PCI ASPM: cleanup pcie_aspm_get_cap_device
[linux-2.6/linux-2.6-openrd.git] / drivers / ata / libata-core.c
blobc9242301cfa1425c3f16a659117c8516aa43f294
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
68 #include "libata.h"
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
76 const struct ata_port_operations ata_base_port_ops = {
77 .prereset = ata_std_prereset,
78 .postreset = ata_std_postreset,
79 .error_handler = ata_std_error_handler,
82 const struct ata_port_operations sata_port_ops = {
83 .inherits = &ata_base_port_ops,
85 .qc_defer = ata_std_qc_defer,
86 .hardreset = sata_std_hardreset,
89 static unsigned int ata_dev_init_params(struct ata_device *dev,
90 u16 heads, u16 sectors);
91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
92 static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 u8 enable, u8 feature);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
97 unsigned int ata_print_id = 1;
98 static struct workqueue_struct *ata_wq;
100 struct workqueue_struct *ata_aux_wq;
102 struct ata_force_param {
103 const char *name;
104 unsigned int cbl;
105 int spd_limit;
106 unsigned long xfer_mask;
107 unsigned int horkage_on;
108 unsigned int horkage_off;
109 unsigned int lflags;
112 struct ata_force_ent {
113 int port;
114 int device;
115 struct ata_force_param param;
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION);
168 static bool ata_sstatus_online(u32 sstatus)
170 return (sstatus & 0xf) == 0x3;
174 * ata_link_next - link iteration helper
175 * @link: the previous link, NULL to start
176 * @ap: ATA port containing links to iterate
177 * @mode: iteration mode, one of ATA_LITER_*
179 * LOCKING:
180 * Host lock or EH context.
182 * RETURNS:
183 * Pointer to the next link.
185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
186 enum ata_link_iter_mode mode)
188 BUG_ON(mode != ATA_LITER_EDGE &&
189 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 /* NULL link indicates start of iteration */
192 if (!link)
193 switch (mode) {
194 case ATA_LITER_EDGE:
195 case ATA_LITER_PMP_FIRST:
196 if (sata_pmp_attached(ap))
197 return ap->pmp_link;
198 /* fall through */
199 case ATA_LITER_HOST_FIRST:
200 return &ap->link;
203 /* we just iterated over the host link, what's next? */
204 if (link == &ap->link)
205 switch (mode) {
206 case ATA_LITER_HOST_FIRST:
207 if (sata_pmp_attached(ap))
208 return ap->pmp_link;
209 /* fall through */
210 case ATA_LITER_PMP_FIRST:
211 if (unlikely(ap->slave_link))
212 return ap->slave_link;
213 /* fall through */
214 case ATA_LITER_EDGE:
215 return NULL;
218 /* slave_link excludes PMP */
219 if (unlikely(link == ap->slave_link))
220 return NULL;
222 /* we were over a PMP link */
223 if (++link < ap->pmp_link + ap->nr_pmp_links)
224 return link;
226 if (mode == ATA_LITER_PMP_FIRST)
227 return &ap->link;
229 return NULL;
233 * ata_dev_next - device iteration helper
234 * @dev: the previous device, NULL to start
235 * @link: ATA link containing devices to iterate
236 * @mode: iteration mode, one of ATA_DITER_*
238 * LOCKING:
239 * Host lock or EH context.
241 * RETURNS:
242 * Pointer to the next device.
244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
245 enum ata_dev_iter_mode mode)
247 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
248 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
250 /* NULL dev indicates start of iteration */
251 if (!dev)
252 switch (mode) {
253 case ATA_DITER_ENABLED:
254 case ATA_DITER_ALL:
255 dev = link->device;
256 goto check;
257 case ATA_DITER_ENABLED_REVERSE:
258 case ATA_DITER_ALL_REVERSE:
259 dev = link->device + ata_link_max_devices(link) - 1;
260 goto check;
263 next:
264 /* move to the next one */
265 switch (mode) {
266 case ATA_DITER_ENABLED:
267 case ATA_DITER_ALL:
268 if (++dev < link->device + ata_link_max_devices(link))
269 goto check;
270 return NULL;
271 case ATA_DITER_ENABLED_REVERSE:
272 case ATA_DITER_ALL_REVERSE:
273 if (--dev >= link->device)
274 goto check;
275 return NULL;
278 check:
279 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
280 !ata_dev_enabled(dev))
281 goto next;
282 return dev;
286 * ata_dev_phys_link - find physical link for a device
287 * @dev: ATA device to look up physical link for
289 * Look up physical link which @dev is attached to. Note that
290 * this is different from @dev->link only when @dev is on slave
291 * link. For all other cases, it's the same as @dev->link.
293 * LOCKING:
294 * Don't care.
296 * RETURNS:
297 * Pointer to the found physical link.
299 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
301 struct ata_port *ap = dev->link->ap;
303 if (!ap->slave_link)
304 return dev->link;
305 if (!dev->devno)
306 return &ap->link;
307 return ap->slave_link;
311 * ata_force_cbl - force cable type according to libata.force
312 * @ap: ATA port of interest
314 * Force cable type according to libata.force and whine about it.
315 * The last entry which has matching port number is used, so it
316 * can be specified as part of device force parameters. For
317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
318 * same effect.
320 * LOCKING:
321 * EH context.
323 void ata_force_cbl(struct ata_port *ap)
325 int i;
327 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
328 const struct ata_force_ent *fe = &ata_force_tbl[i];
330 if (fe->port != -1 && fe->port != ap->print_id)
331 continue;
333 if (fe->param.cbl == ATA_CBL_NONE)
334 continue;
336 ap->cbl = fe->param.cbl;
337 ata_port_printk(ap, KERN_NOTICE,
338 "FORCE: cable set to %s\n", fe->param.name);
339 return;
344 * ata_force_link_limits - force link limits according to libata.force
345 * @link: ATA link of interest
347 * Force link flags and SATA spd limit according to libata.force
348 * and whine about it. When only the port part is specified
349 * (e.g. 1:), the limit applies to all links connected to both
350 * the host link and all fan-out ports connected via PMP. If the
351 * device part is specified as 0 (e.g. 1.00:), it specifies the
352 * first fan-out link not the host link. Device number 15 always
353 * points to the host link whether PMP is attached or not. If the
354 * controller has slave link, device number 16 points to it.
356 * LOCKING:
357 * EH context.
359 static void ata_force_link_limits(struct ata_link *link)
361 bool did_spd = false;
362 int linkno = link->pmp;
363 int i;
365 if (ata_is_host_link(link))
366 linkno += 15;
368 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 const struct ata_force_ent *fe = &ata_force_tbl[i];
371 if (fe->port != -1 && fe->port != link->ap->print_id)
372 continue;
374 if (fe->device != -1 && fe->device != linkno)
375 continue;
377 /* only honor the first spd limit */
378 if (!did_spd && fe->param.spd_limit) {
379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 ata_link_printk(link, KERN_NOTICE,
381 "FORCE: PHY spd limit set to %s\n",
382 fe->param.name);
383 did_spd = true;
386 /* let lflags stack */
387 if (fe->param.lflags) {
388 link->flags |= fe->param.lflags;
389 ata_link_printk(link, KERN_NOTICE,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe->param.lflags, link->flags);
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
404 * LOCKING:
405 * EH context.
407 static void ata_force_xfermask(struct ata_device *dev)
409 int devno = dev->link->pmp + dev->devno;
410 int alt_devno = devno;
411 int i;
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev->link))
415 alt_devno += 15;
417 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 const struct ata_force_ent *fe = &ata_force_tbl[i];
419 unsigned long pio_mask, mwdma_mask, udma_mask;
421 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 continue;
424 if (fe->device != -1 && fe->device != devno &&
425 fe->device != alt_devno)
426 continue;
428 if (!fe->param.xfer_mask)
429 continue;
431 ata_unpack_xfermask(fe->param.xfer_mask,
432 &pio_mask, &mwdma_mask, &udma_mask);
433 if (udma_mask)
434 dev->udma_mask = udma_mask;
435 else if (mwdma_mask) {
436 dev->udma_mask = 0;
437 dev->mwdma_mask = mwdma_mask;
438 } else {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = 0;
441 dev->pio_mask = pio_mask;
444 ata_dev_printk(dev, KERN_NOTICE,
445 "FORCE: xfer_mask set to %s\n", fe->param.name);
446 return;
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
458 * LOCKING:
459 * EH context.
461 static void ata_force_horkage(struct ata_device *dev)
463 int devno = dev->link->pmp + dev->devno;
464 int alt_devno = devno;
465 int i;
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev->link))
469 alt_devno += 15;
471 for (i = 0; i < ata_force_tbl_size; i++) {
472 const struct ata_force_ent *fe = &ata_force_tbl[i];
474 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 continue;
477 if (fe->device != -1 && fe->device != devno &&
478 fe->device != alt_devno)
479 continue;
481 if (!(~dev->horkage & fe->param.horkage_on) &&
482 !(dev->horkage & fe->param.horkage_off))
483 continue;
485 dev->horkage |= fe->param.horkage_on;
486 dev->horkage &= ~fe->param.horkage_off;
488 ata_dev_printk(dev, KERN_NOTICE,
489 "FORCE: horkage modified (%s)\n", fe->param.name);
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
497 * Determine ATAPI command type from @opcode.
499 * LOCKING:
500 * None.
502 * RETURNS:
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 int atapi_cmd_type(u8 opcode)
507 switch (opcode) {
508 case GPCMD_READ_10:
509 case GPCMD_READ_12:
510 return ATAPI_READ;
512 case GPCMD_WRITE_10:
513 case GPCMD_WRITE_12:
514 case GPCMD_WRITE_AND_VERIFY_10:
515 return ATAPI_WRITE;
517 case GPCMD_READ_CD:
518 case GPCMD_READ_CD_MSF:
519 return ATAPI_READ_CD;
521 case ATA_16:
522 case ATA_12:
523 if (atapi_passthru16)
524 return ATAPI_PASS_THRU;
525 /* fall thru */
526 default:
527 return ATAPI_MISC;
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
541 * LOCKING:
542 * Inherited from caller.
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
546 fis[0] = 0x27; /* Register - Host to Device FIS */
547 fis[1] = pmp & 0xf; /* Port multiplier number*/
548 if (is_cmd)
549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551 fis[2] = tf->command;
552 fis[3] = tf->feature;
554 fis[4] = tf->lbal;
555 fis[5] = tf->lbam;
556 fis[6] = tf->lbah;
557 fis[7] = tf->device;
559 fis[8] = tf->hob_lbal;
560 fis[9] = tf->hob_lbam;
561 fis[10] = tf->hob_lbah;
562 fis[11] = tf->hob_feature;
564 fis[12] = tf->nsect;
565 fis[13] = tf->hob_nsect;
566 fis[14] = 0;
567 fis[15] = tf->ctl;
569 fis[16] = 0;
570 fis[17] = 0;
571 fis[18] = 0;
572 fis[19] = 0;
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
582 * LOCKING:
583 * Inherited from caller.
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
591 tf->lbal = fis[4];
592 tf->lbam = fis[5];
593 tf->lbah = fis[6];
594 tf->device = fis[7];
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
600 tf->nsect = fis[12];
601 tf->hob_nsect = fis[13];
604 static const u8 ata_rw_cmds[] = {
605 /* pio multi */
606 ATA_CMD_READ_MULTI,
607 ATA_CMD_WRITE_MULTI,
608 ATA_CMD_READ_MULTI_EXT,
609 ATA_CMD_WRITE_MULTI_EXT,
613 ATA_CMD_WRITE_MULTI_FUA_EXT,
614 /* pio */
615 ATA_CMD_PIO_READ,
616 ATA_CMD_PIO_WRITE,
617 ATA_CMD_PIO_READ_EXT,
618 ATA_CMD_PIO_WRITE_EXT,
623 /* dma */
624 ATA_CMD_READ,
625 ATA_CMD_WRITE,
626 ATA_CMD_READ_EXT,
627 ATA_CMD_WRITE_EXT,
631 ATA_CMD_WRITE_FUA_EXT
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
642 * LOCKING:
643 * caller.
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
647 u8 cmd;
649 int index, fua, lba48, write;
651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
655 if (dev->flags & ATA_DFLAG_PIO) {
656 tf->protocol = ATA_PROT_PIO;
657 index = dev->multi_count ? 0 : 8;
658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 /* Unable to use DMA due to host limitation */
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else {
663 tf->protocol = ATA_PROT_DMA;
664 index = 16;
667 cmd = ata_rw_cmds[index + fua + lba48 + write];
668 if (cmd) {
669 tf->command = cmd;
670 return 0;
672 return -1;
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
680 * LOCKING:
681 * None.
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
687 * RETURNS:
688 * Block address read from @tf.
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
692 u64 block = 0;
694 if (tf->flags & ATA_TFLAG_LBA) {
695 if (tf->flags & ATA_TFLAG_LBA48) {
696 block |= (u64)tf->hob_lbah << 40;
697 block |= (u64)tf->hob_lbam << 32;
698 block |= (u64)tf->hob_lbal << 24;
699 } else
700 block |= (tf->device & 0xf) << 24;
702 block |= tf->lbah << 16;
703 block |= tf->lbam << 8;
704 block |= tf->lbal;
705 } else {
706 u32 cyl, head, sect;
708 cyl = tf->lbam | (tf->lbah << 8);
709 head = tf->device & 0xf;
710 sect = tf->lbal;
712 block = (cyl * dev->heads + head) * dev->sectors + sect;
715 return block;
719 * ata_build_rw_tf - Build ATA taskfile for given read/write request
720 * @tf: Target ATA taskfile
721 * @dev: ATA device @tf belongs to
722 * @block: Block address
723 * @n_block: Number of blocks
724 * @tf_flags: RW/FUA etc...
725 * @tag: tag
727 * LOCKING:
728 * None.
730 * Build ATA taskfile @tf for read/write request described by
731 * @block, @n_block, @tf_flags and @tag on @dev.
733 * RETURNS:
735 * 0 on success, -ERANGE if the request is too large for @dev,
736 * -EINVAL if the request is invalid.
738 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
739 u64 block, u32 n_block, unsigned int tf_flags,
740 unsigned int tag)
742 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
743 tf->flags |= tf_flags;
745 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
746 /* yay, NCQ */
747 if (!lba_48_ok(block, n_block))
748 return -ERANGE;
750 tf->protocol = ATA_PROT_NCQ;
751 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
753 if (tf->flags & ATA_TFLAG_WRITE)
754 tf->command = ATA_CMD_FPDMA_WRITE;
755 else
756 tf->command = ATA_CMD_FPDMA_READ;
758 tf->nsect = tag << 3;
759 tf->hob_feature = (n_block >> 8) & 0xff;
760 tf->feature = n_block & 0xff;
762 tf->hob_lbah = (block >> 40) & 0xff;
763 tf->hob_lbam = (block >> 32) & 0xff;
764 tf->hob_lbal = (block >> 24) & 0xff;
765 tf->lbah = (block >> 16) & 0xff;
766 tf->lbam = (block >> 8) & 0xff;
767 tf->lbal = block & 0xff;
769 tf->device = 1 << 6;
770 if (tf->flags & ATA_TFLAG_FUA)
771 tf->device |= 1 << 7;
772 } else if (dev->flags & ATA_DFLAG_LBA) {
773 tf->flags |= ATA_TFLAG_LBA;
775 if (lba_28_ok(block, n_block)) {
776 /* use LBA28 */
777 tf->device |= (block >> 24) & 0xf;
778 } else if (lba_48_ok(block, n_block)) {
779 if (!(dev->flags & ATA_DFLAG_LBA48))
780 return -ERANGE;
782 /* use LBA48 */
783 tf->flags |= ATA_TFLAG_LBA48;
785 tf->hob_nsect = (n_block >> 8) & 0xff;
787 tf->hob_lbah = (block >> 40) & 0xff;
788 tf->hob_lbam = (block >> 32) & 0xff;
789 tf->hob_lbal = (block >> 24) & 0xff;
790 } else
791 /* request too large even for LBA48 */
792 return -ERANGE;
794 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
795 return -EINVAL;
797 tf->nsect = n_block & 0xff;
799 tf->lbah = (block >> 16) & 0xff;
800 tf->lbam = (block >> 8) & 0xff;
801 tf->lbal = block & 0xff;
803 tf->device |= ATA_LBA;
804 } else {
805 /* CHS */
806 u32 sect, head, cyl, track;
808 /* The request -may- be too large for CHS addressing. */
809 if (!lba_28_ok(block, n_block))
810 return -ERANGE;
812 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
813 return -EINVAL;
815 /* Convert LBA to CHS */
816 track = (u32)block / dev->sectors;
817 cyl = track / dev->heads;
818 head = track % dev->heads;
819 sect = (u32)block % dev->sectors + 1;
821 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
822 (u32)block, track, cyl, head, sect);
824 /* Check whether the converted CHS can fit.
825 Cylinder: 0-65535
826 Head: 0-15
827 Sector: 1-255*/
828 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
829 return -ERANGE;
831 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
832 tf->lbal = sect;
833 tf->lbam = cyl;
834 tf->lbah = cyl >> 8;
835 tf->device |= head;
838 return 0;
842 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
843 * @pio_mask: pio_mask
844 * @mwdma_mask: mwdma_mask
845 * @udma_mask: udma_mask
847 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
848 * unsigned int xfer_mask.
850 * LOCKING:
851 * None.
853 * RETURNS:
854 * Packed xfer_mask.
856 unsigned long ata_pack_xfermask(unsigned long pio_mask,
857 unsigned long mwdma_mask,
858 unsigned long udma_mask)
860 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
861 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
862 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
866 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
867 * @xfer_mask: xfer_mask to unpack
868 * @pio_mask: resulting pio_mask
869 * @mwdma_mask: resulting mwdma_mask
870 * @udma_mask: resulting udma_mask
872 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
873 * Any NULL distination masks will be ignored.
875 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
876 unsigned long *mwdma_mask, unsigned long *udma_mask)
878 if (pio_mask)
879 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
880 if (mwdma_mask)
881 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
882 if (udma_mask)
883 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
886 static const struct ata_xfer_ent {
887 int shift, bits;
888 u8 base;
889 } ata_xfer_tbl[] = {
890 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
891 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
892 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
893 { -1, },
897 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
898 * @xfer_mask: xfer_mask of interest
900 * Return matching XFER_* value for @xfer_mask. Only the highest
901 * bit of @xfer_mask is considered.
903 * LOCKING:
904 * None.
906 * RETURNS:
907 * Matching XFER_* value, 0xff if no match found.
909 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
911 int highbit = fls(xfer_mask) - 1;
912 const struct ata_xfer_ent *ent;
914 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
915 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
916 return ent->base + highbit - ent->shift;
917 return 0xff;
921 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
922 * @xfer_mode: XFER_* of interest
924 * Return matching xfer_mask for @xfer_mode.
926 * LOCKING:
927 * None.
929 * RETURNS:
930 * Matching xfer_mask, 0 if no match found.
932 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
934 const struct ata_xfer_ent *ent;
936 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
937 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
938 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
939 & ~((1 << ent->shift) - 1);
940 return 0;
944 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
945 * @xfer_mode: XFER_* of interest
947 * Return matching xfer_shift for @xfer_mode.
949 * LOCKING:
950 * None.
952 * RETURNS:
953 * Matching xfer_shift, -1 if no match found.
955 int ata_xfer_mode2shift(unsigned long xfer_mode)
957 const struct ata_xfer_ent *ent;
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ent->shift;
962 return -1;
966 * ata_mode_string - convert xfer_mask to string
967 * @xfer_mask: mask of bits supported; only highest bit counts.
969 * Determine string which represents the highest speed
970 * (highest bit in @modemask).
972 * LOCKING:
973 * None.
975 * RETURNS:
976 * Constant C string representing highest speed listed in
977 * @mode_mask, or the constant C string "<n/a>".
979 const char *ata_mode_string(unsigned long xfer_mask)
981 static const char * const xfer_mode_str[] = {
982 "PIO0",
983 "PIO1",
984 "PIO2",
985 "PIO3",
986 "PIO4",
987 "PIO5",
988 "PIO6",
989 "MWDMA0",
990 "MWDMA1",
991 "MWDMA2",
992 "MWDMA3",
993 "MWDMA4",
994 "UDMA/16",
995 "UDMA/25",
996 "UDMA/33",
997 "UDMA/44",
998 "UDMA/66",
999 "UDMA/100",
1000 "UDMA/133",
1001 "UDMA7",
1003 int highbit;
1005 highbit = fls(xfer_mask) - 1;
1006 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1007 return xfer_mode_str[highbit];
1008 return "<n/a>";
1011 static const char *sata_spd_string(unsigned int spd)
1013 static const char * const spd_str[] = {
1014 "1.5 Gbps",
1015 "3.0 Gbps",
1016 "6.0 Gbps",
1019 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1020 return "<unknown>";
1021 return spd_str[spd - 1];
1024 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1026 struct ata_link *link = dev->link;
1027 struct ata_port *ap = link->ap;
1028 u32 scontrol;
1029 unsigned int err_mask;
1030 int rc;
1033 * disallow DIPM for drivers which haven't set
1034 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1035 * phy ready will be set in the interrupt status on
1036 * state changes, which will cause some drivers to
1037 * think there are errors - additionally drivers will
1038 * need to disable hot plug.
1040 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1041 ap->pm_policy = NOT_AVAILABLE;
1042 return -EINVAL;
1046 * For DIPM, we will only enable it for the
1047 * min_power setting.
1049 * Why? Because Disks are too stupid to know that
1050 * If the host rejects a request to go to SLUMBER
1051 * they should retry at PARTIAL, and instead it
1052 * just would give up. So, for medium_power to
1053 * work at all, we need to only allow HIPM.
1055 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1056 if (rc)
1057 return rc;
1059 switch (policy) {
1060 case MIN_POWER:
1061 /* no restrictions on IPM transitions */
1062 scontrol &= ~(0x3 << 8);
1063 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1064 if (rc)
1065 return rc;
1067 /* enable DIPM */
1068 if (dev->flags & ATA_DFLAG_DIPM)
1069 err_mask = ata_dev_set_feature(dev,
1070 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1071 break;
1072 case MEDIUM_POWER:
1073 /* allow IPM to PARTIAL */
1074 scontrol &= ~(0x1 << 8);
1075 scontrol |= (0x2 << 8);
1076 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1077 if (rc)
1078 return rc;
1081 * we don't have to disable DIPM since IPM flags
1082 * disallow transitions to SLUMBER, which effectively
1083 * disable DIPM if it does not support PARTIAL
1085 break;
1086 case NOT_AVAILABLE:
1087 case MAX_PERFORMANCE:
1088 /* disable all IPM transitions */
1089 scontrol |= (0x3 << 8);
1090 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1091 if (rc)
1092 return rc;
1095 * we don't have to disable DIPM since IPM flags
1096 * disallow all transitions which effectively
1097 * disable DIPM anyway.
1099 break;
1102 /* FIXME: handle SET FEATURES failure */
1103 (void) err_mask;
1105 return 0;
1109 * ata_dev_enable_pm - enable SATA interface power management
1110 * @dev: device to enable power management
1111 * @policy: the link power management policy
1113 * Enable SATA Interface power management. This will enable
1114 * Device Interface Power Management (DIPM) for min_power
1115 * policy, and then call driver specific callbacks for
1116 * enabling Host Initiated Power management.
1118 * Locking: Caller.
1119 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1121 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1123 int rc = 0;
1124 struct ata_port *ap = dev->link->ap;
1126 /* set HIPM first, then DIPM */
1127 if (ap->ops->enable_pm)
1128 rc = ap->ops->enable_pm(ap, policy);
1129 if (rc)
1130 goto enable_pm_out;
1131 rc = ata_dev_set_dipm(dev, policy);
1133 enable_pm_out:
1134 if (rc)
1135 ap->pm_policy = MAX_PERFORMANCE;
1136 else
1137 ap->pm_policy = policy;
1138 return /* rc */; /* hopefully we can use 'rc' eventually */
1141 #ifdef CONFIG_PM
1143 * ata_dev_disable_pm - disable SATA interface power management
1144 * @dev: device to disable power management
1146 * Disable SATA Interface power management. This will disable
1147 * Device Interface Power Management (DIPM) without changing
1148 * policy, call driver specific callbacks for disabling Host
1149 * Initiated Power management.
1151 * Locking: Caller.
1152 * Returns: void
1154 static void ata_dev_disable_pm(struct ata_device *dev)
1156 struct ata_port *ap = dev->link->ap;
1158 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1159 if (ap->ops->disable_pm)
1160 ap->ops->disable_pm(ap);
1162 #endif /* CONFIG_PM */
1164 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1166 ap->pm_policy = policy;
1167 ap->link.eh_info.action |= ATA_EH_LPM;
1168 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1169 ata_port_schedule_eh(ap);
1172 #ifdef CONFIG_PM
1173 static void ata_lpm_enable(struct ata_host *host)
1175 struct ata_link *link;
1176 struct ata_port *ap;
1177 struct ata_device *dev;
1178 int i;
1180 for (i = 0; i < host->n_ports; i++) {
1181 ap = host->ports[i];
1182 ata_for_each_link(link, ap, EDGE) {
1183 ata_for_each_dev(dev, link, ALL)
1184 ata_dev_disable_pm(dev);
1189 static void ata_lpm_disable(struct ata_host *host)
1191 int i;
1193 for (i = 0; i < host->n_ports; i++) {
1194 struct ata_port *ap = host->ports[i];
1195 ata_lpm_schedule(ap, ap->pm_policy);
1198 #endif /* CONFIG_PM */
1201 * ata_dev_classify - determine device type based on ATA-spec signature
1202 * @tf: ATA taskfile register set for device to be identified
1204 * Determine from taskfile register contents whether a device is
1205 * ATA or ATAPI, as per "Signature and persistence" section
1206 * of ATA/PI spec (volume 1, sect 5.14).
1208 * LOCKING:
1209 * None.
1211 * RETURNS:
1212 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1213 * %ATA_DEV_UNKNOWN the event of failure.
1215 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1217 /* Apple's open source Darwin code hints that some devices only
1218 * put a proper signature into the LBA mid/high registers,
1219 * So, we only check those. It's sufficient for uniqueness.
1221 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1222 * signatures for ATA and ATAPI devices attached on SerialATA,
1223 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1224 * spec has never mentioned about using different signatures
1225 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1226 * Multiplier specification began to use 0x69/0x96 to identify
1227 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1228 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1229 * 0x69/0x96 shortly and described them as reserved for
1230 * SerialATA.
1232 * We follow the current spec and consider that 0x69/0x96
1233 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1235 * SEMB signature. This is worked around in
1236 * ata_dev_read_id().
1238 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1239 DPRINTK("found ATA device by sig\n");
1240 return ATA_DEV_ATA;
1243 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1244 DPRINTK("found ATAPI device by sig\n");
1245 return ATA_DEV_ATAPI;
1248 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1249 DPRINTK("found PMP device by sig\n");
1250 return ATA_DEV_PMP;
1253 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1254 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1255 return ATA_DEV_SEMB;
1258 DPRINTK("unknown device\n");
1259 return ATA_DEV_UNKNOWN;
1263 * ata_id_string - Convert IDENTIFY DEVICE page into string
1264 * @id: IDENTIFY DEVICE results we will examine
1265 * @s: string into which data is output
1266 * @ofs: offset into identify device page
1267 * @len: length of string to return. must be an even number.
1269 * The strings in the IDENTIFY DEVICE page are broken up into
1270 * 16-bit chunks. Run through the string, and output each
1271 * 8-bit chunk linearly, regardless of platform.
1273 * LOCKING:
1274 * caller.
1277 void ata_id_string(const u16 *id, unsigned char *s,
1278 unsigned int ofs, unsigned int len)
1280 unsigned int c;
1282 BUG_ON(len & 1);
1284 while (len > 0) {
1285 c = id[ofs] >> 8;
1286 *s = c;
1287 s++;
1289 c = id[ofs] & 0xff;
1290 *s = c;
1291 s++;
1293 ofs++;
1294 len -= 2;
1299 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1300 * @id: IDENTIFY DEVICE results we will examine
1301 * @s: string into which data is output
1302 * @ofs: offset into identify device page
1303 * @len: length of string to return. must be an odd number.
1305 * This function is identical to ata_id_string except that it
1306 * trims trailing spaces and terminates the resulting string with
1307 * null. @len must be actual maximum length (even number) + 1.
1309 * LOCKING:
1310 * caller.
1312 void ata_id_c_string(const u16 *id, unsigned char *s,
1313 unsigned int ofs, unsigned int len)
1315 unsigned char *p;
1317 ata_id_string(id, s, ofs, len - 1);
1319 p = s + strnlen(s, len - 1);
1320 while (p > s && p[-1] == ' ')
1321 p--;
1322 *p = '\0';
1325 static u64 ata_id_n_sectors(const u16 *id)
1327 if (ata_id_has_lba(id)) {
1328 if (ata_id_has_lba48(id))
1329 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1330 else
1331 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1332 } else {
1333 if (ata_id_current_chs_valid(id))
1334 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1335 id[ATA_ID_CUR_SECTORS];
1336 else
1337 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1338 id[ATA_ID_SECTORS];
1342 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1344 u64 sectors = 0;
1346 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1347 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1348 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1349 sectors |= (tf->lbah & 0xff) << 16;
1350 sectors |= (tf->lbam & 0xff) << 8;
1351 sectors |= (tf->lbal & 0xff);
1353 return sectors;
1356 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1358 u64 sectors = 0;
1360 sectors |= (tf->device & 0x0f) << 24;
1361 sectors |= (tf->lbah & 0xff) << 16;
1362 sectors |= (tf->lbam & 0xff) << 8;
1363 sectors |= (tf->lbal & 0xff);
1365 return sectors;
1369 * ata_read_native_max_address - Read native max address
1370 * @dev: target device
1371 * @max_sectors: out parameter for the result native max address
1373 * Perform an LBA48 or LBA28 native size query upon the device in
1374 * question.
1376 * RETURNS:
1377 * 0 on success, -EACCES if command is aborted by the drive.
1378 * -EIO on other errors.
1380 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1382 unsigned int err_mask;
1383 struct ata_taskfile tf;
1384 int lba48 = ata_id_has_lba48(dev->id);
1386 ata_tf_init(dev, &tf);
1388 /* always clear all address registers */
1389 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1391 if (lba48) {
1392 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1393 tf.flags |= ATA_TFLAG_LBA48;
1394 } else
1395 tf.command = ATA_CMD_READ_NATIVE_MAX;
1397 tf.protocol |= ATA_PROT_NODATA;
1398 tf.device |= ATA_LBA;
1400 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1401 if (err_mask) {
1402 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1403 "max address (err_mask=0x%x)\n", err_mask);
1404 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1405 return -EACCES;
1406 return -EIO;
1409 if (lba48)
1410 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1411 else
1412 *max_sectors = ata_tf_to_lba(&tf) + 1;
1413 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1414 (*max_sectors)--;
1415 return 0;
1419 * ata_set_max_sectors - Set max sectors
1420 * @dev: target device
1421 * @new_sectors: new max sectors value to set for the device
1423 * Set max sectors of @dev to @new_sectors.
1425 * RETURNS:
1426 * 0 on success, -EACCES if command is aborted or denied (due to
1427 * previous non-volatile SET_MAX) by the drive. -EIO on other
1428 * errors.
1430 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1432 unsigned int err_mask;
1433 struct ata_taskfile tf;
1434 int lba48 = ata_id_has_lba48(dev->id);
1436 new_sectors--;
1438 ata_tf_init(dev, &tf);
1440 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1442 if (lba48) {
1443 tf.command = ATA_CMD_SET_MAX_EXT;
1444 tf.flags |= ATA_TFLAG_LBA48;
1446 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1447 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1448 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1449 } else {
1450 tf.command = ATA_CMD_SET_MAX;
1452 tf.device |= (new_sectors >> 24) & 0xf;
1455 tf.protocol |= ATA_PROT_NODATA;
1456 tf.device |= ATA_LBA;
1458 tf.lbal = (new_sectors >> 0) & 0xff;
1459 tf.lbam = (new_sectors >> 8) & 0xff;
1460 tf.lbah = (new_sectors >> 16) & 0xff;
1462 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1463 if (err_mask) {
1464 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1465 "max address (err_mask=0x%x)\n", err_mask);
1466 if (err_mask == AC_ERR_DEV &&
1467 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1468 return -EACCES;
1469 return -EIO;
1472 return 0;
1476 * ata_hpa_resize - Resize a device with an HPA set
1477 * @dev: Device to resize
1479 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1480 * it if required to the full size of the media. The caller must check
1481 * the drive has the HPA feature set enabled.
1483 * RETURNS:
1484 * 0 on success, -errno on failure.
1486 static int ata_hpa_resize(struct ata_device *dev)
1488 struct ata_eh_context *ehc = &dev->link->eh_context;
1489 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1490 u64 sectors = ata_id_n_sectors(dev->id);
1491 u64 native_sectors;
1492 int rc;
1494 /* do we need to do it? */
1495 if (dev->class != ATA_DEV_ATA ||
1496 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1497 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1498 return 0;
1500 /* read native max address */
1501 rc = ata_read_native_max_address(dev, &native_sectors);
1502 if (rc) {
1503 /* If device aborted the command or HPA isn't going to
1504 * be unlocked, skip HPA resizing.
1506 if (rc == -EACCES || !ata_ignore_hpa) {
1507 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1508 "broken, skipping HPA handling\n");
1509 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1511 /* we can continue if device aborted the command */
1512 if (rc == -EACCES)
1513 rc = 0;
1516 return rc;
1519 /* nothing to do? */
1520 if (native_sectors <= sectors || !ata_ignore_hpa) {
1521 if (!print_info || native_sectors == sectors)
1522 return 0;
1524 if (native_sectors > sectors)
1525 ata_dev_printk(dev, KERN_INFO,
1526 "HPA detected: current %llu, native %llu\n",
1527 (unsigned long long)sectors,
1528 (unsigned long long)native_sectors);
1529 else if (native_sectors < sectors)
1530 ata_dev_printk(dev, KERN_WARNING,
1531 "native sectors (%llu) is smaller than "
1532 "sectors (%llu)\n",
1533 (unsigned long long)native_sectors,
1534 (unsigned long long)sectors);
1535 return 0;
1538 /* let's unlock HPA */
1539 rc = ata_set_max_sectors(dev, native_sectors);
1540 if (rc == -EACCES) {
1541 /* if device aborted the command, skip HPA resizing */
1542 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1543 "(%llu -> %llu), skipping HPA handling\n",
1544 (unsigned long long)sectors,
1545 (unsigned long long)native_sectors);
1546 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1547 return 0;
1548 } else if (rc)
1549 return rc;
1551 /* re-read IDENTIFY data */
1552 rc = ata_dev_reread_id(dev, 0);
1553 if (rc) {
1554 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1555 "data after HPA resizing\n");
1556 return rc;
1559 if (print_info) {
1560 u64 new_sectors = ata_id_n_sectors(dev->id);
1561 ata_dev_printk(dev, KERN_INFO,
1562 "HPA unlocked: %llu -> %llu, native %llu\n",
1563 (unsigned long long)sectors,
1564 (unsigned long long)new_sectors,
1565 (unsigned long long)native_sectors);
1568 return 0;
1572 * ata_dump_id - IDENTIFY DEVICE info debugging output
1573 * @id: IDENTIFY DEVICE page to dump
1575 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1576 * page.
1578 * LOCKING:
1579 * caller.
1582 static inline void ata_dump_id(const u16 *id)
1584 DPRINTK("49==0x%04x "
1585 "53==0x%04x "
1586 "63==0x%04x "
1587 "64==0x%04x "
1588 "75==0x%04x \n",
1589 id[49],
1590 id[53],
1591 id[63],
1592 id[64],
1593 id[75]);
1594 DPRINTK("80==0x%04x "
1595 "81==0x%04x "
1596 "82==0x%04x "
1597 "83==0x%04x "
1598 "84==0x%04x \n",
1599 id[80],
1600 id[81],
1601 id[82],
1602 id[83],
1603 id[84]);
1604 DPRINTK("88==0x%04x "
1605 "93==0x%04x\n",
1606 id[88],
1607 id[93]);
1611 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1612 * @id: IDENTIFY data to compute xfer mask from
1614 * Compute the xfermask for this device. This is not as trivial
1615 * as it seems if we must consider early devices correctly.
1617 * FIXME: pre IDE drive timing (do we care ?).
1619 * LOCKING:
1620 * None.
1622 * RETURNS:
1623 * Computed xfermask
1625 unsigned long ata_id_xfermask(const u16 *id)
1627 unsigned long pio_mask, mwdma_mask, udma_mask;
1629 /* Usual case. Word 53 indicates word 64 is valid */
1630 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1631 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1632 pio_mask <<= 3;
1633 pio_mask |= 0x7;
1634 } else {
1635 /* If word 64 isn't valid then Word 51 high byte holds
1636 * the PIO timing number for the maximum. Turn it into
1637 * a mask.
1639 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1640 if (mode < 5) /* Valid PIO range */
1641 pio_mask = (2 << mode) - 1;
1642 else
1643 pio_mask = 1;
1645 /* But wait.. there's more. Design your standards by
1646 * committee and you too can get a free iordy field to
1647 * process. However its the speeds not the modes that
1648 * are supported... Note drivers using the timing API
1649 * will get this right anyway
1653 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1655 if (ata_id_is_cfa(id)) {
1657 * Process compact flash extended modes
1659 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1660 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1662 if (pio)
1663 pio_mask |= (1 << 5);
1664 if (pio > 1)
1665 pio_mask |= (1 << 6);
1666 if (dma)
1667 mwdma_mask |= (1 << 3);
1668 if (dma > 1)
1669 mwdma_mask |= (1 << 4);
1672 udma_mask = 0;
1673 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1674 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1676 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1680 * ata_pio_queue_task - Queue port_task
1681 * @ap: The ata_port to queue port_task for
1682 * @data: data for @fn to use
1683 * @delay: delay time in msecs for workqueue function
1685 * Schedule @fn(@data) for execution after @delay jiffies using
1686 * port_task. There is one port_task per port and it's the
1687 * user(low level driver)'s responsibility to make sure that only
1688 * one task is active at any given time.
1690 * libata core layer takes care of synchronization between
1691 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1692 * synchronization.
1694 * LOCKING:
1695 * Inherited from caller.
1697 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1699 ap->port_task_data = data;
1701 /* may fail if ata_port_flush_task() in progress */
1702 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1706 * ata_port_flush_task - Flush port_task
1707 * @ap: The ata_port to flush port_task for
1709 * After this function completes, port_task is guranteed not to
1710 * be running or scheduled.
1712 * LOCKING:
1713 * Kernel thread context (may sleep)
1715 void ata_port_flush_task(struct ata_port *ap)
1717 DPRINTK("ENTER\n");
1719 cancel_rearming_delayed_work(&ap->port_task);
1721 if (ata_msg_ctl(ap))
1722 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1725 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1727 struct completion *waiting = qc->private_data;
1729 complete(waiting);
1733 * ata_exec_internal_sg - execute libata internal command
1734 * @dev: Device to which the command is sent
1735 * @tf: Taskfile registers for the command and the result
1736 * @cdb: CDB for packet command
1737 * @dma_dir: Data tranfer direction of the command
1738 * @sgl: sg list for the data buffer of the command
1739 * @n_elem: Number of sg entries
1740 * @timeout: Timeout in msecs (0 for default)
1742 * Executes libata internal command with timeout. @tf contains
1743 * command on entry and result on return. Timeout and error
1744 * conditions are reported via return value. No recovery action
1745 * is taken after a command times out. It's caller's duty to
1746 * clean up after timeout.
1748 * LOCKING:
1749 * None. Should be called with kernel context, might sleep.
1751 * RETURNS:
1752 * Zero on success, AC_ERR_* mask on failure
1754 unsigned ata_exec_internal_sg(struct ata_device *dev,
1755 struct ata_taskfile *tf, const u8 *cdb,
1756 int dma_dir, struct scatterlist *sgl,
1757 unsigned int n_elem, unsigned long timeout)
1759 struct ata_link *link = dev->link;
1760 struct ata_port *ap = link->ap;
1761 u8 command = tf->command;
1762 int auto_timeout = 0;
1763 struct ata_queued_cmd *qc;
1764 unsigned int tag, preempted_tag;
1765 u32 preempted_sactive, preempted_qc_active;
1766 int preempted_nr_active_links;
1767 DECLARE_COMPLETION_ONSTACK(wait);
1768 unsigned long flags;
1769 unsigned int err_mask;
1770 int rc;
1772 spin_lock_irqsave(ap->lock, flags);
1774 /* no internal command while frozen */
1775 if (ap->pflags & ATA_PFLAG_FROZEN) {
1776 spin_unlock_irqrestore(ap->lock, flags);
1777 return AC_ERR_SYSTEM;
1780 /* initialize internal qc */
1782 /* XXX: Tag 0 is used for drivers with legacy EH as some
1783 * drivers choke if any other tag is given. This breaks
1784 * ata_tag_internal() test for those drivers. Don't use new
1785 * EH stuff without converting to it.
1787 if (ap->ops->error_handler)
1788 tag = ATA_TAG_INTERNAL;
1789 else
1790 tag = 0;
1792 if (test_and_set_bit(tag, &ap->qc_allocated))
1793 BUG();
1794 qc = __ata_qc_from_tag(ap, tag);
1796 qc->tag = tag;
1797 qc->scsicmd = NULL;
1798 qc->ap = ap;
1799 qc->dev = dev;
1800 ata_qc_reinit(qc);
1802 preempted_tag = link->active_tag;
1803 preempted_sactive = link->sactive;
1804 preempted_qc_active = ap->qc_active;
1805 preempted_nr_active_links = ap->nr_active_links;
1806 link->active_tag = ATA_TAG_POISON;
1807 link->sactive = 0;
1808 ap->qc_active = 0;
1809 ap->nr_active_links = 0;
1811 /* prepare & issue qc */
1812 qc->tf = *tf;
1813 if (cdb)
1814 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1815 qc->flags |= ATA_QCFLAG_RESULT_TF;
1816 qc->dma_dir = dma_dir;
1817 if (dma_dir != DMA_NONE) {
1818 unsigned int i, buflen = 0;
1819 struct scatterlist *sg;
1821 for_each_sg(sgl, sg, n_elem, i)
1822 buflen += sg->length;
1824 ata_sg_init(qc, sgl, n_elem);
1825 qc->nbytes = buflen;
1828 qc->private_data = &wait;
1829 qc->complete_fn = ata_qc_complete_internal;
1831 ata_qc_issue(qc);
1833 spin_unlock_irqrestore(ap->lock, flags);
1835 if (!timeout) {
1836 if (ata_probe_timeout)
1837 timeout = ata_probe_timeout * 1000;
1838 else {
1839 timeout = ata_internal_cmd_timeout(dev, command);
1840 auto_timeout = 1;
1844 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1846 ata_port_flush_task(ap);
1848 if (!rc) {
1849 spin_lock_irqsave(ap->lock, flags);
1851 /* We're racing with irq here. If we lose, the
1852 * following test prevents us from completing the qc
1853 * twice. If we win, the port is frozen and will be
1854 * cleaned up by ->post_internal_cmd().
1856 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1857 qc->err_mask |= AC_ERR_TIMEOUT;
1859 if (ap->ops->error_handler)
1860 ata_port_freeze(ap);
1861 else
1862 ata_qc_complete(qc);
1864 if (ata_msg_warn(ap))
1865 ata_dev_printk(dev, KERN_WARNING,
1866 "qc timeout (cmd 0x%x)\n", command);
1869 spin_unlock_irqrestore(ap->lock, flags);
1872 /* do post_internal_cmd */
1873 if (ap->ops->post_internal_cmd)
1874 ap->ops->post_internal_cmd(qc);
1876 /* perform minimal error analysis */
1877 if (qc->flags & ATA_QCFLAG_FAILED) {
1878 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1879 qc->err_mask |= AC_ERR_DEV;
1881 if (!qc->err_mask)
1882 qc->err_mask |= AC_ERR_OTHER;
1884 if (qc->err_mask & ~AC_ERR_OTHER)
1885 qc->err_mask &= ~AC_ERR_OTHER;
1888 /* finish up */
1889 spin_lock_irqsave(ap->lock, flags);
1891 *tf = qc->result_tf;
1892 err_mask = qc->err_mask;
1894 ata_qc_free(qc);
1895 link->active_tag = preempted_tag;
1896 link->sactive = preempted_sactive;
1897 ap->qc_active = preempted_qc_active;
1898 ap->nr_active_links = preempted_nr_active_links;
1900 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1901 * Until those drivers are fixed, we detect the condition
1902 * here, fail the command with AC_ERR_SYSTEM and reenable the
1903 * port.
1905 * Note that this doesn't change any behavior as internal
1906 * command failure results in disabling the device in the
1907 * higher layer for LLDDs without new reset/EH callbacks.
1909 * Kill the following code as soon as those drivers are fixed.
1911 if (ap->flags & ATA_FLAG_DISABLED) {
1912 err_mask |= AC_ERR_SYSTEM;
1913 ata_port_probe(ap);
1916 spin_unlock_irqrestore(ap->lock, flags);
1918 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1919 ata_internal_cmd_timed_out(dev, command);
1921 return err_mask;
1925 * ata_exec_internal - execute libata internal command
1926 * @dev: Device to which the command is sent
1927 * @tf: Taskfile registers for the command and the result
1928 * @cdb: CDB for packet command
1929 * @dma_dir: Data tranfer direction of the command
1930 * @buf: Data buffer of the command
1931 * @buflen: Length of data buffer
1932 * @timeout: Timeout in msecs (0 for default)
1934 * Wrapper around ata_exec_internal_sg() which takes simple
1935 * buffer instead of sg list.
1937 * LOCKING:
1938 * None. Should be called with kernel context, might sleep.
1940 * RETURNS:
1941 * Zero on success, AC_ERR_* mask on failure
1943 unsigned ata_exec_internal(struct ata_device *dev,
1944 struct ata_taskfile *tf, const u8 *cdb,
1945 int dma_dir, void *buf, unsigned int buflen,
1946 unsigned long timeout)
1948 struct scatterlist *psg = NULL, sg;
1949 unsigned int n_elem = 0;
1951 if (dma_dir != DMA_NONE) {
1952 WARN_ON(!buf);
1953 sg_init_one(&sg, buf, buflen);
1954 psg = &sg;
1955 n_elem++;
1958 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1959 timeout);
1963 * ata_do_simple_cmd - execute simple internal command
1964 * @dev: Device to which the command is sent
1965 * @cmd: Opcode to execute
1967 * Execute a 'simple' command, that only consists of the opcode
1968 * 'cmd' itself, without filling any other registers
1970 * LOCKING:
1971 * Kernel thread context (may sleep).
1973 * RETURNS:
1974 * Zero on success, AC_ERR_* mask on failure
1976 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1978 struct ata_taskfile tf;
1980 ata_tf_init(dev, &tf);
1982 tf.command = cmd;
1983 tf.flags |= ATA_TFLAG_DEVICE;
1984 tf.protocol = ATA_PROT_NODATA;
1986 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1990 * ata_pio_need_iordy - check if iordy needed
1991 * @adev: ATA device
1993 * Check if the current speed of the device requires IORDY. Used
1994 * by various controllers for chip configuration.
1997 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1999 /* Controller doesn't support IORDY. Probably a pointless check
2000 as the caller should know this */
2001 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2002 return 0;
2003 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2004 if (ata_id_is_cfa(adev->id)
2005 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2006 return 0;
2007 /* PIO3 and higher it is mandatory */
2008 if (adev->pio_mode > XFER_PIO_2)
2009 return 1;
2010 /* We turn it on when possible */
2011 if (ata_id_has_iordy(adev->id))
2012 return 1;
2013 return 0;
2017 * ata_pio_mask_no_iordy - Return the non IORDY mask
2018 * @adev: ATA device
2020 * Compute the highest mode possible if we are not using iordy. Return
2021 * -1 if no iordy mode is available.
2024 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2026 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2027 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2028 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2029 /* Is the speed faster than the drive allows non IORDY ? */
2030 if (pio) {
2031 /* This is cycle times not frequency - watch the logic! */
2032 if (pio > 240) /* PIO2 is 240nS per cycle */
2033 return 3 << ATA_SHIFT_PIO;
2034 return 7 << ATA_SHIFT_PIO;
2037 return 3 << ATA_SHIFT_PIO;
2041 * ata_do_dev_read_id - default ID read method
2042 * @dev: device
2043 * @tf: proposed taskfile
2044 * @id: data buffer
2046 * Issue the identify taskfile and hand back the buffer containing
2047 * identify data. For some RAID controllers and for pre ATA devices
2048 * this function is wrapped or replaced by the driver
2050 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2051 struct ata_taskfile *tf, u16 *id)
2053 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2054 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2058 * ata_dev_read_id - Read ID data from the specified device
2059 * @dev: target device
2060 * @p_class: pointer to class of the target device (may be changed)
2061 * @flags: ATA_READID_* flags
2062 * @id: buffer to read IDENTIFY data into
2064 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2065 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2066 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2067 * for pre-ATA4 drives.
2069 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2070 * now we abort if we hit that case.
2072 * LOCKING:
2073 * Kernel thread context (may sleep)
2075 * RETURNS:
2076 * 0 on success, -errno otherwise.
2078 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2079 unsigned int flags, u16 *id)
2081 struct ata_port *ap = dev->link->ap;
2082 unsigned int class = *p_class;
2083 struct ata_taskfile tf;
2084 unsigned int err_mask = 0;
2085 const char *reason;
2086 bool is_semb = class == ATA_DEV_SEMB;
2087 int may_fallback = 1, tried_spinup = 0;
2088 int rc;
2090 if (ata_msg_ctl(ap))
2091 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2093 retry:
2094 ata_tf_init(dev, &tf);
2096 switch (class) {
2097 case ATA_DEV_SEMB:
2098 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
2099 case ATA_DEV_ATA:
2100 tf.command = ATA_CMD_ID_ATA;
2101 break;
2102 case ATA_DEV_ATAPI:
2103 tf.command = ATA_CMD_ID_ATAPI;
2104 break;
2105 default:
2106 rc = -ENODEV;
2107 reason = "unsupported class";
2108 goto err_out;
2111 tf.protocol = ATA_PROT_PIO;
2113 /* Some devices choke if TF registers contain garbage. Make
2114 * sure those are properly initialized.
2116 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2118 /* Device presence detection is unreliable on some
2119 * controllers. Always poll IDENTIFY if available.
2121 tf.flags |= ATA_TFLAG_POLLING;
2123 if (ap->ops->read_id)
2124 err_mask = ap->ops->read_id(dev, &tf, id);
2125 else
2126 err_mask = ata_do_dev_read_id(dev, &tf, id);
2128 if (err_mask) {
2129 if (err_mask & AC_ERR_NODEV_HINT) {
2130 ata_dev_printk(dev, KERN_DEBUG,
2131 "NODEV after polling detection\n");
2132 return -ENOENT;
2135 if (is_semb) {
2136 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2137 "device w/ SEMB sig, disabled\n");
2138 /* SEMB is not supported yet */
2139 *p_class = ATA_DEV_SEMB_UNSUP;
2140 return 0;
2143 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2144 /* Device or controller might have reported
2145 * the wrong device class. Give a shot at the
2146 * other IDENTIFY if the current one is
2147 * aborted by the device.
2149 if (may_fallback) {
2150 may_fallback = 0;
2152 if (class == ATA_DEV_ATA)
2153 class = ATA_DEV_ATAPI;
2154 else
2155 class = ATA_DEV_ATA;
2156 goto retry;
2159 /* Control reaches here iff the device aborted
2160 * both flavors of IDENTIFYs which happens
2161 * sometimes with phantom devices.
2163 ata_dev_printk(dev, KERN_DEBUG,
2164 "both IDENTIFYs aborted, assuming NODEV\n");
2165 return -ENOENT;
2168 rc = -EIO;
2169 reason = "I/O error";
2170 goto err_out;
2173 /* Falling back doesn't make sense if ID data was read
2174 * successfully at least once.
2176 may_fallback = 0;
2178 swap_buf_le16(id, ATA_ID_WORDS);
2180 /* sanity check */
2181 rc = -EINVAL;
2182 reason = "device reports invalid type";
2184 if (class == ATA_DEV_ATA) {
2185 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2186 goto err_out;
2187 } else {
2188 if (ata_id_is_ata(id))
2189 goto err_out;
2192 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2193 tried_spinup = 1;
2195 * Drive powered-up in standby mode, and requires a specific
2196 * SET_FEATURES spin-up subcommand before it will accept
2197 * anything other than the original IDENTIFY command.
2199 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2200 if (err_mask && id[2] != 0x738c) {
2201 rc = -EIO;
2202 reason = "SPINUP failed";
2203 goto err_out;
2206 * If the drive initially returned incomplete IDENTIFY info,
2207 * we now must reissue the IDENTIFY command.
2209 if (id[2] == 0x37c8)
2210 goto retry;
2213 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2215 * The exact sequence expected by certain pre-ATA4 drives is:
2216 * SRST RESET
2217 * IDENTIFY (optional in early ATA)
2218 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2219 * anything else..
2220 * Some drives were very specific about that exact sequence.
2222 * Note that ATA4 says lba is mandatory so the second check
2223 * shoud never trigger.
2225 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2226 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2227 if (err_mask) {
2228 rc = -EIO;
2229 reason = "INIT_DEV_PARAMS failed";
2230 goto err_out;
2233 /* current CHS translation info (id[53-58]) might be
2234 * changed. reread the identify device info.
2236 flags &= ~ATA_READID_POSTRESET;
2237 goto retry;
2241 *p_class = class;
2243 return 0;
2245 err_out:
2246 if (ata_msg_warn(ap))
2247 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2248 "(%s, err_mask=0x%x)\n", reason, err_mask);
2249 return rc;
2252 static int ata_do_link_spd_horkage(struct ata_device *dev)
2254 struct ata_link *plink = ata_dev_phys_link(dev);
2255 u32 target, target_limit;
2257 if (!sata_scr_valid(plink))
2258 return 0;
2260 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2261 target = 1;
2262 else
2263 return 0;
2265 target_limit = (1 << target) - 1;
2267 /* if already on stricter limit, no need to push further */
2268 if (plink->sata_spd_limit <= target_limit)
2269 return 0;
2271 plink->sata_spd_limit = target_limit;
2273 /* Request another EH round by returning -EAGAIN if link is
2274 * going faster than the target speed. Forward progress is
2275 * guaranteed by setting sata_spd_limit to target_limit above.
2277 if (plink->sata_spd > target) {
2278 ata_dev_printk(dev, KERN_INFO,
2279 "applying link speed limit horkage to %s\n",
2280 sata_spd_string(target));
2281 return -EAGAIN;
2283 return 0;
2286 static inline u8 ata_dev_knobble(struct ata_device *dev)
2288 struct ata_port *ap = dev->link->ap;
2290 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2291 return 0;
2293 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2296 static void ata_dev_config_ncq(struct ata_device *dev,
2297 char *desc, size_t desc_sz)
2299 struct ata_port *ap = dev->link->ap;
2300 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2302 if (!ata_id_has_ncq(dev->id)) {
2303 desc[0] = '\0';
2304 return;
2306 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2307 snprintf(desc, desc_sz, "NCQ (not used)");
2308 return;
2310 if (ap->flags & ATA_FLAG_NCQ) {
2311 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2312 dev->flags |= ATA_DFLAG_NCQ;
2315 if (hdepth >= ddepth)
2316 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2317 else
2318 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2322 * ata_dev_configure - Configure the specified ATA/ATAPI device
2323 * @dev: Target device to configure
2325 * Configure @dev according to @dev->id. Generic and low-level
2326 * driver specific fixups are also applied.
2328 * LOCKING:
2329 * Kernel thread context (may sleep)
2331 * RETURNS:
2332 * 0 on success, -errno otherwise
2334 int ata_dev_configure(struct ata_device *dev)
2336 struct ata_port *ap = dev->link->ap;
2337 struct ata_eh_context *ehc = &dev->link->eh_context;
2338 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2339 const u16 *id = dev->id;
2340 unsigned long xfer_mask;
2341 char revbuf[7]; /* XYZ-99\0 */
2342 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2343 char modelbuf[ATA_ID_PROD_LEN+1];
2344 int rc;
2346 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2347 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2348 __func__);
2349 return 0;
2352 if (ata_msg_probe(ap))
2353 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2355 /* set horkage */
2356 dev->horkage |= ata_dev_blacklisted(dev);
2357 ata_force_horkage(dev);
2359 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2360 ata_dev_printk(dev, KERN_INFO,
2361 "unsupported device, disabling\n");
2362 ata_dev_disable(dev);
2363 return 0;
2366 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2367 dev->class == ATA_DEV_ATAPI) {
2368 ata_dev_printk(dev, KERN_WARNING,
2369 "WARNING: ATAPI is %s, device ignored.\n",
2370 atapi_enabled ? "not supported with this driver"
2371 : "disabled");
2372 ata_dev_disable(dev);
2373 return 0;
2376 rc = ata_do_link_spd_horkage(dev);
2377 if (rc)
2378 return rc;
2380 /* let ACPI work its magic */
2381 rc = ata_acpi_on_devcfg(dev);
2382 if (rc)
2383 return rc;
2385 /* massage HPA, do it early as it might change IDENTIFY data */
2386 rc = ata_hpa_resize(dev);
2387 if (rc)
2388 return rc;
2390 /* print device capabilities */
2391 if (ata_msg_probe(ap))
2392 ata_dev_printk(dev, KERN_DEBUG,
2393 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2394 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2395 __func__,
2396 id[49], id[82], id[83], id[84],
2397 id[85], id[86], id[87], id[88]);
2399 /* initialize to-be-configured parameters */
2400 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2401 dev->max_sectors = 0;
2402 dev->cdb_len = 0;
2403 dev->n_sectors = 0;
2404 dev->cylinders = 0;
2405 dev->heads = 0;
2406 dev->sectors = 0;
2407 dev->multi_count = 0;
2410 * common ATA, ATAPI feature tests
2413 /* find max transfer mode; for printk only */
2414 xfer_mask = ata_id_xfermask(id);
2416 if (ata_msg_probe(ap))
2417 ata_dump_id(id);
2419 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2420 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2421 sizeof(fwrevbuf));
2423 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2424 sizeof(modelbuf));
2426 /* ATA-specific feature tests */
2427 if (dev->class == ATA_DEV_ATA) {
2428 if (ata_id_is_cfa(id)) {
2429 /* CPRM may make this media unusable */
2430 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2431 ata_dev_printk(dev, KERN_WARNING,
2432 "supports DRM functions and may "
2433 "not be fully accessable.\n");
2434 snprintf(revbuf, 7, "CFA");
2435 } else {
2436 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2437 /* Warn the user if the device has TPM extensions */
2438 if (ata_id_has_tpm(id))
2439 ata_dev_printk(dev, KERN_WARNING,
2440 "supports DRM functions and may "
2441 "not be fully accessable.\n");
2444 dev->n_sectors = ata_id_n_sectors(id);
2446 /* get current R/W Multiple count setting */
2447 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2448 unsigned int max = dev->id[47] & 0xff;
2449 unsigned int cnt = dev->id[59] & 0xff;
2450 /* only recognize/allow powers of two here */
2451 if (is_power_of_2(max) && is_power_of_2(cnt))
2452 if (cnt <= max)
2453 dev->multi_count = cnt;
2456 if (ata_id_has_lba(id)) {
2457 const char *lba_desc;
2458 char ncq_desc[20];
2460 lba_desc = "LBA";
2461 dev->flags |= ATA_DFLAG_LBA;
2462 if (ata_id_has_lba48(id)) {
2463 dev->flags |= ATA_DFLAG_LBA48;
2464 lba_desc = "LBA48";
2466 if (dev->n_sectors >= (1UL << 28) &&
2467 ata_id_has_flush_ext(id))
2468 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2471 /* config NCQ */
2472 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2474 /* print device info to dmesg */
2475 if (ata_msg_drv(ap) && print_info) {
2476 ata_dev_printk(dev, KERN_INFO,
2477 "%s: %s, %s, max %s\n",
2478 revbuf, modelbuf, fwrevbuf,
2479 ata_mode_string(xfer_mask));
2480 ata_dev_printk(dev, KERN_INFO,
2481 "%Lu sectors, multi %u: %s %s\n",
2482 (unsigned long long)dev->n_sectors,
2483 dev->multi_count, lba_desc, ncq_desc);
2485 } else {
2486 /* CHS */
2488 /* Default translation */
2489 dev->cylinders = id[1];
2490 dev->heads = id[3];
2491 dev->sectors = id[6];
2493 if (ata_id_current_chs_valid(id)) {
2494 /* Current CHS translation is valid. */
2495 dev->cylinders = id[54];
2496 dev->heads = id[55];
2497 dev->sectors = id[56];
2500 /* print device info to dmesg */
2501 if (ata_msg_drv(ap) && print_info) {
2502 ata_dev_printk(dev, KERN_INFO,
2503 "%s: %s, %s, max %s\n",
2504 revbuf, modelbuf, fwrevbuf,
2505 ata_mode_string(xfer_mask));
2506 ata_dev_printk(dev, KERN_INFO,
2507 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2508 (unsigned long long)dev->n_sectors,
2509 dev->multi_count, dev->cylinders,
2510 dev->heads, dev->sectors);
2514 dev->cdb_len = 16;
2517 /* ATAPI-specific feature tests */
2518 else if (dev->class == ATA_DEV_ATAPI) {
2519 const char *cdb_intr_string = "";
2520 const char *atapi_an_string = "";
2521 const char *dma_dir_string = "";
2522 u32 sntf;
2524 rc = atapi_cdb_len(id);
2525 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2526 if (ata_msg_warn(ap))
2527 ata_dev_printk(dev, KERN_WARNING,
2528 "unsupported CDB len\n");
2529 rc = -EINVAL;
2530 goto err_out_nosup;
2532 dev->cdb_len = (unsigned int) rc;
2534 /* Enable ATAPI AN if both the host and device have
2535 * the support. If PMP is attached, SNTF is required
2536 * to enable ATAPI AN to discern between PHY status
2537 * changed notifications and ATAPI ANs.
2539 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2540 (!sata_pmp_attached(ap) ||
2541 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2542 unsigned int err_mask;
2544 /* issue SET feature command to turn this on */
2545 err_mask = ata_dev_set_feature(dev,
2546 SETFEATURES_SATA_ENABLE, SATA_AN);
2547 if (err_mask)
2548 ata_dev_printk(dev, KERN_ERR,
2549 "failed to enable ATAPI AN "
2550 "(err_mask=0x%x)\n", err_mask);
2551 else {
2552 dev->flags |= ATA_DFLAG_AN;
2553 atapi_an_string = ", ATAPI AN";
2557 if (ata_id_cdb_intr(dev->id)) {
2558 dev->flags |= ATA_DFLAG_CDB_INTR;
2559 cdb_intr_string = ", CDB intr";
2562 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2563 dev->flags |= ATA_DFLAG_DMADIR;
2564 dma_dir_string = ", DMADIR";
2567 /* print device info to dmesg */
2568 if (ata_msg_drv(ap) && print_info)
2569 ata_dev_printk(dev, KERN_INFO,
2570 "ATAPI: %s, %s, max %s%s%s%s\n",
2571 modelbuf, fwrevbuf,
2572 ata_mode_string(xfer_mask),
2573 cdb_intr_string, atapi_an_string,
2574 dma_dir_string);
2577 /* determine max_sectors */
2578 dev->max_sectors = ATA_MAX_SECTORS;
2579 if (dev->flags & ATA_DFLAG_LBA48)
2580 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2582 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2583 if (ata_id_has_hipm(dev->id))
2584 dev->flags |= ATA_DFLAG_HIPM;
2585 if (ata_id_has_dipm(dev->id))
2586 dev->flags |= ATA_DFLAG_DIPM;
2589 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2590 200 sectors */
2591 if (ata_dev_knobble(dev)) {
2592 if (ata_msg_drv(ap) && print_info)
2593 ata_dev_printk(dev, KERN_INFO,
2594 "applying bridge limits\n");
2595 dev->udma_mask &= ATA_UDMA5;
2596 dev->max_sectors = ATA_MAX_SECTORS;
2599 if ((dev->class == ATA_DEV_ATAPI) &&
2600 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2601 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2602 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2605 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2606 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2607 dev->max_sectors);
2609 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2610 dev->horkage |= ATA_HORKAGE_IPM;
2612 /* reset link pm_policy for this port to no pm */
2613 ap->pm_policy = MAX_PERFORMANCE;
2616 if (ap->ops->dev_config)
2617 ap->ops->dev_config(dev);
2619 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2620 /* Let the user know. We don't want to disallow opens for
2621 rescue purposes, or in case the vendor is just a blithering
2622 idiot. Do this after the dev_config call as some controllers
2623 with buggy firmware may want to avoid reporting false device
2624 bugs */
2626 if (print_info) {
2627 ata_dev_printk(dev, KERN_WARNING,
2628 "Drive reports diagnostics failure. This may indicate a drive\n");
2629 ata_dev_printk(dev, KERN_WARNING,
2630 "fault or invalid emulation. Contact drive vendor for information.\n");
2634 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2635 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2636 "firmware update to be fully functional.\n");
2637 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2638 "or visit http://ata.wiki.kernel.org.\n");
2641 return 0;
2643 err_out_nosup:
2644 if (ata_msg_probe(ap))
2645 ata_dev_printk(dev, KERN_DEBUG,
2646 "%s: EXIT, err\n", __func__);
2647 return rc;
2651 * ata_cable_40wire - return 40 wire cable type
2652 * @ap: port
2654 * Helper method for drivers which want to hardwire 40 wire cable
2655 * detection.
2658 int ata_cable_40wire(struct ata_port *ap)
2660 return ATA_CBL_PATA40;
2664 * ata_cable_80wire - return 80 wire cable type
2665 * @ap: port
2667 * Helper method for drivers which want to hardwire 80 wire cable
2668 * detection.
2671 int ata_cable_80wire(struct ata_port *ap)
2673 return ATA_CBL_PATA80;
2677 * ata_cable_unknown - return unknown PATA cable.
2678 * @ap: port
2680 * Helper method for drivers which have no PATA cable detection.
2683 int ata_cable_unknown(struct ata_port *ap)
2685 return ATA_CBL_PATA_UNK;
2689 * ata_cable_ignore - return ignored PATA cable.
2690 * @ap: port
2692 * Helper method for drivers which don't use cable type to limit
2693 * transfer mode.
2695 int ata_cable_ignore(struct ata_port *ap)
2697 return ATA_CBL_PATA_IGN;
2701 * ata_cable_sata - return SATA cable type
2702 * @ap: port
2704 * Helper method for drivers which have SATA cables
2707 int ata_cable_sata(struct ata_port *ap)
2709 return ATA_CBL_SATA;
2713 * ata_bus_probe - Reset and probe ATA bus
2714 * @ap: Bus to probe
2716 * Master ATA bus probing function. Initiates a hardware-dependent
2717 * bus reset, then attempts to identify any devices found on
2718 * the bus.
2720 * LOCKING:
2721 * PCI/etc. bus probe sem.
2723 * RETURNS:
2724 * Zero on success, negative errno otherwise.
2727 int ata_bus_probe(struct ata_port *ap)
2729 unsigned int classes[ATA_MAX_DEVICES];
2730 int tries[ATA_MAX_DEVICES];
2731 int rc;
2732 struct ata_device *dev;
2734 ata_port_probe(ap);
2736 ata_for_each_dev(dev, &ap->link, ALL)
2737 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2739 retry:
2740 ata_for_each_dev(dev, &ap->link, ALL) {
2741 /* If we issue an SRST then an ATA drive (not ATAPI)
2742 * may change configuration and be in PIO0 timing. If
2743 * we do a hard reset (or are coming from power on)
2744 * this is true for ATA or ATAPI. Until we've set a
2745 * suitable controller mode we should not touch the
2746 * bus as we may be talking too fast.
2748 dev->pio_mode = XFER_PIO_0;
2750 /* If the controller has a pio mode setup function
2751 * then use it to set the chipset to rights. Don't
2752 * touch the DMA setup as that will be dealt with when
2753 * configuring devices.
2755 if (ap->ops->set_piomode)
2756 ap->ops->set_piomode(ap, dev);
2759 /* reset and determine device classes */
2760 ap->ops->phy_reset(ap);
2762 ata_for_each_dev(dev, &ap->link, ALL) {
2763 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2764 dev->class != ATA_DEV_UNKNOWN)
2765 classes[dev->devno] = dev->class;
2766 else
2767 classes[dev->devno] = ATA_DEV_NONE;
2769 dev->class = ATA_DEV_UNKNOWN;
2772 ata_port_probe(ap);
2774 /* read IDENTIFY page and configure devices. We have to do the identify
2775 specific sequence bass-ackwards so that PDIAG- is released by
2776 the slave device */
2778 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2779 if (tries[dev->devno])
2780 dev->class = classes[dev->devno];
2782 if (!ata_dev_enabled(dev))
2783 continue;
2785 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2786 dev->id);
2787 if (rc)
2788 goto fail;
2791 /* Now ask for the cable type as PDIAG- should have been released */
2792 if (ap->ops->cable_detect)
2793 ap->cbl = ap->ops->cable_detect(ap);
2795 /* We may have SATA bridge glue hiding here irrespective of
2796 * the reported cable types and sensed types. When SATA
2797 * drives indicate we have a bridge, we don't know which end
2798 * of the link the bridge is which is a problem.
2800 ata_for_each_dev(dev, &ap->link, ENABLED)
2801 if (ata_id_is_sata(dev->id))
2802 ap->cbl = ATA_CBL_SATA;
2804 /* After the identify sequence we can now set up the devices. We do
2805 this in the normal order so that the user doesn't get confused */
2807 ata_for_each_dev(dev, &ap->link, ENABLED) {
2808 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2809 rc = ata_dev_configure(dev);
2810 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2811 if (rc)
2812 goto fail;
2815 /* configure transfer mode */
2816 rc = ata_set_mode(&ap->link, &dev);
2817 if (rc)
2818 goto fail;
2820 ata_for_each_dev(dev, &ap->link, ENABLED)
2821 return 0;
2823 /* no device present, disable port */
2824 ata_port_disable(ap);
2825 return -ENODEV;
2827 fail:
2828 tries[dev->devno]--;
2830 switch (rc) {
2831 case -EINVAL:
2832 /* eeek, something went very wrong, give up */
2833 tries[dev->devno] = 0;
2834 break;
2836 case -ENODEV:
2837 /* give it just one more chance */
2838 tries[dev->devno] = min(tries[dev->devno], 1);
2839 case -EIO:
2840 if (tries[dev->devno] == 1) {
2841 /* This is the last chance, better to slow
2842 * down than lose it.
2844 sata_down_spd_limit(&ap->link, 0);
2845 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2849 if (!tries[dev->devno])
2850 ata_dev_disable(dev);
2852 goto retry;
2856 * ata_port_probe - Mark port as enabled
2857 * @ap: Port for which we indicate enablement
2859 * Modify @ap data structure such that the system
2860 * thinks that the entire port is enabled.
2862 * LOCKING: host lock, or some other form of
2863 * serialization.
2866 void ata_port_probe(struct ata_port *ap)
2868 ap->flags &= ~ATA_FLAG_DISABLED;
2872 * sata_print_link_status - Print SATA link status
2873 * @link: SATA link to printk link status about
2875 * This function prints link speed and status of a SATA link.
2877 * LOCKING:
2878 * None.
2880 static void sata_print_link_status(struct ata_link *link)
2882 u32 sstatus, scontrol, tmp;
2884 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2885 return;
2886 sata_scr_read(link, SCR_CONTROL, &scontrol);
2888 if (ata_phys_link_online(link)) {
2889 tmp = (sstatus >> 4) & 0xf;
2890 ata_link_printk(link, KERN_INFO,
2891 "SATA link up %s (SStatus %X SControl %X)\n",
2892 sata_spd_string(tmp), sstatus, scontrol);
2893 } else {
2894 ata_link_printk(link, KERN_INFO,
2895 "SATA link down (SStatus %X SControl %X)\n",
2896 sstatus, scontrol);
2901 * ata_dev_pair - return other device on cable
2902 * @adev: device
2904 * Obtain the other device on the same cable, or if none is
2905 * present NULL is returned
2908 struct ata_device *ata_dev_pair(struct ata_device *adev)
2910 struct ata_link *link = adev->link;
2911 struct ata_device *pair = &link->device[1 - adev->devno];
2912 if (!ata_dev_enabled(pair))
2913 return NULL;
2914 return pair;
2918 * ata_port_disable - Disable port.
2919 * @ap: Port to be disabled.
2921 * Modify @ap data structure such that the system
2922 * thinks that the entire port is disabled, and should
2923 * never attempt to probe or communicate with devices
2924 * on this port.
2926 * LOCKING: host lock, or some other form of
2927 * serialization.
2930 void ata_port_disable(struct ata_port *ap)
2932 ap->link.device[0].class = ATA_DEV_NONE;
2933 ap->link.device[1].class = ATA_DEV_NONE;
2934 ap->flags |= ATA_FLAG_DISABLED;
2938 * sata_down_spd_limit - adjust SATA spd limit downward
2939 * @link: Link to adjust SATA spd limit for
2940 * @spd_limit: Additional limit
2942 * Adjust SATA spd limit of @link downward. Note that this
2943 * function only adjusts the limit. The change must be applied
2944 * using sata_set_spd().
2946 * If @spd_limit is non-zero, the speed is limited to equal to or
2947 * lower than @spd_limit if such speed is supported. If
2948 * @spd_limit is slower than any supported speed, only the lowest
2949 * supported speed is allowed.
2951 * LOCKING:
2952 * Inherited from caller.
2954 * RETURNS:
2955 * 0 on success, negative errno on failure
2957 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2959 u32 sstatus, spd, mask;
2960 int rc, bit;
2962 if (!sata_scr_valid(link))
2963 return -EOPNOTSUPP;
2965 /* If SCR can be read, use it to determine the current SPD.
2966 * If not, use cached value in link->sata_spd.
2968 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2969 if (rc == 0 && ata_sstatus_online(sstatus))
2970 spd = (sstatus >> 4) & 0xf;
2971 else
2972 spd = link->sata_spd;
2974 mask = link->sata_spd_limit;
2975 if (mask <= 1)
2976 return -EINVAL;
2978 /* unconditionally mask off the highest bit */
2979 bit = fls(mask) - 1;
2980 mask &= ~(1 << bit);
2982 /* Mask off all speeds higher than or equal to the current
2983 * one. Force 1.5Gbps if current SPD is not available.
2985 if (spd > 1)
2986 mask &= (1 << (spd - 1)) - 1;
2987 else
2988 mask &= 1;
2990 /* were we already at the bottom? */
2991 if (!mask)
2992 return -EINVAL;
2994 if (spd_limit) {
2995 if (mask & ((1 << spd_limit) - 1))
2996 mask &= (1 << spd_limit) - 1;
2997 else {
2998 bit = ffs(mask) - 1;
2999 mask = 1 << bit;
3003 link->sata_spd_limit = mask;
3005 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
3006 sata_spd_string(fls(mask)));
3008 return 0;
3011 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3013 struct ata_link *host_link = &link->ap->link;
3014 u32 limit, target, spd;
3016 limit = link->sata_spd_limit;
3018 /* Don't configure downstream link faster than upstream link.
3019 * It doesn't speed up anything and some PMPs choke on such
3020 * configuration.
3022 if (!ata_is_host_link(link) && host_link->sata_spd)
3023 limit &= (1 << host_link->sata_spd) - 1;
3025 if (limit == UINT_MAX)
3026 target = 0;
3027 else
3028 target = fls(limit);
3030 spd = (*scontrol >> 4) & 0xf;
3031 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3033 return spd != target;
3037 * sata_set_spd_needed - is SATA spd configuration needed
3038 * @link: Link in question
3040 * Test whether the spd limit in SControl matches
3041 * @link->sata_spd_limit. This function is used to determine
3042 * whether hardreset is necessary to apply SATA spd
3043 * configuration.
3045 * LOCKING:
3046 * Inherited from caller.
3048 * RETURNS:
3049 * 1 if SATA spd configuration is needed, 0 otherwise.
3051 static int sata_set_spd_needed(struct ata_link *link)
3053 u32 scontrol;
3055 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3056 return 1;
3058 return __sata_set_spd_needed(link, &scontrol);
3062 * sata_set_spd - set SATA spd according to spd limit
3063 * @link: Link to set SATA spd for
3065 * Set SATA spd of @link according to sata_spd_limit.
3067 * LOCKING:
3068 * Inherited from caller.
3070 * RETURNS:
3071 * 0 if spd doesn't need to be changed, 1 if spd has been
3072 * changed. Negative errno if SCR registers are inaccessible.
3074 int sata_set_spd(struct ata_link *link)
3076 u32 scontrol;
3077 int rc;
3079 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3080 return rc;
3082 if (!__sata_set_spd_needed(link, &scontrol))
3083 return 0;
3085 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3086 return rc;
3088 return 1;
3092 * This mode timing computation functionality is ported over from
3093 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3096 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3097 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3098 * for UDMA6, which is currently supported only by Maxtor drives.
3100 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3103 static const struct ata_timing ata_timing[] = {
3104 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3105 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3106 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3107 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3108 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3109 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3110 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3111 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3113 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3114 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3115 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3117 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3118 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3119 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3120 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3121 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3123 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3124 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3125 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3126 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3127 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3128 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3129 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3130 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3132 { 0xFF }
3135 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3136 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3138 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3140 q->setup = EZ(t->setup * 1000, T);
3141 q->act8b = EZ(t->act8b * 1000, T);
3142 q->rec8b = EZ(t->rec8b * 1000, T);
3143 q->cyc8b = EZ(t->cyc8b * 1000, T);
3144 q->active = EZ(t->active * 1000, T);
3145 q->recover = EZ(t->recover * 1000, T);
3146 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3147 q->cycle = EZ(t->cycle * 1000, T);
3148 q->udma = EZ(t->udma * 1000, UT);
3151 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3152 struct ata_timing *m, unsigned int what)
3154 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3155 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3156 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3157 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3158 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3159 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3160 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3161 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3162 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3165 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3167 const struct ata_timing *t = ata_timing;
3169 while (xfer_mode > t->mode)
3170 t++;
3172 if (xfer_mode == t->mode)
3173 return t;
3174 return NULL;
3177 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3178 struct ata_timing *t, int T, int UT)
3180 const struct ata_timing *s;
3181 struct ata_timing p;
3184 * Find the mode.
3187 if (!(s = ata_timing_find_mode(speed)))
3188 return -EINVAL;
3190 memcpy(t, s, sizeof(*s));
3193 * If the drive is an EIDE drive, it can tell us it needs extended
3194 * PIO/MW_DMA cycle timing.
3197 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3198 memset(&p, 0, sizeof(p));
3199 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3200 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3201 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3202 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3203 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3205 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3209 * Convert the timing to bus clock counts.
3212 ata_timing_quantize(t, t, T, UT);
3215 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3216 * S.M.A.R.T * and some other commands. We have to ensure that the
3217 * DMA cycle timing is slower/equal than the fastest PIO timing.
3220 if (speed > XFER_PIO_6) {
3221 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3222 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3226 * Lengthen active & recovery time so that cycle time is correct.
3229 if (t->act8b + t->rec8b < t->cyc8b) {
3230 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3231 t->rec8b = t->cyc8b - t->act8b;
3234 if (t->active + t->recover < t->cycle) {
3235 t->active += (t->cycle - (t->active + t->recover)) / 2;
3236 t->recover = t->cycle - t->active;
3239 /* In a few cases quantisation may produce enough errors to
3240 leave t->cycle too low for the sum of active and recovery
3241 if so we must correct this */
3242 if (t->active + t->recover > t->cycle)
3243 t->cycle = t->active + t->recover;
3245 return 0;
3249 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3250 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3251 * @cycle: cycle duration in ns
3253 * Return matching xfer mode for @cycle. The returned mode is of
3254 * the transfer type specified by @xfer_shift. If @cycle is too
3255 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3256 * than the fastest known mode, the fasted mode is returned.
3258 * LOCKING:
3259 * None.
3261 * RETURNS:
3262 * Matching xfer_mode, 0xff if no match found.
3264 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3266 u8 base_mode = 0xff, last_mode = 0xff;
3267 const struct ata_xfer_ent *ent;
3268 const struct ata_timing *t;
3270 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3271 if (ent->shift == xfer_shift)
3272 base_mode = ent->base;
3274 for (t = ata_timing_find_mode(base_mode);
3275 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3276 unsigned short this_cycle;
3278 switch (xfer_shift) {
3279 case ATA_SHIFT_PIO:
3280 case ATA_SHIFT_MWDMA:
3281 this_cycle = t->cycle;
3282 break;
3283 case ATA_SHIFT_UDMA:
3284 this_cycle = t->udma;
3285 break;
3286 default:
3287 return 0xff;
3290 if (cycle > this_cycle)
3291 break;
3293 last_mode = t->mode;
3296 return last_mode;
3300 * ata_down_xfermask_limit - adjust dev xfer masks downward
3301 * @dev: Device to adjust xfer masks
3302 * @sel: ATA_DNXFER_* selector
3304 * Adjust xfer masks of @dev downward. Note that this function
3305 * does not apply the change. Invoking ata_set_mode() afterwards
3306 * will apply the limit.
3308 * LOCKING:
3309 * Inherited from caller.
3311 * RETURNS:
3312 * 0 on success, negative errno on failure
3314 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3316 char buf[32];
3317 unsigned long orig_mask, xfer_mask;
3318 unsigned long pio_mask, mwdma_mask, udma_mask;
3319 int quiet, highbit;
3321 quiet = !!(sel & ATA_DNXFER_QUIET);
3322 sel &= ~ATA_DNXFER_QUIET;
3324 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3325 dev->mwdma_mask,
3326 dev->udma_mask);
3327 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3329 switch (sel) {
3330 case ATA_DNXFER_PIO:
3331 highbit = fls(pio_mask) - 1;
3332 pio_mask &= ~(1 << highbit);
3333 break;
3335 case ATA_DNXFER_DMA:
3336 if (udma_mask) {
3337 highbit = fls(udma_mask) - 1;
3338 udma_mask &= ~(1 << highbit);
3339 if (!udma_mask)
3340 return -ENOENT;
3341 } else if (mwdma_mask) {
3342 highbit = fls(mwdma_mask) - 1;
3343 mwdma_mask &= ~(1 << highbit);
3344 if (!mwdma_mask)
3345 return -ENOENT;
3347 break;
3349 case ATA_DNXFER_40C:
3350 udma_mask &= ATA_UDMA_MASK_40C;
3351 break;
3353 case ATA_DNXFER_FORCE_PIO0:
3354 pio_mask &= 1;
3355 case ATA_DNXFER_FORCE_PIO:
3356 mwdma_mask = 0;
3357 udma_mask = 0;
3358 break;
3360 default:
3361 BUG();
3364 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3366 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3367 return -ENOENT;
3369 if (!quiet) {
3370 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3371 snprintf(buf, sizeof(buf), "%s:%s",
3372 ata_mode_string(xfer_mask),
3373 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3374 else
3375 snprintf(buf, sizeof(buf), "%s",
3376 ata_mode_string(xfer_mask));
3378 ata_dev_printk(dev, KERN_WARNING,
3379 "limiting speed to %s\n", buf);
3382 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3383 &dev->udma_mask);
3385 return 0;
3388 static int ata_dev_set_mode(struct ata_device *dev)
3390 struct ata_eh_context *ehc = &dev->link->eh_context;
3391 const char *dev_err_whine = "";
3392 int ign_dev_err = 0;
3393 unsigned int err_mask;
3394 int rc;
3396 dev->flags &= ~ATA_DFLAG_PIO;
3397 if (dev->xfer_shift == ATA_SHIFT_PIO)
3398 dev->flags |= ATA_DFLAG_PIO;
3400 err_mask = ata_dev_set_xfermode(dev);
3402 if (err_mask & ~AC_ERR_DEV)
3403 goto fail;
3405 /* revalidate */
3406 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3407 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3408 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3409 if (rc)
3410 return rc;
3412 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3413 /* Old CFA may refuse this command, which is just fine */
3414 if (ata_id_is_cfa(dev->id))
3415 ign_dev_err = 1;
3416 /* Catch several broken garbage emulations plus some pre
3417 ATA devices */
3418 if (ata_id_major_version(dev->id) == 0 &&
3419 dev->pio_mode <= XFER_PIO_2)
3420 ign_dev_err = 1;
3421 /* Some very old devices and some bad newer ones fail
3422 any kind of SET_XFERMODE request but support PIO0-2
3423 timings and no IORDY */
3424 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3425 ign_dev_err = 1;
3427 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3428 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3429 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3430 dev->dma_mode == XFER_MW_DMA_0 &&
3431 (dev->id[63] >> 8) & 1)
3432 ign_dev_err = 1;
3434 /* if the device is actually configured correctly, ignore dev err */
3435 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3436 ign_dev_err = 1;
3438 if (err_mask & AC_ERR_DEV) {
3439 if (!ign_dev_err)
3440 goto fail;
3441 else
3442 dev_err_whine = " (device error ignored)";
3445 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3446 dev->xfer_shift, (int)dev->xfer_mode);
3448 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3449 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3450 dev_err_whine);
3452 return 0;
3454 fail:
3455 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3456 "(err_mask=0x%x)\n", err_mask);
3457 return -EIO;
3461 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3462 * @link: link on which timings will be programmed
3463 * @r_failed_dev: out parameter for failed device
3465 * Standard implementation of the function used to tune and set
3466 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3467 * ata_dev_set_mode() fails, pointer to the failing device is
3468 * returned in @r_failed_dev.
3470 * LOCKING:
3471 * PCI/etc. bus probe sem.
3473 * RETURNS:
3474 * 0 on success, negative errno otherwise
3477 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3479 struct ata_port *ap = link->ap;
3480 struct ata_device *dev;
3481 int rc = 0, used_dma = 0, found = 0;
3483 /* step 1: calculate xfer_mask */
3484 ata_for_each_dev(dev, link, ENABLED) {
3485 unsigned long pio_mask, dma_mask;
3486 unsigned int mode_mask;
3488 mode_mask = ATA_DMA_MASK_ATA;
3489 if (dev->class == ATA_DEV_ATAPI)
3490 mode_mask = ATA_DMA_MASK_ATAPI;
3491 else if (ata_id_is_cfa(dev->id))
3492 mode_mask = ATA_DMA_MASK_CFA;
3494 ata_dev_xfermask(dev);
3495 ata_force_xfermask(dev);
3497 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3498 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3500 if (libata_dma_mask & mode_mask)
3501 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3502 else
3503 dma_mask = 0;
3505 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3506 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3508 found = 1;
3509 if (ata_dma_enabled(dev))
3510 used_dma = 1;
3512 if (!found)
3513 goto out;
3515 /* step 2: always set host PIO timings */
3516 ata_for_each_dev(dev, link, ENABLED) {
3517 if (dev->pio_mode == 0xff) {
3518 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3519 rc = -EINVAL;
3520 goto out;
3523 dev->xfer_mode = dev->pio_mode;
3524 dev->xfer_shift = ATA_SHIFT_PIO;
3525 if (ap->ops->set_piomode)
3526 ap->ops->set_piomode(ap, dev);
3529 /* step 3: set host DMA timings */
3530 ata_for_each_dev(dev, link, ENABLED) {
3531 if (!ata_dma_enabled(dev))
3532 continue;
3534 dev->xfer_mode = dev->dma_mode;
3535 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3536 if (ap->ops->set_dmamode)
3537 ap->ops->set_dmamode(ap, dev);
3540 /* step 4: update devices' xfer mode */
3541 ata_for_each_dev(dev, link, ENABLED) {
3542 rc = ata_dev_set_mode(dev);
3543 if (rc)
3544 goto out;
3547 /* Record simplex status. If we selected DMA then the other
3548 * host channels are not permitted to do so.
3550 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3551 ap->host->simplex_claimed = ap;
3553 out:
3554 if (rc)
3555 *r_failed_dev = dev;
3556 return rc;
3560 * ata_wait_ready - wait for link to become ready
3561 * @link: link to be waited on
3562 * @deadline: deadline jiffies for the operation
3563 * @check_ready: callback to check link readiness
3565 * Wait for @link to become ready. @check_ready should return
3566 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3567 * link doesn't seem to be occupied, other errno for other error
3568 * conditions.
3570 * Transient -ENODEV conditions are allowed for
3571 * ATA_TMOUT_FF_WAIT.
3573 * LOCKING:
3574 * EH context.
3576 * RETURNS:
3577 * 0 if @linke is ready before @deadline; otherwise, -errno.
3579 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3580 int (*check_ready)(struct ata_link *link))
3582 unsigned long start = jiffies;
3583 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3584 int warned = 0;
3586 /* Slave readiness can't be tested separately from master. On
3587 * M/S emulation configuration, this function should be called
3588 * only on the master and it will handle both master and slave.
3590 WARN_ON(link == link->ap->slave_link);
3592 if (time_after(nodev_deadline, deadline))
3593 nodev_deadline = deadline;
3595 while (1) {
3596 unsigned long now = jiffies;
3597 int ready, tmp;
3599 ready = tmp = check_ready(link);
3600 if (ready > 0)
3601 return 0;
3603 /* -ENODEV could be transient. Ignore -ENODEV if link
3604 * is online. Also, some SATA devices take a long
3605 * time to clear 0xff after reset. For example,
3606 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3607 * GoVault needs even more than that. Wait for
3608 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3610 * Note that some PATA controllers (pata_ali) explode
3611 * if status register is read more than once when
3612 * there's no device attached.
3614 if (ready == -ENODEV) {
3615 if (ata_link_online(link))
3616 ready = 0;
3617 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3618 !ata_link_offline(link) &&
3619 time_before(now, nodev_deadline))
3620 ready = 0;
3623 if (ready)
3624 return ready;
3625 if (time_after(now, deadline))
3626 return -EBUSY;
3628 if (!warned && time_after(now, start + 5 * HZ) &&
3629 (deadline - now > 3 * HZ)) {
3630 ata_link_printk(link, KERN_WARNING,
3631 "link is slow to respond, please be patient "
3632 "(ready=%d)\n", tmp);
3633 warned = 1;
3636 msleep(50);
3641 * ata_wait_after_reset - wait for link to become ready after reset
3642 * @link: link to be waited on
3643 * @deadline: deadline jiffies for the operation
3644 * @check_ready: callback to check link readiness
3646 * Wait for @link to become ready after reset.
3648 * LOCKING:
3649 * EH context.
3651 * RETURNS:
3652 * 0 if @linke is ready before @deadline; otherwise, -errno.
3654 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3655 int (*check_ready)(struct ata_link *link))
3657 msleep(ATA_WAIT_AFTER_RESET);
3659 return ata_wait_ready(link, deadline, check_ready);
3663 * sata_link_debounce - debounce SATA phy status
3664 * @link: ATA link to debounce SATA phy status for
3665 * @params: timing parameters { interval, duratinon, timeout } in msec
3666 * @deadline: deadline jiffies for the operation
3668 * Make sure SStatus of @link reaches stable state, determined by
3669 * holding the same value where DET is not 1 for @duration polled
3670 * every @interval, before @timeout. Timeout constraints the
3671 * beginning of the stable state. Because DET gets stuck at 1 on
3672 * some controllers after hot unplugging, this functions waits
3673 * until timeout then returns 0 if DET is stable at 1.
3675 * @timeout is further limited by @deadline. The sooner of the
3676 * two is used.
3678 * LOCKING:
3679 * Kernel thread context (may sleep)
3681 * RETURNS:
3682 * 0 on success, -errno on failure.
3684 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3685 unsigned long deadline)
3687 unsigned long interval = params[0];
3688 unsigned long duration = params[1];
3689 unsigned long last_jiffies, t;
3690 u32 last, cur;
3691 int rc;
3693 t = ata_deadline(jiffies, params[2]);
3694 if (time_before(t, deadline))
3695 deadline = t;
3697 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3698 return rc;
3699 cur &= 0xf;
3701 last = cur;
3702 last_jiffies = jiffies;
3704 while (1) {
3705 msleep(interval);
3706 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3707 return rc;
3708 cur &= 0xf;
3710 /* DET stable? */
3711 if (cur == last) {
3712 if (cur == 1 && time_before(jiffies, deadline))
3713 continue;
3714 if (time_after(jiffies,
3715 ata_deadline(last_jiffies, duration)))
3716 return 0;
3717 continue;
3720 /* unstable, start over */
3721 last = cur;
3722 last_jiffies = jiffies;
3724 /* Check deadline. If debouncing failed, return
3725 * -EPIPE to tell upper layer to lower link speed.
3727 if (time_after(jiffies, deadline))
3728 return -EPIPE;
3733 * sata_link_resume - resume SATA link
3734 * @link: ATA link to resume SATA
3735 * @params: timing parameters { interval, duratinon, timeout } in msec
3736 * @deadline: deadline jiffies for the operation
3738 * Resume SATA phy @link and debounce it.
3740 * LOCKING:
3741 * Kernel thread context (may sleep)
3743 * RETURNS:
3744 * 0 on success, -errno on failure.
3746 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3747 unsigned long deadline)
3749 u32 scontrol, serror;
3750 int rc;
3752 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3753 return rc;
3755 scontrol = (scontrol & 0x0f0) | 0x300;
3757 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3758 return rc;
3760 /* Some PHYs react badly if SStatus is pounded immediately
3761 * after resuming. Delay 200ms before debouncing.
3763 msleep(200);
3765 if ((rc = sata_link_debounce(link, params, deadline)))
3766 return rc;
3768 /* clear SError, some PHYs require this even for SRST to work */
3769 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3770 rc = sata_scr_write(link, SCR_ERROR, serror);
3772 return rc != -EINVAL ? rc : 0;
3776 * ata_std_prereset - prepare for reset
3777 * @link: ATA link to be reset
3778 * @deadline: deadline jiffies for the operation
3780 * @link is about to be reset. Initialize it. Failure from
3781 * prereset makes libata abort whole reset sequence and give up
3782 * that port, so prereset should be best-effort. It does its
3783 * best to prepare for reset sequence but if things go wrong, it
3784 * should just whine, not fail.
3786 * LOCKING:
3787 * Kernel thread context (may sleep)
3789 * RETURNS:
3790 * 0 on success, -errno otherwise.
3792 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3794 struct ata_port *ap = link->ap;
3795 struct ata_eh_context *ehc = &link->eh_context;
3796 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3797 int rc;
3799 /* if we're about to do hardreset, nothing more to do */
3800 if (ehc->i.action & ATA_EH_HARDRESET)
3801 return 0;
3803 /* if SATA, resume link */
3804 if (ap->flags & ATA_FLAG_SATA) {
3805 rc = sata_link_resume(link, timing, deadline);
3806 /* whine about phy resume failure but proceed */
3807 if (rc && rc != -EOPNOTSUPP)
3808 ata_link_printk(link, KERN_WARNING, "failed to resume "
3809 "link for reset (errno=%d)\n", rc);
3812 /* no point in trying softreset on offline link */
3813 if (ata_phys_link_offline(link))
3814 ehc->i.action &= ~ATA_EH_SOFTRESET;
3816 return 0;
3820 * sata_link_hardreset - reset link via SATA phy reset
3821 * @link: link to reset
3822 * @timing: timing parameters { interval, duratinon, timeout } in msec
3823 * @deadline: deadline jiffies for the operation
3824 * @online: optional out parameter indicating link onlineness
3825 * @check_ready: optional callback to check link readiness
3827 * SATA phy-reset @link using DET bits of SControl register.
3828 * After hardreset, link readiness is waited upon using
3829 * ata_wait_ready() if @check_ready is specified. LLDs are
3830 * allowed to not specify @check_ready and wait itself after this
3831 * function returns. Device classification is LLD's
3832 * responsibility.
3834 * *@online is set to one iff reset succeeded and @link is online
3835 * after reset.
3837 * LOCKING:
3838 * Kernel thread context (may sleep)
3840 * RETURNS:
3841 * 0 on success, -errno otherwise.
3843 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3844 unsigned long deadline,
3845 bool *online, int (*check_ready)(struct ata_link *))
3847 u32 scontrol;
3848 int rc;
3850 DPRINTK("ENTER\n");
3852 if (online)
3853 *online = false;
3855 if (sata_set_spd_needed(link)) {
3856 /* SATA spec says nothing about how to reconfigure
3857 * spd. To be on the safe side, turn off phy during
3858 * reconfiguration. This works for at least ICH7 AHCI
3859 * and Sil3124.
3861 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3862 goto out;
3864 scontrol = (scontrol & 0x0f0) | 0x304;
3866 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3867 goto out;
3869 sata_set_spd(link);
3872 /* issue phy wake/reset */
3873 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3874 goto out;
3876 scontrol = (scontrol & 0x0f0) | 0x301;
3878 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3879 goto out;
3881 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3882 * 10.4.2 says at least 1 ms.
3884 msleep(1);
3886 /* bring link back */
3887 rc = sata_link_resume(link, timing, deadline);
3888 if (rc)
3889 goto out;
3890 /* if link is offline nothing more to do */
3891 if (ata_phys_link_offline(link))
3892 goto out;
3894 /* Link is online. From this point, -ENODEV too is an error. */
3895 if (online)
3896 *online = true;
3898 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3899 /* If PMP is supported, we have to do follow-up SRST.
3900 * Some PMPs don't send D2H Reg FIS after hardreset if
3901 * the first port is empty. Wait only for
3902 * ATA_TMOUT_PMP_SRST_WAIT.
3904 if (check_ready) {
3905 unsigned long pmp_deadline;
3907 pmp_deadline = ata_deadline(jiffies,
3908 ATA_TMOUT_PMP_SRST_WAIT);
3909 if (time_after(pmp_deadline, deadline))
3910 pmp_deadline = deadline;
3911 ata_wait_ready(link, pmp_deadline, check_ready);
3913 rc = -EAGAIN;
3914 goto out;
3917 rc = 0;
3918 if (check_ready)
3919 rc = ata_wait_ready(link, deadline, check_ready);
3920 out:
3921 if (rc && rc != -EAGAIN) {
3922 /* online is set iff link is online && reset succeeded */
3923 if (online)
3924 *online = false;
3925 ata_link_printk(link, KERN_ERR,
3926 "COMRESET failed (errno=%d)\n", rc);
3928 DPRINTK("EXIT, rc=%d\n", rc);
3929 return rc;
3933 * sata_std_hardreset - COMRESET w/o waiting or classification
3934 * @link: link to reset
3935 * @class: resulting class of attached device
3936 * @deadline: deadline jiffies for the operation
3938 * Standard SATA COMRESET w/o waiting or classification.
3940 * LOCKING:
3941 * Kernel thread context (may sleep)
3943 * RETURNS:
3944 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3946 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3947 unsigned long deadline)
3949 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3950 bool online;
3951 int rc;
3953 /* do hardreset */
3954 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3955 return online ? -EAGAIN : rc;
3959 * ata_std_postreset - standard postreset callback
3960 * @link: the target ata_link
3961 * @classes: classes of attached devices
3963 * This function is invoked after a successful reset. Note that
3964 * the device might have been reset more than once using
3965 * different reset methods before postreset is invoked.
3967 * LOCKING:
3968 * Kernel thread context (may sleep)
3970 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3972 u32 serror;
3974 DPRINTK("ENTER\n");
3976 /* reset complete, clear SError */
3977 if (!sata_scr_read(link, SCR_ERROR, &serror))
3978 sata_scr_write(link, SCR_ERROR, serror);
3980 /* print link status */
3981 sata_print_link_status(link);
3983 DPRINTK("EXIT\n");
3987 * ata_dev_same_device - Determine whether new ID matches configured device
3988 * @dev: device to compare against
3989 * @new_class: class of the new device
3990 * @new_id: IDENTIFY page of the new device
3992 * Compare @new_class and @new_id against @dev and determine
3993 * whether @dev is the device indicated by @new_class and
3994 * @new_id.
3996 * LOCKING:
3997 * None.
3999 * RETURNS:
4000 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4002 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4003 const u16 *new_id)
4005 const u16 *old_id = dev->id;
4006 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4007 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4009 if (dev->class != new_class) {
4010 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4011 dev->class, new_class);
4012 return 0;
4015 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4016 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4017 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4018 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4020 if (strcmp(model[0], model[1])) {
4021 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4022 "'%s' != '%s'\n", model[0], model[1]);
4023 return 0;
4026 if (strcmp(serial[0], serial[1])) {
4027 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4028 "'%s' != '%s'\n", serial[0], serial[1]);
4029 return 0;
4032 return 1;
4036 * ata_dev_reread_id - Re-read IDENTIFY data
4037 * @dev: target ATA device
4038 * @readid_flags: read ID flags
4040 * Re-read IDENTIFY page and make sure @dev is still attached to
4041 * the port.
4043 * LOCKING:
4044 * Kernel thread context (may sleep)
4046 * RETURNS:
4047 * 0 on success, negative errno otherwise
4049 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4051 unsigned int class = dev->class;
4052 u16 *id = (void *)dev->link->ap->sector_buf;
4053 int rc;
4055 /* read ID data */
4056 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4057 if (rc)
4058 return rc;
4060 /* is the device still there? */
4061 if (!ata_dev_same_device(dev, class, id))
4062 return -ENODEV;
4064 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4065 return 0;
4069 * ata_dev_revalidate - Revalidate ATA device
4070 * @dev: device to revalidate
4071 * @new_class: new class code
4072 * @readid_flags: read ID flags
4074 * Re-read IDENTIFY page, make sure @dev is still attached to the
4075 * port and reconfigure it according to the new IDENTIFY page.
4077 * LOCKING:
4078 * Kernel thread context (may sleep)
4080 * RETURNS:
4081 * 0 on success, negative errno otherwise
4083 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4084 unsigned int readid_flags)
4086 u64 n_sectors = dev->n_sectors;
4087 int rc;
4089 if (!ata_dev_enabled(dev))
4090 return -ENODEV;
4092 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4093 if (ata_class_enabled(new_class) &&
4094 new_class != ATA_DEV_ATA &&
4095 new_class != ATA_DEV_ATAPI &&
4096 new_class != ATA_DEV_SEMB) {
4097 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4098 dev->class, new_class);
4099 rc = -ENODEV;
4100 goto fail;
4103 /* re-read ID */
4104 rc = ata_dev_reread_id(dev, readid_flags);
4105 if (rc)
4106 goto fail;
4108 /* configure device according to the new ID */
4109 rc = ata_dev_configure(dev);
4110 if (rc)
4111 goto fail;
4113 /* verify n_sectors hasn't changed */
4114 if (dev->class == ATA_DEV_ATA && n_sectors &&
4115 dev->n_sectors != n_sectors) {
4116 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4117 "%llu != %llu\n",
4118 (unsigned long long)n_sectors,
4119 (unsigned long long)dev->n_sectors);
4121 /* restore original n_sectors */
4122 dev->n_sectors = n_sectors;
4124 rc = -ENODEV;
4125 goto fail;
4128 return 0;
4130 fail:
4131 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4132 return rc;
4135 struct ata_blacklist_entry {
4136 const char *model_num;
4137 const char *model_rev;
4138 unsigned long horkage;
4141 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4142 /* Devices with DMA related problems under Linux */
4143 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4144 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4145 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4146 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4147 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4148 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4149 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4150 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4151 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4152 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4153 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4154 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4155 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4156 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4157 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4158 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4159 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4160 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4161 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4162 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4163 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4164 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4165 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4166 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4167 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4168 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4169 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4170 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4171 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4172 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4173 /* Odd clown on sil3726/4726 PMPs */
4174 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4176 /* Weird ATAPI devices */
4177 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4178 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4180 /* Devices we expect to fail diagnostics */
4182 /* Devices where NCQ should be avoided */
4183 /* NCQ is slow */
4184 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4185 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4186 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4187 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4188 /* NCQ is broken */
4189 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4190 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4191 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4192 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4193 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4195 /* Seagate NCQ + FLUSH CACHE firmware bug */
4196 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4197 ATA_HORKAGE_FIRMWARE_WARN },
4198 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4199 ATA_HORKAGE_FIRMWARE_WARN },
4200 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4201 ATA_HORKAGE_FIRMWARE_WARN },
4202 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4203 ATA_HORKAGE_FIRMWARE_WARN },
4204 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4205 ATA_HORKAGE_FIRMWARE_WARN },
4207 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4208 ATA_HORKAGE_FIRMWARE_WARN },
4209 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4210 ATA_HORKAGE_FIRMWARE_WARN },
4211 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4212 ATA_HORKAGE_FIRMWARE_WARN },
4213 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4214 ATA_HORKAGE_FIRMWARE_WARN },
4215 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4216 ATA_HORKAGE_FIRMWARE_WARN },
4218 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4219 ATA_HORKAGE_FIRMWARE_WARN },
4220 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4221 ATA_HORKAGE_FIRMWARE_WARN },
4222 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4223 ATA_HORKAGE_FIRMWARE_WARN },
4224 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4225 ATA_HORKAGE_FIRMWARE_WARN },
4226 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4227 ATA_HORKAGE_FIRMWARE_WARN },
4229 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4230 ATA_HORKAGE_FIRMWARE_WARN },
4231 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4232 ATA_HORKAGE_FIRMWARE_WARN },
4233 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4234 ATA_HORKAGE_FIRMWARE_WARN },
4235 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4236 ATA_HORKAGE_FIRMWARE_WARN },
4237 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4238 ATA_HORKAGE_FIRMWARE_WARN },
4240 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4241 ATA_HORKAGE_FIRMWARE_WARN },
4242 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4243 ATA_HORKAGE_FIRMWARE_WARN },
4244 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4245 ATA_HORKAGE_FIRMWARE_WARN },
4246 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4247 ATA_HORKAGE_FIRMWARE_WARN },
4248 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4249 ATA_HORKAGE_FIRMWARE_WARN },
4251 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4252 ATA_HORKAGE_FIRMWARE_WARN },
4253 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4254 ATA_HORKAGE_FIRMWARE_WARN },
4255 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4256 ATA_HORKAGE_FIRMWARE_WARN },
4257 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4258 ATA_HORKAGE_FIRMWARE_WARN },
4259 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4260 ATA_HORKAGE_FIRMWARE_WARN },
4262 /* Blacklist entries taken from Silicon Image 3124/3132
4263 Windows driver .inf file - also several Linux problem reports */
4264 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4265 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4266 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4268 /* devices which puke on READ_NATIVE_MAX */
4269 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4270 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4271 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4272 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4274 /* Devices which report 1 sector over size HPA */
4275 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4276 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4277 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4279 /* Devices which get the IVB wrong */
4280 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4281 /* Maybe we should just blacklist TSSTcorp... */
4282 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4283 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4284 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4285 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4286 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4287 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4289 /* Devices that do not need bridging limits applied */
4290 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4292 /* Devices which aren't very happy with higher link speeds */
4293 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4295 /* End Marker */
4299 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4301 const char *p;
4302 int len;
4305 * check for trailing wildcard: *\0
4307 p = strchr(patt, wildchar);
4308 if (p && ((*(p + 1)) == 0))
4309 len = p - patt;
4310 else {
4311 len = strlen(name);
4312 if (!len) {
4313 if (!*patt)
4314 return 0;
4315 return -1;
4319 return strncmp(patt, name, len);
4322 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4324 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4325 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4326 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4328 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4329 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4331 while (ad->model_num) {
4332 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4333 if (ad->model_rev == NULL)
4334 return ad->horkage;
4335 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4336 return ad->horkage;
4338 ad++;
4340 return 0;
4343 static int ata_dma_blacklisted(const struct ata_device *dev)
4345 /* We don't support polling DMA.
4346 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4347 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4349 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4350 (dev->flags & ATA_DFLAG_CDB_INTR))
4351 return 1;
4352 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4356 * ata_is_40wire - check drive side detection
4357 * @dev: device
4359 * Perform drive side detection decoding, allowing for device vendors
4360 * who can't follow the documentation.
4363 static int ata_is_40wire(struct ata_device *dev)
4365 if (dev->horkage & ATA_HORKAGE_IVB)
4366 return ata_drive_40wire_relaxed(dev->id);
4367 return ata_drive_40wire(dev->id);
4371 * cable_is_40wire - 40/80/SATA decider
4372 * @ap: port to consider
4374 * This function encapsulates the policy for speed management
4375 * in one place. At the moment we don't cache the result but
4376 * there is a good case for setting ap->cbl to the result when
4377 * we are called with unknown cables (and figuring out if it
4378 * impacts hotplug at all).
4380 * Return 1 if the cable appears to be 40 wire.
4383 static int cable_is_40wire(struct ata_port *ap)
4385 struct ata_link *link;
4386 struct ata_device *dev;
4388 /* If the controller thinks we are 40 wire, we are. */
4389 if (ap->cbl == ATA_CBL_PATA40)
4390 return 1;
4392 /* If the controller thinks we are 80 wire, we are. */
4393 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4394 return 0;
4396 /* If the system is known to be 40 wire short cable (eg
4397 * laptop), then we allow 80 wire modes even if the drive
4398 * isn't sure.
4400 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4401 return 0;
4403 /* If the controller doesn't know, we scan.
4405 * Note: We look for all 40 wire detects at this point. Any
4406 * 80 wire detect is taken to be 80 wire cable because
4407 * - in many setups only the one drive (slave if present) will
4408 * give a valid detect
4409 * - if you have a non detect capable drive you don't want it
4410 * to colour the choice
4412 ata_for_each_link(link, ap, EDGE) {
4413 ata_for_each_dev(dev, link, ENABLED) {
4414 if (!ata_is_40wire(dev))
4415 return 0;
4418 return 1;
4422 * ata_dev_xfermask - Compute supported xfermask of the given device
4423 * @dev: Device to compute xfermask for
4425 * Compute supported xfermask of @dev and store it in
4426 * dev->*_mask. This function is responsible for applying all
4427 * known limits including host controller limits, device
4428 * blacklist, etc...
4430 * LOCKING:
4431 * None.
4433 static void ata_dev_xfermask(struct ata_device *dev)
4435 struct ata_link *link = dev->link;
4436 struct ata_port *ap = link->ap;
4437 struct ata_host *host = ap->host;
4438 unsigned long xfer_mask;
4440 /* controller modes available */
4441 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4442 ap->mwdma_mask, ap->udma_mask);
4444 /* drive modes available */
4445 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4446 dev->mwdma_mask, dev->udma_mask);
4447 xfer_mask &= ata_id_xfermask(dev->id);
4450 * CFA Advanced TrueIDE timings are not allowed on a shared
4451 * cable
4453 if (ata_dev_pair(dev)) {
4454 /* No PIO5 or PIO6 */
4455 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4456 /* No MWDMA3 or MWDMA 4 */
4457 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4460 if (ata_dma_blacklisted(dev)) {
4461 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4462 ata_dev_printk(dev, KERN_WARNING,
4463 "device is on DMA blacklist, disabling DMA\n");
4466 if ((host->flags & ATA_HOST_SIMPLEX) &&
4467 host->simplex_claimed && host->simplex_claimed != ap) {
4468 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4469 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4470 "other device, disabling DMA\n");
4473 if (ap->flags & ATA_FLAG_NO_IORDY)
4474 xfer_mask &= ata_pio_mask_no_iordy(dev);
4476 if (ap->ops->mode_filter)
4477 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4479 /* Apply cable rule here. Don't apply it early because when
4480 * we handle hot plug the cable type can itself change.
4481 * Check this last so that we know if the transfer rate was
4482 * solely limited by the cable.
4483 * Unknown or 80 wire cables reported host side are checked
4484 * drive side as well. Cases where we know a 40wire cable
4485 * is used safely for 80 are not checked here.
4487 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4488 /* UDMA/44 or higher would be available */
4489 if (cable_is_40wire(ap)) {
4490 ata_dev_printk(dev, KERN_WARNING,
4491 "limited to UDMA/33 due to 40-wire cable\n");
4492 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4495 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4496 &dev->mwdma_mask, &dev->udma_mask);
4500 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4501 * @dev: Device to which command will be sent
4503 * Issue SET FEATURES - XFER MODE command to device @dev
4504 * on port @ap.
4506 * LOCKING:
4507 * PCI/etc. bus probe sem.
4509 * RETURNS:
4510 * 0 on success, AC_ERR_* mask otherwise.
4513 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4515 struct ata_taskfile tf;
4516 unsigned int err_mask;
4518 /* set up set-features taskfile */
4519 DPRINTK("set features - xfer mode\n");
4521 /* Some controllers and ATAPI devices show flaky interrupt
4522 * behavior after setting xfer mode. Use polling instead.
4524 ata_tf_init(dev, &tf);
4525 tf.command = ATA_CMD_SET_FEATURES;
4526 tf.feature = SETFEATURES_XFER;
4527 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4528 tf.protocol = ATA_PROT_NODATA;
4529 /* If we are using IORDY we must send the mode setting command */
4530 if (ata_pio_need_iordy(dev))
4531 tf.nsect = dev->xfer_mode;
4532 /* If the device has IORDY and the controller does not - turn it off */
4533 else if (ata_id_has_iordy(dev->id))
4534 tf.nsect = 0x01;
4535 else /* In the ancient relic department - skip all of this */
4536 return 0;
4538 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4540 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4541 return err_mask;
4544 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4545 * @dev: Device to which command will be sent
4546 * @enable: Whether to enable or disable the feature
4547 * @feature: The sector count represents the feature to set
4549 * Issue SET FEATURES - SATA FEATURES command to device @dev
4550 * on port @ap with sector count
4552 * LOCKING:
4553 * PCI/etc. bus probe sem.
4555 * RETURNS:
4556 * 0 on success, AC_ERR_* mask otherwise.
4558 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4559 u8 feature)
4561 struct ata_taskfile tf;
4562 unsigned int err_mask;
4564 /* set up set-features taskfile */
4565 DPRINTK("set features - SATA features\n");
4567 ata_tf_init(dev, &tf);
4568 tf.command = ATA_CMD_SET_FEATURES;
4569 tf.feature = enable;
4570 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4571 tf.protocol = ATA_PROT_NODATA;
4572 tf.nsect = feature;
4574 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4576 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4577 return err_mask;
4581 * ata_dev_init_params - Issue INIT DEV PARAMS command
4582 * @dev: Device to which command will be sent
4583 * @heads: Number of heads (taskfile parameter)
4584 * @sectors: Number of sectors (taskfile parameter)
4586 * LOCKING:
4587 * Kernel thread context (may sleep)
4589 * RETURNS:
4590 * 0 on success, AC_ERR_* mask otherwise.
4592 static unsigned int ata_dev_init_params(struct ata_device *dev,
4593 u16 heads, u16 sectors)
4595 struct ata_taskfile tf;
4596 unsigned int err_mask;
4598 /* Number of sectors per track 1-255. Number of heads 1-16 */
4599 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4600 return AC_ERR_INVALID;
4602 /* set up init dev params taskfile */
4603 DPRINTK("init dev params \n");
4605 ata_tf_init(dev, &tf);
4606 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4607 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4608 tf.protocol = ATA_PROT_NODATA;
4609 tf.nsect = sectors;
4610 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4612 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4613 /* A clean abort indicates an original or just out of spec drive
4614 and we should continue as we issue the setup based on the
4615 drive reported working geometry */
4616 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4617 err_mask = 0;
4619 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4620 return err_mask;
4624 * ata_sg_clean - Unmap DMA memory associated with command
4625 * @qc: Command containing DMA memory to be released
4627 * Unmap all mapped DMA memory associated with this command.
4629 * LOCKING:
4630 * spin_lock_irqsave(host lock)
4632 void ata_sg_clean(struct ata_queued_cmd *qc)
4634 struct ata_port *ap = qc->ap;
4635 struct scatterlist *sg = qc->sg;
4636 int dir = qc->dma_dir;
4638 WARN_ON_ONCE(sg == NULL);
4640 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4642 if (qc->n_elem)
4643 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4645 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4646 qc->sg = NULL;
4650 * atapi_check_dma - Check whether ATAPI DMA can be supported
4651 * @qc: Metadata associated with taskfile to check
4653 * Allow low-level driver to filter ATA PACKET commands, returning
4654 * a status indicating whether or not it is OK to use DMA for the
4655 * supplied PACKET command.
4657 * LOCKING:
4658 * spin_lock_irqsave(host lock)
4660 * RETURNS: 0 when ATAPI DMA can be used
4661 * nonzero otherwise
4663 int atapi_check_dma(struct ata_queued_cmd *qc)
4665 struct ata_port *ap = qc->ap;
4667 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4668 * few ATAPI devices choke on such DMA requests.
4670 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4671 unlikely(qc->nbytes & 15))
4672 return 1;
4674 if (ap->ops->check_atapi_dma)
4675 return ap->ops->check_atapi_dma(qc);
4677 return 0;
4681 * ata_std_qc_defer - Check whether a qc needs to be deferred
4682 * @qc: ATA command in question
4684 * Non-NCQ commands cannot run with any other command, NCQ or
4685 * not. As upper layer only knows the queue depth, we are
4686 * responsible for maintaining exclusion. This function checks
4687 * whether a new command @qc can be issued.
4689 * LOCKING:
4690 * spin_lock_irqsave(host lock)
4692 * RETURNS:
4693 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4695 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4697 struct ata_link *link = qc->dev->link;
4699 if (qc->tf.protocol == ATA_PROT_NCQ) {
4700 if (!ata_tag_valid(link->active_tag))
4701 return 0;
4702 } else {
4703 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4704 return 0;
4707 return ATA_DEFER_LINK;
4710 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4713 * ata_sg_init - Associate command with scatter-gather table.
4714 * @qc: Command to be associated
4715 * @sg: Scatter-gather table.
4716 * @n_elem: Number of elements in s/g table.
4718 * Initialize the data-related elements of queued_cmd @qc
4719 * to point to a scatter-gather table @sg, containing @n_elem
4720 * elements.
4722 * LOCKING:
4723 * spin_lock_irqsave(host lock)
4725 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4726 unsigned int n_elem)
4728 qc->sg = sg;
4729 qc->n_elem = n_elem;
4730 qc->cursg = qc->sg;
4734 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4735 * @qc: Command with scatter-gather table to be mapped.
4737 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4739 * LOCKING:
4740 * spin_lock_irqsave(host lock)
4742 * RETURNS:
4743 * Zero on success, negative on error.
4746 static int ata_sg_setup(struct ata_queued_cmd *qc)
4748 struct ata_port *ap = qc->ap;
4749 unsigned int n_elem;
4751 VPRINTK("ENTER, ata%u\n", ap->print_id);
4753 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4754 if (n_elem < 1)
4755 return -1;
4757 DPRINTK("%d sg elements mapped\n", n_elem);
4758 qc->orig_n_elem = qc->n_elem;
4759 qc->n_elem = n_elem;
4760 qc->flags |= ATA_QCFLAG_DMAMAP;
4762 return 0;
4766 * swap_buf_le16 - swap halves of 16-bit words in place
4767 * @buf: Buffer to swap
4768 * @buf_words: Number of 16-bit words in buffer.
4770 * Swap halves of 16-bit words if needed to convert from
4771 * little-endian byte order to native cpu byte order, or
4772 * vice-versa.
4774 * LOCKING:
4775 * Inherited from caller.
4777 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4779 #ifdef __BIG_ENDIAN
4780 unsigned int i;
4782 for (i = 0; i < buf_words; i++)
4783 buf[i] = le16_to_cpu(buf[i]);
4784 #endif /* __BIG_ENDIAN */
4788 * ata_qc_new - Request an available ATA command, for queueing
4789 * @ap: target port
4791 * LOCKING:
4792 * None.
4795 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4797 struct ata_queued_cmd *qc = NULL;
4798 unsigned int i;
4800 /* no command while frozen */
4801 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4802 return NULL;
4804 /* the last tag is reserved for internal command. */
4805 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4806 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4807 qc = __ata_qc_from_tag(ap, i);
4808 break;
4811 if (qc)
4812 qc->tag = i;
4814 return qc;
4818 * ata_qc_new_init - Request an available ATA command, and initialize it
4819 * @dev: Device from whom we request an available command structure
4821 * LOCKING:
4822 * None.
4825 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4827 struct ata_port *ap = dev->link->ap;
4828 struct ata_queued_cmd *qc;
4830 qc = ata_qc_new(ap);
4831 if (qc) {
4832 qc->scsicmd = NULL;
4833 qc->ap = ap;
4834 qc->dev = dev;
4836 ata_qc_reinit(qc);
4839 return qc;
4843 * ata_qc_free - free unused ata_queued_cmd
4844 * @qc: Command to complete
4846 * Designed to free unused ata_queued_cmd object
4847 * in case something prevents using it.
4849 * LOCKING:
4850 * spin_lock_irqsave(host lock)
4852 void ata_qc_free(struct ata_queued_cmd *qc)
4854 struct ata_port *ap = qc->ap;
4855 unsigned int tag;
4857 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4859 qc->flags = 0;
4860 tag = qc->tag;
4861 if (likely(ata_tag_valid(tag))) {
4862 qc->tag = ATA_TAG_POISON;
4863 clear_bit(tag, &ap->qc_allocated);
4867 void __ata_qc_complete(struct ata_queued_cmd *qc)
4869 struct ata_port *ap = qc->ap;
4870 struct ata_link *link = qc->dev->link;
4872 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4873 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4875 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4876 ata_sg_clean(qc);
4878 /* command should be marked inactive atomically with qc completion */
4879 if (qc->tf.protocol == ATA_PROT_NCQ) {
4880 link->sactive &= ~(1 << qc->tag);
4881 if (!link->sactive)
4882 ap->nr_active_links--;
4883 } else {
4884 link->active_tag = ATA_TAG_POISON;
4885 ap->nr_active_links--;
4888 /* clear exclusive status */
4889 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4890 ap->excl_link == link))
4891 ap->excl_link = NULL;
4893 /* atapi: mark qc as inactive to prevent the interrupt handler
4894 * from completing the command twice later, before the error handler
4895 * is called. (when rc != 0 and atapi request sense is needed)
4897 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4898 ap->qc_active &= ~(1 << qc->tag);
4900 /* call completion callback */
4901 qc->complete_fn(qc);
4904 static void fill_result_tf(struct ata_queued_cmd *qc)
4906 struct ata_port *ap = qc->ap;
4908 qc->result_tf.flags = qc->tf.flags;
4909 ap->ops->qc_fill_rtf(qc);
4912 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4914 struct ata_device *dev = qc->dev;
4916 if (ata_tag_internal(qc->tag))
4917 return;
4919 if (ata_is_nodata(qc->tf.protocol))
4920 return;
4922 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4923 return;
4925 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4929 * ata_qc_complete - Complete an active ATA command
4930 * @qc: Command to complete
4932 * Indicate to the mid and upper layers that an ATA
4933 * command has completed, with either an ok or not-ok status.
4935 * LOCKING:
4936 * spin_lock_irqsave(host lock)
4938 void ata_qc_complete(struct ata_queued_cmd *qc)
4940 struct ata_port *ap = qc->ap;
4942 /* XXX: New EH and old EH use different mechanisms to
4943 * synchronize EH with regular execution path.
4945 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4946 * Normal execution path is responsible for not accessing a
4947 * failed qc. libata core enforces the rule by returning NULL
4948 * from ata_qc_from_tag() for failed qcs.
4950 * Old EH depends on ata_qc_complete() nullifying completion
4951 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4952 * not synchronize with interrupt handler. Only PIO task is
4953 * taken care of.
4955 if (ap->ops->error_handler) {
4956 struct ata_device *dev = qc->dev;
4957 struct ata_eh_info *ehi = &dev->link->eh_info;
4959 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4961 if (unlikely(qc->err_mask))
4962 qc->flags |= ATA_QCFLAG_FAILED;
4964 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4965 if (!ata_tag_internal(qc->tag)) {
4966 /* always fill result TF for failed qc */
4967 fill_result_tf(qc);
4968 ata_qc_schedule_eh(qc);
4969 return;
4973 /* read result TF if requested */
4974 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4975 fill_result_tf(qc);
4977 /* Some commands need post-processing after successful
4978 * completion.
4980 switch (qc->tf.command) {
4981 case ATA_CMD_SET_FEATURES:
4982 if (qc->tf.feature != SETFEATURES_WC_ON &&
4983 qc->tf.feature != SETFEATURES_WC_OFF)
4984 break;
4985 /* fall through */
4986 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4987 case ATA_CMD_SET_MULTI: /* multi_count changed */
4988 /* revalidate device */
4989 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4990 ata_port_schedule_eh(ap);
4991 break;
4993 case ATA_CMD_SLEEP:
4994 dev->flags |= ATA_DFLAG_SLEEPING;
4995 break;
4998 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4999 ata_verify_xfer(qc);
5001 __ata_qc_complete(qc);
5002 } else {
5003 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5004 return;
5006 /* read result TF if failed or requested */
5007 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5008 fill_result_tf(qc);
5010 __ata_qc_complete(qc);
5015 * ata_qc_complete_multiple - Complete multiple qcs successfully
5016 * @ap: port in question
5017 * @qc_active: new qc_active mask
5019 * Complete in-flight commands. This functions is meant to be
5020 * called from low-level driver's interrupt routine to complete
5021 * requests normally. ap->qc_active and @qc_active is compared
5022 * and commands are completed accordingly.
5024 * LOCKING:
5025 * spin_lock_irqsave(host lock)
5027 * RETURNS:
5028 * Number of completed commands on success, -errno otherwise.
5030 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5032 int nr_done = 0;
5033 u32 done_mask;
5034 int i;
5036 done_mask = ap->qc_active ^ qc_active;
5038 if (unlikely(done_mask & qc_active)) {
5039 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5040 "(%08x->%08x)\n", ap->qc_active, qc_active);
5041 return -EINVAL;
5044 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5045 struct ata_queued_cmd *qc;
5047 if (!(done_mask & (1 << i)))
5048 continue;
5050 if ((qc = ata_qc_from_tag(ap, i))) {
5051 ata_qc_complete(qc);
5052 nr_done++;
5056 return nr_done;
5060 * ata_qc_issue - issue taskfile to device
5061 * @qc: command to issue to device
5063 * Prepare an ATA command to submission to device.
5064 * This includes mapping the data into a DMA-able
5065 * area, filling in the S/G table, and finally
5066 * writing the taskfile to hardware, starting the command.
5068 * LOCKING:
5069 * spin_lock_irqsave(host lock)
5071 void ata_qc_issue(struct ata_queued_cmd *qc)
5073 struct ata_port *ap = qc->ap;
5074 struct ata_link *link = qc->dev->link;
5075 u8 prot = qc->tf.protocol;
5077 /* Make sure only one non-NCQ command is outstanding. The
5078 * check is skipped for old EH because it reuses active qc to
5079 * request ATAPI sense.
5081 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5083 if (ata_is_ncq(prot)) {
5084 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5086 if (!link->sactive)
5087 ap->nr_active_links++;
5088 link->sactive |= 1 << qc->tag;
5089 } else {
5090 WARN_ON_ONCE(link->sactive);
5092 ap->nr_active_links++;
5093 link->active_tag = qc->tag;
5096 qc->flags |= ATA_QCFLAG_ACTIVE;
5097 ap->qc_active |= 1 << qc->tag;
5099 /* We guarantee to LLDs that they will have at least one
5100 * non-zero sg if the command is a data command.
5102 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5104 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5105 (ap->flags & ATA_FLAG_PIO_DMA)))
5106 if (ata_sg_setup(qc))
5107 goto sg_err;
5109 /* if device is sleeping, schedule reset and abort the link */
5110 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5111 link->eh_info.action |= ATA_EH_RESET;
5112 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5113 ata_link_abort(link);
5114 return;
5117 ap->ops->qc_prep(qc);
5119 qc->err_mask |= ap->ops->qc_issue(qc);
5120 if (unlikely(qc->err_mask))
5121 goto err;
5122 return;
5124 sg_err:
5125 qc->err_mask |= AC_ERR_SYSTEM;
5126 err:
5127 ata_qc_complete(qc);
5131 * sata_scr_valid - test whether SCRs are accessible
5132 * @link: ATA link to test SCR accessibility for
5134 * Test whether SCRs are accessible for @link.
5136 * LOCKING:
5137 * None.
5139 * RETURNS:
5140 * 1 if SCRs are accessible, 0 otherwise.
5142 int sata_scr_valid(struct ata_link *link)
5144 struct ata_port *ap = link->ap;
5146 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5150 * sata_scr_read - read SCR register of the specified port
5151 * @link: ATA link to read SCR for
5152 * @reg: SCR to read
5153 * @val: Place to store read value
5155 * Read SCR register @reg of @link into *@val. This function is
5156 * guaranteed to succeed if @link is ap->link, the cable type of
5157 * the port is SATA and the port implements ->scr_read.
5159 * LOCKING:
5160 * None if @link is ap->link. Kernel thread context otherwise.
5162 * RETURNS:
5163 * 0 on success, negative errno on failure.
5165 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5167 if (ata_is_host_link(link)) {
5168 if (sata_scr_valid(link))
5169 return link->ap->ops->scr_read(link, reg, val);
5170 return -EOPNOTSUPP;
5173 return sata_pmp_scr_read(link, reg, val);
5177 * sata_scr_write - write SCR register of the specified port
5178 * @link: ATA link to write SCR for
5179 * @reg: SCR to write
5180 * @val: value to write
5182 * Write @val to SCR register @reg of @link. This function is
5183 * guaranteed to succeed if @link is ap->link, the cable type of
5184 * the port is SATA and the port implements ->scr_read.
5186 * LOCKING:
5187 * None if @link is ap->link. Kernel thread context otherwise.
5189 * RETURNS:
5190 * 0 on success, negative errno on failure.
5192 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5194 if (ata_is_host_link(link)) {
5195 if (sata_scr_valid(link))
5196 return link->ap->ops->scr_write(link, reg, val);
5197 return -EOPNOTSUPP;
5200 return sata_pmp_scr_write(link, reg, val);
5204 * sata_scr_write_flush - write SCR register of the specified port and flush
5205 * @link: ATA link to write SCR for
5206 * @reg: SCR to write
5207 * @val: value to write
5209 * This function is identical to sata_scr_write() except that this
5210 * function performs flush after writing to the register.
5212 * LOCKING:
5213 * None if @link is ap->link. Kernel thread context otherwise.
5215 * RETURNS:
5216 * 0 on success, negative errno on failure.
5218 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5220 if (ata_is_host_link(link)) {
5221 int rc;
5223 if (sata_scr_valid(link)) {
5224 rc = link->ap->ops->scr_write(link, reg, val);
5225 if (rc == 0)
5226 rc = link->ap->ops->scr_read(link, reg, &val);
5227 return rc;
5229 return -EOPNOTSUPP;
5232 return sata_pmp_scr_write(link, reg, val);
5236 * ata_phys_link_online - test whether the given link is online
5237 * @link: ATA link to test
5239 * Test whether @link is online. Note that this function returns
5240 * 0 if online status of @link cannot be obtained, so
5241 * ata_link_online(link) != !ata_link_offline(link).
5243 * LOCKING:
5244 * None.
5246 * RETURNS:
5247 * True if the port online status is available and online.
5249 bool ata_phys_link_online(struct ata_link *link)
5251 u32 sstatus;
5253 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5254 ata_sstatus_online(sstatus))
5255 return true;
5256 return false;
5260 * ata_phys_link_offline - test whether the given link is offline
5261 * @link: ATA link to test
5263 * Test whether @link is offline. Note that this function
5264 * returns 0 if offline status of @link cannot be obtained, so
5265 * ata_link_online(link) != !ata_link_offline(link).
5267 * LOCKING:
5268 * None.
5270 * RETURNS:
5271 * True if the port offline status is available and offline.
5273 bool ata_phys_link_offline(struct ata_link *link)
5275 u32 sstatus;
5277 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5278 !ata_sstatus_online(sstatus))
5279 return true;
5280 return false;
5284 * ata_link_online - test whether the given link is online
5285 * @link: ATA link to test
5287 * Test whether @link is online. This is identical to
5288 * ata_phys_link_online() when there's no slave link. When
5289 * there's a slave link, this function should only be called on
5290 * the master link and will return true if any of M/S links is
5291 * online.
5293 * LOCKING:
5294 * None.
5296 * RETURNS:
5297 * True if the port online status is available and online.
5299 bool ata_link_online(struct ata_link *link)
5301 struct ata_link *slave = link->ap->slave_link;
5303 WARN_ON(link == slave); /* shouldn't be called on slave link */
5305 return ata_phys_link_online(link) ||
5306 (slave && ata_phys_link_online(slave));
5310 * ata_link_offline - test whether the given link is offline
5311 * @link: ATA link to test
5313 * Test whether @link is offline. This is identical to
5314 * ata_phys_link_offline() when there's no slave link. When
5315 * there's a slave link, this function should only be called on
5316 * the master link and will return true if both M/S links are
5317 * offline.
5319 * LOCKING:
5320 * None.
5322 * RETURNS:
5323 * True if the port offline status is available and offline.
5325 bool ata_link_offline(struct ata_link *link)
5327 struct ata_link *slave = link->ap->slave_link;
5329 WARN_ON(link == slave); /* shouldn't be called on slave link */
5331 return ata_phys_link_offline(link) &&
5332 (!slave || ata_phys_link_offline(slave));
5335 #ifdef CONFIG_PM
5336 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5337 unsigned int action, unsigned int ehi_flags,
5338 int wait)
5340 unsigned long flags;
5341 int i, rc;
5343 for (i = 0; i < host->n_ports; i++) {
5344 struct ata_port *ap = host->ports[i];
5345 struct ata_link *link;
5347 /* Previous resume operation might still be in
5348 * progress. Wait for PM_PENDING to clear.
5350 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5351 ata_port_wait_eh(ap);
5352 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5355 /* request PM ops to EH */
5356 spin_lock_irqsave(ap->lock, flags);
5358 ap->pm_mesg = mesg;
5359 if (wait) {
5360 rc = 0;
5361 ap->pm_result = &rc;
5364 ap->pflags |= ATA_PFLAG_PM_PENDING;
5365 ata_for_each_link(link, ap, HOST_FIRST) {
5366 link->eh_info.action |= action;
5367 link->eh_info.flags |= ehi_flags;
5370 ata_port_schedule_eh(ap);
5372 spin_unlock_irqrestore(ap->lock, flags);
5374 /* wait and check result */
5375 if (wait) {
5376 ata_port_wait_eh(ap);
5377 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5378 if (rc)
5379 return rc;
5383 return 0;
5387 * ata_host_suspend - suspend host
5388 * @host: host to suspend
5389 * @mesg: PM message
5391 * Suspend @host. Actual operation is performed by EH. This
5392 * function requests EH to perform PM operations and waits for EH
5393 * to finish.
5395 * LOCKING:
5396 * Kernel thread context (may sleep).
5398 * RETURNS:
5399 * 0 on success, -errno on failure.
5401 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5403 int rc;
5406 * disable link pm on all ports before requesting
5407 * any pm activity
5409 ata_lpm_enable(host);
5411 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5412 if (rc == 0)
5413 host->dev->power.power_state = mesg;
5414 return rc;
5418 * ata_host_resume - resume host
5419 * @host: host to resume
5421 * Resume @host. Actual operation is performed by EH. This
5422 * function requests EH to perform PM operations and returns.
5423 * Note that all resume operations are performed parallely.
5425 * LOCKING:
5426 * Kernel thread context (may sleep).
5428 void ata_host_resume(struct ata_host *host)
5430 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5431 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5432 host->dev->power.power_state = PMSG_ON;
5434 /* reenable link pm */
5435 ata_lpm_disable(host);
5437 #endif
5440 * ata_port_start - Set port up for dma.
5441 * @ap: Port to initialize
5443 * Called just after data structures for each port are
5444 * initialized. Allocates space for PRD table.
5446 * May be used as the port_start() entry in ata_port_operations.
5448 * LOCKING:
5449 * Inherited from caller.
5451 int ata_port_start(struct ata_port *ap)
5453 struct device *dev = ap->dev;
5455 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5456 GFP_KERNEL);
5457 if (!ap->prd)
5458 return -ENOMEM;
5460 return 0;
5464 * ata_dev_init - Initialize an ata_device structure
5465 * @dev: Device structure to initialize
5467 * Initialize @dev in preparation for probing.
5469 * LOCKING:
5470 * Inherited from caller.
5472 void ata_dev_init(struct ata_device *dev)
5474 struct ata_link *link = ata_dev_phys_link(dev);
5475 struct ata_port *ap = link->ap;
5476 unsigned long flags;
5478 /* SATA spd limit is bound to the attached device, reset together */
5479 link->sata_spd_limit = link->hw_sata_spd_limit;
5480 link->sata_spd = 0;
5482 /* High bits of dev->flags are used to record warm plug
5483 * requests which occur asynchronously. Synchronize using
5484 * host lock.
5486 spin_lock_irqsave(ap->lock, flags);
5487 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5488 dev->horkage = 0;
5489 spin_unlock_irqrestore(ap->lock, flags);
5491 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5492 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5493 dev->pio_mask = UINT_MAX;
5494 dev->mwdma_mask = UINT_MAX;
5495 dev->udma_mask = UINT_MAX;
5499 * ata_link_init - Initialize an ata_link structure
5500 * @ap: ATA port link is attached to
5501 * @link: Link structure to initialize
5502 * @pmp: Port multiplier port number
5504 * Initialize @link.
5506 * LOCKING:
5507 * Kernel thread context (may sleep)
5509 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5511 int i;
5513 /* clear everything except for devices */
5514 memset(link, 0, offsetof(struct ata_link, device[0]));
5516 link->ap = ap;
5517 link->pmp = pmp;
5518 link->active_tag = ATA_TAG_POISON;
5519 link->hw_sata_spd_limit = UINT_MAX;
5521 /* can't use iterator, ap isn't initialized yet */
5522 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5523 struct ata_device *dev = &link->device[i];
5525 dev->link = link;
5526 dev->devno = dev - link->device;
5527 ata_dev_init(dev);
5532 * sata_link_init_spd - Initialize link->sata_spd_limit
5533 * @link: Link to configure sata_spd_limit for
5535 * Initialize @link->[hw_]sata_spd_limit to the currently
5536 * configured value.
5538 * LOCKING:
5539 * Kernel thread context (may sleep).
5541 * RETURNS:
5542 * 0 on success, -errno on failure.
5544 int sata_link_init_spd(struct ata_link *link)
5546 u8 spd;
5547 int rc;
5549 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5550 if (rc)
5551 return rc;
5553 spd = (link->saved_scontrol >> 4) & 0xf;
5554 if (spd)
5555 link->hw_sata_spd_limit &= (1 << spd) - 1;
5557 ata_force_link_limits(link);
5559 link->sata_spd_limit = link->hw_sata_spd_limit;
5561 return 0;
5565 * ata_port_alloc - allocate and initialize basic ATA port resources
5566 * @host: ATA host this allocated port belongs to
5568 * Allocate and initialize basic ATA port resources.
5570 * RETURNS:
5571 * Allocate ATA port on success, NULL on failure.
5573 * LOCKING:
5574 * Inherited from calling layer (may sleep).
5576 struct ata_port *ata_port_alloc(struct ata_host *host)
5578 struct ata_port *ap;
5580 DPRINTK("ENTER\n");
5582 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5583 if (!ap)
5584 return NULL;
5586 ap->pflags |= ATA_PFLAG_INITIALIZING;
5587 ap->lock = &host->lock;
5588 ap->flags = ATA_FLAG_DISABLED;
5589 ap->print_id = -1;
5590 ap->ctl = ATA_DEVCTL_OBS;
5591 ap->host = host;
5592 ap->dev = host->dev;
5593 ap->last_ctl = 0xFF;
5595 #if defined(ATA_VERBOSE_DEBUG)
5596 /* turn on all debugging levels */
5597 ap->msg_enable = 0x00FF;
5598 #elif defined(ATA_DEBUG)
5599 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5600 #else
5601 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5602 #endif
5604 #ifdef CONFIG_ATA_SFF
5605 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5606 #else
5607 INIT_DELAYED_WORK(&ap->port_task, NULL);
5608 #endif
5609 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5610 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5611 INIT_LIST_HEAD(&ap->eh_done_q);
5612 init_waitqueue_head(&ap->eh_wait_q);
5613 init_completion(&ap->park_req_pending);
5614 init_timer_deferrable(&ap->fastdrain_timer);
5615 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5616 ap->fastdrain_timer.data = (unsigned long)ap;
5618 ap->cbl = ATA_CBL_NONE;
5620 ata_link_init(ap, &ap->link, 0);
5622 #ifdef ATA_IRQ_TRAP
5623 ap->stats.unhandled_irq = 1;
5624 ap->stats.idle_irq = 1;
5625 #endif
5626 return ap;
5629 static void ata_host_release(struct device *gendev, void *res)
5631 struct ata_host *host = dev_get_drvdata(gendev);
5632 int i;
5634 for (i = 0; i < host->n_ports; i++) {
5635 struct ata_port *ap = host->ports[i];
5637 if (!ap)
5638 continue;
5640 if (ap->scsi_host)
5641 scsi_host_put(ap->scsi_host);
5643 kfree(ap->pmp_link);
5644 kfree(ap->slave_link);
5645 kfree(ap);
5646 host->ports[i] = NULL;
5649 dev_set_drvdata(gendev, NULL);
5653 * ata_host_alloc - allocate and init basic ATA host resources
5654 * @dev: generic device this host is associated with
5655 * @max_ports: maximum number of ATA ports associated with this host
5657 * Allocate and initialize basic ATA host resources. LLD calls
5658 * this function to allocate a host, initializes it fully and
5659 * attaches it using ata_host_register().
5661 * @max_ports ports are allocated and host->n_ports is
5662 * initialized to @max_ports. The caller is allowed to decrease
5663 * host->n_ports before calling ata_host_register(). The unused
5664 * ports will be automatically freed on registration.
5666 * RETURNS:
5667 * Allocate ATA host on success, NULL on failure.
5669 * LOCKING:
5670 * Inherited from calling layer (may sleep).
5672 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5674 struct ata_host *host;
5675 size_t sz;
5676 int i;
5678 DPRINTK("ENTER\n");
5680 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5681 return NULL;
5683 /* alloc a container for our list of ATA ports (buses) */
5684 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5685 /* alloc a container for our list of ATA ports (buses) */
5686 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5687 if (!host)
5688 goto err_out;
5690 devres_add(dev, host);
5691 dev_set_drvdata(dev, host);
5693 spin_lock_init(&host->lock);
5694 host->dev = dev;
5695 host->n_ports = max_ports;
5697 /* allocate ports bound to this host */
5698 for (i = 0; i < max_ports; i++) {
5699 struct ata_port *ap;
5701 ap = ata_port_alloc(host);
5702 if (!ap)
5703 goto err_out;
5705 ap->port_no = i;
5706 host->ports[i] = ap;
5709 devres_remove_group(dev, NULL);
5710 return host;
5712 err_out:
5713 devres_release_group(dev, NULL);
5714 return NULL;
5718 * ata_host_alloc_pinfo - alloc host and init with port_info array
5719 * @dev: generic device this host is associated with
5720 * @ppi: array of ATA port_info to initialize host with
5721 * @n_ports: number of ATA ports attached to this host
5723 * Allocate ATA host and initialize with info from @ppi. If NULL
5724 * terminated, @ppi may contain fewer entries than @n_ports. The
5725 * last entry will be used for the remaining ports.
5727 * RETURNS:
5728 * Allocate ATA host on success, NULL on failure.
5730 * LOCKING:
5731 * Inherited from calling layer (may sleep).
5733 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5734 const struct ata_port_info * const * ppi,
5735 int n_ports)
5737 const struct ata_port_info *pi;
5738 struct ata_host *host;
5739 int i, j;
5741 host = ata_host_alloc(dev, n_ports);
5742 if (!host)
5743 return NULL;
5745 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5746 struct ata_port *ap = host->ports[i];
5748 if (ppi[j])
5749 pi = ppi[j++];
5751 ap->pio_mask = pi->pio_mask;
5752 ap->mwdma_mask = pi->mwdma_mask;
5753 ap->udma_mask = pi->udma_mask;
5754 ap->flags |= pi->flags;
5755 ap->link.flags |= pi->link_flags;
5756 ap->ops = pi->port_ops;
5758 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5759 host->ops = pi->port_ops;
5762 return host;
5766 * ata_slave_link_init - initialize slave link
5767 * @ap: port to initialize slave link for
5769 * Create and initialize slave link for @ap. This enables slave
5770 * link handling on the port.
5772 * In libata, a port contains links and a link contains devices.
5773 * There is single host link but if a PMP is attached to it,
5774 * there can be multiple fan-out links. On SATA, there's usually
5775 * a single device connected to a link but PATA and SATA
5776 * controllers emulating TF based interface can have two - master
5777 * and slave.
5779 * However, there are a few controllers which don't fit into this
5780 * abstraction too well - SATA controllers which emulate TF
5781 * interface with both master and slave devices but also have
5782 * separate SCR register sets for each device. These controllers
5783 * need separate links for physical link handling
5784 * (e.g. onlineness, link speed) but should be treated like a
5785 * traditional M/S controller for everything else (e.g. command
5786 * issue, softreset).
5788 * slave_link is libata's way of handling this class of
5789 * controllers without impacting core layer too much. For
5790 * anything other than physical link handling, the default host
5791 * link is used for both master and slave. For physical link
5792 * handling, separate @ap->slave_link is used. All dirty details
5793 * are implemented inside libata core layer. From LLD's POV, the
5794 * only difference is that prereset, hardreset and postreset are
5795 * called once more for the slave link, so the reset sequence
5796 * looks like the following.
5798 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5799 * softreset(M) -> postreset(M) -> postreset(S)
5801 * Note that softreset is called only for the master. Softreset
5802 * resets both M/S by definition, so SRST on master should handle
5803 * both (the standard method will work just fine).
5805 * LOCKING:
5806 * Should be called before host is registered.
5808 * RETURNS:
5809 * 0 on success, -errno on failure.
5811 int ata_slave_link_init(struct ata_port *ap)
5813 struct ata_link *link;
5815 WARN_ON(ap->slave_link);
5816 WARN_ON(ap->flags & ATA_FLAG_PMP);
5818 link = kzalloc(sizeof(*link), GFP_KERNEL);
5819 if (!link)
5820 return -ENOMEM;
5822 ata_link_init(ap, link, 1);
5823 ap->slave_link = link;
5824 return 0;
5827 static void ata_host_stop(struct device *gendev, void *res)
5829 struct ata_host *host = dev_get_drvdata(gendev);
5830 int i;
5832 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5834 for (i = 0; i < host->n_ports; i++) {
5835 struct ata_port *ap = host->ports[i];
5837 if (ap->ops->port_stop)
5838 ap->ops->port_stop(ap);
5841 if (host->ops->host_stop)
5842 host->ops->host_stop(host);
5846 * ata_finalize_port_ops - finalize ata_port_operations
5847 * @ops: ata_port_operations to finalize
5849 * An ata_port_operations can inherit from another ops and that
5850 * ops can again inherit from another. This can go on as many
5851 * times as necessary as long as there is no loop in the
5852 * inheritance chain.
5854 * Ops tables are finalized when the host is started. NULL or
5855 * unspecified entries are inherited from the closet ancestor
5856 * which has the method and the entry is populated with it.
5857 * After finalization, the ops table directly points to all the
5858 * methods and ->inherits is no longer necessary and cleared.
5860 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5862 * LOCKING:
5863 * None.
5865 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5867 static DEFINE_SPINLOCK(lock);
5868 const struct ata_port_operations *cur;
5869 void **begin = (void **)ops;
5870 void **end = (void **)&ops->inherits;
5871 void **pp;
5873 if (!ops || !ops->inherits)
5874 return;
5876 spin_lock(&lock);
5878 for (cur = ops->inherits; cur; cur = cur->inherits) {
5879 void **inherit = (void **)cur;
5881 for (pp = begin; pp < end; pp++, inherit++)
5882 if (!*pp)
5883 *pp = *inherit;
5886 for (pp = begin; pp < end; pp++)
5887 if (IS_ERR(*pp))
5888 *pp = NULL;
5890 ops->inherits = NULL;
5892 spin_unlock(&lock);
5896 * ata_host_start - start and freeze ports of an ATA host
5897 * @host: ATA host to start ports for
5899 * Start and then freeze ports of @host. Started status is
5900 * recorded in host->flags, so this function can be called
5901 * multiple times. Ports are guaranteed to get started only
5902 * once. If host->ops isn't initialized yet, its set to the
5903 * first non-dummy port ops.
5905 * LOCKING:
5906 * Inherited from calling layer (may sleep).
5908 * RETURNS:
5909 * 0 if all ports are started successfully, -errno otherwise.
5911 int ata_host_start(struct ata_host *host)
5913 int have_stop = 0;
5914 void *start_dr = NULL;
5915 int i, rc;
5917 if (host->flags & ATA_HOST_STARTED)
5918 return 0;
5920 ata_finalize_port_ops(host->ops);
5922 for (i = 0; i < host->n_ports; i++) {
5923 struct ata_port *ap = host->ports[i];
5925 ata_finalize_port_ops(ap->ops);
5927 if (!host->ops && !ata_port_is_dummy(ap))
5928 host->ops = ap->ops;
5930 if (ap->ops->port_stop)
5931 have_stop = 1;
5934 if (host->ops->host_stop)
5935 have_stop = 1;
5937 if (have_stop) {
5938 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5939 if (!start_dr)
5940 return -ENOMEM;
5943 for (i = 0; i < host->n_ports; i++) {
5944 struct ata_port *ap = host->ports[i];
5946 if (ap->ops->port_start) {
5947 rc = ap->ops->port_start(ap);
5948 if (rc) {
5949 if (rc != -ENODEV)
5950 dev_printk(KERN_ERR, host->dev,
5951 "failed to start port %d "
5952 "(errno=%d)\n", i, rc);
5953 goto err_out;
5956 ata_eh_freeze_port(ap);
5959 if (start_dr)
5960 devres_add(host->dev, start_dr);
5961 host->flags |= ATA_HOST_STARTED;
5962 return 0;
5964 err_out:
5965 while (--i >= 0) {
5966 struct ata_port *ap = host->ports[i];
5968 if (ap->ops->port_stop)
5969 ap->ops->port_stop(ap);
5971 devres_free(start_dr);
5972 return rc;
5976 * ata_sas_host_init - Initialize a host struct
5977 * @host: host to initialize
5978 * @dev: device host is attached to
5979 * @flags: host flags
5980 * @ops: port_ops
5982 * LOCKING:
5983 * PCI/etc. bus probe sem.
5986 /* KILLME - the only user left is ipr */
5987 void ata_host_init(struct ata_host *host, struct device *dev,
5988 unsigned long flags, struct ata_port_operations *ops)
5990 spin_lock_init(&host->lock);
5991 host->dev = dev;
5992 host->flags = flags;
5993 host->ops = ops;
5997 static void async_port_probe(void *data, async_cookie_t cookie)
5999 int rc;
6000 struct ata_port *ap = data;
6003 * If we're not allowed to scan this host in parallel,
6004 * we need to wait until all previous scans have completed
6005 * before going further.
6006 * Jeff Garzik says this is only within a controller, so we
6007 * don't need to wait for port 0, only for later ports.
6009 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6010 async_synchronize_cookie(cookie);
6012 /* probe */
6013 if (ap->ops->error_handler) {
6014 struct ata_eh_info *ehi = &ap->link.eh_info;
6015 unsigned long flags;
6017 ata_port_probe(ap);
6019 /* kick EH for boot probing */
6020 spin_lock_irqsave(ap->lock, flags);
6022 ehi->probe_mask |= ATA_ALL_DEVICES;
6023 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6024 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6026 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6027 ap->pflags |= ATA_PFLAG_LOADING;
6028 ata_port_schedule_eh(ap);
6030 spin_unlock_irqrestore(ap->lock, flags);
6032 /* wait for EH to finish */
6033 ata_port_wait_eh(ap);
6034 } else {
6035 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6036 rc = ata_bus_probe(ap);
6037 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6039 if (rc) {
6040 /* FIXME: do something useful here?
6041 * Current libata behavior will
6042 * tear down everything when
6043 * the module is removed
6044 * or the h/w is unplugged.
6049 /* in order to keep device order, we need to synchronize at this point */
6050 async_synchronize_cookie(cookie);
6052 ata_scsi_scan_host(ap, 1);
6056 * ata_host_register - register initialized ATA host
6057 * @host: ATA host to register
6058 * @sht: template for SCSI host
6060 * Register initialized ATA host. @host is allocated using
6061 * ata_host_alloc() and fully initialized by LLD. This function
6062 * starts ports, registers @host with ATA and SCSI layers and
6063 * probe registered devices.
6065 * LOCKING:
6066 * Inherited from calling layer (may sleep).
6068 * RETURNS:
6069 * 0 on success, -errno otherwise.
6071 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6073 int i, rc;
6075 /* host must have been started */
6076 if (!(host->flags & ATA_HOST_STARTED)) {
6077 dev_printk(KERN_ERR, host->dev,
6078 "BUG: trying to register unstarted host\n");
6079 WARN_ON(1);
6080 return -EINVAL;
6083 /* Blow away unused ports. This happens when LLD can't
6084 * determine the exact number of ports to allocate at
6085 * allocation time.
6087 for (i = host->n_ports; host->ports[i]; i++)
6088 kfree(host->ports[i]);
6090 /* give ports names and add SCSI hosts */
6091 for (i = 0; i < host->n_ports; i++)
6092 host->ports[i]->print_id = ata_print_id++;
6094 rc = ata_scsi_add_hosts(host, sht);
6095 if (rc)
6096 return rc;
6098 /* associate with ACPI nodes */
6099 ata_acpi_associate(host);
6101 /* set cable, sata_spd_limit and report */
6102 for (i = 0; i < host->n_ports; i++) {
6103 struct ata_port *ap = host->ports[i];
6104 unsigned long xfer_mask;
6106 /* set SATA cable type if still unset */
6107 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6108 ap->cbl = ATA_CBL_SATA;
6110 /* init sata_spd_limit to the current value */
6111 sata_link_init_spd(&ap->link);
6112 if (ap->slave_link)
6113 sata_link_init_spd(ap->slave_link);
6115 /* print per-port info to dmesg */
6116 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6117 ap->udma_mask);
6119 if (!ata_port_is_dummy(ap)) {
6120 ata_port_printk(ap, KERN_INFO,
6121 "%cATA max %s %s\n",
6122 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6123 ata_mode_string(xfer_mask),
6124 ap->link.eh_info.desc);
6125 ata_ehi_clear_desc(&ap->link.eh_info);
6126 } else
6127 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6130 /* perform each probe asynchronously */
6131 for (i = 0; i < host->n_ports; i++) {
6132 struct ata_port *ap = host->ports[i];
6133 async_schedule(async_port_probe, ap);
6136 return 0;
6140 * ata_host_activate - start host, request IRQ and register it
6141 * @host: target ATA host
6142 * @irq: IRQ to request
6143 * @irq_handler: irq_handler used when requesting IRQ
6144 * @irq_flags: irq_flags used when requesting IRQ
6145 * @sht: scsi_host_template to use when registering the host
6147 * After allocating an ATA host and initializing it, most libata
6148 * LLDs perform three steps to activate the host - start host,
6149 * request IRQ and register it. This helper takes necessasry
6150 * arguments and performs the three steps in one go.
6152 * An invalid IRQ skips the IRQ registration and expects the host to
6153 * have set polling mode on the port. In this case, @irq_handler
6154 * should be NULL.
6156 * LOCKING:
6157 * Inherited from calling layer (may sleep).
6159 * RETURNS:
6160 * 0 on success, -errno otherwise.
6162 int ata_host_activate(struct ata_host *host, int irq,
6163 irq_handler_t irq_handler, unsigned long irq_flags,
6164 struct scsi_host_template *sht)
6166 int i, rc;
6168 rc = ata_host_start(host);
6169 if (rc)
6170 return rc;
6172 /* Special case for polling mode */
6173 if (!irq) {
6174 WARN_ON(irq_handler);
6175 return ata_host_register(host, sht);
6178 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6179 dev_driver_string(host->dev), host);
6180 if (rc)
6181 return rc;
6183 for (i = 0; i < host->n_ports; i++)
6184 ata_port_desc(host->ports[i], "irq %d", irq);
6186 rc = ata_host_register(host, sht);
6187 /* if failed, just free the IRQ and leave ports alone */
6188 if (rc)
6189 devm_free_irq(host->dev, irq, host);
6191 return rc;
6195 * ata_port_detach - Detach ATA port in prepration of device removal
6196 * @ap: ATA port to be detached
6198 * Detach all ATA devices and the associated SCSI devices of @ap;
6199 * then, remove the associated SCSI host. @ap is guaranteed to
6200 * be quiescent on return from this function.
6202 * LOCKING:
6203 * Kernel thread context (may sleep).
6205 static void ata_port_detach(struct ata_port *ap)
6207 unsigned long flags;
6209 if (!ap->ops->error_handler)
6210 goto skip_eh;
6212 /* tell EH we're leaving & flush EH */
6213 spin_lock_irqsave(ap->lock, flags);
6214 ap->pflags |= ATA_PFLAG_UNLOADING;
6215 ata_port_schedule_eh(ap);
6216 spin_unlock_irqrestore(ap->lock, flags);
6218 /* wait till EH commits suicide */
6219 ata_port_wait_eh(ap);
6221 /* it better be dead now */
6222 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6224 cancel_rearming_delayed_work(&ap->hotplug_task);
6226 skip_eh:
6227 /* remove the associated SCSI host */
6228 scsi_remove_host(ap->scsi_host);
6232 * ata_host_detach - Detach all ports of an ATA host
6233 * @host: Host to detach
6235 * Detach all ports of @host.
6237 * LOCKING:
6238 * Kernel thread context (may sleep).
6240 void ata_host_detach(struct ata_host *host)
6242 int i;
6244 for (i = 0; i < host->n_ports; i++)
6245 ata_port_detach(host->ports[i]);
6247 /* the host is dead now, dissociate ACPI */
6248 ata_acpi_dissociate(host);
6251 #ifdef CONFIG_PCI
6254 * ata_pci_remove_one - PCI layer callback for device removal
6255 * @pdev: PCI device that was removed
6257 * PCI layer indicates to libata via this hook that hot-unplug or
6258 * module unload event has occurred. Detach all ports. Resource
6259 * release is handled via devres.
6261 * LOCKING:
6262 * Inherited from PCI layer (may sleep).
6264 void ata_pci_remove_one(struct pci_dev *pdev)
6266 struct device *dev = &pdev->dev;
6267 struct ata_host *host = dev_get_drvdata(dev);
6269 ata_host_detach(host);
6272 /* move to PCI subsystem */
6273 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6275 unsigned long tmp = 0;
6277 switch (bits->width) {
6278 case 1: {
6279 u8 tmp8 = 0;
6280 pci_read_config_byte(pdev, bits->reg, &tmp8);
6281 tmp = tmp8;
6282 break;
6284 case 2: {
6285 u16 tmp16 = 0;
6286 pci_read_config_word(pdev, bits->reg, &tmp16);
6287 tmp = tmp16;
6288 break;
6290 case 4: {
6291 u32 tmp32 = 0;
6292 pci_read_config_dword(pdev, bits->reg, &tmp32);
6293 tmp = tmp32;
6294 break;
6297 default:
6298 return -EINVAL;
6301 tmp &= bits->mask;
6303 return (tmp == bits->val) ? 1 : 0;
6306 #ifdef CONFIG_PM
6307 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6309 pci_save_state(pdev);
6310 pci_disable_device(pdev);
6312 if (mesg.event & PM_EVENT_SLEEP)
6313 pci_set_power_state(pdev, PCI_D3hot);
6316 int ata_pci_device_do_resume(struct pci_dev *pdev)
6318 int rc;
6320 pci_set_power_state(pdev, PCI_D0);
6321 pci_restore_state(pdev);
6323 rc = pcim_enable_device(pdev);
6324 if (rc) {
6325 dev_printk(KERN_ERR, &pdev->dev,
6326 "failed to enable device after resume (%d)\n", rc);
6327 return rc;
6330 pci_set_master(pdev);
6331 return 0;
6334 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6336 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6337 int rc = 0;
6339 rc = ata_host_suspend(host, mesg);
6340 if (rc)
6341 return rc;
6343 ata_pci_device_do_suspend(pdev, mesg);
6345 return 0;
6348 int ata_pci_device_resume(struct pci_dev *pdev)
6350 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6351 int rc;
6353 rc = ata_pci_device_do_resume(pdev);
6354 if (rc == 0)
6355 ata_host_resume(host);
6356 return rc;
6358 #endif /* CONFIG_PM */
6360 #endif /* CONFIG_PCI */
6362 static int __init ata_parse_force_one(char **cur,
6363 struct ata_force_ent *force_ent,
6364 const char **reason)
6366 /* FIXME: Currently, there's no way to tag init const data and
6367 * using __initdata causes build failure on some versions of
6368 * gcc. Once __initdataconst is implemented, add const to the
6369 * following structure.
6371 static struct ata_force_param force_tbl[] __initdata = {
6372 { "40c", .cbl = ATA_CBL_PATA40 },
6373 { "80c", .cbl = ATA_CBL_PATA80 },
6374 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6375 { "unk", .cbl = ATA_CBL_PATA_UNK },
6376 { "ign", .cbl = ATA_CBL_PATA_IGN },
6377 { "sata", .cbl = ATA_CBL_SATA },
6378 { "1.5Gbps", .spd_limit = 1 },
6379 { "3.0Gbps", .spd_limit = 2 },
6380 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6381 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6382 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6383 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6384 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6385 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6386 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6387 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6388 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6389 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6390 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6391 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6392 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6393 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6394 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6395 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6396 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6397 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6398 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6399 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6400 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6401 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6402 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6403 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6404 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6405 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6406 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6407 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6408 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6409 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6410 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6411 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6412 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6413 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6414 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6415 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6416 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6417 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6418 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6420 char *start = *cur, *p = *cur;
6421 char *id, *val, *endp;
6422 const struct ata_force_param *match_fp = NULL;
6423 int nr_matches = 0, i;
6425 /* find where this param ends and update *cur */
6426 while (*p != '\0' && *p != ',')
6427 p++;
6429 if (*p == '\0')
6430 *cur = p;
6431 else
6432 *cur = p + 1;
6434 *p = '\0';
6436 /* parse */
6437 p = strchr(start, ':');
6438 if (!p) {
6439 val = strstrip(start);
6440 goto parse_val;
6442 *p = '\0';
6444 id = strstrip(start);
6445 val = strstrip(p + 1);
6447 /* parse id */
6448 p = strchr(id, '.');
6449 if (p) {
6450 *p++ = '\0';
6451 force_ent->device = simple_strtoul(p, &endp, 10);
6452 if (p == endp || *endp != '\0') {
6453 *reason = "invalid device";
6454 return -EINVAL;
6458 force_ent->port = simple_strtoul(id, &endp, 10);
6459 if (p == endp || *endp != '\0') {
6460 *reason = "invalid port/link";
6461 return -EINVAL;
6464 parse_val:
6465 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6466 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6467 const struct ata_force_param *fp = &force_tbl[i];
6469 if (strncasecmp(val, fp->name, strlen(val)))
6470 continue;
6472 nr_matches++;
6473 match_fp = fp;
6475 if (strcasecmp(val, fp->name) == 0) {
6476 nr_matches = 1;
6477 break;
6481 if (!nr_matches) {
6482 *reason = "unknown value";
6483 return -EINVAL;
6485 if (nr_matches > 1) {
6486 *reason = "ambigious value";
6487 return -EINVAL;
6490 force_ent->param = *match_fp;
6492 return 0;
6495 static void __init ata_parse_force_param(void)
6497 int idx = 0, size = 1;
6498 int last_port = -1, last_device = -1;
6499 char *p, *cur, *next;
6501 /* calculate maximum number of params and allocate force_tbl */
6502 for (p = ata_force_param_buf; *p; p++)
6503 if (*p == ',')
6504 size++;
6506 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6507 if (!ata_force_tbl) {
6508 printk(KERN_WARNING "ata: failed to extend force table, "
6509 "libata.force ignored\n");
6510 return;
6513 /* parse and populate the table */
6514 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6515 const char *reason = "";
6516 struct ata_force_ent te = { .port = -1, .device = -1 };
6518 next = cur;
6519 if (ata_parse_force_one(&next, &te, &reason)) {
6520 printk(KERN_WARNING "ata: failed to parse force "
6521 "parameter \"%s\" (%s)\n",
6522 cur, reason);
6523 continue;
6526 if (te.port == -1) {
6527 te.port = last_port;
6528 te.device = last_device;
6531 ata_force_tbl[idx++] = te;
6533 last_port = te.port;
6534 last_device = te.device;
6537 ata_force_tbl_size = idx;
6540 static int __init ata_init(void)
6542 ata_parse_force_param();
6544 ata_wq = create_workqueue("ata");
6545 if (!ata_wq)
6546 goto free_force_tbl;
6548 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6549 if (!ata_aux_wq)
6550 goto free_wq;
6552 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6553 return 0;
6555 free_wq:
6556 destroy_workqueue(ata_wq);
6557 free_force_tbl:
6558 kfree(ata_force_tbl);
6559 return -ENOMEM;
6562 static void __exit ata_exit(void)
6564 kfree(ata_force_tbl);
6565 destroy_workqueue(ata_wq);
6566 destroy_workqueue(ata_aux_wq);
6569 subsys_initcall(ata_init);
6570 module_exit(ata_exit);
6572 static unsigned long ratelimit_time;
6573 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6575 int ata_ratelimit(void)
6577 int rc;
6578 unsigned long flags;
6580 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6582 if (time_after(jiffies, ratelimit_time)) {
6583 rc = 1;
6584 ratelimit_time = jiffies + (HZ/5);
6585 } else
6586 rc = 0;
6588 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6590 return rc;
6594 * ata_wait_register - wait until register value changes
6595 * @reg: IO-mapped register
6596 * @mask: Mask to apply to read register value
6597 * @val: Wait condition
6598 * @interval: polling interval in milliseconds
6599 * @timeout: timeout in milliseconds
6601 * Waiting for some bits of register to change is a common
6602 * operation for ATA controllers. This function reads 32bit LE
6603 * IO-mapped register @reg and tests for the following condition.
6605 * (*@reg & mask) != val
6607 * If the condition is met, it returns; otherwise, the process is
6608 * repeated after @interval_msec until timeout.
6610 * LOCKING:
6611 * Kernel thread context (may sleep)
6613 * RETURNS:
6614 * The final register value.
6616 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6617 unsigned long interval, unsigned long timeout)
6619 unsigned long deadline;
6620 u32 tmp;
6622 tmp = ioread32(reg);
6624 /* Calculate timeout _after_ the first read to make sure
6625 * preceding writes reach the controller before starting to
6626 * eat away the timeout.
6628 deadline = ata_deadline(jiffies, timeout);
6630 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6631 msleep(interval);
6632 tmp = ioread32(reg);
6635 return tmp;
6639 * Dummy port_ops
6641 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6643 return AC_ERR_SYSTEM;
6646 static void ata_dummy_error_handler(struct ata_port *ap)
6648 /* truly dummy */
6651 struct ata_port_operations ata_dummy_port_ops = {
6652 .qc_prep = ata_noop_qc_prep,
6653 .qc_issue = ata_dummy_qc_issue,
6654 .error_handler = ata_dummy_error_handler,
6657 const struct ata_port_info ata_dummy_port_info = {
6658 .port_ops = &ata_dummy_port_ops,
6662 * libata is essentially a library of internal helper functions for
6663 * low-level ATA host controller drivers. As such, the API/ABI is
6664 * likely to change as new drivers are added and updated.
6665 * Do not depend on ABI/API stability.
6667 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6668 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6669 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6670 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6671 EXPORT_SYMBOL_GPL(sata_port_ops);
6672 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6673 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6674 EXPORT_SYMBOL_GPL(ata_link_next);
6675 EXPORT_SYMBOL_GPL(ata_dev_next);
6676 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6677 EXPORT_SYMBOL_GPL(ata_host_init);
6678 EXPORT_SYMBOL_GPL(ata_host_alloc);
6679 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6680 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6681 EXPORT_SYMBOL_GPL(ata_host_start);
6682 EXPORT_SYMBOL_GPL(ata_host_register);
6683 EXPORT_SYMBOL_GPL(ata_host_activate);
6684 EXPORT_SYMBOL_GPL(ata_host_detach);
6685 EXPORT_SYMBOL_GPL(ata_sg_init);
6686 EXPORT_SYMBOL_GPL(ata_qc_complete);
6687 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6688 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6689 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6690 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6691 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6692 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6693 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6694 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6695 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6696 EXPORT_SYMBOL_GPL(ata_mode_string);
6697 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6698 EXPORT_SYMBOL_GPL(ata_port_start);
6699 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6700 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6701 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6702 EXPORT_SYMBOL_GPL(ata_port_probe);
6703 EXPORT_SYMBOL_GPL(ata_dev_disable);
6704 EXPORT_SYMBOL_GPL(sata_set_spd);
6705 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6706 EXPORT_SYMBOL_GPL(sata_link_debounce);
6707 EXPORT_SYMBOL_GPL(sata_link_resume);
6708 EXPORT_SYMBOL_GPL(ata_std_prereset);
6709 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6710 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6711 EXPORT_SYMBOL_GPL(ata_std_postreset);
6712 EXPORT_SYMBOL_GPL(ata_dev_classify);
6713 EXPORT_SYMBOL_GPL(ata_dev_pair);
6714 EXPORT_SYMBOL_GPL(ata_port_disable);
6715 EXPORT_SYMBOL_GPL(ata_ratelimit);
6716 EXPORT_SYMBOL_GPL(ata_wait_register);
6717 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6718 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6719 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6720 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6721 EXPORT_SYMBOL_GPL(sata_scr_valid);
6722 EXPORT_SYMBOL_GPL(sata_scr_read);
6723 EXPORT_SYMBOL_GPL(sata_scr_write);
6724 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6725 EXPORT_SYMBOL_GPL(ata_link_online);
6726 EXPORT_SYMBOL_GPL(ata_link_offline);
6727 #ifdef CONFIG_PM
6728 EXPORT_SYMBOL_GPL(ata_host_suspend);
6729 EXPORT_SYMBOL_GPL(ata_host_resume);
6730 #endif /* CONFIG_PM */
6731 EXPORT_SYMBOL_GPL(ata_id_string);
6732 EXPORT_SYMBOL_GPL(ata_id_c_string);
6733 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6734 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6736 EXPORT_SYMBOL_GPL(ata_pio_queue_task);
6737 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6738 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6739 EXPORT_SYMBOL_GPL(ata_timing_compute);
6740 EXPORT_SYMBOL_GPL(ata_timing_merge);
6741 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6743 #ifdef CONFIG_PCI
6744 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6745 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6746 #ifdef CONFIG_PM
6747 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6748 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6749 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6750 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6751 #endif /* CONFIG_PM */
6752 #endif /* CONFIG_PCI */
6754 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6755 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6756 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6757 EXPORT_SYMBOL_GPL(ata_port_desc);
6758 #ifdef CONFIG_PCI
6759 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6760 #endif /* CONFIG_PCI */
6761 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6762 EXPORT_SYMBOL_GPL(ata_link_abort);
6763 EXPORT_SYMBOL_GPL(ata_port_abort);
6764 EXPORT_SYMBOL_GPL(ata_port_freeze);
6765 EXPORT_SYMBOL_GPL(sata_async_notification);
6766 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6767 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6768 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6769 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6770 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6771 EXPORT_SYMBOL_GPL(ata_do_eh);
6772 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6774 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6775 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6776 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6777 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6778 EXPORT_SYMBOL_GPL(ata_cable_sata);