task);
3254 task_event->event_id.ppid = perf_event_pid(event, current);
3256 task_event->event_id.tid = perf_event_tid(event, task);
3257 task_event->event_id.ptid = perf_event_tid(event, current);
3259 task_event->event_id.time = perf_clock();
3261 perf_output_put(&handle, task_event->event_id);
3263 perf_output_end(&handle);
3266 static int perf_event_task_match(struct perf_event *event)
3268 if (event->attr.comm || event->attr.mmap || event->attr.task)
3269 return 1;
3271 return 0;
3274 static void perf_event_task_ctx(struct perf_event_context *ctx,
3275 struct perf_task_event *task_event)
3277 struct perf_event *event;
3279 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3280 if (perf_event_task_match(event))
3281 perf_event_task_output(event, task_event);
3285 static void perf_event_task_event(struct perf_task_event *task_event)
3287 struct perf_cpu_context *cpuctx;
3288 struct perf_event_context *ctx = task_event->task_ctx;
3290 rcu_read_lock();
3291 cpuctx = &get_cpu_var(perf_cpu_context);
3292 perf_event_task_ctx(&cpuctx->ctx, task_event);
3293 put_cpu_var(perf_cpu_context);
3295 if (!ctx)
3296 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3297 if (ctx)
3298 perf_event_task_ctx(ctx, task_event);
3299 rcu_read_unlock();
3302 static void perf_event_task(struct task_struct *task,
3303 struct perf_event_context *task_ctx,
3304 int new)
3306 struct perf_task_event task_event;
3308 if (!atomic_read(&nr_comm_events) &&
3309 !atomic_read(&nr_mmap_events) &&
3310 !atomic_read(&nr_task_events))
3311 return;
3313 task_event = (struct perf_task_event){
3314 .task = task,
3315 .task_ctx = task_ctx,
3316 .event_id = {
3317 .header = {
3318 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3319 .misc = 0,
3320 .size = sizeof(task_event.event_id),
3322 /* .pid */
3323 /* .ppid */
3324 /* .tid */
3325 /* .ptid */
3329 perf_event_task_event(&task_event);
3332 void perf_event_fork(struct task_struct *task)
3334 perf_event_task(task, NULL, 1);
3338 * comm tracking
3341 struct perf_comm_event {
3342 struct task_struct *task;
3343 char *comm;
3344 int comm_size;
3346 struct {
3347 struct perf_event_header header;
3349 u32 pid;
3350 u32 tid;
3351 } event_id;
3354 static void perf_event_comm_output(struct perf_event *event,
3355 struct perf_comm_event *comm_event)
3357 struct perf_output_handle handle;
3358 int size = comm_event->event_id.header.size;
3359 int ret = perf_output_begin(&handle, event, size, 0, 0);
3361 if (ret)
3362 return;
3364 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3365 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3367 perf_output_put(&handle, comm_event->event_id);
3368 perf_output_copy(&handle, comm_event->comm,
3369 comm_event->comm_size);
3370 perf_output_end(&handle);
3373 static int perf_event_comm_match(struct perf_event *event)
3375 if (event->attr.comm)
3376 return 1;
3378 return 0;
3381 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3382 struct perf_comm_event *comm_event)
3384 struct perf_event *event;
3386 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3387 if (perf_event_comm_match(event))
3388 perf_event_comm_output(event, comm_event);
3392 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3394 struct perf_cpu_context *cpuctx;
3395 struct perf_event_context *ctx;
3396 unsigned int size;
3397 char comm[TASK_COMM_LEN];
3399 memset(comm, 0, sizeof(comm));
3400 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3401 size = ALIGN(strlen(comm)+1, sizeof(u64));
3403 comm_event->comm = comm;
3404 comm_event->comm_size = size;
3406 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3408 rcu_read_lock();
3409 cpuctx = &get_cpu_var(perf_cpu_context);
3410 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3411 put_cpu_var(perf_cpu_context);
3414 * doesn't really matter which of the child contexts the
3415 * events ends up in.
3417 ctx = rcu_dereference(current->perf_event_ctxp);
3418 if (ctx)
3419 perf_event_comm_ctx(ctx, comm_event);
3420 rcu_read_unlock();
3423 void perf_event_comm(struct task_struct *task)
3425 struct perf_comm_event comm_event;
3427 if (task->perf_event_ctxp)
3428 perf_event_enable_on_exec(task);
3430 if (!atomic_read(&nr_comm_events))
3431 return;
3433 comm_event = (struct perf_comm_event){
3434 .task = task,
3435 /* .comm */
3436 /* .comm_size */
3437 .event_id = {
3438 .header = {
3439 .type = PERF_RECORD_COMM,
3440 .misc = 0,
3441 /* .size */
3443 /* .pid */
3444 /* .tid */
3448 perf_event_comm_event(&comm_event);
3452 * mmap tracking
3455 struct perf_mmap_event {
3456 struct vm_area_struct *vma;
3458 const char *file_name;
3459 int file_size;
3461 struct {
3462 struct perf_event_header header;
3464 u32 pid;
3465 u32 tid;
3466 u64 start;
3467 u64 len;
3468 u64 pgoff;
3469 } event_id;
3472 static void perf_event_mmap_output(struct perf_event *event,
3473 struct perf_mmap_event *mmap_event)
3475 struct perf_output_handle handle;
3476 int size = mmap_event->event_id.header.size;
3477 int ret = perf_output_begin(&handle, event, size, 0, 0);
3479 if (ret)
3480 return;
3482 mmap_event->event_id.pid = perf_event_pid(event, current);
3483 mmap_event->event_id.tid = perf_event_tid(event, current);
3485 perf_output_put(&handle, mmap_event->event_id);
3486 perf_output_copy(&handle, mmap_event->file_name,
3487 mmap_event->file_size);
3488 perf_output_end(&handle);
3491 static int perf_event_mmap_match(struct perf_event *event,
3492 struct perf_mmap_event *mmap_event)
3494 if (event->attr.mmap)
3495 return 1;
3497 return 0;
3500 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3501 struct perf_mmap_event *mmap_event)
3503 struct perf_event *event;
3505 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3506 if (perf_event_mmap_match(event, mmap_event))
3507 perf_event_mmap_output(event, mmap_event);
3511 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3513 struct perf_cpu_context *cpuctx;
3514 struct perf_event_context *ctx;
3515 struct vm_area_struct *vma = mmap_event->vma;
3516 struct file *file = vma->vm_file;
3517 unsigned int size;
3518 char tmp[16];
3519 char *buf = NULL;
3520 const char *name;
3522 memset(tmp, 0, sizeof(tmp));
3524 if (file) {
3526 * d_path works from the end of the buffer backwards, so we
3527 * need to add enough zero bytes after the string to handle
3528 * the 64bit alignment we do later.
3530 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3531 if (!buf) {
3532 name = strncpy(tmp, "//enomem", sizeof(tmp));
3533 goto got_name;
3535 name = d_path(&file->f_path, buf, PATH_MAX);
3536 if (IS_ERR(name)) {
3537 name = strncpy(tmp, "//toolong", sizeof(tmp));
3538 goto got_name;
3540 } else {
3541 if (arch_vma_name(mmap_event->vma)) {
3542 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3543 sizeof(tmp));
3544 goto got_name;
3547 if (!vma->vm_mm) {
3548 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3549 goto got_name;
3552 name = strncpy(tmp, "//anon", sizeof(tmp));
3553 goto got_name;
3556 got_name:
3557 size = ALIGN(strlen(name)+1, sizeof(u64));
3559 mmap_event->file_name = name;
3560 mmap_event->file_size = size;
3562 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3564 rcu_read_lock();
3565 cpuctx = &get_cpu_var(perf_cpu_context);
3566 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3567 put_cpu_var(perf_cpu_context);
3570 * doesn't really matter which of the child contexts the
3571 * events ends up in.
3573 ctx = rcu_dereference(current->perf_event_ctxp);
3574 if (ctx)
3575 perf_event_mmap_ctx(ctx, mmap_event);
3576 rcu_read_unlock();
3578 kfree(buf);
3581 void __perf_event_mmap(struct vm_area_struct *vma)
3583 struct perf_mmap_event mmap_event;
3585 if (!atomic_read(&nr_mmap_events))
3586 return;
3588 mmap_event = (struct perf_mmap_event){
3589 .vma = vma,
3590 /* .file_name */
3591 /* .file_size */
3592 .event_id = {
3593 .header = {
3594 .type = PERF_RECORD_MMAP,
3595 .misc = 0,
3596 /* .size */
3598 /* .pid */
3599 /* .tid */
3600 .start = vma->vm_start,
3601 .len = vma->vm_end - vma->vm_start,
3602 .pgoff = vma->vm_pgoff,
3606 perf_event_mmap_event(&mmap_event);
3610 * IRQ throttle logging
3613 static void perf_log_throttle(struct perf_event *event, int enable)
3615 struct perf_output_handle handle;
3616 int ret;
3618 struct {
3619 struct perf_event_header header;
3620 u64 time;
3621 u64 id;
3622 u64 stream_id;
3623 } throttle_event = {
3624 .header = {
3625 .type = PERF_RECORD_THROTTLE,
3626 .misc = 0,
3627 .size = sizeof(throttle_event),
3629 .time = perf_clock(),
3630 .id = primary_event_id(event),
3631 .stream_id = event->id,
3634 if (enable)
3635 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3637 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3638 if (ret)
3639 return;
3641 perf_output_put(&handle, throttle_event);
3642 perf_output_end(&handle);
3646 * Generic event overflow handling, sampling.
3649 static int __perf_event_overflow(struct perf_event *event, int nmi,
3650 int throttle, struct perf_sample_data *data,
3651 struct pt_regs *regs)
3653 int events = atomic_read(&event->event_limit);
3654 struct hw_perf_event *hwc = &event->hw;
3655 int ret = 0;
3657 throttle = (throttle && event->pmu->unthrottle != NULL);
3659 if (!throttle) {
3660 hwc->interrupts++;
3661 } else {
3662 if (hwc->interrupts != MAX_INTERRUPTS) {
3663 hwc->interrupts++;
3664 if (HZ * hwc->interrupts >
3665 (u64)sysctl_perf_event_sample_rate) {
3666 hwc->interrupts = MAX_INTERRUPTS;
3667 perf_log_throttle(event, 0);
3668 ret = 1;
3670 } else {
3672 * Keep re-disabling events even though on the previous
3673 * pass we disabled it - just in case we raced with a
3674 * sched-in and the event got enabled again:
3676 ret = 1;
3680 if (event->attr.freq) {
3681 u64 now = perf_clock();
3682 s64 delta = now - hwc->freq_stamp;
3684 hwc->freq_stamp = now;
3686 if (delta > 0 && delta < TICK_NSEC)
3687 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3691 * XXX event_limit might not quite work as expected on inherited
3692 * events
3695 event->pending_kill = POLL_IN;
3696 if (events && atomic_dec_and_test(&event->event_limit)) {
3697 ret = 1;
3698 event->pending_kill = POLL_HUP;
3699 if (nmi) {
3700 event->pending_disable = 1;
3701 perf_pending_queue(&event->pending,
3702 perf_pending_event);
3703 } else
3704 perf_event_disable(event);
3707 if (event->overflow_handler)
3708 event->overflow_handler(event, nmi, data, regs);
3709 else
3710 perf_event_output(event, nmi, data, regs);
3712 return ret;
3715 int perf_event_overflow(struct perf_event *event, int nmi,
3716 struct perf_sample_data *data,
3717 struct pt_regs *regs)
3719 return __perf_event_overflow(event, nmi, 1, data, regs);
3723 * Generic software event infrastructure
3727 * We directly increment event->count and keep a second value in
3728 * event->hw.period_left to count intervals. This period event
3729 * is kept in the range [-sample_period, 0] so that we can use the
3730 * sign as trigger.
3733 static u64 perf_swevent_set_period(struct perf_event *event)
3735 struct hw_perf_event *hwc = &event->hw;
3736 u64 period = hwc->last_period;
3737 u64 nr, offset;
3738 s64 old, val;
3740 hwc->last_period = hwc->sample_period;
3742 again:
3743 old = val = atomic64_read(&hwc->period_left);
3744 if (val < 0)
3745 return 0;
3747 nr = div64_u64(period + val, period);
3748 offset = nr * period;
3749 val -= offset;
3750 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3751 goto again;
3753 return nr;
3756 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3757 int nmi, struct perf_sample_data *data,
3758 struct pt_regs *regs)
3760 struct hw_perf_event *hwc = &event->hw;
3761 int throttle = 0;
3763 data->period = event->hw.last_period;
3764 if (!overflow)
3765 overflow = perf_swevent_set_period(event);
3767 if (hwc->interrupts == MAX_INTERRUPTS)
3768 return;
3770 for (; overflow; overflow--) {
3771 if (__perf_event_overflow(event, nmi, throttle,
3772 data, regs)) {
3774 * We inhibit the overflow from happening when
3775 * hwc->interrupts == MAX_INTERRUPTS.
3777 break;
3779 throttle = 1;
3783 static void perf_swevent_unthrottle(struct perf_event *event)
3786 * Nothing to do, we already reset hwc->interrupts.
3790 static void perf_swevent_add(struct perf_event *event, u64 nr,
3791 int nmi, struct perf_sample_data *data,
3792 struct pt_regs *regs)
3794 struct hw_perf_event *hwc = &event->hw;
3796 atomic64_add(nr, &event->count);
3798 if (!regs)
3799 return;
3801 if (!hwc->sample_period)
3802 return;
3804 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3805 return perf_swevent_overflow(event, 1, nmi, data, regs);
3807 if (atomic64_add_negative(nr, &hwc->period_left))
3808 return;
3810 perf_swevent_overflow(event, 0, nmi, data, regs);
3813 static int perf_swevent_is_counting(struct perf_event *event)
3816 * The event is active, we're good!
3818 if (event->state == PERF_EVENT_STATE_ACTIVE)
3819 return 1;
3822 * The event is off/error, not counting.
3824 if (event->state != PERF_EVENT_STATE_INACTIVE)
3825 return 0;
3828 * The event is inactive, if the context is active
3829 * we're part of a group that didn't make it on the 'pmu',
3830 * not counting.
3832 if (event->ctx->is_active)
3833 return 0;
3836 * We're inactive and the context is too, this means the
3837 * task is scheduled out, we're counting events that happen
3838 * to us, like migration events.
3840 return 1;
3843 static int perf_tp_event_match(struct perf_event *event,
3844 struct perf_sample_data *data);
3846 static int perf_exclude_event(struct perf_event *event,
3847 struct pt_regs *regs)
3849 if (regs) {
3850 if (event->attr.exclude_user && user_mode(regs))
3851 return 1;
3853 if (event->attr.exclude_kernel && !user_mode(regs))
3854 return 1;
3857 return 0;
3860 static int perf_swevent_match(struct perf_event *event,
3861 enum perf_type_id type,
3862 u32 event_id,
3863 struct perf_sample_data *data,
3864 struct pt_regs *regs)
3866 if (!perf_swevent_is_counting(event))
3867 return 0;
3869 if (event->attr.type != type)
3870 return 0;
3872 if (event->attr.config != event_id)
3873 return 0;
3875 if (perf_exclude_event(event, regs))
3876 return 0;
3878 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3879 !perf_tp_event_match(event, data))
3880 return 0;
3882 return 1;
3885 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3886 enum perf_type_id type,
3887 u32 event_id, u64 nr, int nmi,
3888 struct perf_sample_data *data,
3889 struct pt_regs *regs)
3891 struct perf_event *event;
3893 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3894 if (perf_swevent_match(event, type, event_id, data, regs))
3895 perf_swevent_add(event, nr, nmi, data, regs);
3899 int perf_swevent_get_recursion_context(void)
3901 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3902 int rctx;
3904 if (in_nmi())
3905 rctx = 3;
3906 else if (in_irq())
3907 rctx = 2;
3908 else if (in_softirq())
3909 rctx = 1;
3910 else
3911 rctx = 0;
3913 if (cpuctx->recursion[rctx]) {
3914 put_cpu_var(perf_cpu_context);
3915 return -1;
3918 cpuctx->recursion[rctx]++;
3919 barrier();
3921 return rctx;
3923 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
3925 void perf_swevent_put_recursion_context(int rctx)
3927 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3928 barrier();
3929 cpuctx->recursion[rctx]--;
3930 put_cpu_var(perf_cpu_context);
3932 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
3934 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3935 u64 nr, int nmi,
3936 struct perf_sample_data *data,
3937 struct pt_regs *regs)
3939 struct perf_cpu_context *cpuctx;
3940 struct perf_event_context *ctx;
3942 cpuctx = &__get_cpu_var(perf_cpu_context);
3943 rcu_read_lock();
3944 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3945 nr, nmi, data, regs);
3947 * doesn't really matter which of the child contexts the
3948 * events ends up in.
3950 ctx = rcu_dereference(current->perf_event_ctxp);
3951 if (ctx)
3952 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3953 rcu_read_unlock();
3956 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3957 struct pt_regs *regs, u64 addr)
3959 struct perf_sample_data data;
3960 int rctx;
3962 rctx = perf_swevent_get_recursion_context();
3963 if (rctx < 0)
3964 return;
3966 data.addr = addr;
3967 data.raw = NULL;
3969 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3971 perf_swevent_put_recursion_context(rctx);
3974 static void perf_swevent_read(struct perf_event *event)
3978 static int perf_swevent_enable(struct perf_event *event)
3980 struct hw_perf_event *hwc = &event->hw;
3982 if (hwc->sample_period) {
3983 hwc->last_period = hwc->sample_period;
3984 perf_swevent_set_period(event);
3986 return 0;
3989 static void perf_swevent_disable(struct perf_event *event)
3993 static const struct pmu perf_ops_generic = {
3994 .enable = perf_swevent_enable,
3995 .disable = perf_swevent_disable,
3996 .read = perf_swevent_read,
3997 .unthrottle = perf_swevent_unthrottle,
4001 * hrtimer based swevent callback
4004 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4006 enum hrtimer_restart ret = HRTIMER_RESTART;
4007 struct perf_sample_data data;
4008 struct pt_regs *regs;
4009 struct perf_event *event;
4010 u64 period;
4012 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4013 event->pmu->read(event);
4015 data.addr = 0;
4016 data.raw = NULL;
4017 data.period = event->hw.last_period;
4018 regs = get_irq_regs();
4020 * In case we exclude kernel IPs or are somehow not in interrupt
4021 * context, provide the next best thing, the user IP.
4023 if ((event->attr.exclude_kernel || !regs) &&
4024 !event->attr.exclude_user)
4025 regs = task_pt_regs(current);
4027 if (regs) {
4028 if (!(event->attr.exclude_idle && current->pid == 0))
4029 if (perf_event_overflow(event, 0, &data, regs))
4030 ret = HRTIMER_NORESTART;
4033 period = max_t(u64, 10000, event->hw.sample_period);
4034 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4036 return ret;
4039 static void perf_swevent_start_hrtimer(struct perf_event *event)
4041 struct hw_perf_event *hwc = &event->hw;
4043 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4044 hwc->hrtimer.function = perf_swevent_hrtimer;
4045 if (hwc->sample_period) {
4046 u64 period;
4048 if (hwc->remaining) {
4049 if (hwc->remaining < 0)
4050 period = 10000;
4051 else
4052 period = hwc->remaining;
4053 hwc->remaining = 0;
4054 } else {
4055 period = max_t(u64, 10000, hwc->sample_period);
4057 __hrtimer_start_range_ns(&hwc->hrtimer,
4058 ns_to_ktime(period), 0,
4059 HRTIMER_MODE_REL, 0);
4063 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4065 struct hw_perf_event *hwc = &event->hw;
4067 if (hwc->sample_period) {
4068 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4069 hwc->remaining = ktime_to_ns(remaining);
4071 hrtimer_cancel(&hwc->hrtimer);
4076 * Software event: cpu wall time clock
4079 static void cpu_clock_perf_event_update(struct perf_event *event)
4081 int cpu = raw_smp_processor_id();
4082 s64 prev;
4083 u64 now;
4085 now = cpu_clock(cpu);
4086 prev = atomic64_xchg(&event->hw.prev_count, now);
4087 atomic64_add(now - prev, &event->count);
4090 static int cpu_clock_perf_event_enable(struct perf_event *event)
4092 struct hw_perf_event *hwc = &event->hw;
4093 int cpu = raw_smp_processor_id();
4095 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4096 perf_swevent_start_hrtimer(event);
4098 return 0;
4101 static void cpu_clock_perf_event_disable(struct perf_event *event)
4103 perf_swevent_cancel_hrtimer(event);
4104 cpu_clock_perf_event_update(event);
4107 static void cpu_clock_perf_event_read(struct perf_event *event)
4109 cpu_clock_perf_event_update(event);
4112 static const struct pmu perf_ops_cpu_clock = {
4113 .enable = cpu_clock_perf_event_enable,
4114 .disable = cpu_clock_perf_event_disable,
4115 .read = cpu_clock_perf_event_read,
4119 * Software event: task time clock
4122 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4124 u64 prev;
4125 s64 delta;
4127 prev = atomic64_xchg(&event->hw.prev_count, now);
4128 delta = now - prev;
4129 atomic64_add(delta, &event->count);
4132 static int task_clock_perf_event_enable(struct perf_event *event)
4134 struct hw_perf_event *hwc = &event->hw;
4135 u64 now;
4137 now = event->ctx->time;
4139 atomic64_set(&hwc->prev_count, now);
4141 perf_swevent_start_hrtimer(event);
4143 return 0;
4146 static void task_clock_perf_event_disable(struct perf_event *event)
4148 perf_swevent_cancel_hrtimer(event);
4149 task_clock_perf_event_update(event, event->ctx->time);
4153 static void task_clock_perf_event_read(struct perf_event *event)
4155 u64 time;
4157 if (!in_nmi()) {
4158 update_context_time(event->ctx);
4159 time = event->ctx->time;
4160 } else {
4161 u64 now = perf_clock();
4162 u64 delta = now - event->ctx->timestamp;
4163 time = event->ctx->time + delta;
4166 task_clock_perf_event_update(event, time);
4169 static const struct pmu perf_ops_task_clock = {
4170 .enable = task_clock_perf_event_enable,
4171 .disable = task_clock_perf_event_disable,
4172 .read = task_clock_perf_event_read,
4175 #ifdef CONFIG_EVENT_PROFILE
4177 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4178 int entry_size)
4180 struct perf_raw_record raw = {
4181 .size = entry_size,
4182 .data = record,
4185 struct perf_sample_data data = {
4186 .addr = addr,
4187 .raw = &raw,
4190 struct pt_regs *regs = get_irq_regs();
4192 if (!regs)
4193 regs = task_pt_regs(current);
4195 /* Trace events already protected against recursion */
4196 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4197 &data, regs);
4199 EXPORT_SYMBOL_GPL(perf_tp_event);
4201 static int perf_tp_event_match(struct perf_event *event,
4202 struct perf_sample_data *data)
4204 void *record = data->raw->data;
4206 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4207 return 1;
4208 return 0;
4211 static void tp_perf_event_destroy(struct perf_event *event)
4213 ftrace_profile_disable(event->attr.config);
4216 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4219 * Raw tracepoint data is a severe data leak, only allow root to
4220 * have these.
4222 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4223 perf_paranoid_tracepoint_raw() &&
4224 !capable(CAP_SYS_ADMIN))
4225 return ERR_PTR(-EPERM);
4227 if (ftrace_profile_enable(event->attr.config))
4228 return NULL;
4230 event->destroy = tp_perf_event_destroy;
4232 return &perf_ops_generic;
4235 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4237 char *filter_str;
4238 int ret;
4240 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4241 return -EINVAL;
4243 filter_str = strndup_user(arg, PAGE_SIZE);
4244 if (IS_ERR(filter_str))
4245 return PTR_ERR(filter_str);
4247 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4249 kfree(filter_str);
4250 return ret;
4253 static void perf_event_free_filter(struct perf_event *event)
4255 ftrace_profile_free_filter(event);
4258 #else
4260 static int perf_tp_event_match(struct perf_event *event,
4261 struct perf_sample_data *data)
4263 return 1;
4266 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4268 return NULL;
4271 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4273 return -ENOENT;
4276 static void perf_event_free_filter(struct perf_event *event)
4280 #endif /* CONFIG_EVENT_PROFILE */
4282 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4283 static void bp_perf_event_destroy(struct perf_event *event)
4285 release_bp_slot(event);
4288 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4290 int err;
4292 err = register_perf_hw_breakpoint(bp);
4293 if (err)
4294 return ERR_PTR(err);
4296 bp->destroy = bp_perf_event_destroy;
4298 return &perf_ops_bp;
4301 void perf_bp_event(struct perf_event *bp, void *data)
4303 struct perf_sample_data sample;
4304 struct pt_regs *regs = data;
4306 sample.raw = NULL;
4307 sample.addr = bp->attr.bp_addr;
4309 if (!perf_exclude_event(bp, regs))
4310 perf_swevent_add(bp, 1, 1, &sample, regs);
4312 #else
4313 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4315 return NULL;
4318 void perf_bp_event(struct perf_event *bp, void *regs)
4321 #endif
4323 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4325 static void sw_perf_event_destroy(struct perf_event *event)
4327 u64 event_id = event->attr.config;
4329 WARN_ON(event->parent);
4331 atomic_dec(&perf_swevent_enabled[event_id]);
4334 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4336 const struct pmu *pmu = NULL;
4337 u64 event_id = event->attr.config;
4340 * Software events (currently) can't in general distinguish
4341 * between user, kernel and hypervisor events.
4342 * However, context switches and cpu migrations are considered
4343 * to be kernel events, and page faults are never hypervisor
4344 * events.
4346 switch (event_id) {
4347 case PERF_COUNT_SW_CPU_CLOCK:
4348 pmu = &perf_ops_cpu_clock;
4350 break;
4351 case PERF_COUNT_SW_TASK_CLOCK:
4353 * If the user instantiates this as a per-cpu event,
4354 * use the cpu_clock event instead.
4356 if (event->ctx->task)
4357 pmu = &perf_ops_task_clock;
4358 else
4359 pmu = &perf_ops_cpu_clock;
4361 break;
4362 case PERF_COUNT_SW_PAGE_FAULTS:
4363 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4364 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4365 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4366 case PERF_COUNT_SW_CPU_MIGRATIONS:
4367 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4368 case PERF_COUNT_SW_EMULATION_FAULTS:
4369 if (!event->parent) {
4370 atomic_inc(&perf_swevent_enabled[event_id]);
4371 event->destroy = sw_perf_event_destroy;
4373 pmu = &perf_ops_generic;
4374 break;
4377 return pmu;
4381 * Allocate and initialize a event structure
4383 static struct perf_event *
4384 perf_event_alloc(struct perf_event_attr *attr,
4385 int cpu,
4386 struct perf_event_context *ctx,
4387 struct perf_event *group_leader,
4388 struct perf_event *parent_event,
4389 perf_overflow_handler_t overflow_handler,
4390 gfp_t gfpflags)
4392 const struct pmu *pmu;
4393 struct perf_event *event;
4394 struct hw_perf_event *hwc;
4395 long err;
4397 event = kzalloc(sizeof(*event), gfpflags);
4398 if (!event)
4399 return ERR_PTR(-ENOMEM);
4402 * Single events are their own group leaders, with an
4403 * empty sibling list:
4405 if (!group_leader)
4406 group_leader = event;
4408 mutex_init(&event->child_mutex);
4409 INIT_LIST_HEAD(&event->child_list);
4411 INIT_LIST_HEAD(&event->group_entry);
4412 INIT_LIST_HEAD(&event->event_entry);
4413 INIT_LIST_HEAD(&event->sibling_list);
4414 init_waitqueue_head(&event->waitq);
4416 mutex_init(&event->mmap_mutex);
4418 event->cpu = cpu;
4419 event->attr = *attr;
4420 event->group_leader = group_leader;
4421 event->pmu = NULL;
4422 event->ctx = ctx;
4423 event->oncpu = -1;
4425 event->parent = parent_event;
4427 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4428 event->id = atomic64_inc_return(&perf_event_id);
4430 event->state = PERF_EVENT_STATE_INACTIVE;
4432 if (!overflow_handler && parent_event)
4433 overflow_handler = parent_event->overflow_handler;
4435 event->overflow_handler = overflow_handler;
4437 if (attr->disabled)
4438 event->state = PERF_EVENT_STATE_OFF;
4440 pmu = NULL;
4442 hwc = &event->hw;
4443 hwc->sample_period = attr->sample_period;
4444 if (attr->freq && attr->sample_freq)
4445 hwc->sample_period = 1;
4446 hwc->last_period = hwc->sample_period;
4448 atomic64_set(&hwc->period_left, hwc->sample_period);
4451 * we currently do not support PERF_FORMAT_GROUP on inherited events
4453 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4454 goto done;
4456 switch (attr->type) {
4457 case PERF_TYPE_RAW:
4458 case PERF_TYPE_HARDWARE:
4459 case PERF_TYPE_HW_CACHE:
4460 pmu = hw_perf_event_init(event);
4461 break;
4463 case PERF_TYPE_SOFTWARE:
4464 pmu = sw_perf_event_init(event);
4465 break;
4467 case PERF_TYPE_TRACEPOINT:
4468 pmu = tp_perf_event_init(event);
4469 break;
4471 case PERF_TYPE_BREAKPOINT:
4472 pmu = bp_perf_event_init(event);
4473 break;
4476 default:
4477 break;
4479 done:
4480 err = 0;
4481 if (!pmu)
4482 err = -EINVAL;
4483 else if (IS_ERR(pmu))
4484 err = PTR_ERR(pmu);
4486 if (err) {
4487 if (event->ns)
4488 put_pid_ns(event->ns);
4489 kfree(event);
4490 return ERR_PTR(err);
4493 event->pmu = pmu;
4495 if (!event->parent) {
4496 atomic_inc(&nr_events);
4497 if (event->attr.mmap)
4498 atomic_inc(&nr_mmap_events);
4499 if (event->attr.comm)
4500 atomic_inc(&nr_comm_events);
4501 if (event->attr.task)
4502 atomic_inc(&nr_task_events);
4505 return event;
4508 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4509 struct perf_event_attr *attr)
4511 u32 size;
4512 int ret;
4514 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4515 return -EFAULT;
4518 * zero the full structure, so that a short copy will be nice.
4520 memset(attr, 0, sizeof(*attr));
4522 ret = get_user(size, &uattr->size);
4523 if (ret)
4524 return ret;
4526 if (size > PAGE_SIZE) /* silly large */
4527 goto err_size;
4529 if (!size) /* abi compat */
4530 size = PERF_ATTR_SIZE_VER0;
4532 if (size < PERF_ATTR_SIZE_VER0)
4533 goto err_size;
4536 * If we're handed a bigger struct than we know of,
4537 * ensure all the unknown bits are 0 - i.e. new
4538 * user-space does not rely on any kernel feature
4539 * extensions we dont know about yet.
4541 if (size > sizeof(*attr)) {
4542 unsigned char __user *addr;
4543 unsigned char __user *end;
4544 unsigned char val;
4546 addr = (void __user *)uattr + sizeof(*attr);
4547 end = (void __user *)uattr + size;
4549 for (; addr < end; addr++) {
4550 ret = get_user(val, addr);
4551 if (ret)
4552 return ret;
4553 if (val)
4554 goto err_size;
4556 size = sizeof(*attr);
4559 ret = copy_from_user(attr, uattr, size);
4560 if (ret)
4561 return -EFAULT;
4564 * If the type exists, the corresponding creation will verify
4565 * the attr->config.
4567 if (attr->type >= PERF_TYPE_MAX)
4568 return -EINVAL;
4570 if (attr->__reserved_1 || attr->__reserved_2)
4571 return -EINVAL;
4573 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4574 return -EINVAL;
4576 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4577 return -EINVAL;
4579 out:
4580 return ret;
4582 err_size:
4583 put_user(sizeof(*attr), &uattr->size);
4584 ret = -E2BIG;
4585 goto out;
4588 static int perf_event_set_output(struct perf_event *event, int output_fd)
4590 struct perf_event *output_event = NULL;
4591 struct file *output_file = NULL;
4592 struct perf_event *old_output;
4593 int fput_needed = 0;
4594 int ret = -EINVAL;
4596 if (!output_fd)
4597 goto set;
4599 output_file = fget_light(output_fd, &fput_needed);
4600 if (!output_file)
4601 return -EBADF;
4603 if (output_file->f_op != &perf_fops)
4604 goto out;
4606 output_event = output_file->private_data;
4608 /* Don't chain output fds */
4609 if (output_event->output)
4610 goto out;
4612 /* Don't set an output fd when we already have an output channel */
4613 if (event->data)
4614 goto out;
4616 atomic_long_inc(&output_file->f_count);
4618 set:
4619 mutex_lock(&event->mmap_mutex);
4620 old_output = event->output;
4621 rcu_assign_pointer(event->output, output_event);
4622 mutex_unlock(&event->mmap_mutex);
4624 if (old_output) {
4626 * we need to make sure no existing perf_output_*()
4627 * is still referencing this event.
4629 synchronize_rcu();
4630 fput(old_output->filp);
4633 ret = 0;
4634 out:
4635 fput_light(output_file, fput_needed);
4636 return ret;
4640 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4642 * @attr_uptr: event_id type attributes for monitoring/sampling
4643 * @pid: target pid
4644 * @cpu: target cpu
4645 * @group_fd: group leader event fd
4647 SYSCALL_DEFINE5(perf_event_open,
4648 struct perf_event_attr __user *, attr_uptr,
4649 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4651 struct perf_event *event, *group_leader;
4652 struct perf_event_attr attr;
4653 struct perf_event_context *ctx;
4654 struct file *event_file = NULL;
4655 struct file *group_file = NULL;
4656 int fput_needed = 0;
4657 int fput_needed2 = 0;
4658 int err;
4660 /* for future expandability... */
4661 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4662 return -EINVAL;
4664 err = perf_copy_attr(attr_uptr, &attr);
4665 if (err)
4666 return err;
4668 if (!attr.exclude_kernel) {
4669 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4670 return -EACCES;
4673 if (attr.freq) {
4674 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4675 return -EINVAL;
4679 * Get the target context (task or percpu):
4681 ctx = find_get_context(pid, cpu);
4682 if (IS_ERR(ctx))
4683 return PTR_ERR(ctx);
4686 * Look up the group leader (we will attach this event to it):
4688 group_leader = NULL;
4689 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4690 err = -EINVAL;
4691 group_file = fget_light(group_fd, &fput_needed);
4692 if (!group_file)
4693 goto err_put_context;
4694 if (group_file->f_op != &perf_fops)
4695 goto err_put_context;
4697 group_leader = group_file->private_data;
4699 * Do not allow a recursive hierarchy (this new sibling
4700 * becoming part of another group-sibling):
4702 if (group_leader->group_leader != group_leader)
4703 goto err_put_context;
4705 * Do not allow to attach to a group in a different
4706 * task or CPU context:
4708 if (group_leader->ctx != ctx)
4709 goto err_put_context;
4711 * Only a group leader can be exclusive or pinned
4713 if (attr.exclusive || attr.pinned)
4714 goto err_put_context;
4717 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4718 NULL, NULL, GFP_KERNEL);
4719 err = PTR_ERR(event);
4720 if (IS_ERR(event))
4721 goto err_put_context;
4723 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4724 if (err < 0)
4725 goto err_free_put_context;
4727 event_file = fget_light(err, &fput_needed2);
4728 if (!event_file)
4729 goto err_free_put_context;
4731 if (flags & PERF_FLAG_FD_OUTPUT) {
4732 err = perf_event_set_output(event, group_fd);
4733 if (err)
4734 goto err_fput_free_put_context;
4737 event->filp = event_file;
4738 WARN_ON_ONCE(ctx->parent_ctx);
4739 mutex_lock(&ctx->mutex);
4740 perf_install_in_context(ctx, event, cpu);
4741 ++ctx->generation;
4742 mutex_unlock(&ctx->mutex);
4744 event->owner = current;
4745 get_task_struct(current);
4746 mutex_lock(&current->perf_event_mutex);
4747 list_add_tail(&event->owner_entry, &current->perf_event_list);
4748 mutex_unlock(&current->perf_event_mutex);
4750 err_fput_free_put_context:
4751 fput_light(event_file, fput_needed2);
4753 err_free_put_context:
4754 if (err < 0)
4755 kfree(event);
4757 err_put_context:
4758 if (err < 0)
4759 put_ctx(ctx);
4761 fput_light(group_file, fput_needed);
4763 return err;
4767 * perf_event_create_kernel_counter
4769 * @attr: attributes of the counter to create
4770 * @cpu: cpu in which the counter is bound
4771 * @pid: task to profile
4773 struct perf_event *
4774 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4775 pid_t pid,
4776 perf_overflow_handler_t overflow_handler)
4778 struct perf_event *event;
4779 struct perf_event_context *ctx;
4780 int err;
4783 * Get the target context (task or percpu):
4786 ctx = find_get_context(pid, cpu);
4787 if (IS_ERR(ctx)) {
4788 err = PTR_ERR(ctx);
4789 goto err_exit;
4792 event = perf_event_alloc(attr, cpu, ctx, NULL,
4793 NULL, overflow_handler, GFP_KERNEL);
4794 if (IS_ERR(event)) {
4795 err = PTR_ERR(event);
4796 goto err_put_context;
4799 event->filp = NULL;
4800 WARN_ON_ONCE(ctx->parent_ctx);
4801 mutex_lock(&ctx->mutex);
4802 perf_install_in_context(ctx, event, cpu);
4803 ++ctx->generation;
4804 mutex_unlock(&ctx->mutex);
4806 event->owner = current;
4807 get_task_struct(current);
4808 mutex_lock(&current->perf_event_mutex);
4809 list_add_tail(&event->owner_entry, &current->perf_event_list);
4810 mutex_unlock(&current->perf_event_mutex);
4812 return event;
4814 err_put_context:
4815 put_ctx(ctx);
4816 err_exit:
4817 return ERR_PTR(err);
4819 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4822 * inherit a event from parent task to child task:
4824 static struct perf_event *
4825 inherit_event(struct perf_event *parent_event,
4826 struct task_struct *parent,
4827 struct perf_event_context *parent_ctx,
4828 struct task_struct *child,
4829 struct perf_event *group_leader,
4830 struct perf_event_context *child_ctx)
4832 struct perf_event *child_event;
4835 * Instead of creating recursive hierarchies of events,
4836 * we link inherited events back to the original parent,
4837 * which has a filp for sure, which we use as the reference
4838 * count:
4840 if (parent_event->parent)
4841 parent_event = parent_event->parent;
4843 child_event = perf_event_alloc(&parent_event->attr,
4844 parent_event->cpu, child_ctx,
4845 group_leader, parent_event,
4846 NULL, GFP_KERNEL);
4847 if (IS_ERR(child_event))
4848 return child_event;
4849 get_ctx(child_ctx);
4852 * Make the child state follow the state of the parent event,
4853 * not its attr.disabled bit. We hold the parent's mutex,
4854 * so we won't race with perf_event_{en, dis}able_family.
4856 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4857 child_event->state = PERF_EVENT_STATE_INACTIVE;
4858 else
4859 child_event->state = PERF_EVENT_STATE_OFF;
4861 if (parent_event->attr.freq)
4862 child_event->hw.sample_period = parent_event->hw.sample_period;
4864 child_event->overflow_handler = parent_event->overflow_handler;
4867 * Link it up in the child's context:
4869 add_event_to_ctx(child_event, child_ctx);
4872 * Get a reference to the parent filp - we will fput it
4873 * when the child event exits. This is safe to do because
4874 * we are in the parent and we know that the filp still
4875 * exists and has a nonzero count:
4877 atomic_long_inc(&parent_event->filp->f_count);
4880 * Link this into the parent event's child list
4882 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4883 mutex_lock(&parent_event->child_mutex);
4884 list_add_tail(&child_event->child_list, &parent_event->child_list);
4885 mutex_unlock(&parent_event->child_mutex);
4887 return child_event;
4890 static int inherit_group(struct perf_event *parent_event,
4891 struct task_struct *parent,
4892 struct perf_event_context *parent_ctx,
4893 struct task_struct *child,
4894 struct perf_event_context *child_ctx)
4896 struct perf_event *leader;
4897 struct perf_event *sub;
4898 struct perf_event *child_ctr;
4900 leader = inherit_event(parent_event, parent, parent_ctx,
4901 child, NULL, child_ctx);
4902 if (IS_ERR(leader))
4903 return PTR_ERR(leader);
4904 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4905 child_ctr = inherit_event(sub, parent, parent_ctx,
4906 child, leader, child_ctx);
4907 if (IS_ERR(child_ctr))
4908 return PTR_ERR(child_ctr);
4910 return 0;
4913 static void sync_child_event(struct perf_event *child_event,
4914 struct task_struct *child)
4916 struct perf_event *parent_event = child_event->parent;
4917 u64 child_val;
4919 if (child_event->attr.inherit_stat)
4920 perf_event_read_event(child_event, child);
4922 child_val = atomic64_read(&child_event->count);
4925 * Add back the child's count to the parent's count:
4927 atomic64_add(child_val, &parent_event->count);
4928 atomic64_add(child_event->total_time_enabled,
4929 &parent_event->child_total_time_enabled);
4930 atomic64_add(child_event->total_time_running,
4931 &parent_event->child_total_time_running);
4934 * Remove this event from the parent's list
4936 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4937 mutex_lock(&parent_event->child_mutex);
4938 list_del_init(&child_event->child_list);
4939 mutex_unlock(&parent_event->child_mutex);
4942 * Release the parent event, if this was the last
4943 * reference to it.
4945 fput(parent_event->filp);
4948 static void
4949 __perf_event_exit_task(struct perf_event *child_event,
4950 struct perf_event_context *child_ctx,
4951 struct task_struct *child)
4953 struct perf_event *parent_event;
4955 perf_event_remove_from_context(child_event);
4957 parent_event = child_event->parent;
4959 * It can happen that parent exits first, and has events
4960 * that are still around due to the child reference. These
4961 * events need to be zapped - but otherwise linger.
4963 if (parent_event) {
4964 sync_child_event(child_event, child);
4965 free_event(child_event);
4970 * When a child task exits, feed back event values to parent events.
4972 void perf_event_exit_task(struct task_struct *child)
4974 struct perf_event *child_event, *tmp;
4975 struct perf_event_context *child_ctx;
4976 unsigned long flags;
4978 if (likely(!child->perf_event_ctxp)) {
4979 perf_event_task(child, NULL, 0);
4980 return;
4983 local_irq_save(flags);
4985 * We can't reschedule here because interrupts are disabled,
4986 * and either child is current or it is a task that can't be
4987 * scheduled, so we are now safe from rescheduling changing
4988 * our context.
4990 child_ctx = child->perf_event_ctxp;
4991 __perf_event_task_sched_out(child_ctx);
4994 * Take the context lock here so that if find_get_context is
4995 * reading child->perf_event_ctxp, we wait until it has
4996 * incremented the context's refcount before we do put_ctx below.
4998 raw_spin_lock(&child_ctx->lock);
4999 child->perf_event_ctxp = NULL;
5001 * If this context is a clone; unclone it so it can't get
5002 * swapped to another process while we're removing all
5003 * the events from it.
5005 unclone_ctx(child_ctx);
5006 update_context_time(child_ctx);
5007 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5010 * Report the task dead after unscheduling the events so that we
5011 * won't get any samples after PERF_RECORD_EXIT. We can however still
5012 * get a few PERF_RECORD_READ events.
5014 perf_event_task(child, child_ctx, 0);
5017 * We can recurse on the same lock type through:
5019 * __perf_event_exit_task()
5020 * sync_child_event()
5021 * fput(parent_event->filp)
5022 * perf_release()
5023 * mutex_lock(&ctx->mutex)
5025 * But since its the parent context it won't be the same instance.
5027 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5029 again:
5030 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5031 group_entry)
5032 __perf_event_exit_task(child_event, child_ctx, child);
5035 * If the last event was a group event, it will have appended all
5036 * its siblings to the list, but we obtained 'tmp' before that which
5037 * will still point to the list head terminating the iteration.
5039 if (!list_empty(&child_ctx->group_list))
5040 goto again;
5042 mutex_unlock(&child_ctx->mutex);
5044 put_ctx(child_ctx);
5048 * free an unexposed, unused context as created by inheritance by
5049 * init_task below, used by fork() in case of fail.
5051 void perf_event_free_task(struct task_struct *task)
5053 struct perf_event_context *ctx = task->perf_event_ctxp;
5054 struct perf_event *event, *tmp;
5056 if (!ctx)
5057 return;
5059 mutex_lock(&ctx->mutex);
5060 again:
5061 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5062 struct perf_event *parent = event->parent;
5064 if (WARN_ON_ONCE(!parent))
5065 continue;
5067 mutex_lock(&parent->child_mutex);
5068 list_del_init(&event->child_list);
5069 mutex_unlock(&parent->child_mutex);
5071 fput(parent->filp);
5073 list_del_event(event, ctx);
5074 free_event(event);
5077 if (!list_empty(&ctx->group_list))
5078 goto again;
5080 mutex_unlock(&ctx->mutex);
5082 put_ctx(ctx);
5086 * Initialize the perf_event context in task_struct
5088 int perf_event_init_task(struct task_struct *child)
5090 struct perf_event_context *child_ctx = NULL, *parent_ctx;
5091 struct perf_event_context *cloned_ctx;
5092 struct perf_event *event;
5093 struct task_struct *parent = current;
5094 int inherited_all = 1;
5095 int ret = 0;
5097 child->perf_event_ctxp = NULL;
5099 mutex_init(&child->perf_event_mutex);
5100 INIT_LIST_HEAD(&child->perf_event_list);
5102 if (likely(!parent->perf_event_ctxp))
5103 return 0;
5106 * If the parent's context is a clone, pin it so it won't get
5107 * swapped under us.
5109 parent_ctx = perf_pin_task_context(parent);
5112 * No need to check if parent_ctx != NULL here; since we saw
5113 * it non-NULL earlier, the only reason for it to become NULL
5114 * is if we exit, and since we're currently in the middle of
5115 * a fork we can't be exiting at the same time.
5119 * Lock the parent list. No need to lock the child - not PID
5120 * hashed yet and not running, so nobody can access it.
5122 mutex_lock(&parent_ctx->mutex);
5125 * We dont have to disable NMIs - we are only looking at
5126 * the list, not manipulating it:
5128 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5130 if (!event->attr.inherit) {
5131 inherited_all = 0;
5132 continue;
5135 if (!child->perf_event_ctxp) {
5137 * This is executed from the parent task context, so
5138 * inherit events that have been marked for cloning.
5139 * First allocate and initialize a context for the
5140 * child.
5143 child_ctx = kzalloc(sizeof(struct perf_event_context),
5144 GFP_KERNEL);
5145 if (!child_ctx) {
5146 ret = -ENOMEM;
5147 goto exit;
5150 __perf_event_init_context(child_ctx, child);
5151 child->perf_event_ctxp = child_ctx;
5152 get_task_struct(child);
5155 ret = inherit_group(event, parent, parent_ctx,
5156 child, child_ctx);
5157 if (ret) {
5158 inherited_all = 0;
5159 break;
5163 if (inherited_all) {
5165 * Mark the child context as a clone of the parent
5166 * context, or of whatever the parent is a clone of.
5167 * Note that if the parent is a clone, it could get
5168 * uncloned at any point, but that doesn't matter
5169 * because the list of events and the generation
5170 * count can't have changed since we took the mutex.
5172 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5173 if (cloned_ctx) {
5174 child_ctx->parent_ctx = cloned_ctx;
5175 child_ctx->parent_gen = parent_ctx->parent_gen;
5176 } else {
5177 child_ctx->parent_ctx = parent_ctx;
5178 child_ctx->parent_gen = parent_ctx->generation;
5180 get_ctx(child_ctx->parent_ctx);
5183 exit:
5184 mutex_unlock(&parent_ctx->mutex);
5186 perf_unpin_context(parent_ctx);
5188 return ret;
5191 static void __cpuinit perf_event_init_cpu(int cpu)
5193 struct perf_cpu_context *cpuctx;
5195 cpuctx = &per_cpu(perf_cpu_context, cpu);
5196 __perf_event_init_context(&cpuctx->ctx, NULL);
5198 spin_lock(&perf_resource_lock);
5199 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5200 spin_unlock(&perf_resource_lock);
5202 hw_perf_event_setup(cpu);
5205 #ifdef CONFIG_HOTPLUG_CPU
5206 static void __perf_event_exit_cpu(void *info)
5208 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5209 struct perf_event_context *ctx = &cpuctx->ctx;
5210 struct perf_event *event, *tmp;
5212 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5213 __perf_event_remove_from_context(event);
5215 static void perf_event_exit_cpu(int cpu)
5217 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5218 struct perf_event_context *ctx = &cpuctx->ctx;
5220 mutex_lock(&ctx->mutex);
5221 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5222 mutex_unlock(&ctx->mutex);
5224 #else
5225 static inline void perf_event_exit_cpu(int cpu) { }
5226 #endif
5228 static int __cpuinit
5229 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5231 unsigned int cpu = (long)hcpu;
5233 switch (action) {
5235 case CPU_UP_PREPARE:
5236 case CPU_UP_PREPARE_FROZEN:
5237 perf_event_init_cpu(cpu);
5238 break;
5240 case CPU_ONLINE:
5241 case CPU_ONLINE_FROZEN:
5242 hw_perf_event_setup_online(cpu);
5243 break;
5245 case CPU_DOWN_PREPARE:
5246 case CPU_DOWN_PREPARE_FROZEN:
5247 perf_event_exit_cpu(cpu);
5248 break;
5250 default:
5251 break;
5254 return NOTIFY_OK;
5258 * This has to have a higher priority than migration_notifier in sched.c.
5260 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5261 .notifier_call = perf_cpu_notify,
5262 .priority = 20,
5265 void __init perf_event_init(void)
5267 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5268 (void *)(long)smp_processor_id());
5269 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5270 (void *)(long)smp_processor_id());
5271 register_cpu_notifier(&perf_cpu_nb);
5274 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5276 return sprintf(buf, "%d\n", perf_reserved_percpu);
5279 static ssize_t
5280 perf_set_reserve_percpu(struct sysdev_class *class,
5281 const char *buf,
5282 size_t count)
5284 struct perf_cpu_context *cpuctx;
5285 unsigned long val;
5286 int err, cpu, mpt;
5288 err = strict_strtoul(buf, 10, &val);
5289 if (err)
5290 return err;
5291 if (val > perf_max_events)
5292 return -EINVAL;
5294 spin_lock(&perf_resource_lock);
5295 perf_reserved_percpu = val;
5296 for_each_online_cpu(cpu) {
5297 cpuctx = &per_cpu(perf_cpu_context, cpu);
5298 raw_spin_lock_irq(&cpuctx->ctx.lock);
5299 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5300 perf_max_events - perf_reserved_percpu);
5301 cpuctx->max_pertask = mpt;
5302 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5304 spin_unlock(&perf_resource_lock);
5306 return count;
5309 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5311 return sprintf(buf, "%d\n", perf_overcommit);
5314 static ssize_t
5315 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5317 unsigned long val;
5318 int err;
5320 err = strict_strtoul(buf, 10, &val);
5321 if (err)
5322 return err;
5323 if (val > 1)
5324 return -EINVAL;
5326 spin_lock(&perf_resource_lock);
5327 perf_overcommit = val;
5328 spin_unlock(&perf_resource_lock);
5330 return count;
5333 static SYSDEV_CLASS_ATTR(
5334 reserve_percpu,
5335 0644,
5336 perf_show_reserve_percpu,
5337 perf_set_reserve_percpu
5340 static SYSDEV_CLASS_ATTR(
5341 overcommit,
5342 0644,
5343 perf_show_overcommit,
5344 perf_set_overcommit
5347 static struct attribute *perfclass_attrs[] = {
5348 &attr_reserve_percpu.attr,
5349 &attr_overcommit.attr,
5350 NULL
5353 static struct attribute_group perfclass_attr_group = {
5354 .attrs = perfclass_attrs,
5355 .name = "perf_events",
5358 static int __init perf_event_sysfs_init(void)
5360 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5361 &perfclass_attr_group);
5363 device_initcall(perf_event_sysfs_init);