2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
52 * ktime_get - get the monotonic time in ktime_t format
54 * returns the time in ktime_t format
56 ktime_t
ktime_get(void)
62 return timespec_to_ktime(now
);
64 EXPORT_SYMBOL_GPL(ktime_get
);
67 * ktime_get_real - get the real (wall-) time in ktime_t format
69 * returns the time in ktime_t format
71 ktime_t
ktime_get_real(void)
77 return timespec_to_ktime(now
);
80 EXPORT_SYMBOL_GPL(ktime_get_real
);
85 * Note: If we want to add new timer bases, we have to skip the two
86 * clock ids captured by the cpu-timers. We do this by holding empty
87 * entries rather than doing math adjustment of the clock ids.
88 * This ensures that we capture erroneous accesses to these clock ids
89 * rather than moving them into the range of valid clock id's.
91 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
97 .index
= CLOCK_REALTIME
,
98 .get_time
= &ktime_get_real
,
99 .resolution
= KTIME_LOW_RES
,
102 .index
= CLOCK_MONOTONIC
,
103 .get_time
= &ktime_get
,
104 .resolution
= KTIME_LOW_RES
,
110 * ktime_get_ts - get the monotonic clock in timespec format
111 * @ts: pointer to timespec variable
113 * The function calculates the monotonic clock from the realtime
114 * clock and the wall_to_monotonic offset and stores the result
115 * in normalized timespec format in the variable pointed to by @ts.
117 void ktime_get_ts(struct timespec
*ts
)
119 struct timespec tomono
;
123 seq
= read_seqbegin(&xtime_lock
);
125 tomono
= wall_to_monotonic
;
127 } while (read_seqretry(&xtime_lock
, seq
));
129 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
130 ts
->tv_nsec
+ tomono
.tv_nsec
);
132 EXPORT_SYMBOL_GPL(ktime_get_ts
);
135 * Get the coarse grained time at the softirq based on xtime and
138 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
140 ktime_t xtim
, tomono
;
141 struct timespec xts
, tom
;
145 seq
= read_seqbegin(&xtime_lock
);
146 xts
= current_kernel_time();
147 tom
= wall_to_monotonic
;
148 } while (read_seqretry(&xtime_lock
, seq
));
150 xtim
= timespec_to_ktime(xts
);
151 tomono
= timespec_to_ktime(tom
);
152 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
153 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
154 ktime_add(xtim
, tomono
);
158 * Functions and macros which are different for UP/SMP systems are kept in a
164 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
165 * means that all timers which are tied to this base via timer->base are
166 * locked, and the base itself is locked too.
168 * So __run_timers/migrate_timers can safely modify all timers which could
169 * be found on the lists/queues.
171 * When the timer's base is locked, and the timer removed from list, it is
172 * possible to set timer->base = NULL and drop the lock: the timer remains
176 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
177 unsigned long *flags
)
179 struct hrtimer_clock_base
*base
;
183 if (likely(base
!= NULL
)) {
184 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
185 if (likely(base
== timer
->base
))
187 /* The timer has migrated to another CPU: */
188 spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
196 * Get the preferred target CPU for NOHZ
198 static int hrtimer_get_target(int this_cpu
, int pinned
)
201 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
)) {
202 int preferred_cpu
= get_nohz_load_balancer();
204 if (preferred_cpu
>= 0)
205 return preferred_cpu
;
212 * With HIGHRES=y we do not migrate the timer when it is expiring
213 * before the next event on the target cpu because we cannot reprogram
214 * the target cpu hardware and we would cause it to fire late.
216 * Called with cpu_base->lock of target cpu held.
219 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
221 #ifdef CONFIG_HIGH_RES_TIMERS
224 if (!new_base
->cpu_base
->hres_active
)
227 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
228 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
235 * Switch the timer base to the current CPU when possible.
237 static inline struct hrtimer_clock_base
*
238 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
241 struct hrtimer_clock_base
*new_base
;
242 struct hrtimer_cpu_base
*new_cpu_base
;
243 int this_cpu
= smp_processor_id();
244 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
247 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
248 new_base
= &new_cpu_base
->clock_base
[base
->index
];
250 if (base
!= new_base
) {
252 * We are trying to move timer to new_base.
253 * However we can't change timer's base while it is running,
254 * so we keep it on the same CPU. No hassle vs. reprogramming
255 * the event source in the high resolution case. The softirq
256 * code will take care of this when the timer function has
257 * completed. There is no conflict as we hold the lock until
258 * the timer is enqueued.
260 if (unlikely(hrtimer_callback_running(timer
)))
263 /* See the comment in lock_timer_base() */
265 spin_unlock(&base
->cpu_base
->lock
);
266 spin_lock(&new_base
->cpu_base
->lock
);
268 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
270 spin_unlock(&new_base
->cpu_base
->lock
);
271 spin_lock(&base
->cpu_base
->lock
);
275 timer
->base
= new_base
;
280 #else /* CONFIG_SMP */
282 static inline struct hrtimer_clock_base
*
283 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
285 struct hrtimer_clock_base
*base
= timer
->base
;
287 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
292 # define switch_hrtimer_base(t, b, p) (b)
294 #endif /* !CONFIG_SMP */
297 * Functions for the union type storage format of ktime_t which are
298 * too large for inlining:
300 #if BITS_PER_LONG < 64
301 # ifndef CONFIG_KTIME_SCALAR
303 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
305 * @nsec: the scalar nsec value to add
307 * Returns the sum of kt and nsec in ktime_t format
309 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
313 if (likely(nsec
< NSEC_PER_SEC
)) {
316 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
318 tmp
= ktime_set((long)nsec
, rem
);
321 return ktime_add(kt
, tmp
);
324 EXPORT_SYMBOL_GPL(ktime_add_ns
);
327 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
329 * @nsec: the scalar nsec value to subtract
331 * Returns the subtraction of @nsec from @kt in ktime_t format
333 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
337 if (likely(nsec
< NSEC_PER_SEC
)) {
340 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
342 tmp
= ktime_set((long)nsec
, rem
);
345 return ktime_sub(kt
, tmp
);
348 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
349 # endif /* !CONFIG_KTIME_SCALAR */
352 * Divide a ktime value by a nanosecond value
354 u64
ktime_divns(const ktime_t kt
, s64 div
)
359 dclc
= ktime_to_ns(kt
);
360 /* Make sure the divisor is less than 2^32: */
366 do_div(dclc
, (unsigned long) div
);
370 #endif /* BITS_PER_LONG >= 64 */
373 * Add two ktime values and do a safety check for overflow:
375 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
377 ktime_t res
= ktime_add(lhs
, rhs
);
380 * We use KTIME_SEC_MAX here, the maximum timeout which we can
381 * return to user space in a timespec:
383 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
384 res
= ktime_set(KTIME_SEC_MAX
, 0);
389 EXPORT_SYMBOL_GPL(ktime_add_safe
);
391 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
393 static struct debug_obj_descr hrtimer_debug_descr
;
396 * fixup_init is called when:
397 * - an active object is initialized
399 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
401 struct hrtimer
*timer
= addr
;
404 case ODEBUG_STATE_ACTIVE
:
405 hrtimer_cancel(timer
);
406 debug_object_init(timer
, &hrtimer_debug_descr
);
414 * fixup_activate is called when:
415 * - an active object is activated
416 * - an unknown object is activated (might be a statically initialized object)
418 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
422 case ODEBUG_STATE_NOTAVAILABLE
:
426 case ODEBUG_STATE_ACTIVE
:
435 * fixup_free is called when:
436 * - an active object is freed
438 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
440 struct hrtimer
*timer
= addr
;
443 case ODEBUG_STATE_ACTIVE
:
444 hrtimer_cancel(timer
);
445 debug_object_free(timer
, &hrtimer_debug_descr
);
452 static struct debug_obj_descr hrtimer_debug_descr
= {
454 .fixup_init
= hrtimer_fixup_init
,
455 .fixup_activate
= hrtimer_fixup_activate
,
456 .fixup_free
= hrtimer_fixup_free
,
459 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
461 debug_object_init(timer
, &hrtimer_debug_descr
);
464 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
466 debug_object_activate(timer
, &hrtimer_debug_descr
);
469 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
471 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
474 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
476 debug_object_free(timer
, &hrtimer_debug_descr
);
479 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
480 enum hrtimer_mode mode
);
482 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
483 enum hrtimer_mode mode
)
485 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
486 __hrtimer_init(timer
, clock_id
, mode
);
488 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
490 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
492 debug_object_free(timer
, &hrtimer_debug_descr
);
496 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
497 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
498 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
501 /* High resolution timer related functions */
502 #ifdef CONFIG_HIGH_RES_TIMERS
505 * High resolution timer enabled ?
507 static int hrtimer_hres_enabled __read_mostly
= 1;
510 * Enable / Disable high resolution mode
512 static int __init
setup_hrtimer_hres(char *str
)
514 if (!strcmp(str
, "off"))
515 hrtimer_hres_enabled
= 0;
516 else if (!strcmp(str
, "on"))
517 hrtimer_hres_enabled
= 1;
523 __setup("highres=", setup_hrtimer_hres
);
526 * hrtimer_high_res_enabled - query, if the highres mode is enabled
528 static inline int hrtimer_is_hres_enabled(void)
530 return hrtimer_hres_enabled
;
534 * Is the high resolution mode active ?
536 static inline int hrtimer_hres_active(void)
538 return __get_cpu_var(hrtimer_bases
).hres_active
;
542 * Reprogram the event source with checking both queues for the
544 * Called with interrupts disabled and base->lock held
546 static void hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
)
549 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
552 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
554 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
555 struct hrtimer
*timer
;
559 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
560 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
562 * clock_was_set() has changed base->offset so the
563 * result might be negative. Fix it up to prevent a
564 * false positive in clockevents_program_event()
566 if (expires
.tv64
< 0)
568 if (expires
.tv64
< cpu_base
->expires_next
.tv64
)
569 cpu_base
->expires_next
= expires
;
572 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
573 tick_program_event(cpu_base
->expires_next
, 1);
577 * Shared reprogramming for clock_realtime and clock_monotonic
579 * When a timer is enqueued and expires earlier than the already enqueued
580 * timers, we have to check, whether it expires earlier than the timer for
581 * which the clock event device was armed.
583 * Called with interrupts disabled and base->cpu_base.lock held
585 static int hrtimer_reprogram(struct hrtimer
*timer
,
586 struct hrtimer_clock_base
*base
)
588 ktime_t
*expires_next
= &__get_cpu_var(hrtimer_bases
).expires_next
;
589 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
592 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
595 * When the callback is running, we do not reprogram the clock event
596 * device. The timer callback is either running on a different CPU or
597 * the callback is executed in the hrtimer_interrupt context. The
598 * reprogramming is handled either by the softirq, which called the
599 * callback or at the end of the hrtimer_interrupt.
601 if (hrtimer_callback_running(timer
))
605 * CLOCK_REALTIME timer might be requested with an absolute
606 * expiry time which is less than base->offset. Nothing wrong
607 * about that, just avoid to call into the tick code, which
608 * has now objections against negative expiry values.
610 if (expires
.tv64
< 0)
613 if (expires
.tv64
>= expires_next
->tv64
)
617 * Clockevents returns -ETIME, when the event was in the past.
619 res
= tick_program_event(expires
, 0);
620 if (!IS_ERR_VALUE(res
))
621 *expires_next
= expires
;
627 * Retrigger next event is called after clock was set
629 * Called with interrupts disabled via on_each_cpu()
631 static void retrigger_next_event(void *arg
)
633 struct hrtimer_cpu_base
*base
;
634 struct timespec realtime_offset
;
637 if (!hrtimer_hres_active())
641 seq
= read_seqbegin(&xtime_lock
);
642 set_normalized_timespec(&realtime_offset
,
643 -wall_to_monotonic
.tv_sec
,
644 -wall_to_monotonic
.tv_nsec
);
645 } while (read_seqretry(&xtime_lock
, seq
));
647 base
= &__get_cpu_var(hrtimer_bases
);
649 /* Adjust CLOCK_REALTIME offset */
650 spin_lock(&base
->lock
);
651 base
->clock_base
[CLOCK_REALTIME
].offset
=
652 timespec_to_ktime(realtime_offset
);
654 hrtimer_force_reprogram(base
);
655 spin_unlock(&base
->lock
);
659 * Clock realtime was set
661 * Change the offset of the realtime clock vs. the monotonic
664 * We might have to reprogram the high resolution timer interrupt. On
665 * SMP we call the architecture specific code to retrigger _all_ high
666 * resolution timer interrupts. On UP we just disable interrupts and
667 * call the high resolution interrupt code.
669 void clock_was_set(void)
671 /* Retrigger the CPU local events everywhere */
672 on_each_cpu(retrigger_next_event
, NULL
, 1);
676 * During resume we might have to reprogram the high resolution timer
677 * interrupt (on the local CPU):
679 void hres_timers_resume(void)
681 WARN_ONCE(!irqs_disabled(),
682 KERN_INFO
"hres_timers_resume() called with IRQs enabled!");
684 retrigger_next_event(NULL
);
688 * Initialize the high resolution related parts of cpu_base
690 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
692 base
->expires_next
.tv64
= KTIME_MAX
;
693 base
->hres_active
= 0;
697 * Initialize the high resolution related parts of a hrtimer
699 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
705 * When High resolution timers are active, try to reprogram. Note, that in case
706 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
707 * check happens. The timer gets enqueued into the rbtree. The reprogramming
708 * and expiry check is done in the hrtimer_interrupt or in the softirq.
710 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
711 struct hrtimer_clock_base
*base
,
714 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
716 spin_unlock(&base
->cpu_base
->lock
);
717 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
718 spin_lock(&base
->cpu_base
->lock
);
720 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
729 * Switch to high resolution mode
731 static int hrtimer_switch_to_hres(void)
733 int cpu
= smp_processor_id();
734 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
737 if (base
->hres_active
)
740 local_irq_save(flags
);
742 if (tick_init_highres()) {
743 local_irq_restore(flags
);
744 printk(KERN_WARNING
"Could not switch to high resolution "
745 "mode on CPU %d\n", cpu
);
748 base
->hres_active
= 1;
749 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
750 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
752 tick_setup_sched_timer();
754 /* "Retrigger" the interrupt to get things going */
755 retrigger_next_event(NULL
);
756 local_irq_restore(flags
);
757 printk(KERN_DEBUG
"Switched to high resolution mode on CPU %d\n",
764 static inline int hrtimer_hres_active(void) { return 0; }
765 static inline int hrtimer_is_hres_enabled(void) { return 0; }
766 static inline int hrtimer_switch_to_hres(void) { return 0; }
767 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
) { }
768 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
769 struct hrtimer_clock_base
*base
,
774 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
775 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
777 #endif /* CONFIG_HIGH_RES_TIMERS */
779 #ifdef CONFIG_TIMER_STATS
780 void __timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
, void *addr
)
782 if (timer
->start_site
)
785 timer
->start_site
= addr
;
786 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
787 timer
->start_pid
= current
->pid
;
792 * Counterpart to lock_hrtimer_base above:
795 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
797 spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
801 * hrtimer_forward - forward the timer expiry
802 * @timer: hrtimer to forward
803 * @now: forward past this time
804 * @interval: the interval to forward
806 * Forward the timer expiry so it will expire in the future.
807 * Returns the number of overruns.
809 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
814 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
819 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
820 interval
.tv64
= timer
->base
->resolution
.tv64
;
822 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
823 s64 incr
= ktime_to_ns(interval
);
825 orun
= ktime_divns(delta
, incr
);
826 hrtimer_add_expires_ns(timer
, incr
* orun
);
827 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
830 * This (and the ktime_add() below) is the
831 * correction for exact:
835 hrtimer_add_expires(timer
, interval
);
839 EXPORT_SYMBOL_GPL(hrtimer_forward
);
842 * enqueue_hrtimer - internal function to (re)start a timer
844 * The timer is inserted in expiry order. Insertion into the
845 * red black tree is O(log(n)). Must hold the base lock.
847 * Returns 1 when the new timer is the leftmost timer in the tree.
849 static int enqueue_hrtimer(struct hrtimer
*timer
,
850 struct hrtimer_clock_base
*base
)
852 struct rb_node
**link
= &base
->active
.rb_node
;
853 struct rb_node
*parent
= NULL
;
854 struct hrtimer
*entry
;
857 debug_hrtimer_activate(timer
);
860 * Find the right place in the rbtree:
864 entry
= rb_entry(parent
, struct hrtimer
, node
);
866 * We dont care about collisions. Nodes with
867 * the same expiry time stay together.
869 if (hrtimer_get_expires_tv64(timer
) <
870 hrtimer_get_expires_tv64(entry
)) {
871 link
= &(*link
)->rb_left
;
873 link
= &(*link
)->rb_right
;
879 * Insert the timer to the rbtree and check whether it
880 * replaces the first pending timer
883 base
->first
= &timer
->node
;
885 rb_link_node(&timer
->node
, parent
, link
);
886 rb_insert_color(&timer
->node
, &base
->active
);
888 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
889 * state of a possibly running callback.
891 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
897 * __remove_hrtimer - internal function to remove a timer
899 * Caller must hold the base lock.
901 * High resolution timer mode reprograms the clock event device when the
902 * timer is the one which expires next. The caller can disable this by setting
903 * reprogram to zero. This is useful, when the context does a reprogramming
904 * anyway (e.g. timer interrupt)
906 static void __remove_hrtimer(struct hrtimer
*timer
,
907 struct hrtimer_clock_base
*base
,
908 unsigned long newstate
, int reprogram
)
910 if (timer
->state
& HRTIMER_STATE_ENQUEUED
) {
912 * Remove the timer from the rbtree and replace the
913 * first entry pointer if necessary.
915 if (base
->first
== &timer
->node
) {
916 base
->first
= rb_next(&timer
->node
);
917 /* Reprogram the clock event device. if enabled */
918 if (reprogram
&& hrtimer_hres_active())
919 hrtimer_force_reprogram(base
->cpu_base
);
921 rb_erase(&timer
->node
, &base
->active
);
923 timer
->state
= newstate
;
927 * remove hrtimer, called with base lock held
930 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
932 if (hrtimer_is_queued(timer
)) {
936 * Remove the timer and force reprogramming when high
937 * resolution mode is active and the timer is on the current
938 * CPU. If we remove a timer on another CPU, reprogramming is
939 * skipped. The interrupt event on this CPU is fired and
940 * reprogramming happens in the interrupt handler. This is a
941 * rare case and less expensive than a smp call.
943 debug_hrtimer_deactivate(timer
);
944 timer_stats_hrtimer_clear_start_info(timer
);
945 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
946 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
,
953 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
954 unsigned long delta_ns
, const enum hrtimer_mode mode
,
957 struct hrtimer_clock_base
*base
, *new_base
;
961 base
= lock_hrtimer_base(timer
, &flags
);
963 /* Remove an active timer from the queue: */
964 ret
= remove_hrtimer(timer
, base
);
966 /* Switch the timer base, if necessary: */
967 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
969 if (mode
& HRTIMER_MODE_REL
) {
970 tim
= ktime_add_safe(tim
, new_base
->get_time());
972 * CONFIG_TIME_LOW_RES is a temporary way for architectures
973 * to signal that they simply return xtime in
974 * do_gettimeoffset(). In this case we want to round up by
975 * resolution when starting a relative timer, to avoid short
976 * timeouts. This will go away with the GTOD framework.
978 #ifdef CONFIG_TIME_LOW_RES
979 tim
= ktime_add_safe(tim
, base
->resolution
);
983 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
985 timer_stats_hrtimer_set_start_info(timer
);
987 leftmost
= enqueue_hrtimer(timer
, new_base
);
990 * Only allow reprogramming if the new base is on this CPU.
991 * (it might still be on another CPU if the timer was pending)
993 * XXX send_remote_softirq() ?
995 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
))
996 hrtimer_enqueue_reprogram(timer
, new_base
, wakeup
);
998 unlock_hrtimer_base(timer
, &flags
);
1004 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1005 * @timer: the timer to be added
1007 * @delta_ns: "slack" range for the timer
1008 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1012 * 1 when the timer was active
1014 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1015 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1017 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1019 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1022 * hrtimer_start - (re)start an hrtimer on the current CPU
1023 * @timer: the timer to be added
1025 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1029 * 1 when the timer was active
1032 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1034 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1036 EXPORT_SYMBOL_GPL(hrtimer_start
);
1040 * hrtimer_try_to_cancel - try to deactivate a timer
1041 * @timer: hrtimer to stop
1044 * 0 when the timer was not active
1045 * 1 when the timer was active
1046 * -1 when the timer is currently excuting the callback function and
1049 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1051 struct hrtimer_clock_base
*base
;
1052 unsigned long flags
;
1055 base
= lock_hrtimer_base(timer
, &flags
);
1057 if (!hrtimer_callback_running(timer
))
1058 ret
= remove_hrtimer(timer
, base
);
1060 unlock_hrtimer_base(timer
, &flags
);
1065 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1068 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1069 * @timer: the timer to be cancelled
1072 * 0 when the timer was not active
1073 * 1 when the timer was active
1075 int hrtimer_cancel(struct hrtimer
*timer
)
1078 int ret
= hrtimer_try_to_cancel(timer
);
1085 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1088 * hrtimer_get_remaining - get remaining time for the timer
1089 * @timer: the timer to read
1091 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1093 struct hrtimer_clock_base
*base
;
1094 unsigned long flags
;
1097 base
= lock_hrtimer_base(timer
, &flags
);
1098 rem
= hrtimer_expires_remaining(timer
);
1099 unlock_hrtimer_base(timer
, &flags
);
1103 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1107 * hrtimer_get_next_event - get the time until next expiry event
1109 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1112 ktime_t
hrtimer_get_next_event(void)
1114 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1115 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1116 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1117 unsigned long flags
;
1120 spin_lock_irqsave(&cpu_base
->lock
, flags
);
1122 if (!hrtimer_hres_active()) {
1123 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1124 struct hrtimer
*timer
;
1129 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
1130 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1131 delta
= ktime_sub(delta
, base
->get_time());
1132 if (delta
.tv64
< mindelta
.tv64
)
1133 mindelta
.tv64
= delta
.tv64
;
1137 spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1139 if (mindelta
.tv64
< 0)
1145 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1146 enum hrtimer_mode mode
)
1148 struct hrtimer_cpu_base
*cpu_base
;
1150 memset(timer
, 0, sizeof(struct hrtimer
));
1152 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1154 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1155 clock_id
= CLOCK_MONOTONIC
;
1157 timer
->base
= &cpu_base
->clock_base
[clock_id
];
1158 INIT_LIST_HEAD(&timer
->cb_entry
);
1159 hrtimer_init_timer_hres(timer
);
1161 #ifdef CONFIG_TIMER_STATS
1162 timer
->start_site
= NULL
;
1163 timer
->start_pid
= -1;
1164 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1169 * hrtimer_init - initialize a timer to the given clock
1170 * @timer: the timer to be initialized
1171 * @clock_id: the clock to be used
1172 * @mode: timer mode abs/rel
1174 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1175 enum hrtimer_mode mode
)
1177 debug_hrtimer_init(timer
);
1178 __hrtimer_init(timer
, clock_id
, mode
);
1180 EXPORT_SYMBOL_GPL(hrtimer_init
);
1183 * hrtimer_get_res - get the timer resolution for a clock
1184 * @which_clock: which clock to query
1185 * @tp: pointer to timespec variable to store the resolution
1187 * Store the resolution of the clock selected by @which_clock in the
1188 * variable pointed to by @tp.
1190 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1192 struct hrtimer_cpu_base
*cpu_base
;
1194 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1195 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
1199 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1201 static void __run_hrtimer(struct hrtimer
*timer
)
1203 struct hrtimer_clock_base
*base
= timer
->base
;
1204 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1205 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1208 WARN_ON(!irqs_disabled());
1210 debug_hrtimer_deactivate(timer
);
1211 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1212 timer_stats_account_hrtimer(timer
);
1213 fn
= timer
->function
;
1216 * Because we run timers from hardirq context, there is no chance
1217 * they get migrated to another cpu, therefore its safe to unlock
1220 spin_unlock(&cpu_base
->lock
);
1221 restart
= fn(timer
);
1222 spin_lock(&cpu_base
->lock
);
1225 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1226 * we do not reprogramm the event hardware. Happens either in
1227 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1229 if (restart
!= HRTIMER_NORESTART
) {
1230 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1231 enqueue_hrtimer(timer
, base
);
1233 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1236 #ifdef CONFIG_HIGH_RES_TIMERS
1238 static int force_clock_reprogram
;
1241 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1242 * is hanging, which could happen with something that slows the interrupt
1243 * such as the tracing. Then we force the clock reprogramming for each future
1244 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1245 * threshold that we will overwrite.
1246 * The next tick event will be scheduled to 3 times we currently spend on
1247 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1248 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1249 * let it running without serious starvation.
1253 hrtimer_interrupt_hanging(struct clock_event_device
*dev
,
1256 force_clock_reprogram
= 1;
1257 dev
->min_delta_ns
= (unsigned long)try_time
.tv64
* 3;
1258 printk(KERN_WARNING
"hrtimer: interrupt too slow, "
1259 "forcing clock min delta to %lu ns\n", dev
->min_delta_ns
);
1262 * High resolution timer interrupt
1263 * Called with interrupts disabled
1265 void hrtimer_interrupt(struct clock_event_device
*dev
)
1267 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1268 struct hrtimer_clock_base
*base
;
1269 ktime_t expires_next
, now
;
1273 BUG_ON(!cpu_base
->hres_active
);
1274 cpu_base
->nr_events
++;
1275 dev
->next_event
.tv64
= KTIME_MAX
;
1278 /* 5 retries is enough to notice a hang */
1279 if (!(++nr_retries
% 5))
1280 hrtimer_interrupt_hanging(dev
, ktime_sub(ktime_get(), now
));
1284 expires_next
.tv64
= KTIME_MAX
;
1286 spin_lock(&cpu_base
->lock
);
1288 * We set expires_next to KTIME_MAX here with cpu_base->lock
1289 * held to prevent that a timer is enqueued in our queue via
1290 * the migration code. This does not affect enqueueing of
1291 * timers which run their callback and need to be requeued on
1294 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1296 base
= cpu_base
->clock_base
;
1298 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1300 struct rb_node
*node
;
1302 basenow
= ktime_add(now
, base
->offset
);
1304 while ((node
= base
->first
)) {
1305 struct hrtimer
*timer
;
1307 timer
= rb_entry(node
, struct hrtimer
, node
);
1310 * The immediate goal for using the softexpires is
1311 * minimizing wakeups, not running timers at the
1312 * earliest interrupt after their soft expiration.
1313 * This allows us to avoid using a Priority Search
1314 * Tree, which can answer a stabbing querry for
1315 * overlapping intervals and instead use the simple
1316 * BST we already have.
1317 * We don't add extra wakeups by delaying timers that
1318 * are right-of a not yet expired timer, because that
1319 * timer will have to trigger a wakeup anyway.
1322 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1325 expires
= ktime_sub(hrtimer_get_expires(timer
),
1327 if (expires
.tv64
< expires_next
.tv64
)
1328 expires_next
= expires
;
1332 __run_hrtimer(timer
);
1338 * Store the new expiry value so the migration code can verify
1341 cpu_base
->expires_next
= expires_next
;
1342 spin_unlock(&cpu_base
->lock
);
1344 /* Reprogramming necessary ? */
1345 if (expires_next
.tv64
!= KTIME_MAX
) {
1346 if (tick_program_event(expires_next
, force_clock_reprogram
))
1352 * local version of hrtimer_peek_ahead_timers() called with interrupts
1355 static void __hrtimer_peek_ahead_timers(void)
1357 struct tick_device
*td
;
1359 if (!hrtimer_hres_active())
1362 td
= &__get_cpu_var(tick_cpu_device
);
1363 if (td
&& td
->evtdev
)
1364 hrtimer_interrupt(td
->evtdev
);
1368 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1370 * hrtimer_peek_ahead_timers will peek at the timer queue of
1371 * the current cpu and check if there are any timers for which
1372 * the soft expires time has passed. If any such timers exist,
1373 * they are run immediately and then removed from the timer queue.
1376 void hrtimer_peek_ahead_timers(void)
1378 unsigned long flags
;
1380 local_irq_save(flags
);
1381 __hrtimer_peek_ahead_timers();
1382 local_irq_restore(flags
);
1385 static void run_hrtimer_softirq(struct softirq_action
*h
)
1387 hrtimer_peek_ahead_timers();
1390 #else /* CONFIG_HIGH_RES_TIMERS */
1392 static inline void __hrtimer_peek_ahead_timers(void) { }
1394 #endif /* !CONFIG_HIGH_RES_TIMERS */
1397 * Called from timer softirq every jiffy, expire hrtimers:
1399 * For HRT its the fall back code to run the softirq in the timer
1400 * softirq context in case the hrtimer initialization failed or has
1401 * not been done yet.
1403 void hrtimer_run_pending(void)
1405 if (hrtimer_hres_active())
1409 * This _is_ ugly: We have to check in the softirq context,
1410 * whether we can switch to highres and / or nohz mode. The
1411 * clocksource switch happens in the timer interrupt with
1412 * xtime_lock held. Notification from there only sets the
1413 * check bit in the tick_oneshot code, otherwise we might
1414 * deadlock vs. xtime_lock.
1416 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1417 hrtimer_switch_to_hres();
1421 * Called from hardirq context every jiffy
1423 void hrtimer_run_queues(void)
1425 struct rb_node
*node
;
1426 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1427 struct hrtimer_clock_base
*base
;
1428 int index
, gettime
= 1;
1430 if (hrtimer_hres_active())
1433 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1434 base
= &cpu_base
->clock_base
[index
];
1440 hrtimer_get_softirq_time(cpu_base
);
1444 spin_lock(&cpu_base
->lock
);
1446 while ((node
= base
->first
)) {
1447 struct hrtimer
*timer
;
1449 timer
= rb_entry(node
, struct hrtimer
, node
);
1450 if (base
->softirq_time
.tv64
<=
1451 hrtimer_get_expires_tv64(timer
))
1454 __run_hrtimer(timer
);
1456 spin_unlock(&cpu_base
->lock
);
1461 * Sleep related functions:
1463 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1465 struct hrtimer_sleeper
*t
=
1466 container_of(timer
, struct hrtimer_sleeper
, timer
);
1467 struct task_struct
*task
= t
->task
;
1471 wake_up_process(task
);
1473 return HRTIMER_NORESTART
;
1476 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1478 sl
->timer
.function
= hrtimer_wakeup
;
1481 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1483 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1485 hrtimer_init_sleeper(t
, current
);
1488 set_current_state(TASK_INTERRUPTIBLE
);
1489 hrtimer_start_expires(&t
->timer
, mode
);
1490 if (!hrtimer_active(&t
->timer
))
1493 if (likely(t
->task
))
1496 hrtimer_cancel(&t
->timer
);
1497 mode
= HRTIMER_MODE_ABS
;
1499 } while (t
->task
&& !signal_pending(current
));
1501 __set_current_state(TASK_RUNNING
);
1503 return t
->task
== NULL
;
1506 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1508 struct timespec rmt
;
1511 rem
= hrtimer_expires_remaining(timer
);
1514 rmt
= ktime_to_timespec(rem
);
1516 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1522 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1524 struct hrtimer_sleeper t
;
1525 struct timespec __user
*rmtp
;
1528 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.index
,
1530 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1532 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1535 rmtp
= restart
->nanosleep
.rmtp
;
1537 ret
= update_rmtp(&t
.timer
, rmtp
);
1542 /* The other values in restart are already filled in */
1543 ret
= -ERESTART_RESTARTBLOCK
;
1545 destroy_hrtimer_on_stack(&t
.timer
);
1549 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1550 const enum hrtimer_mode mode
, const clockid_t clockid
)
1552 struct restart_block
*restart
;
1553 struct hrtimer_sleeper t
;
1555 unsigned long slack
;
1557 slack
= current
->timer_slack_ns
;
1558 if (rt_task(current
))
1561 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1562 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1563 if (do_nanosleep(&t
, mode
))
1566 /* Absolute timers do not update the rmtp value and restart: */
1567 if (mode
== HRTIMER_MODE_ABS
) {
1568 ret
= -ERESTARTNOHAND
;
1573 ret
= update_rmtp(&t
.timer
, rmtp
);
1578 restart
= ¤t_thread_info()->restart_block
;
1579 restart
->fn
= hrtimer_nanosleep_restart
;
1580 restart
->nanosleep
.index
= t
.timer
.base
->index
;
1581 restart
->nanosleep
.rmtp
= rmtp
;
1582 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1584 ret
= -ERESTART_RESTARTBLOCK
;
1586 destroy_hrtimer_on_stack(&t
.timer
);
1590 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1591 struct timespec __user
*, rmtp
)
1595 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1598 if (!timespec_valid(&tu
))
1601 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1605 * Functions related to boot-time initialization:
1607 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1609 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1612 spin_lock_init(&cpu_base
->lock
);
1614 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1615 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1617 hrtimer_init_hres(cpu_base
);
1620 #ifdef CONFIG_HOTPLUG_CPU
1622 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1623 struct hrtimer_clock_base
*new_base
)
1625 struct hrtimer
*timer
;
1626 struct rb_node
*node
;
1628 while ((node
= rb_first(&old_base
->active
))) {
1629 timer
= rb_entry(node
, struct hrtimer
, node
);
1630 BUG_ON(hrtimer_callback_running(timer
));
1631 debug_hrtimer_deactivate(timer
);
1634 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1635 * timer could be seen as !active and just vanish away
1636 * under us on another CPU
1638 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1639 timer
->base
= new_base
;
1641 * Enqueue the timers on the new cpu. This does not
1642 * reprogram the event device in case the timer
1643 * expires before the earliest on this CPU, but we run
1644 * hrtimer_interrupt after we migrated everything to
1645 * sort out already expired timers and reprogram the
1648 enqueue_hrtimer(timer
, new_base
);
1650 /* Clear the migration state bit */
1651 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1655 static void migrate_hrtimers(int scpu
)
1657 struct hrtimer_cpu_base
*old_base
, *new_base
;
1660 BUG_ON(cpu_online(scpu
));
1661 tick_cancel_sched_timer(scpu
);
1663 local_irq_disable();
1664 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1665 new_base
= &__get_cpu_var(hrtimer_bases
);
1667 * The caller is globally serialized and nobody else
1668 * takes two locks at once, deadlock is not possible.
1670 spin_lock(&new_base
->lock
);
1671 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1673 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1674 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1675 &new_base
->clock_base
[i
]);
1678 spin_unlock(&old_base
->lock
);
1679 spin_unlock(&new_base
->lock
);
1681 /* Check, if we got expired work to do */
1682 __hrtimer_peek_ahead_timers();
1686 #endif /* CONFIG_HOTPLUG_CPU */
1688 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1689 unsigned long action
, void *hcpu
)
1691 int scpu
= (long)hcpu
;
1695 case CPU_UP_PREPARE
:
1696 case CPU_UP_PREPARE_FROZEN
:
1697 init_hrtimers_cpu(scpu
);
1700 #ifdef CONFIG_HOTPLUG_CPU
1702 case CPU_DYING_FROZEN
:
1703 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1706 case CPU_DEAD_FROZEN
:
1708 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1709 migrate_hrtimers(scpu
);
1721 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1722 .notifier_call
= hrtimer_cpu_notify
,
1725 void __init
hrtimers_init(void)
1727 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1728 (void *)(long)smp_processor_id());
1729 register_cpu_notifier(&hrtimers_nb
);
1730 #ifdef CONFIG_HIGH_RES_TIMERS
1731 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1736 * schedule_hrtimeout_range - sleep until timeout
1737 * @expires: timeout value (ktime_t)
1738 * @delta: slack in expires timeout (ktime_t)
1739 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1741 * Make the current task sleep until the given expiry time has
1742 * elapsed. The routine will return immediately unless
1743 * the current task state has been set (see set_current_state()).
1745 * The @delta argument gives the kernel the freedom to schedule the
1746 * actual wakeup to a time that is both power and performance friendly.
1747 * The kernel give the normal best effort behavior for "@expires+@delta",
1748 * but may decide to fire the timer earlier, but no earlier than @expires.
1750 * You can set the task state as follows -
1752 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1753 * pass before the routine returns.
1755 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1756 * delivered to the current task.
1758 * The current task state is guaranteed to be TASK_RUNNING when this
1761 * Returns 0 when the timer has expired otherwise -EINTR
1763 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1764 const enum hrtimer_mode mode
)
1766 struct hrtimer_sleeper t
;
1769 * Optimize when a zero timeout value is given. It does not
1770 * matter whether this is an absolute or a relative time.
1772 if (expires
&& !expires
->tv64
) {
1773 __set_current_state(TASK_RUNNING
);
1778 * A NULL parameter means "inifinte"
1782 __set_current_state(TASK_RUNNING
);
1786 hrtimer_init_on_stack(&t
.timer
, CLOCK_MONOTONIC
, mode
);
1787 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1789 hrtimer_init_sleeper(&t
, current
);
1791 hrtimer_start_expires(&t
.timer
, mode
);
1792 if (!hrtimer_active(&t
.timer
))
1798 hrtimer_cancel(&t
.timer
);
1799 destroy_hrtimer_on_stack(&t
.timer
);
1801 __set_current_state(TASK_RUNNING
);
1803 return !t
.task
? 0 : -EINTR
;
1805 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1808 * schedule_hrtimeout - sleep until timeout
1809 * @expires: timeout value (ktime_t)
1810 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1812 * Make the current task sleep until the given expiry time has
1813 * elapsed. The routine will return immediately unless
1814 * the current task state has been set (see set_current_state()).
1816 * You can set the task state as follows -
1818 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1819 * pass before the routine returns.
1821 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1822 * delivered to the current task.
1824 * The current task state is guaranteed to be TASK_RUNNING when this
1827 * Returns 0 when the timer has expired otherwise -EINTR
1829 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1830 const enum hrtimer_mode mode
)
1832 return schedule_hrtimeout_range(expires
, 0, mode
);
1834 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);