4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
36 #include <linux/compat.h>
37 #include <linux/syscalls.h>
38 #include <linux/kprobes.h>
39 #include <linux/user_namespace.h>
41 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
45 #ifndef SET_UNALIGN_CTL
46 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
48 #ifndef GET_UNALIGN_CTL
49 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
52 # define SET_FPEMU_CTL(a,b) (-EINVAL)
55 # define GET_FPEMU_CTL(a,b) (-EINVAL)
58 # define SET_FPEXC_CTL(a,b) (-EINVAL)
61 # define GET_FPEXC_CTL(a,b) (-EINVAL)
64 # define GET_ENDIAN(a,b) (-EINVAL)
67 # define SET_ENDIAN(a,b) (-EINVAL)
71 * this is where the system-wide overflow UID and GID are defined, for
72 * architectures that now have 32-bit UID/GID but didn't in the past
75 int overflowuid
= DEFAULT_OVERFLOWUID
;
76 int overflowgid
= DEFAULT_OVERFLOWGID
;
79 EXPORT_SYMBOL(overflowuid
);
80 EXPORT_SYMBOL(overflowgid
);
84 * the same as above, but for filesystems which can only store a 16-bit
85 * UID and GID. as such, this is needed on all architectures
88 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
89 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
91 EXPORT_SYMBOL(fs_overflowuid
);
92 EXPORT_SYMBOL(fs_overflowgid
);
95 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
100 EXPORT_SYMBOL(cad_pid
);
103 * If set, this is used for preparing the system to power off.
106 void (*pm_power_off_prepare
)(void);
107 EXPORT_SYMBOL(pm_power_off_prepare
);
110 * Notifier list for kernel code which wants to be called
111 * at shutdown. This is used to stop any idling DMA operations
115 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list
);
118 * Notifier chain core routines. The exported routines below
119 * are layered on top of these, with appropriate locking added.
122 static int notifier_chain_register(struct notifier_block
**nl
,
123 struct notifier_block
*n
)
125 while ((*nl
) != NULL
) {
126 if (n
->priority
> (*nl
)->priority
)
131 rcu_assign_pointer(*nl
, n
);
135 static int notifier_chain_unregister(struct notifier_block
**nl
,
136 struct notifier_block
*n
)
138 while ((*nl
) != NULL
) {
140 rcu_assign_pointer(*nl
, n
->next
);
149 * notifier_call_chain - Informs the registered notifiers about an event.
150 * @nl: Pointer to head of the blocking notifier chain
151 * @val: Value passed unmodified to notifier function
152 * @v: Pointer passed unmodified to notifier function
153 * @nr_to_call: Number of notifier functions to be called. Don't care
154 * value of this parameter is -1.
155 * @nr_calls: Records the number of notifications sent. Don't care
156 * value of this field is NULL.
157 * @returns: notifier_call_chain returns the value returned by the
158 * last notifier function called.
161 static int __kprobes
notifier_call_chain(struct notifier_block
**nl
,
162 unsigned long val
, void *v
,
163 int nr_to_call
, int *nr_calls
)
165 int ret
= NOTIFY_DONE
;
166 struct notifier_block
*nb
, *next_nb
;
168 nb
= rcu_dereference(*nl
);
170 while (nb
&& nr_to_call
) {
171 next_nb
= rcu_dereference(nb
->next
);
172 ret
= nb
->notifier_call(nb
, val
, v
);
177 if ((ret
& NOTIFY_STOP_MASK
) == NOTIFY_STOP_MASK
)
186 * Atomic notifier chain routines. Registration and unregistration
187 * use a spinlock, and call_chain is synchronized by RCU (no locks).
191 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
192 * @nh: Pointer to head of the atomic notifier chain
193 * @n: New entry in notifier chain
195 * Adds a notifier to an atomic notifier chain.
197 * Currently always returns zero.
200 int atomic_notifier_chain_register(struct atomic_notifier_head
*nh
,
201 struct notifier_block
*n
)
206 spin_lock_irqsave(&nh
->lock
, flags
);
207 ret
= notifier_chain_register(&nh
->head
, n
);
208 spin_unlock_irqrestore(&nh
->lock
, flags
);
212 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register
);
215 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
216 * @nh: Pointer to head of the atomic notifier chain
217 * @n: Entry to remove from notifier chain
219 * Removes a notifier from an atomic notifier chain.
221 * Returns zero on success or %-ENOENT on failure.
223 int atomic_notifier_chain_unregister(struct atomic_notifier_head
*nh
,
224 struct notifier_block
*n
)
229 spin_lock_irqsave(&nh
->lock
, flags
);
230 ret
= notifier_chain_unregister(&nh
->head
, n
);
231 spin_unlock_irqrestore(&nh
->lock
, flags
);
236 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister
);
239 * __atomic_notifier_call_chain - Call functions in an atomic notifier chain
240 * @nh: Pointer to head of the atomic notifier chain
241 * @val: Value passed unmodified to notifier function
242 * @v: Pointer passed unmodified to notifier function
243 * @nr_to_call: See the comment for notifier_call_chain.
244 * @nr_calls: See the comment for notifier_call_chain.
246 * Calls each function in a notifier chain in turn. The functions
247 * run in an atomic context, so they must not block.
248 * This routine uses RCU to synchronize with changes to the chain.
250 * If the return value of the notifier can be and'ed
251 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
252 * will return immediately, with the return value of
253 * the notifier function which halted execution.
254 * Otherwise the return value is the return value
255 * of the last notifier function called.
258 int __kprobes
__atomic_notifier_call_chain(struct atomic_notifier_head
*nh
,
259 unsigned long val
, void *v
,
260 int nr_to_call
, int *nr_calls
)
265 ret
= notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
, nr_calls
);
270 EXPORT_SYMBOL_GPL(__atomic_notifier_call_chain
);
272 int __kprobes
atomic_notifier_call_chain(struct atomic_notifier_head
*nh
,
273 unsigned long val
, void *v
)
275 return __atomic_notifier_call_chain(nh
, val
, v
, -1, NULL
);
278 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain
);
280 * Blocking notifier chain routines. All access to the chain is
281 * synchronized by an rwsem.
285 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
286 * @nh: Pointer to head of the blocking notifier chain
287 * @n: New entry in notifier chain
289 * Adds a notifier to a blocking notifier chain.
290 * Must be called in process context.
292 * Currently always returns zero.
295 int blocking_notifier_chain_register(struct blocking_notifier_head
*nh
,
296 struct notifier_block
*n
)
301 * This code gets used during boot-up, when task switching is
302 * not yet working and interrupts must remain disabled. At
303 * such times we must not call down_write().
305 if (unlikely(system_state
== SYSTEM_BOOTING
))
306 return notifier_chain_register(&nh
->head
, n
);
308 down_write(&nh
->rwsem
);
309 ret
= notifier_chain_register(&nh
->head
, n
);
310 up_write(&nh
->rwsem
);
314 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register
);
317 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
318 * @nh: Pointer to head of the blocking notifier chain
319 * @n: Entry to remove from notifier chain
321 * Removes a notifier from a blocking notifier chain.
322 * Must be called from process context.
324 * Returns zero on success or %-ENOENT on failure.
326 int blocking_notifier_chain_unregister(struct blocking_notifier_head
*nh
,
327 struct notifier_block
*n
)
332 * This code gets used during boot-up, when task switching is
333 * not yet working and interrupts must remain disabled. At
334 * such times we must not call down_write().
336 if (unlikely(system_state
== SYSTEM_BOOTING
))
337 return notifier_chain_unregister(&nh
->head
, n
);
339 down_write(&nh
->rwsem
);
340 ret
= notifier_chain_unregister(&nh
->head
, n
);
341 up_write(&nh
->rwsem
);
345 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister
);
348 * __blocking_notifier_call_chain - Call functions in a blocking notifier chain
349 * @nh: Pointer to head of the blocking notifier chain
350 * @val: Value passed unmodified to notifier function
351 * @v: Pointer passed unmodified to notifier function
352 * @nr_to_call: See comment for notifier_call_chain.
353 * @nr_calls: See comment for notifier_call_chain.
355 * Calls each function in a notifier chain in turn. The functions
356 * run in a process context, so they are allowed to block.
358 * If the return value of the notifier can be and'ed
359 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain()
360 * will return immediately, with the return value of
361 * the notifier function which halted execution.
362 * Otherwise the return value is the return value
363 * of the last notifier function called.
366 int __blocking_notifier_call_chain(struct blocking_notifier_head
*nh
,
367 unsigned long val
, void *v
,
368 int nr_to_call
, int *nr_calls
)
370 int ret
= NOTIFY_DONE
;
373 * We check the head outside the lock, but if this access is
374 * racy then it does not matter what the result of the test
375 * is, we re-check the list after having taken the lock anyway:
377 if (rcu_dereference(nh
->head
)) {
378 down_read(&nh
->rwsem
);
379 ret
= notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
,
385 EXPORT_SYMBOL_GPL(__blocking_notifier_call_chain
);
387 int blocking_notifier_call_chain(struct blocking_notifier_head
*nh
,
388 unsigned long val
, void *v
)
390 return __blocking_notifier_call_chain(nh
, val
, v
, -1, NULL
);
392 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain
);
395 * Raw notifier chain routines. There is no protection;
396 * the caller must provide it. Use at your own risk!
400 * raw_notifier_chain_register - Add notifier to a raw notifier chain
401 * @nh: Pointer to head of the raw notifier chain
402 * @n: New entry in notifier chain
404 * Adds a notifier to a raw notifier chain.
405 * All locking must be provided by the caller.
407 * Currently always returns zero.
410 int raw_notifier_chain_register(struct raw_notifier_head
*nh
,
411 struct notifier_block
*n
)
413 return notifier_chain_register(&nh
->head
, n
);
416 EXPORT_SYMBOL_GPL(raw_notifier_chain_register
);
419 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
420 * @nh: Pointer to head of the raw notifier chain
421 * @n: Entry to remove from notifier chain
423 * Removes a notifier from a raw notifier chain.
424 * All locking must be provided by the caller.
426 * Returns zero on success or %-ENOENT on failure.
428 int raw_notifier_chain_unregister(struct raw_notifier_head
*nh
,
429 struct notifier_block
*n
)
431 return notifier_chain_unregister(&nh
->head
, n
);
434 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister
);
437 * __raw_notifier_call_chain - Call functions in a raw notifier chain
438 * @nh: Pointer to head of the raw notifier chain
439 * @val: Value passed unmodified to notifier function
440 * @v: Pointer passed unmodified to notifier function
441 * @nr_to_call: See comment for notifier_call_chain.
442 * @nr_calls: See comment for notifier_call_chain
444 * Calls each function in a notifier chain in turn. The functions
445 * run in an undefined context.
446 * All locking must be provided by the caller.
448 * If the return value of the notifier can be and'ed
449 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain()
450 * will return immediately, with the return value of
451 * the notifier function which halted execution.
452 * Otherwise the return value is the return value
453 * of the last notifier function called.
456 int __raw_notifier_call_chain(struct raw_notifier_head
*nh
,
457 unsigned long val
, void *v
,
458 int nr_to_call
, int *nr_calls
)
460 return notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
, nr_calls
);
463 EXPORT_SYMBOL_GPL(__raw_notifier_call_chain
);
465 int raw_notifier_call_chain(struct raw_notifier_head
*nh
,
466 unsigned long val
, void *v
)
468 return __raw_notifier_call_chain(nh
, val
, v
, -1, NULL
);
471 EXPORT_SYMBOL_GPL(raw_notifier_call_chain
);
474 * SRCU notifier chain routines. Registration and unregistration
475 * use a mutex, and call_chain is synchronized by SRCU (no locks).
479 * srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
480 * @nh: Pointer to head of the SRCU notifier chain
481 * @n: New entry in notifier chain
483 * Adds a notifier to an SRCU notifier chain.
484 * Must be called in process context.
486 * Currently always returns zero.
489 int srcu_notifier_chain_register(struct srcu_notifier_head
*nh
,
490 struct notifier_block
*n
)
495 * This code gets used during boot-up, when task switching is
496 * not yet working and interrupts must remain disabled. At
497 * such times we must not call mutex_lock().
499 if (unlikely(system_state
== SYSTEM_BOOTING
))
500 return notifier_chain_register(&nh
->head
, n
);
502 mutex_lock(&nh
->mutex
);
503 ret
= notifier_chain_register(&nh
->head
, n
);
504 mutex_unlock(&nh
->mutex
);
508 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register
);
511 * srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
512 * @nh: Pointer to head of the SRCU notifier chain
513 * @n: Entry to remove from notifier chain
515 * Removes a notifier from an SRCU notifier chain.
516 * Must be called from process context.
518 * Returns zero on success or %-ENOENT on failure.
520 int srcu_notifier_chain_unregister(struct srcu_notifier_head
*nh
,
521 struct notifier_block
*n
)
526 * This code gets used during boot-up, when task switching is
527 * not yet working and interrupts must remain disabled. At
528 * such times we must not call mutex_lock().
530 if (unlikely(system_state
== SYSTEM_BOOTING
))
531 return notifier_chain_unregister(&nh
->head
, n
);
533 mutex_lock(&nh
->mutex
);
534 ret
= notifier_chain_unregister(&nh
->head
, n
);
535 mutex_unlock(&nh
->mutex
);
536 synchronize_srcu(&nh
->srcu
);
540 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister
);
543 * __srcu_notifier_call_chain - Call functions in an SRCU notifier chain
544 * @nh: Pointer to head of the SRCU notifier chain
545 * @val: Value passed unmodified to notifier function
546 * @v: Pointer passed unmodified to notifier function
547 * @nr_to_call: See comment for notifier_call_chain.
548 * @nr_calls: See comment for notifier_call_chain
550 * Calls each function in a notifier chain in turn. The functions
551 * run in a process context, so they are allowed to block.
553 * If the return value of the notifier can be and'ed
554 * with %NOTIFY_STOP_MASK then srcu_notifier_call_chain()
555 * will return immediately, with the return value of
556 * the notifier function which halted execution.
557 * Otherwise the return value is the return value
558 * of the last notifier function called.
561 int __srcu_notifier_call_chain(struct srcu_notifier_head
*nh
,
562 unsigned long val
, void *v
,
563 int nr_to_call
, int *nr_calls
)
568 idx
= srcu_read_lock(&nh
->srcu
);
569 ret
= notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
, nr_calls
);
570 srcu_read_unlock(&nh
->srcu
, idx
);
573 EXPORT_SYMBOL_GPL(__srcu_notifier_call_chain
);
575 int srcu_notifier_call_chain(struct srcu_notifier_head
*nh
,
576 unsigned long val
, void *v
)
578 return __srcu_notifier_call_chain(nh
, val
, v
, -1, NULL
);
580 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain
);
583 * srcu_init_notifier_head - Initialize an SRCU notifier head
584 * @nh: Pointer to head of the srcu notifier chain
586 * Unlike other sorts of notifier heads, SRCU notifier heads require
587 * dynamic initialization. Be sure to call this routine before
588 * calling any of the other SRCU notifier routines for this head.
590 * If an SRCU notifier head is deallocated, it must first be cleaned
591 * up by calling srcu_cleanup_notifier_head(). Otherwise the head's
592 * per-cpu data (used by the SRCU mechanism) will leak.
595 void srcu_init_notifier_head(struct srcu_notifier_head
*nh
)
597 mutex_init(&nh
->mutex
);
598 if (init_srcu_struct(&nh
->srcu
) < 0)
603 EXPORT_SYMBOL_GPL(srcu_init_notifier_head
);
606 * register_reboot_notifier - Register function to be called at reboot time
607 * @nb: Info about notifier function to be called
609 * Registers a function with the list of functions
610 * to be called at reboot time.
612 * Currently always returns zero, as blocking_notifier_chain_register()
613 * always returns zero.
616 int register_reboot_notifier(struct notifier_block
* nb
)
618 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
621 EXPORT_SYMBOL(register_reboot_notifier
);
624 * unregister_reboot_notifier - Unregister previously registered reboot notifier
625 * @nb: Hook to be unregistered
627 * Unregisters a previously registered reboot
630 * Returns zero on success, or %-ENOENT on failure.
633 int unregister_reboot_notifier(struct notifier_block
* nb
)
635 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
638 EXPORT_SYMBOL(unregister_reboot_notifier
);
640 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
644 if (p
->uid
!= current
->euid
&&
645 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
649 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
653 no_nice
= security_task_setnice(p
, niceval
);
660 set_user_nice(p
, niceval
);
665 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
667 struct task_struct
*g
, *p
;
668 struct user_struct
*user
;
672 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
675 /* normalize: avoid signed division (rounding problems) */
682 read_lock(&tasklist_lock
);
686 p
= find_task_by_pid(who
);
690 error
= set_one_prio(p
, niceval
, error
);
694 pgrp
= find_pid(who
);
696 pgrp
= task_pgrp(current
);
697 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
698 error
= set_one_prio(p
, niceval
, error
);
699 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
702 user
= current
->user
;
706 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
707 goto out_unlock
; /* No processes for this user */
711 error
= set_one_prio(p
, niceval
, error
);
712 while_each_thread(g
, p
);
713 if (who
!= current
->uid
)
714 free_uid(user
); /* For find_user() */
718 read_unlock(&tasklist_lock
);
724 * Ugh. To avoid negative return values, "getpriority()" will
725 * not return the normal nice-value, but a negated value that
726 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
727 * to stay compatible.
729 asmlinkage
long sys_getpriority(int which
, int who
)
731 struct task_struct
*g
, *p
;
732 struct user_struct
*user
;
733 long niceval
, retval
= -ESRCH
;
736 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
739 read_lock(&tasklist_lock
);
743 p
= find_task_by_pid(who
);
747 niceval
= 20 - task_nice(p
);
748 if (niceval
> retval
)
754 pgrp
= find_pid(who
);
756 pgrp
= task_pgrp(current
);
757 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
758 niceval
= 20 - task_nice(p
);
759 if (niceval
> retval
)
761 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
764 user
= current
->user
;
768 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
769 goto out_unlock
; /* No processes for this user */
773 niceval
= 20 - task_nice(p
);
774 if (niceval
> retval
)
777 while_each_thread(g
, p
);
778 if (who
!= current
->uid
)
779 free_uid(user
); /* for find_user() */
783 read_unlock(&tasklist_lock
);
789 * emergency_restart - reboot the system
791 * Without shutting down any hardware or taking any locks
792 * reboot the system. This is called when we know we are in
793 * trouble so this is our best effort to reboot. This is
794 * safe to call in interrupt context.
796 void emergency_restart(void)
798 machine_emergency_restart();
800 EXPORT_SYMBOL_GPL(emergency_restart
);
802 static void kernel_restart_prepare(char *cmd
)
804 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
805 system_state
= SYSTEM_RESTART
;
811 * kernel_restart - reboot the system
812 * @cmd: pointer to buffer containing command to execute for restart
815 * Shutdown everything and perform a clean reboot.
816 * This is not safe to call in interrupt context.
818 void kernel_restart(char *cmd
)
820 kernel_restart_prepare(cmd
);
822 printk(KERN_EMERG
"Restarting system.\n");
824 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
825 machine_restart(cmd
);
827 EXPORT_SYMBOL_GPL(kernel_restart
);
830 * kernel_kexec - reboot the system
832 * Move into place and start executing a preloaded standalone
833 * executable. If nothing was preloaded return an error.
835 static void kernel_kexec(void)
838 struct kimage
*image
;
839 image
= xchg(&kexec_image
, NULL
);
842 kernel_restart_prepare(NULL
);
843 printk(KERN_EMERG
"Starting new kernel\n");
845 machine_kexec(image
);
849 void kernel_shutdown_prepare(enum system_states state
)
851 blocking_notifier_call_chain(&reboot_notifier_list
,
852 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
853 system_state
= state
;
857 * kernel_halt - halt the system
859 * Shutdown everything and perform a clean system halt.
861 void kernel_halt(void)
863 kernel_shutdown_prepare(SYSTEM_HALT
);
865 printk(KERN_EMERG
"System halted.\n");
869 EXPORT_SYMBOL_GPL(kernel_halt
);
872 * kernel_power_off - power_off the system
874 * Shutdown everything and perform a clean system power_off.
876 void kernel_power_off(void)
878 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
879 if (pm_power_off_prepare
)
880 pm_power_off_prepare();
882 printk(KERN_EMERG
"Power down.\n");
885 EXPORT_SYMBOL_GPL(kernel_power_off
);
887 * Reboot system call: for obvious reasons only root may call it,
888 * and even root needs to set up some magic numbers in the registers
889 * so that some mistake won't make this reboot the whole machine.
890 * You can also set the meaning of the ctrl-alt-del-key here.
892 * reboot doesn't sync: do that yourself before calling this.
894 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
898 /* We only trust the superuser with rebooting the system. */
899 if (!capable(CAP_SYS_BOOT
))
902 /* For safety, we require "magic" arguments. */
903 if (magic1
!= LINUX_REBOOT_MAGIC1
||
904 (magic2
!= LINUX_REBOOT_MAGIC2
&&
905 magic2
!= LINUX_REBOOT_MAGIC2A
&&
906 magic2
!= LINUX_REBOOT_MAGIC2B
&&
907 magic2
!= LINUX_REBOOT_MAGIC2C
))
910 /* Instead of trying to make the power_off code look like
911 * halt when pm_power_off is not set do it the easy way.
913 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
914 cmd
= LINUX_REBOOT_CMD_HALT
;
918 case LINUX_REBOOT_CMD_RESTART
:
919 kernel_restart(NULL
);
922 case LINUX_REBOOT_CMD_CAD_ON
:
926 case LINUX_REBOOT_CMD_CAD_OFF
:
930 case LINUX_REBOOT_CMD_HALT
:
936 case LINUX_REBOOT_CMD_POWER_OFF
:
942 case LINUX_REBOOT_CMD_RESTART2
:
943 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
947 buffer
[sizeof(buffer
) - 1] = '\0';
949 kernel_restart(buffer
);
952 case LINUX_REBOOT_CMD_KEXEC
:
957 #ifdef CONFIG_HIBERNATION
958 case LINUX_REBOOT_CMD_SW_SUSPEND
:
960 int ret
= hibernate();
974 static void deferred_cad(struct work_struct
*dummy
)
976 kernel_restart(NULL
);
980 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
981 * As it's called within an interrupt, it may NOT sync: the only choice
982 * is whether to reboot at once, or just ignore the ctrl-alt-del.
984 void ctrl_alt_del(void)
986 static DECLARE_WORK(cad_work
, deferred_cad
);
989 schedule_work(&cad_work
);
991 kill_cad_pid(SIGINT
, 1);
995 * Unprivileged users may change the real gid to the effective gid
996 * or vice versa. (BSD-style)
998 * If you set the real gid at all, or set the effective gid to a value not
999 * equal to the real gid, then the saved gid is set to the new effective gid.
1001 * This makes it possible for a setgid program to completely drop its
1002 * privileges, which is often a useful assertion to make when you are doing
1003 * a security audit over a program.
1005 * The general idea is that a program which uses just setregid() will be
1006 * 100% compatible with BSD. A program which uses just setgid() will be
1007 * 100% compatible with POSIX with saved IDs.
1009 * SMP: There are not races, the GIDs are checked only by filesystem
1010 * operations (as far as semantic preservation is concerned).
1012 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
1014 int old_rgid
= current
->gid
;
1015 int old_egid
= current
->egid
;
1016 int new_rgid
= old_rgid
;
1017 int new_egid
= old_egid
;
1020 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
1024 if (rgid
!= (gid_t
) -1) {
1025 if ((old_rgid
== rgid
) ||
1026 (current
->egid
==rgid
) ||
1027 capable(CAP_SETGID
))
1032 if (egid
!= (gid_t
) -1) {
1033 if ((old_rgid
== egid
) ||
1034 (current
->egid
== egid
) ||
1035 (current
->sgid
== egid
) ||
1036 capable(CAP_SETGID
))
1041 if (new_egid
!= old_egid
) {
1042 set_dumpable(current
->mm
, suid_dumpable
);
1045 if (rgid
!= (gid_t
) -1 ||
1046 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
1047 current
->sgid
= new_egid
;
1048 current
->fsgid
= new_egid
;
1049 current
->egid
= new_egid
;
1050 current
->gid
= new_rgid
;
1051 key_fsgid_changed(current
);
1052 proc_id_connector(current
, PROC_EVENT_GID
);
1057 * setgid() is implemented like SysV w/ SAVED_IDS
1059 * SMP: Same implicit races as above.
1061 asmlinkage
long sys_setgid(gid_t gid
)
1063 int old_egid
= current
->egid
;
1066 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
1070 if (capable(CAP_SETGID
)) {
1071 if (old_egid
!= gid
) {
1072 set_dumpable(current
->mm
, suid_dumpable
);
1075 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
1076 } else if ((gid
== current
->gid
) || (gid
== current
->sgid
)) {
1077 if (old_egid
!= gid
) {
1078 set_dumpable(current
->mm
, suid_dumpable
);
1081 current
->egid
= current
->fsgid
= gid
;
1086 key_fsgid_changed(current
);
1087 proc_id_connector(current
, PROC_EVENT_GID
);
1091 static int set_user(uid_t new_ruid
, int dumpclear
)
1093 struct user_struct
*new_user
;
1095 new_user
= alloc_uid(current
->nsproxy
->user_ns
, new_ruid
);
1099 if (atomic_read(&new_user
->processes
) >=
1100 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
1101 new_user
!= current
->nsproxy
->user_ns
->root_user
) {
1106 switch_uid(new_user
);
1109 set_dumpable(current
->mm
, suid_dumpable
);
1112 current
->uid
= new_ruid
;
1117 * Unprivileged users may change the real uid to the effective uid
1118 * or vice versa. (BSD-style)
1120 * If you set the real uid at all, or set the effective uid to a value not
1121 * equal to the real uid, then the saved uid is set to the new effective uid.
1123 * This makes it possible for a setuid program to completely drop its
1124 * privileges, which is often a useful assertion to make when you are doing
1125 * a security audit over a program.
1127 * The general idea is that a program which uses just setreuid() will be
1128 * 100% compatible with BSD. A program which uses just setuid() will be
1129 * 100% compatible with POSIX with saved IDs.
1131 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
1133 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
1136 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
1140 new_ruid
= old_ruid
= current
->uid
;
1141 new_euid
= old_euid
= current
->euid
;
1142 old_suid
= current
->suid
;
1144 if (ruid
!= (uid_t
) -1) {
1146 if ((old_ruid
!= ruid
) &&
1147 (current
->euid
!= ruid
) &&
1148 !capable(CAP_SETUID
))
1152 if (euid
!= (uid_t
) -1) {
1154 if ((old_ruid
!= euid
) &&
1155 (current
->euid
!= euid
) &&
1156 (current
->suid
!= euid
) &&
1157 !capable(CAP_SETUID
))
1161 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
1164 if (new_euid
!= old_euid
) {
1165 set_dumpable(current
->mm
, suid_dumpable
);
1168 current
->fsuid
= current
->euid
= new_euid
;
1169 if (ruid
!= (uid_t
) -1 ||
1170 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
1171 current
->suid
= current
->euid
;
1172 current
->fsuid
= current
->euid
;
1174 key_fsuid_changed(current
);
1175 proc_id_connector(current
, PROC_EVENT_UID
);
1177 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
1183 * setuid() is implemented like SysV with SAVED_IDS
1185 * Note that SAVED_ID's is deficient in that a setuid root program
1186 * like sendmail, for example, cannot set its uid to be a normal
1187 * user and then switch back, because if you're root, setuid() sets
1188 * the saved uid too. If you don't like this, blame the bright people
1189 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
1190 * will allow a root program to temporarily drop privileges and be able to
1191 * regain them by swapping the real and effective uid.
1193 asmlinkage
long sys_setuid(uid_t uid
)
1195 int old_euid
= current
->euid
;
1196 int old_ruid
, old_suid
, new_suid
;
1199 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
1203 old_ruid
= current
->uid
;
1204 old_suid
= current
->suid
;
1205 new_suid
= old_suid
;
1207 if (capable(CAP_SETUID
)) {
1208 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
1211 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
1214 if (old_euid
!= uid
) {
1215 set_dumpable(current
->mm
, suid_dumpable
);
1218 current
->fsuid
= current
->euid
= uid
;
1219 current
->suid
= new_suid
;
1221 key_fsuid_changed(current
);
1222 proc_id_connector(current
, PROC_EVENT_UID
);
1224 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
1229 * This function implements a generic ability to update ruid, euid,
1230 * and suid. This allows you to implement the 4.4 compatible seteuid().
1232 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
1234 int old_ruid
= current
->uid
;
1235 int old_euid
= current
->euid
;
1236 int old_suid
= current
->suid
;
1239 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
1243 if (!capable(CAP_SETUID
)) {
1244 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
1245 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
1247 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
1248 (euid
!= current
->euid
) && (euid
!= current
->suid
))
1250 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
1251 (suid
!= current
->euid
) && (suid
!= current
->suid
))
1254 if (ruid
!= (uid_t
) -1) {
1255 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
1258 if (euid
!= (uid_t
) -1) {
1259 if (euid
!= current
->euid
) {
1260 set_dumpable(current
->mm
, suid_dumpable
);
1263 current
->euid
= euid
;
1265 current
->fsuid
= current
->euid
;
1266 if (suid
!= (uid_t
) -1)
1267 current
->suid
= suid
;
1269 key_fsuid_changed(current
);
1270 proc_id_connector(current
, PROC_EVENT_UID
);
1272 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
1275 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
1279 if (!(retval
= put_user(current
->uid
, ruid
)) &&
1280 !(retval
= put_user(current
->euid
, euid
)))
1281 retval
= put_user(current
->suid
, suid
);
1287 * Same as above, but for rgid, egid, sgid.
1289 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
1293 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
1297 if (!capable(CAP_SETGID
)) {
1298 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
1299 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
1301 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
1302 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
1304 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
1305 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
1308 if (egid
!= (gid_t
) -1) {
1309 if (egid
!= current
->egid
) {
1310 set_dumpable(current
->mm
, suid_dumpable
);
1313 current
->egid
= egid
;
1315 current
->fsgid
= current
->egid
;
1316 if (rgid
!= (gid_t
) -1)
1317 current
->gid
= rgid
;
1318 if (sgid
!= (gid_t
) -1)
1319 current
->sgid
= sgid
;
1321 key_fsgid_changed(current
);
1322 proc_id_connector(current
, PROC_EVENT_GID
);
1326 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
1330 if (!(retval
= put_user(current
->gid
, rgid
)) &&
1331 !(retval
= put_user(current
->egid
, egid
)))
1332 retval
= put_user(current
->sgid
, sgid
);
1339 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1340 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1341 * whatever uid it wants to). It normally shadows "euid", except when
1342 * explicitly set by setfsuid() or for access..
1344 asmlinkage
long sys_setfsuid(uid_t uid
)
1348 old_fsuid
= current
->fsuid
;
1349 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
1352 if (uid
== current
->uid
|| uid
== current
->euid
||
1353 uid
== current
->suid
|| uid
== current
->fsuid
||
1354 capable(CAP_SETUID
)) {
1355 if (uid
!= old_fsuid
) {
1356 set_dumpable(current
->mm
, suid_dumpable
);
1359 current
->fsuid
= uid
;
1362 key_fsuid_changed(current
);
1363 proc_id_connector(current
, PROC_EVENT_UID
);
1365 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
1371 * Samma på svenska..
1373 asmlinkage
long sys_setfsgid(gid_t gid
)
1377 old_fsgid
= current
->fsgid
;
1378 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
1381 if (gid
== current
->gid
|| gid
== current
->egid
||
1382 gid
== current
->sgid
|| gid
== current
->fsgid
||
1383 capable(CAP_SETGID
)) {
1384 if (gid
!= old_fsgid
) {
1385 set_dumpable(current
->mm
, suid_dumpable
);
1388 current
->fsgid
= gid
;
1389 key_fsgid_changed(current
);
1390 proc_id_connector(current
, PROC_EVENT_GID
);
1395 asmlinkage
long sys_times(struct tms __user
* tbuf
)
1398 * In the SMP world we might just be unlucky and have one of
1399 * the times increment as we use it. Since the value is an
1400 * atomically safe type this is just fine. Conceptually its
1401 * as if the syscall took an instant longer to occur.
1405 struct task_struct
*tsk
= current
;
1406 struct task_struct
*t
;
1407 cputime_t utime
, stime
, cutime
, cstime
;
1409 spin_lock_irq(&tsk
->sighand
->siglock
);
1410 utime
= tsk
->signal
->utime
;
1411 stime
= tsk
->signal
->stime
;
1414 utime
= cputime_add(utime
, t
->utime
);
1415 stime
= cputime_add(stime
, t
->stime
);
1419 cutime
= tsk
->signal
->cutime
;
1420 cstime
= tsk
->signal
->cstime
;
1421 spin_unlock_irq(&tsk
->sighand
->siglock
);
1423 tmp
.tms_utime
= cputime_to_clock_t(utime
);
1424 tmp
.tms_stime
= cputime_to_clock_t(stime
);
1425 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
1426 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
1427 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1430 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1434 * This needs some heavy checking ...
1435 * I just haven't the stomach for it. I also don't fully
1436 * understand sessions/pgrp etc. Let somebody who does explain it.
1438 * OK, I think I have the protection semantics right.... this is really
1439 * only important on a multi-user system anyway, to make sure one user
1440 * can't send a signal to a process owned by another. -TYT, 12/12/91
1442 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1445 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
1447 struct task_struct
*p
;
1448 struct task_struct
*group_leader
= current
->group_leader
;
1452 pid
= group_leader
->pid
;
1458 /* From this point forward we keep holding onto the tasklist lock
1459 * so that our parent does not change from under us. -DaveM
1461 write_lock_irq(&tasklist_lock
);
1464 p
= find_task_by_pid(pid
);
1469 if (!thread_group_leader(p
))
1472 if (p
->real_parent
->tgid
== group_leader
->tgid
) {
1474 if (task_session(p
) != task_session(group_leader
))
1481 if (p
!= group_leader
)
1486 if (p
->signal
->leader
)
1490 struct task_struct
*g
=
1491 find_task_by_pid_type(PIDTYPE_PGID
, pgid
);
1493 if (!g
|| task_session(g
) != task_session(group_leader
))
1497 err
= security_task_setpgid(p
, pgid
);
1501 if (process_group(p
) != pgid
) {
1502 detach_pid(p
, PIDTYPE_PGID
);
1503 p
->signal
->pgrp
= pgid
;
1504 attach_pid(p
, PIDTYPE_PGID
, find_pid(pgid
));
1509 /* All paths lead to here, thus we are safe. -DaveM */
1510 write_unlock_irq(&tasklist_lock
);
1514 asmlinkage
long sys_getpgid(pid_t pid
)
1517 return process_group(current
);
1520 struct task_struct
*p
;
1522 read_lock(&tasklist_lock
);
1523 p
= find_task_by_pid(pid
);
1527 retval
= security_task_getpgid(p
);
1529 retval
= process_group(p
);
1531 read_unlock(&tasklist_lock
);
1536 #ifdef __ARCH_WANT_SYS_GETPGRP
1538 asmlinkage
long sys_getpgrp(void)
1540 /* SMP - assuming writes are word atomic this is fine */
1541 return process_group(current
);
1546 asmlinkage
long sys_getsid(pid_t pid
)
1549 return process_session(current
);
1552 struct task_struct
*p
;
1554 read_lock(&tasklist_lock
);
1555 p
= find_task_by_pid(pid
);
1559 retval
= security_task_getsid(p
);
1561 retval
= process_session(p
);
1563 read_unlock(&tasklist_lock
);
1568 asmlinkage
long sys_setsid(void)
1570 struct task_struct
*group_leader
= current
->group_leader
;
1574 write_lock_irq(&tasklist_lock
);
1576 /* Fail if I am already a session leader */
1577 if (group_leader
->signal
->leader
)
1580 session
= group_leader
->pid
;
1581 /* Fail if a process group id already exists that equals the
1582 * proposed session id.
1584 * Don't check if session id == 1 because kernel threads use this
1585 * session id and so the check will always fail and make it so
1586 * init cannot successfully call setsid.
1588 if (session
> 1 && find_task_by_pid_type(PIDTYPE_PGID
, session
))
1591 group_leader
->signal
->leader
= 1;
1592 __set_special_pids(session
, session
);
1594 spin_lock(&group_leader
->sighand
->siglock
);
1595 group_leader
->signal
->tty
= NULL
;
1596 spin_unlock(&group_leader
->sighand
->siglock
);
1598 err
= process_group(group_leader
);
1600 write_unlock_irq(&tasklist_lock
);
1605 * Supplementary group IDs
1608 /* init to 2 - one for init_task, one to ensure it is never freed */
1609 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1611 struct group_info
*groups_alloc(int gidsetsize
)
1613 struct group_info
*group_info
;
1617 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1618 /* Make sure we always allocate at least one indirect block pointer */
1619 nblocks
= nblocks
? : 1;
1620 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1623 group_info
->ngroups
= gidsetsize
;
1624 group_info
->nblocks
= nblocks
;
1625 atomic_set(&group_info
->usage
, 1);
1627 if (gidsetsize
<= NGROUPS_SMALL
)
1628 group_info
->blocks
[0] = group_info
->small_block
;
1630 for (i
= 0; i
< nblocks
; i
++) {
1632 b
= (void *)__get_free_page(GFP_USER
);
1634 goto out_undo_partial_alloc
;
1635 group_info
->blocks
[i
] = b
;
1640 out_undo_partial_alloc
:
1642 free_page((unsigned long)group_info
->blocks
[i
]);
1648 EXPORT_SYMBOL(groups_alloc
);
1650 void groups_free(struct group_info
*group_info
)
1652 if (group_info
->blocks
[0] != group_info
->small_block
) {
1654 for (i
= 0; i
< group_info
->nblocks
; i
++)
1655 free_page((unsigned long)group_info
->blocks
[i
]);
1660 EXPORT_SYMBOL(groups_free
);
1662 /* export the group_info to a user-space array */
1663 static int groups_to_user(gid_t __user
*grouplist
,
1664 struct group_info
*group_info
)
1667 int count
= group_info
->ngroups
;
1669 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1670 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1671 int off
= i
* NGROUPS_PER_BLOCK
;
1672 int len
= cp_count
* sizeof(*grouplist
);
1674 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1682 /* fill a group_info from a user-space array - it must be allocated already */
1683 static int groups_from_user(struct group_info
*group_info
,
1684 gid_t __user
*grouplist
)
1687 int count
= group_info
->ngroups
;
1689 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1690 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1691 int off
= i
* NGROUPS_PER_BLOCK
;
1692 int len
= cp_count
* sizeof(*grouplist
);
1694 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1702 /* a simple Shell sort */
1703 static void groups_sort(struct group_info
*group_info
)
1705 int base
, max
, stride
;
1706 int gidsetsize
= group_info
->ngroups
;
1708 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1713 max
= gidsetsize
- stride
;
1714 for (base
= 0; base
< max
; base
++) {
1716 int right
= left
+ stride
;
1717 gid_t tmp
= GROUP_AT(group_info
, right
);
1719 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1720 GROUP_AT(group_info
, right
) =
1721 GROUP_AT(group_info
, left
);
1725 GROUP_AT(group_info
, right
) = tmp
;
1731 /* a simple bsearch */
1732 int groups_search(struct group_info
*group_info
, gid_t grp
)
1734 unsigned int left
, right
;
1740 right
= group_info
->ngroups
;
1741 while (left
< right
) {
1742 unsigned int mid
= (left
+right
)/2;
1743 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1754 /* validate and set current->group_info */
1755 int set_current_groups(struct group_info
*group_info
)
1758 struct group_info
*old_info
;
1760 retval
= security_task_setgroups(group_info
);
1764 groups_sort(group_info
);
1765 get_group_info(group_info
);
1768 old_info
= current
->group_info
;
1769 current
->group_info
= group_info
;
1770 task_unlock(current
);
1772 put_group_info(old_info
);
1777 EXPORT_SYMBOL(set_current_groups
);
1779 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1784 * SMP: Nobody else can change our grouplist. Thus we are
1791 /* no need to grab task_lock here; it cannot change */
1792 i
= current
->group_info
->ngroups
;
1794 if (i
> gidsetsize
) {
1798 if (groups_to_user(grouplist
, current
->group_info
)) {
1808 * SMP: Our groups are copy-on-write. We can set them safely
1809 * without another task interfering.
1812 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1814 struct group_info
*group_info
;
1817 if (!capable(CAP_SETGID
))
1819 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1822 group_info
= groups_alloc(gidsetsize
);
1825 retval
= groups_from_user(group_info
, grouplist
);
1827 put_group_info(group_info
);
1831 retval
= set_current_groups(group_info
);
1832 put_group_info(group_info
);
1838 * Check whether we're fsgid/egid or in the supplemental group..
1840 int in_group_p(gid_t grp
)
1843 if (grp
!= current
->fsgid
)
1844 retval
= groups_search(current
->group_info
, grp
);
1848 EXPORT_SYMBOL(in_group_p
);
1850 int in_egroup_p(gid_t grp
)
1853 if (grp
!= current
->egid
)
1854 retval
= groups_search(current
->group_info
, grp
);
1858 EXPORT_SYMBOL(in_egroup_p
);
1860 DECLARE_RWSEM(uts_sem
);
1862 EXPORT_SYMBOL(uts_sem
);
1864 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1868 down_read(&uts_sem
);
1869 if (copy_to_user(name
, utsname(), sizeof *name
))
1875 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1878 char tmp
[__NEW_UTS_LEN
];
1880 if (!capable(CAP_SYS_ADMIN
))
1882 if (len
< 0 || len
> __NEW_UTS_LEN
)
1884 down_write(&uts_sem
);
1886 if (!copy_from_user(tmp
, name
, len
)) {
1887 memcpy(utsname()->nodename
, tmp
, len
);
1888 utsname()->nodename
[len
] = 0;
1895 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1897 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1903 down_read(&uts_sem
);
1904 i
= 1 + strlen(utsname()->nodename
);
1908 if (copy_to_user(name
, utsname()->nodename
, i
))
1917 * Only setdomainname; getdomainname can be implemented by calling
1920 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1923 char tmp
[__NEW_UTS_LEN
];
1925 if (!capable(CAP_SYS_ADMIN
))
1927 if (len
< 0 || len
> __NEW_UTS_LEN
)
1930 down_write(&uts_sem
);
1932 if (!copy_from_user(tmp
, name
, len
)) {
1933 memcpy(utsname()->domainname
, tmp
, len
);
1934 utsname()->domainname
[len
] = 0;
1941 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1943 if (resource
>= RLIM_NLIMITS
)
1946 struct rlimit value
;
1947 task_lock(current
->group_leader
);
1948 value
= current
->signal
->rlim
[resource
];
1949 task_unlock(current
->group_leader
);
1950 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1954 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1957 * Back compatibility for getrlimit. Needed for some apps.
1960 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1963 if (resource
>= RLIM_NLIMITS
)
1966 task_lock(current
->group_leader
);
1967 x
= current
->signal
->rlim
[resource
];
1968 task_unlock(current
->group_leader
);
1969 if (x
.rlim_cur
> 0x7FFFFFFF)
1970 x
.rlim_cur
= 0x7FFFFFFF;
1971 if (x
.rlim_max
> 0x7FFFFFFF)
1972 x
.rlim_max
= 0x7FFFFFFF;
1973 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1978 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1980 struct rlimit new_rlim
, *old_rlim
;
1981 unsigned long it_prof_secs
;
1984 if (resource
>= RLIM_NLIMITS
)
1986 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1988 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1990 old_rlim
= current
->signal
->rlim
+ resource
;
1991 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1992 !capable(CAP_SYS_RESOURCE
))
1994 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1997 retval
= security_task_setrlimit(resource
, &new_rlim
);
2001 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
2003 * The caller is asking for an immediate RLIMIT_CPU
2004 * expiry. But we use the zero value to mean "it was
2005 * never set". So let's cheat and make it one second
2008 new_rlim
.rlim_cur
= 1;
2011 task_lock(current
->group_leader
);
2012 *old_rlim
= new_rlim
;
2013 task_unlock(current
->group_leader
);
2015 if (resource
!= RLIMIT_CPU
)
2019 * RLIMIT_CPU handling. Note that the kernel fails to return an error
2020 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
2021 * very long-standing error, and fixing it now risks breakage of
2022 * applications, so we live with it
2024 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
2027 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
2028 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
2029 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
2032 cputime
= secs_to_cputime(rlim_cur
);
2033 read_lock(&tasklist_lock
);
2034 spin_lock_irq(¤t
->sighand
->siglock
);
2035 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
2036 spin_unlock_irq(¤t
->sighand
->siglock
);
2037 read_unlock(&tasklist_lock
);
2044 * It would make sense to put struct rusage in the task_struct,
2045 * except that would make the task_struct be *really big*. After
2046 * task_struct gets moved into malloc'ed memory, it would
2047 * make sense to do this. It will make moving the rest of the information
2048 * a lot simpler! (Which we're not doing right now because we're not
2049 * measuring them yet).
2051 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
2052 * races with threads incrementing their own counters. But since word
2053 * reads are atomic, we either get new values or old values and we don't
2054 * care which for the sums. We always take the siglock to protect reading
2055 * the c* fields from p->signal from races with exit.c updating those
2056 * fields when reaping, so a sample either gets all the additions of a
2057 * given child after it's reaped, or none so this sample is before reaping.
2060 * We need to take the siglock for CHILDEREN, SELF and BOTH
2061 * for the cases current multithreaded, non-current single threaded
2062 * non-current multithreaded. Thread traversal is now safe with
2064 * Strictly speaking, we donot need to take the siglock if we are current and
2065 * single threaded, as no one else can take our signal_struct away, no one
2066 * else can reap the children to update signal->c* counters, and no one else
2067 * can race with the signal-> fields. If we do not take any lock, the
2068 * signal-> fields could be read out of order while another thread was just
2069 * exiting. So we should place a read memory barrier when we avoid the lock.
2070 * On the writer side, write memory barrier is implied in __exit_signal
2071 * as __exit_signal releases the siglock spinlock after updating the signal->
2072 * fields. But we don't do this yet to keep things simple.
2076 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
2078 struct task_struct
*t
;
2079 unsigned long flags
;
2080 cputime_t utime
, stime
;
2082 memset((char *) r
, 0, sizeof *r
);
2083 utime
= stime
= cputime_zero
;
2086 if (!lock_task_sighand(p
, &flags
)) {
2093 case RUSAGE_CHILDREN
:
2094 utime
= p
->signal
->cutime
;
2095 stime
= p
->signal
->cstime
;
2096 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
2097 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
2098 r
->ru_minflt
= p
->signal
->cmin_flt
;
2099 r
->ru_majflt
= p
->signal
->cmaj_flt
;
2100 r
->ru_inblock
= p
->signal
->cinblock
;
2101 r
->ru_oublock
= p
->signal
->coublock
;
2103 if (who
== RUSAGE_CHILDREN
)
2107 utime
= cputime_add(utime
, p
->signal
->utime
);
2108 stime
= cputime_add(stime
, p
->signal
->stime
);
2109 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
2110 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
2111 r
->ru_minflt
+= p
->signal
->min_flt
;
2112 r
->ru_majflt
+= p
->signal
->maj_flt
;
2113 r
->ru_inblock
+= p
->signal
->inblock
;
2114 r
->ru_oublock
+= p
->signal
->oublock
;
2117 utime
= cputime_add(utime
, t
->utime
);
2118 stime
= cputime_add(stime
, t
->stime
);
2119 r
->ru_nvcsw
+= t
->nvcsw
;
2120 r
->ru_nivcsw
+= t
->nivcsw
;
2121 r
->ru_minflt
+= t
->min_flt
;
2122 r
->ru_majflt
+= t
->maj_flt
;
2123 r
->ru_inblock
+= task_io_get_inblock(t
);
2124 r
->ru_oublock
+= task_io_get_oublock(t
);
2133 unlock_task_sighand(p
, &flags
);
2136 cputime_to_timeval(utime
, &r
->ru_utime
);
2137 cputime_to_timeval(stime
, &r
->ru_stime
);
2140 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
2143 k_getrusage(p
, who
, &r
);
2144 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
2147 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
2149 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
2151 return getrusage(current
, who
, ru
);
2154 asmlinkage
long sys_umask(int mask
)
2156 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
2160 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
2161 unsigned long arg4
, unsigned long arg5
)
2165 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2170 case PR_SET_PDEATHSIG
:
2171 if (!valid_signal(arg2
)) {
2175 current
->pdeath_signal
= arg2
;
2177 case PR_GET_PDEATHSIG
:
2178 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
2180 case PR_GET_DUMPABLE
:
2181 error
= get_dumpable(current
->mm
);
2183 case PR_SET_DUMPABLE
:
2184 if (arg2
< 0 || arg2
> 1) {
2188 set_dumpable(current
->mm
, arg2
);
2191 case PR_SET_UNALIGN
:
2192 error
= SET_UNALIGN_CTL(current
, arg2
);
2194 case PR_GET_UNALIGN
:
2195 error
= GET_UNALIGN_CTL(current
, arg2
);
2198 error
= SET_FPEMU_CTL(current
, arg2
);
2201 error
= GET_FPEMU_CTL(current
, arg2
);
2204 error
= SET_FPEXC_CTL(current
, arg2
);
2207 error
= GET_FPEXC_CTL(current
, arg2
);
2210 error
= PR_TIMING_STATISTICAL
;
2213 if (arg2
== PR_TIMING_STATISTICAL
)
2219 case PR_GET_KEEPCAPS
:
2220 if (current
->keep_capabilities
)
2223 case PR_SET_KEEPCAPS
:
2224 if (arg2
!= 0 && arg2
!= 1) {
2228 current
->keep_capabilities
= arg2
;
2231 struct task_struct
*me
= current
;
2232 unsigned char ncomm
[sizeof(me
->comm
)];
2234 ncomm
[sizeof(me
->comm
)-1] = 0;
2235 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
2236 sizeof(me
->comm
)-1) < 0)
2238 set_task_comm(me
, ncomm
);
2242 struct task_struct
*me
= current
;
2243 unsigned char tcomm
[sizeof(me
->comm
)];
2245 get_task_comm(tcomm
, me
);
2246 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))
2251 error
= GET_ENDIAN(current
, arg2
);
2254 error
= SET_ENDIAN(current
, arg2
);
2257 case PR_GET_SECCOMP
:
2258 error
= prctl_get_seccomp();
2260 case PR_SET_SECCOMP
:
2261 error
= prctl_set_seccomp(arg2
);
2271 asmlinkage
long sys_getcpu(unsigned __user
*cpup
, unsigned __user
*nodep
,
2272 struct getcpu_cache __user
*cache
)
2275 int cpu
= raw_smp_processor_id();
2277 err
|= put_user(cpu
, cpup
);
2279 err
|= put_user(cpu_to_node(cpu
), nodep
);
2282 * The cache is not needed for this implementation,
2283 * but make sure user programs pass something
2284 * valid. vsyscall implementations can instead make
2285 * good use of the cache. Only use t0 and t1 because
2286 * these are available in both 32bit and 64bit ABI (no
2287 * need for a compat_getcpu). 32bit has enough
2290 unsigned long t0
, t1
;
2291 get_user(t0
, &cache
->blob
[0]);
2292 get_user(t1
, &cache
->blob
[1]);
2295 put_user(t0
, &cache
->blob
[0]);
2296 put_user(t1
, &cache
->blob
[1]);
2298 return err
? -EFAULT
: 0;
2301 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
2303 static void argv_cleanup(char **argv
, char **envp
)
2309 * orderly_poweroff - Trigger an orderly system poweroff
2310 * @force: force poweroff if command execution fails
2312 * This may be called from any context to trigger a system shutdown.
2313 * If the orderly shutdown fails, it will force an immediate shutdown.
2315 int orderly_poweroff(bool force
)
2318 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
2319 static char *envp
[] = {
2321 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2325 struct subprocess_info
*info
;
2328 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
2329 __func__
, poweroff_cmd
);
2333 info
= call_usermodehelper_setup(argv
[0], argv
, envp
);
2339 call_usermodehelper_setcleanup(info
, argv_cleanup
);
2341 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
2345 printk(KERN_WARNING
"Failed to start orderly shutdown: "
2346 "forcing the issue\n");
2348 /* I guess this should try to kick off some daemon to
2349 sync and poweroff asap. Or not even bother syncing
2350 if we're doing an emergency shutdown? */
2357 EXPORT_SYMBOL_GPL(orderly_poweroff
);