KVM: In kernel PIT model
[linux-2.6/linux-2.6-openrd.git] / arch / x86 / kvm / x86.c
blobc33a4578132c8c4f279a43ee84f51d3091495ffa
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "i8254.h"
22 #include <linux/clocksource.h>
23 #include <linux/kvm.h>
24 #include <linux/fs.h>
25 #include <linux/vmalloc.h>
26 #include <linux/module.h>
27 #include <linux/mman.h>
28 #include <linux/highmem.h>
30 #include <asm/uaccess.h>
31 #include <asm/msr.h>
32 #include <asm/desc.h>
34 #define MAX_IO_MSRS 256
35 #define CR0_RESERVED_BITS \
36 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
37 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
38 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
39 #define CR4_RESERVED_BITS \
40 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
41 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
42 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
43 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
45 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
46 /* EFER defaults:
47 * - enable syscall per default because its emulated by KVM
48 * - enable LME and LMA per default on 64 bit KVM
50 #ifdef CONFIG_X86_64
51 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
52 #else
53 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
54 #endif
56 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
57 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
60 struct kvm_cpuid_entry2 __user *entries);
62 struct kvm_x86_ops *kvm_x86_ops;
64 struct kvm_stats_debugfs_item debugfs_entries[] = {
65 { "pf_fixed", VCPU_STAT(pf_fixed) },
66 { "pf_guest", VCPU_STAT(pf_guest) },
67 { "tlb_flush", VCPU_STAT(tlb_flush) },
68 { "invlpg", VCPU_STAT(invlpg) },
69 { "exits", VCPU_STAT(exits) },
70 { "io_exits", VCPU_STAT(io_exits) },
71 { "mmio_exits", VCPU_STAT(mmio_exits) },
72 { "signal_exits", VCPU_STAT(signal_exits) },
73 { "irq_window", VCPU_STAT(irq_window_exits) },
74 { "halt_exits", VCPU_STAT(halt_exits) },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
76 { "hypercalls", VCPU_STAT(hypercalls) },
77 { "request_irq", VCPU_STAT(request_irq_exits) },
78 { "irq_exits", VCPU_STAT(irq_exits) },
79 { "host_state_reload", VCPU_STAT(host_state_reload) },
80 { "efer_reload", VCPU_STAT(efer_reload) },
81 { "fpu_reload", VCPU_STAT(fpu_reload) },
82 { "insn_emulation", VCPU_STAT(insn_emulation) },
83 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
84 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
85 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
86 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
87 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
88 { "mmu_flooded", VM_STAT(mmu_flooded) },
89 { "mmu_recycled", VM_STAT(mmu_recycled) },
90 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
91 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
92 { "largepages", VM_STAT(lpages) },
93 { NULL }
97 unsigned long segment_base(u16 selector)
99 struct descriptor_table gdt;
100 struct desc_struct *d;
101 unsigned long table_base;
102 unsigned long v;
104 if (selector == 0)
105 return 0;
107 asm("sgdt %0" : "=m"(gdt));
108 table_base = gdt.base;
110 if (selector & 4) { /* from ldt */
111 u16 ldt_selector;
113 asm("sldt %0" : "=g"(ldt_selector));
114 table_base = segment_base(ldt_selector);
116 d = (struct desc_struct *)(table_base + (selector & ~7));
117 v = d->base0 | ((unsigned long)d->base1 << 16) |
118 ((unsigned long)d->base2 << 24);
119 #ifdef CONFIG_X86_64
120 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
121 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
122 #endif
123 return v;
125 EXPORT_SYMBOL_GPL(segment_base);
127 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
129 if (irqchip_in_kernel(vcpu->kvm))
130 return vcpu->arch.apic_base;
131 else
132 return vcpu->arch.apic_base;
134 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
136 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
138 /* TODO: reserve bits check */
139 if (irqchip_in_kernel(vcpu->kvm))
140 kvm_lapic_set_base(vcpu, data);
141 else
142 vcpu->arch.apic_base = data;
144 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
146 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
148 WARN_ON(vcpu->arch.exception.pending);
149 vcpu->arch.exception.pending = true;
150 vcpu->arch.exception.has_error_code = false;
151 vcpu->arch.exception.nr = nr;
153 EXPORT_SYMBOL_GPL(kvm_queue_exception);
155 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
156 u32 error_code)
158 ++vcpu->stat.pf_guest;
159 if (vcpu->arch.exception.pending) {
160 if (vcpu->arch.exception.nr == PF_VECTOR) {
161 printk(KERN_DEBUG "kvm: inject_page_fault:"
162 " double fault 0x%lx\n", addr);
163 vcpu->arch.exception.nr = DF_VECTOR;
164 vcpu->arch.exception.error_code = 0;
165 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
166 /* triple fault -> shutdown */
167 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
169 return;
171 vcpu->arch.cr2 = addr;
172 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
175 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
177 WARN_ON(vcpu->arch.exception.pending);
178 vcpu->arch.exception.pending = true;
179 vcpu->arch.exception.has_error_code = true;
180 vcpu->arch.exception.nr = nr;
181 vcpu->arch.exception.error_code = error_code;
183 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
185 static void __queue_exception(struct kvm_vcpu *vcpu)
187 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
188 vcpu->arch.exception.has_error_code,
189 vcpu->arch.exception.error_code);
193 * Load the pae pdptrs. Return true is they are all valid.
195 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
197 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
198 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
199 int i;
200 int ret;
201 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
203 down_read(&vcpu->kvm->slots_lock);
204 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
205 offset * sizeof(u64), sizeof(pdpte));
206 if (ret < 0) {
207 ret = 0;
208 goto out;
210 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
211 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
212 ret = 0;
213 goto out;
216 ret = 1;
218 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
219 out:
220 up_read(&vcpu->kvm->slots_lock);
222 return ret;
224 EXPORT_SYMBOL_GPL(load_pdptrs);
226 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
228 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
229 bool changed = true;
230 int r;
232 if (is_long_mode(vcpu) || !is_pae(vcpu))
233 return false;
235 down_read(&vcpu->kvm->slots_lock);
236 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
237 if (r < 0)
238 goto out;
239 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
240 out:
241 up_read(&vcpu->kvm->slots_lock);
243 return changed;
246 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
248 if (cr0 & CR0_RESERVED_BITS) {
249 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
250 cr0, vcpu->arch.cr0);
251 kvm_inject_gp(vcpu, 0);
252 return;
255 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
256 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
257 kvm_inject_gp(vcpu, 0);
258 return;
261 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
262 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
263 "and a clear PE flag\n");
264 kvm_inject_gp(vcpu, 0);
265 return;
268 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
269 #ifdef CONFIG_X86_64
270 if ((vcpu->arch.shadow_efer & EFER_LME)) {
271 int cs_db, cs_l;
273 if (!is_pae(vcpu)) {
274 printk(KERN_DEBUG "set_cr0: #GP, start paging "
275 "in long mode while PAE is disabled\n");
276 kvm_inject_gp(vcpu, 0);
277 return;
279 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
280 if (cs_l) {
281 printk(KERN_DEBUG "set_cr0: #GP, start paging "
282 "in long mode while CS.L == 1\n");
283 kvm_inject_gp(vcpu, 0);
284 return;
287 } else
288 #endif
289 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
290 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
291 "reserved bits\n");
292 kvm_inject_gp(vcpu, 0);
293 return;
298 kvm_x86_ops->set_cr0(vcpu, cr0);
299 vcpu->arch.cr0 = cr0;
301 kvm_mmu_reset_context(vcpu);
302 return;
304 EXPORT_SYMBOL_GPL(kvm_set_cr0);
306 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
308 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
310 EXPORT_SYMBOL_GPL(kvm_lmsw);
312 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
314 if (cr4 & CR4_RESERVED_BITS) {
315 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
316 kvm_inject_gp(vcpu, 0);
317 return;
320 if (is_long_mode(vcpu)) {
321 if (!(cr4 & X86_CR4_PAE)) {
322 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
323 "in long mode\n");
324 kvm_inject_gp(vcpu, 0);
325 return;
327 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
328 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
329 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
330 kvm_inject_gp(vcpu, 0);
331 return;
334 if (cr4 & X86_CR4_VMXE) {
335 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
336 kvm_inject_gp(vcpu, 0);
337 return;
339 kvm_x86_ops->set_cr4(vcpu, cr4);
340 vcpu->arch.cr4 = cr4;
341 kvm_mmu_reset_context(vcpu);
343 EXPORT_SYMBOL_GPL(kvm_set_cr4);
345 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
347 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
348 kvm_mmu_flush_tlb(vcpu);
349 return;
352 if (is_long_mode(vcpu)) {
353 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
354 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
355 kvm_inject_gp(vcpu, 0);
356 return;
358 } else {
359 if (is_pae(vcpu)) {
360 if (cr3 & CR3_PAE_RESERVED_BITS) {
361 printk(KERN_DEBUG
362 "set_cr3: #GP, reserved bits\n");
363 kvm_inject_gp(vcpu, 0);
364 return;
366 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
367 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
368 "reserved bits\n");
369 kvm_inject_gp(vcpu, 0);
370 return;
374 * We don't check reserved bits in nonpae mode, because
375 * this isn't enforced, and VMware depends on this.
379 down_read(&vcpu->kvm->slots_lock);
381 * Does the new cr3 value map to physical memory? (Note, we
382 * catch an invalid cr3 even in real-mode, because it would
383 * cause trouble later on when we turn on paging anyway.)
385 * A real CPU would silently accept an invalid cr3 and would
386 * attempt to use it - with largely undefined (and often hard
387 * to debug) behavior on the guest side.
389 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
390 kvm_inject_gp(vcpu, 0);
391 else {
392 vcpu->arch.cr3 = cr3;
393 vcpu->arch.mmu.new_cr3(vcpu);
395 up_read(&vcpu->kvm->slots_lock);
397 EXPORT_SYMBOL_GPL(kvm_set_cr3);
399 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
401 if (cr8 & CR8_RESERVED_BITS) {
402 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
403 kvm_inject_gp(vcpu, 0);
404 return;
406 if (irqchip_in_kernel(vcpu->kvm))
407 kvm_lapic_set_tpr(vcpu, cr8);
408 else
409 vcpu->arch.cr8 = cr8;
411 EXPORT_SYMBOL_GPL(kvm_set_cr8);
413 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
415 if (irqchip_in_kernel(vcpu->kvm))
416 return kvm_lapic_get_cr8(vcpu);
417 else
418 return vcpu->arch.cr8;
420 EXPORT_SYMBOL_GPL(kvm_get_cr8);
423 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
424 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
426 * This list is modified at module load time to reflect the
427 * capabilities of the host cpu.
429 static u32 msrs_to_save[] = {
430 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
431 MSR_K6_STAR,
432 #ifdef CONFIG_X86_64
433 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
434 #endif
435 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
436 MSR_IA32_PERF_STATUS,
439 static unsigned num_msrs_to_save;
441 static u32 emulated_msrs[] = {
442 MSR_IA32_MISC_ENABLE,
445 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
447 if (efer & efer_reserved_bits) {
448 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
449 efer);
450 kvm_inject_gp(vcpu, 0);
451 return;
454 if (is_paging(vcpu)
455 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
456 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
457 kvm_inject_gp(vcpu, 0);
458 return;
461 kvm_x86_ops->set_efer(vcpu, efer);
463 efer &= ~EFER_LMA;
464 efer |= vcpu->arch.shadow_efer & EFER_LMA;
466 vcpu->arch.shadow_efer = efer;
469 void kvm_enable_efer_bits(u64 mask)
471 efer_reserved_bits &= ~mask;
473 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
477 * Writes msr value into into the appropriate "register".
478 * Returns 0 on success, non-0 otherwise.
479 * Assumes vcpu_load() was already called.
481 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
483 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
487 * Adapt set_msr() to msr_io()'s calling convention
489 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
491 return kvm_set_msr(vcpu, index, *data);
494 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
496 static int version;
497 struct kvm_wall_clock wc;
498 struct timespec wc_ts;
500 if (!wall_clock)
501 return;
503 version++;
505 down_read(&kvm->slots_lock);
506 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
508 wc_ts = current_kernel_time();
509 wc.wc_sec = wc_ts.tv_sec;
510 wc.wc_nsec = wc_ts.tv_nsec;
511 wc.wc_version = version;
513 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
515 version++;
516 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
517 up_read(&kvm->slots_lock);
520 static void kvm_write_guest_time(struct kvm_vcpu *v)
522 struct timespec ts;
523 unsigned long flags;
524 struct kvm_vcpu_arch *vcpu = &v->arch;
525 void *shared_kaddr;
527 if ((!vcpu->time_page))
528 return;
530 /* Keep irq disabled to prevent changes to the clock */
531 local_irq_save(flags);
532 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
533 &vcpu->hv_clock.tsc_timestamp);
534 ktime_get_ts(&ts);
535 local_irq_restore(flags);
537 /* With all the info we got, fill in the values */
539 vcpu->hv_clock.system_time = ts.tv_nsec +
540 (NSEC_PER_SEC * (u64)ts.tv_sec);
542 * The interface expects us to write an even number signaling that the
543 * update is finished. Since the guest won't see the intermediate
544 * state, we just write "2" at the end
546 vcpu->hv_clock.version = 2;
548 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
550 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
551 sizeof(vcpu->hv_clock));
553 kunmap_atomic(shared_kaddr, KM_USER0);
555 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
559 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
561 switch (msr) {
562 case MSR_EFER:
563 set_efer(vcpu, data);
564 break;
565 case MSR_IA32_MC0_STATUS:
566 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
567 __func__, data);
568 break;
569 case MSR_IA32_MCG_STATUS:
570 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
571 __func__, data);
572 break;
573 case MSR_IA32_MCG_CTL:
574 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
575 __func__, data);
576 break;
577 case MSR_IA32_UCODE_REV:
578 case MSR_IA32_UCODE_WRITE:
579 case 0x200 ... 0x2ff: /* MTRRs */
580 break;
581 case MSR_IA32_APICBASE:
582 kvm_set_apic_base(vcpu, data);
583 break;
584 case MSR_IA32_MISC_ENABLE:
585 vcpu->arch.ia32_misc_enable_msr = data;
586 break;
587 case MSR_KVM_WALL_CLOCK:
588 vcpu->kvm->arch.wall_clock = data;
589 kvm_write_wall_clock(vcpu->kvm, data);
590 break;
591 case MSR_KVM_SYSTEM_TIME: {
592 if (vcpu->arch.time_page) {
593 kvm_release_page_dirty(vcpu->arch.time_page);
594 vcpu->arch.time_page = NULL;
597 vcpu->arch.time = data;
599 /* we verify if the enable bit is set... */
600 if (!(data & 1))
601 break;
603 /* ...but clean it before doing the actual write */
604 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
606 vcpu->arch.hv_clock.tsc_to_system_mul =
607 clocksource_khz2mult(tsc_khz, 22);
608 vcpu->arch.hv_clock.tsc_shift = 22;
610 down_read(&current->mm->mmap_sem);
611 down_read(&vcpu->kvm->slots_lock);
612 vcpu->arch.time_page =
613 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
614 up_read(&vcpu->kvm->slots_lock);
615 up_read(&current->mm->mmap_sem);
617 if (is_error_page(vcpu->arch.time_page)) {
618 kvm_release_page_clean(vcpu->arch.time_page);
619 vcpu->arch.time_page = NULL;
622 kvm_write_guest_time(vcpu);
623 break;
625 default:
626 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
627 return 1;
629 return 0;
631 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
635 * Reads an msr value (of 'msr_index') into 'pdata'.
636 * Returns 0 on success, non-0 otherwise.
637 * Assumes vcpu_load() was already called.
639 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
641 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
644 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
646 u64 data;
648 switch (msr) {
649 case 0xc0010010: /* SYSCFG */
650 case 0xc0010015: /* HWCR */
651 case MSR_IA32_PLATFORM_ID:
652 case MSR_IA32_P5_MC_ADDR:
653 case MSR_IA32_P5_MC_TYPE:
654 case MSR_IA32_MC0_CTL:
655 case MSR_IA32_MCG_STATUS:
656 case MSR_IA32_MCG_CAP:
657 case MSR_IA32_MCG_CTL:
658 case MSR_IA32_MC0_MISC:
659 case MSR_IA32_MC0_MISC+4:
660 case MSR_IA32_MC0_MISC+8:
661 case MSR_IA32_MC0_MISC+12:
662 case MSR_IA32_MC0_MISC+16:
663 case MSR_IA32_UCODE_REV:
664 case MSR_IA32_EBL_CR_POWERON:
665 /* MTRR registers */
666 case 0xfe:
667 case 0x200 ... 0x2ff:
668 data = 0;
669 break;
670 case 0xcd: /* fsb frequency */
671 data = 3;
672 break;
673 case MSR_IA32_APICBASE:
674 data = kvm_get_apic_base(vcpu);
675 break;
676 case MSR_IA32_MISC_ENABLE:
677 data = vcpu->arch.ia32_misc_enable_msr;
678 break;
679 case MSR_IA32_PERF_STATUS:
680 /* TSC increment by tick */
681 data = 1000ULL;
682 /* CPU multiplier */
683 data |= (((uint64_t)4ULL) << 40);
684 break;
685 case MSR_EFER:
686 data = vcpu->arch.shadow_efer;
687 break;
688 case MSR_KVM_WALL_CLOCK:
689 data = vcpu->kvm->arch.wall_clock;
690 break;
691 case MSR_KVM_SYSTEM_TIME:
692 data = vcpu->arch.time;
693 break;
694 default:
695 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
696 return 1;
698 *pdata = data;
699 return 0;
701 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
704 * Read or write a bunch of msrs. All parameters are kernel addresses.
706 * @return number of msrs set successfully.
708 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
709 struct kvm_msr_entry *entries,
710 int (*do_msr)(struct kvm_vcpu *vcpu,
711 unsigned index, u64 *data))
713 int i;
715 vcpu_load(vcpu);
717 for (i = 0; i < msrs->nmsrs; ++i)
718 if (do_msr(vcpu, entries[i].index, &entries[i].data))
719 break;
721 vcpu_put(vcpu);
723 return i;
727 * Read or write a bunch of msrs. Parameters are user addresses.
729 * @return number of msrs set successfully.
731 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
732 int (*do_msr)(struct kvm_vcpu *vcpu,
733 unsigned index, u64 *data),
734 int writeback)
736 struct kvm_msrs msrs;
737 struct kvm_msr_entry *entries;
738 int r, n;
739 unsigned size;
741 r = -EFAULT;
742 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
743 goto out;
745 r = -E2BIG;
746 if (msrs.nmsrs >= MAX_IO_MSRS)
747 goto out;
749 r = -ENOMEM;
750 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
751 entries = vmalloc(size);
752 if (!entries)
753 goto out;
755 r = -EFAULT;
756 if (copy_from_user(entries, user_msrs->entries, size))
757 goto out_free;
759 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
760 if (r < 0)
761 goto out_free;
763 r = -EFAULT;
764 if (writeback && copy_to_user(user_msrs->entries, entries, size))
765 goto out_free;
767 r = n;
769 out_free:
770 vfree(entries);
771 out:
772 return r;
776 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
777 * cached on it.
779 void decache_vcpus_on_cpu(int cpu)
781 struct kvm *vm;
782 struct kvm_vcpu *vcpu;
783 int i;
785 spin_lock(&kvm_lock);
786 list_for_each_entry(vm, &vm_list, vm_list)
787 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
788 vcpu = vm->vcpus[i];
789 if (!vcpu)
790 continue;
792 * If the vcpu is locked, then it is running on some
793 * other cpu and therefore it is not cached on the
794 * cpu in question.
796 * If it's not locked, check the last cpu it executed
797 * on.
799 if (mutex_trylock(&vcpu->mutex)) {
800 if (vcpu->cpu == cpu) {
801 kvm_x86_ops->vcpu_decache(vcpu);
802 vcpu->cpu = -1;
804 mutex_unlock(&vcpu->mutex);
807 spin_unlock(&kvm_lock);
810 int kvm_dev_ioctl_check_extension(long ext)
812 int r;
814 switch (ext) {
815 case KVM_CAP_IRQCHIP:
816 case KVM_CAP_HLT:
817 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
818 case KVM_CAP_USER_MEMORY:
819 case KVM_CAP_SET_TSS_ADDR:
820 case KVM_CAP_EXT_CPUID:
821 case KVM_CAP_CLOCKSOURCE:
822 case KVM_CAP_PIT:
823 r = 1;
824 break;
825 case KVM_CAP_VAPIC:
826 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
827 break;
828 case KVM_CAP_NR_VCPUS:
829 r = KVM_MAX_VCPUS;
830 break;
831 case KVM_CAP_NR_MEMSLOTS:
832 r = KVM_MEMORY_SLOTS;
833 break;
834 default:
835 r = 0;
836 break;
838 return r;
842 long kvm_arch_dev_ioctl(struct file *filp,
843 unsigned int ioctl, unsigned long arg)
845 void __user *argp = (void __user *)arg;
846 long r;
848 switch (ioctl) {
849 case KVM_GET_MSR_INDEX_LIST: {
850 struct kvm_msr_list __user *user_msr_list = argp;
851 struct kvm_msr_list msr_list;
852 unsigned n;
854 r = -EFAULT;
855 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
856 goto out;
857 n = msr_list.nmsrs;
858 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
859 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
860 goto out;
861 r = -E2BIG;
862 if (n < num_msrs_to_save)
863 goto out;
864 r = -EFAULT;
865 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
866 num_msrs_to_save * sizeof(u32)))
867 goto out;
868 if (copy_to_user(user_msr_list->indices
869 + num_msrs_to_save * sizeof(u32),
870 &emulated_msrs,
871 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
872 goto out;
873 r = 0;
874 break;
876 case KVM_GET_SUPPORTED_CPUID: {
877 struct kvm_cpuid2 __user *cpuid_arg = argp;
878 struct kvm_cpuid2 cpuid;
880 r = -EFAULT;
881 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
882 goto out;
883 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
884 cpuid_arg->entries);
885 if (r)
886 goto out;
888 r = -EFAULT;
889 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
890 goto out;
891 r = 0;
892 break;
894 default:
895 r = -EINVAL;
897 out:
898 return r;
901 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
903 kvm_x86_ops->vcpu_load(vcpu, cpu);
904 kvm_write_guest_time(vcpu);
907 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
909 kvm_x86_ops->vcpu_put(vcpu);
910 kvm_put_guest_fpu(vcpu);
913 static int is_efer_nx(void)
915 u64 efer;
917 rdmsrl(MSR_EFER, efer);
918 return efer & EFER_NX;
921 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
923 int i;
924 struct kvm_cpuid_entry2 *e, *entry;
926 entry = NULL;
927 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
928 e = &vcpu->arch.cpuid_entries[i];
929 if (e->function == 0x80000001) {
930 entry = e;
931 break;
934 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
935 entry->edx &= ~(1 << 20);
936 printk(KERN_INFO "kvm: guest NX capability removed\n");
940 /* when an old userspace process fills a new kernel module */
941 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
942 struct kvm_cpuid *cpuid,
943 struct kvm_cpuid_entry __user *entries)
945 int r, i;
946 struct kvm_cpuid_entry *cpuid_entries;
948 r = -E2BIG;
949 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
950 goto out;
951 r = -ENOMEM;
952 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
953 if (!cpuid_entries)
954 goto out;
955 r = -EFAULT;
956 if (copy_from_user(cpuid_entries, entries,
957 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
958 goto out_free;
959 for (i = 0; i < cpuid->nent; i++) {
960 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
961 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
962 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
963 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
964 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
965 vcpu->arch.cpuid_entries[i].index = 0;
966 vcpu->arch.cpuid_entries[i].flags = 0;
967 vcpu->arch.cpuid_entries[i].padding[0] = 0;
968 vcpu->arch.cpuid_entries[i].padding[1] = 0;
969 vcpu->arch.cpuid_entries[i].padding[2] = 0;
971 vcpu->arch.cpuid_nent = cpuid->nent;
972 cpuid_fix_nx_cap(vcpu);
973 r = 0;
975 out_free:
976 vfree(cpuid_entries);
977 out:
978 return r;
981 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
982 struct kvm_cpuid2 *cpuid,
983 struct kvm_cpuid_entry2 __user *entries)
985 int r;
987 r = -E2BIG;
988 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
989 goto out;
990 r = -EFAULT;
991 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
992 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
993 goto out;
994 vcpu->arch.cpuid_nent = cpuid->nent;
995 return 0;
997 out:
998 return r;
1001 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1002 struct kvm_cpuid2 *cpuid,
1003 struct kvm_cpuid_entry2 __user *entries)
1005 int r;
1007 r = -E2BIG;
1008 if (cpuid->nent < vcpu->arch.cpuid_nent)
1009 goto out;
1010 r = -EFAULT;
1011 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1012 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1013 goto out;
1014 return 0;
1016 out:
1017 cpuid->nent = vcpu->arch.cpuid_nent;
1018 return r;
1021 static inline u32 bit(int bitno)
1023 return 1 << (bitno & 31);
1026 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1027 u32 index)
1029 entry->function = function;
1030 entry->index = index;
1031 cpuid_count(entry->function, entry->index,
1032 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1033 entry->flags = 0;
1036 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1037 u32 index, int *nent, int maxnent)
1039 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1040 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1041 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1042 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1043 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1044 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1045 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1046 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1047 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1048 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1049 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1050 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1051 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1052 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1053 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1054 bit(X86_FEATURE_PGE) |
1055 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1056 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1057 bit(X86_FEATURE_SYSCALL) |
1058 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1059 #ifdef CONFIG_X86_64
1060 bit(X86_FEATURE_LM) |
1061 #endif
1062 bit(X86_FEATURE_MMXEXT) |
1063 bit(X86_FEATURE_3DNOWEXT) |
1064 bit(X86_FEATURE_3DNOW);
1065 const u32 kvm_supported_word3_x86_features =
1066 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1067 const u32 kvm_supported_word6_x86_features =
1068 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1070 /* all func 2 cpuid_count() should be called on the same cpu */
1071 get_cpu();
1072 do_cpuid_1_ent(entry, function, index);
1073 ++*nent;
1075 switch (function) {
1076 case 0:
1077 entry->eax = min(entry->eax, (u32)0xb);
1078 break;
1079 case 1:
1080 entry->edx &= kvm_supported_word0_x86_features;
1081 entry->ecx &= kvm_supported_word3_x86_features;
1082 break;
1083 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1084 * may return different values. This forces us to get_cpu() before
1085 * issuing the first command, and also to emulate this annoying behavior
1086 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1087 case 2: {
1088 int t, times = entry->eax & 0xff;
1090 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1091 for (t = 1; t < times && *nent < maxnent; ++t) {
1092 do_cpuid_1_ent(&entry[t], function, 0);
1093 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1094 ++*nent;
1096 break;
1098 /* function 4 and 0xb have additional index. */
1099 case 4: {
1100 int i, cache_type;
1102 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1103 /* read more entries until cache_type is zero */
1104 for (i = 1; *nent < maxnent; ++i) {
1105 cache_type = entry[i - 1].eax & 0x1f;
1106 if (!cache_type)
1107 break;
1108 do_cpuid_1_ent(&entry[i], function, i);
1109 entry[i].flags |=
1110 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1111 ++*nent;
1113 break;
1115 case 0xb: {
1116 int i, level_type;
1118 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1119 /* read more entries until level_type is zero */
1120 for (i = 1; *nent < maxnent; ++i) {
1121 level_type = entry[i - 1].ecx & 0xff;
1122 if (!level_type)
1123 break;
1124 do_cpuid_1_ent(&entry[i], function, i);
1125 entry[i].flags |=
1126 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1127 ++*nent;
1129 break;
1131 case 0x80000000:
1132 entry->eax = min(entry->eax, 0x8000001a);
1133 break;
1134 case 0x80000001:
1135 entry->edx &= kvm_supported_word1_x86_features;
1136 entry->ecx &= kvm_supported_word6_x86_features;
1137 break;
1139 put_cpu();
1142 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1143 struct kvm_cpuid_entry2 __user *entries)
1145 struct kvm_cpuid_entry2 *cpuid_entries;
1146 int limit, nent = 0, r = -E2BIG;
1147 u32 func;
1149 if (cpuid->nent < 1)
1150 goto out;
1151 r = -ENOMEM;
1152 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1153 if (!cpuid_entries)
1154 goto out;
1156 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1157 limit = cpuid_entries[0].eax;
1158 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1159 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1160 &nent, cpuid->nent);
1161 r = -E2BIG;
1162 if (nent >= cpuid->nent)
1163 goto out_free;
1165 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1166 limit = cpuid_entries[nent - 1].eax;
1167 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1168 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1169 &nent, cpuid->nent);
1170 r = -EFAULT;
1171 if (copy_to_user(entries, cpuid_entries,
1172 nent * sizeof(struct kvm_cpuid_entry2)))
1173 goto out_free;
1174 cpuid->nent = nent;
1175 r = 0;
1177 out_free:
1178 vfree(cpuid_entries);
1179 out:
1180 return r;
1183 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1184 struct kvm_lapic_state *s)
1186 vcpu_load(vcpu);
1187 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1188 vcpu_put(vcpu);
1190 return 0;
1193 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1194 struct kvm_lapic_state *s)
1196 vcpu_load(vcpu);
1197 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1198 kvm_apic_post_state_restore(vcpu);
1199 vcpu_put(vcpu);
1201 return 0;
1204 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1205 struct kvm_interrupt *irq)
1207 if (irq->irq < 0 || irq->irq >= 256)
1208 return -EINVAL;
1209 if (irqchip_in_kernel(vcpu->kvm))
1210 return -ENXIO;
1211 vcpu_load(vcpu);
1213 set_bit(irq->irq, vcpu->arch.irq_pending);
1214 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1216 vcpu_put(vcpu);
1218 return 0;
1221 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1222 struct kvm_tpr_access_ctl *tac)
1224 if (tac->flags)
1225 return -EINVAL;
1226 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1227 return 0;
1230 long kvm_arch_vcpu_ioctl(struct file *filp,
1231 unsigned int ioctl, unsigned long arg)
1233 struct kvm_vcpu *vcpu = filp->private_data;
1234 void __user *argp = (void __user *)arg;
1235 int r;
1237 switch (ioctl) {
1238 case KVM_GET_LAPIC: {
1239 struct kvm_lapic_state lapic;
1241 memset(&lapic, 0, sizeof lapic);
1242 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1243 if (r)
1244 goto out;
1245 r = -EFAULT;
1246 if (copy_to_user(argp, &lapic, sizeof lapic))
1247 goto out;
1248 r = 0;
1249 break;
1251 case KVM_SET_LAPIC: {
1252 struct kvm_lapic_state lapic;
1254 r = -EFAULT;
1255 if (copy_from_user(&lapic, argp, sizeof lapic))
1256 goto out;
1257 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1258 if (r)
1259 goto out;
1260 r = 0;
1261 break;
1263 case KVM_INTERRUPT: {
1264 struct kvm_interrupt irq;
1266 r = -EFAULT;
1267 if (copy_from_user(&irq, argp, sizeof irq))
1268 goto out;
1269 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1270 if (r)
1271 goto out;
1272 r = 0;
1273 break;
1275 case KVM_SET_CPUID: {
1276 struct kvm_cpuid __user *cpuid_arg = argp;
1277 struct kvm_cpuid cpuid;
1279 r = -EFAULT;
1280 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1281 goto out;
1282 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1283 if (r)
1284 goto out;
1285 break;
1287 case KVM_SET_CPUID2: {
1288 struct kvm_cpuid2 __user *cpuid_arg = argp;
1289 struct kvm_cpuid2 cpuid;
1291 r = -EFAULT;
1292 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1293 goto out;
1294 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1295 cpuid_arg->entries);
1296 if (r)
1297 goto out;
1298 break;
1300 case KVM_GET_CPUID2: {
1301 struct kvm_cpuid2 __user *cpuid_arg = argp;
1302 struct kvm_cpuid2 cpuid;
1304 r = -EFAULT;
1305 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1306 goto out;
1307 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1308 cpuid_arg->entries);
1309 if (r)
1310 goto out;
1311 r = -EFAULT;
1312 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1313 goto out;
1314 r = 0;
1315 break;
1317 case KVM_GET_MSRS:
1318 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1319 break;
1320 case KVM_SET_MSRS:
1321 r = msr_io(vcpu, argp, do_set_msr, 0);
1322 break;
1323 case KVM_TPR_ACCESS_REPORTING: {
1324 struct kvm_tpr_access_ctl tac;
1326 r = -EFAULT;
1327 if (copy_from_user(&tac, argp, sizeof tac))
1328 goto out;
1329 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1330 if (r)
1331 goto out;
1332 r = -EFAULT;
1333 if (copy_to_user(argp, &tac, sizeof tac))
1334 goto out;
1335 r = 0;
1336 break;
1338 case KVM_SET_VAPIC_ADDR: {
1339 struct kvm_vapic_addr va;
1341 r = -EINVAL;
1342 if (!irqchip_in_kernel(vcpu->kvm))
1343 goto out;
1344 r = -EFAULT;
1345 if (copy_from_user(&va, argp, sizeof va))
1346 goto out;
1347 r = 0;
1348 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1349 break;
1351 default:
1352 r = -EINVAL;
1354 out:
1355 return r;
1358 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1360 int ret;
1362 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1363 return -1;
1364 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1365 return ret;
1368 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1369 u32 kvm_nr_mmu_pages)
1371 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1372 return -EINVAL;
1374 down_write(&kvm->slots_lock);
1376 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1377 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1379 up_write(&kvm->slots_lock);
1380 return 0;
1383 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1385 return kvm->arch.n_alloc_mmu_pages;
1388 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1390 int i;
1391 struct kvm_mem_alias *alias;
1393 for (i = 0; i < kvm->arch.naliases; ++i) {
1394 alias = &kvm->arch.aliases[i];
1395 if (gfn >= alias->base_gfn
1396 && gfn < alias->base_gfn + alias->npages)
1397 return alias->target_gfn + gfn - alias->base_gfn;
1399 return gfn;
1403 * Set a new alias region. Aliases map a portion of physical memory into
1404 * another portion. This is useful for memory windows, for example the PC
1405 * VGA region.
1407 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1408 struct kvm_memory_alias *alias)
1410 int r, n;
1411 struct kvm_mem_alias *p;
1413 r = -EINVAL;
1414 /* General sanity checks */
1415 if (alias->memory_size & (PAGE_SIZE - 1))
1416 goto out;
1417 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1418 goto out;
1419 if (alias->slot >= KVM_ALIAS_SLOTS)
1420 goto out;
1421 if (alias->guest_phys_addr + alias->memory_size
1422 < alias->guest_phys_addr)
1423 goto out;
1424 if (alias->target_phys_addr + alias->memory_size
1425 < alias->target_phys_addr)
1426 goto out;
1428 down_write(&kvm->slots_lock);
1430 p = &kvm->arch.aliases[alias->slot];
1431 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1432 p->npages = alias->memory_size >> PAGE_SHIFT;
1433 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1435 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1436 if (kvm->arch.aliases[n - 1].npages)
1437 break;
1438 kvm->arch.naliases = n;
1440 kvm_mmu_zap_all(kvm);
1442 up_write(&kvm->slots_lock);
1444 return 0;
1446 out:
1447 return r;
1450 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1452 int r;
1454 r = 0;
1455 switch (chip->chip_id) {
1456 case KVM_IRQCHIP_PIC_MASTER:
1457 memcpy(&chip->chip.pic,
1458 &pic_irqchip(kvm)->pics[0],
1459 sizeof(struct kvm_pic_state));
1460 break;
1461 case KVM_IRQCHIP_PIC_SLAVE:
1462 memcpy(&chip->chip.pic,
1463 &pic_irqchip(kvm)->pics[1],
1464 sizeof(struct kvm_pic_state));
1465 break;
1466 case KVM_IRQCHIP_IOAPIC:
1467 memcpy(&chip->chip.ioapic,
1468 ioapic_irqchip(kvm),
1469 sizeof(struct kvm_ioapic_state));
1470 break;
1471 default:
1472 r = -EINVAL;
1473 break;
1475 return r;
1478 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1480 int r;
1482 r = 0;
1483 switch (chip->chip_id) {
1484 case KVM_IRQCHIP_PIC_MASTER:
1485 memcpy(&pic_irqchip(kvm)->pics[0],
1486 &chip->chip.pic,
1487 sizeof(struct kvm_pic_state));
1488 break;
1489 case KVM_IRQCHIP_PIC_SLAVE:
1490 memcpy(&pic_irqchip(kvm)->pics[1],
1491 &chip->chip.pic,
1492 sizeof(struct kvm_pic_state));
1493 break;
1494 case KVM_IRQCHIP_IOAPIC:
1495 memcpy(ioapic_irqchip(kvm),
1496 &chip->chip.ioapic,
1497 sizeof(struct kvm_ioapic_state));
1498 break;
1499 default:
1500 r = -EINVAL;
1501 break;
1503 kvm_pic_update_irq(pic_irqchip(kvm));
1504 return r;
1508 * Get (and clear) the dirty memory log for a memory slot.
1510 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1511 struct kvm_dirty_log *log)
1513 int r;
1514 int n;
1515 struct kvm_memory_slot *memslot;
1516 int is_dirty = 0;
1518 down_write(&kvm->slots_lock);
1520 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1521 if (r)
1522 goto out;
1524 /* If nothing is dirty, don't bother messing with page tables. */
1525 if (is_dirty) {
1526 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1527 kvm_flush_remote_tlbs(kvm);
1528 memslot = &kvm->memslots[log->slot];
1529 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1530 memset(memslot->dirty_bitmap, 0, n);
1532 r = 0;
1533 out:
1534 up_write(&kvm->slots_lock);
1535 return r;
1538 long kvm_arch_vm_ioctl(struct file *filp,
1539 unsigned int ioctl, unsigned long arg)
1541 struct kvm *kvm = filp->private_data;
1542 void __user *argp = (void __user *)arg;
1543 int r = -EINVAL;
1545 switch (ioctl) {
1546 case KVM_SET_TSS_ADDR:
1547 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1548 if (r < 0)
1549 goto out;
1550 break;
1551 case KVM_SET_MEMORY_REGION: {
1552 struct kvm_memory_region kvm_mem;
1553 struct kvm_userspace_memory_region kvm_userspace_mem;
1555 r = -EFAULT;
1556 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1557 goto out;
1558 kvm_userspace_mem.slot = kvm_mem.slot;
1559 kvm_userspace_mem.flags = kvm_mem.flags;
1560 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1561 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1562 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1563 if (r)
1564 goto out;
1565 break;
1567 case KVM_SET_NR_MMU_PAGES:
1568 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1569 if (r)
1570 goto out;
1571 break;
1572 case KVM_GET_NR_MMU_PAGES:
1573 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1574 break;
1575 case KVM_SET_MEMORY_ALIAS: {
1576 struct kvm_memory_alias alias;
1578 r = -EFAULT;
1579 if (copy_from_user(&alias, argp, sizeof alias))
1580 goto out;
1581 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1582 if (r)
1583 goto out;
1584 break;
1586 case KVM_CREATE_IRQCHIP:
1587 r = -ENOMEM;
1588 kvm->arch.vpic = kvm_create_pic(kvm);
1589 if (kvm->arch.vpic) {
1590 r = kvm_ioapic_init(kvm);
1591 if (r) {
1592 kfree(kvm->arch.vpic);
1593 kvm->arch.vpic = NULL;
1594 goto out;
1596 } else
1597 goto out;
1598 break;
1599 case KVM_CREATE_PIT:
1600 r = -ENOMEM;
1601 kvm->arch.vpit = kvm_create_pit(kvm);
1602 if (kvm->arch.vpit)
1603 r = 0;
1604 break;
1605 case KVM_IRQ_LINE: {
1606 struct kvm_irq_level irq_event;
1608 r = -EFAULT;
1609 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1610 goto out;
1611 if (irqchip_in_kernel(kvm)) {
1612 mutex_lock(&kvm->lock);
1613 if (irq_event.irq < 16)
1614 kvm_pic_set_irq(pic_irqchip(kvm),
1615 irq_event.irq,
1616 irq_event.level);
1617 kvm_ioapic_set_irq(kvm->arch.vioapic,
1618 irq_event.irq,
1619 irq_event.level);
1620 mutex_unlock(&kvm->lock);
1621 r = 0;
1623 break;
1625 case KVM_GET_IRQCHIP: {
1626 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1627 struct kvm_irqchip chip;
1629 r = -EFAULT;
1630 if (copy_from_user(&chip, argp, sizeof chip))
1631 goto out;
1632 r = -ENXIO;
1633 if (!irqchip_in_kernel(kvm))
1634 goto out;
1635 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1636 if (r)
1637 goto out;
1638 r = -EFAULT;
1639 if (copy_to_user(argp, &chip, sizeof chip))
1640 goto out;
1641 r = 0;
1642 break;
1644 case KVM_SET_IRQCHIP: {
1645 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1646 struct kvm_irqchip chip;
1648 r = -EFAULT;
1649 if (copy_from_user(&chip, argp, sizeof chip))
1650 goto out;
1651 r = -ENXIO;
1652 if (!irqchip_in_kernel(kvm))
1653 goto out;
1654 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1655 if (r)
1656 goto out;
1657 r = 0;
1658 break;
1660 default:
1663 out:
1664 return r;
1667 static void kvm_init_msr_list(void)
1669 u32 dummy[2];
1670 unsigned i, j;
1672 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1673 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1674 continue;
1675 if (j < i)
1676 msrs_to_save[j] = msrs_to_save[i];
1677 j++;
1679 num_msrs_to_save = j;
1683 * Only apic need an MMIO device hook, so shortcut now..
1685 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1686 gpa_t addr)
1688 struct kvm_io_device *dev;
1690 if (vcpu->arch.apic) {
1691 dev = &vcpu->arch.apic->dev;
1692 if (dev->in_range(dev, addr))
1693 return dev;
1695 return NULL;
1699 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1700 gpa_t addr)
1702 struct kvm_io_device *dev;
1704 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1705 if (dev == NULL)
1706 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1707 return dev;
1710 int emulator_read_std(unsigned long addr,
1711 void *val,
1712 unsigned int bytes,
1713 struct kvm_vcpu *vcpu)
1715 void *data = val;
1716 int r = X86EMUL_CONTINUE;
1718 down_read(&vcpu->kvm->slots_lock);
1719 while (bytes) {
1720 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1721 unsigned offset = addr & (PAGE_SIZE-1);
1722 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1723 int ret;
1725 if (gpa == UNMAPPED_GVA) {
1726 r = X86EMUL_PROPAGATE_FAULT;
1727 goto out;
1729 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1730 if (ret < 0) {
1731 r = X86EMUL_UNHANDLEABLE;
1732 goto out;
1735 bytes -= tocopy;
1736 data += tocopy;
1737 addr += tocopy;
1739 out:
1740 up_read(&vcpu->kvm->slots_lock);
1741 return r;
1743 EXPORT_SYMBOL_GPL(emulator_read_std);
1745 static int emulator_read_emulated(unsigned long addr,
1746 void *val,
1747 unsigned int bytes,
1748 struct kvm_vcpu *vcpu)
1750 struct kvm_io_device *mmio_dev;
1751 gpa_t gpa;
1753 if (vcpu->mmio_read_completed) {
1754 memcpy(val, vcpu->mmio_data, bytes);
1755 vcpu->mmio_read_completed = 0;
1756 return X86EMUL_CONTINUE;
1759 down_read(&vcpu->kvm->slots_lock);
1760 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1761 up_read(&vcpu->kvm->slots_lock);
1763 /* For APIC access vmexit */
1764 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1765 goto mmio;
1767 if (emulator_read_std(addr, val, bytes, vcpu)
1768 == X86EMUL_CONTINUE)
1769 return X86EMUL_CONTINUE;
1770 if (gpa == UNMAPPED_GVA)
1771 return X86EMUL_PROPAGATE_FAULT;
1773 mmio:
1775 * Is this MMIO handled locally?
1777 mutex_lock(&vcpu->kvm->lock);
1778 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1779 if (mmio_dev) {
1780 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1781 mutex_unlock(&vcpu->kvm->lock);
1782 return X86EMUL_CONTINUE;
1784 mutex_unlock(&vcpu->kvm->lock);
1786 vcpu->mmio_needed = 1;
1787 vcpu->mmio_phys_addr = gpa;
1788 vcpu->mmio_size = bytes;
1789 vcpu->mmio_is_write = 0;
1791 return X86EMUL_UNHANDLEABLE;
1794 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1795 const void *val, int bytes)
1797 int ret;
1799 down_read(&vcpu->kvm->slots_lock);
1800 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1801 if (ret < 0) {
1802 up_read(&vcpu->kvm->slots_lock);
1803 return 0;
1805 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1806 up_read(&vcpu->kvm->slots_lock);
1807 return 1;
1810 static int emulator_write_emulated_onepage(unsigned long addr,
1811 const void *val,
1812 unsigned int bytes,
1813 struct kvm_vcpu *vcpu)
1815 struct kvm_io_device *mmio_dev;
1816 gpa_t gpa;
1818 down_read(&vcpu->kvm->slots_lock);
1819 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1820 up_read(&vcpu->kvm->slots_lock);
1822 if (gpa == UNMAPPED_GVA) {
1823 kvm_inject_page_fault(vcpu, addr, 2);
1824 return X86EMUL_PROPAGATE_FAULT;
1827 /* For APIC access vmexit */
1828 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1829 goto mmio;
1831 if (emulator_write_phys(vcpu, gpa, val, bytes))
1832 return X86EMUL_CONTINUE;
1834 mmio:
1836 * Is this MMIO handled locally?
1838 mutex_lock(&vcpu->kvm->lock);
1839 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1840 if (mmio_dev) {
1841 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1842 mutex_unlock(&vcpu->kvm->lock);
1843 return X86EMUL_CONTINUE;
1845 mutex_unlock(&vcpu->kvm->lock);
1847 vcpu->mmio_needed = 1;
1848 vcpu->mmio_phys_addr = gpa;
1849 vcpu->mmio_size = bytes;
1850 vcpu->mmio_is_write = 1;
1851 memcpy(vcpu->mmio_data, val, bytes);
1853 return X86EMUL_CONTINUE;
1856 int emulator_write_emulated(unsigned long addr,
1857 const void *val,
1858 unsigned int bytes,
1859 struct kvm_vcpu *vcpu)
1861 /* Crossing a page boundary? */
1862 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1863 int rc, now;
1865 now = -addr & ~PAGE_MASK;
1866 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1867 if (rc != X86EMUL_CONTINUE)
1868 return rc;
1869 addr += now;
1870 val += now;
1871 bytes -= now;
1873 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1875 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1877 static int emulator_cmpxchg_emulated(unsigned long addr,
1878 const void *old,
1879 const void *new,
1880 unsigned int bytes,
1881 struct kvm_vcpu *vcpu)
1883 static int reported;
1885 if (!reported) {
1886 reported = 1;
1887 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1889 #ifndef CONFIG_X86_64
1890 /* guests cmpxchg8b have to be emulated atomically */
1891 if (bytes == 8) {
1892 gpa_t gpa;
1893 struct page *page;
1894 char *kaddr;
1895 u64 val;
1897 down_read(&vcpu->kvm->slots_lock);
1898 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1900 if (gpa == UNMAPPED_GVA ||
1901 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1902 goto emul_write;
1904 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1905 goto emul_write;
1907 val = *(u64 *)new;
1909 down_read(&current->mm->mmap_sem);
1910 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1911 up_read(&current->mm->mmap_sem);
1913 kaddr = kmap_atomic(page, KM_USER0);
1914 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
1915 kunmap_atomic(kaddr, KM_USER0);
1916 kvm_release_page_dirty(page);
1917 emul_write:
1918 up_read(&vcpu->kvm->slots_lock);
1920 #endif
1922 return emulator_write_emulated(addr, new, bytes, vcpu);
1925 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1927 return kvm_x86_ops->get_segment_base(vcpu, seg);
1930 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1932 return X86EMUL_CONTINUE;
1935 int emulate_clts(struct kvm_vcpu *vcpu)
1937 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1938 return X86EMUL_CONTINUE;
1941 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1943 struct kvm_vcpu *vcpu = ctxt->vcpu;
1945 switch (dr) {
1946 case 0 ... 3:
1947 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1948 return X86EMUL_CONTINUE;
1949 default:
1950 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
1951 return X86EMUL_UNHANDLEABLE;
1955 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1957 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1958 int exception;
1960 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1961 if (exception) {
1962 /* FIXME: better handling */
1963 return X86EMUL_UNHANDLEABLE;
1965 return X86EMUL_CONTINUE;
1968 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1970 static int reported;
1971 u8 opcodes[4];
1972 unsigned long rip = vcpu->arch.rip;
1973 unsigned long rip_linear;
1975 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1977 if (reported)
1978 return;
1980 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1982 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1983 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1984 reported = 1;
1986 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1988 static struct x86_emulate_ops emulate_ops = {
1989 .read_std = emulator_read_std,
1990 .read_emulated = emulator_read_emulated,
1991 .write_emulated = emulator_write_emulated,
1992 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1995 int emulate_instruction(struct kvm_vcpu *vcpu,
1996 struct kvm_run *run,
1997 unsigned long cr2,
1998 u16 error_code,
1999 int emulation_type)
2001 int r;
2002 struct decode_cache *c;
2004 vcpu->arch.mmio_fault_cr2 = cr2;
2005 kvm_x86_ops->cache_regs(vcpu);
2007 vcpu->mmio_is_write = 0;
2008 vcpu->arch.pio.string = 0;
2010 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2011 int cs_db, cs_l;
2012 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2014 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2015 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2016 vcpu->arch.emulate_ctxt.mode =
2017 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2018 ? X86EMUL_MODE_REAL : cs_l
2019 ? X86EMUL_MODE_PROT64 : cs_db
2020 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2022 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2023 vcpu->arch.emulate_ctxt.cs_base = 0;
2024 vcpu->arch.emulate_ctxt.ds_base = 0;
2025 vcpu->arch.emulate_ctxt.es_base = 0;
2026 vcpu->arch.emulate_ctxt.ss_base = 0;
2027 } else {
2028 vcpu->arch.emulate_ctxt.cs_base =
2029 get_segment_base(vcpu, VCPU_SREG_CS);
2030 vcpu->arch.emulate_ctxt.ds_base =
2031 get_segment_base(vcpu, VCPU_SREG_DS);
2032 vcpu->arch.emulate_ctxt.es_base =
2033 get_segment_base(vcpu, VCPU_SREG_ES);
2034 vcpu->arch.emulate_ctxt.ss_base =
2035 get_segment_base(vcpu, VCPU_SREG_SS);
2038 vcpu->arch.emulate_ctxt.gs_base =
2039 get_segment_base(vcpu, VCPU_SREG_GS);
2040 vcpu->arch.emulate_ctxt.fs_base =
2041 get_segment_base(vcpu, VCPU_SREG_FS);
2043 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2045 /* Reject the instructions other than VMCALL/VMMCALL when
2046 * try to emulate invalid opcode */
2047 c = &vcpu->arch.emulate_ctxt.decode;
2048 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2049 (!(c->twobyte && c->b == 0x01 &&
2050 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2051 c->modrm_mod == 3 && c->modrm_rm == 1)))
2052 return EMULATE_FAIL;
2054 ++vcpu->stat.insn_emulation;
2055 if (r) {
2056 ++vcpu->stat.insn_emulation_fail;
2057 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2058 return EMULATE_DONE;
2059 return EMULATE_FAIL;
2063 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2065 if (vcpu->arch.pio.string)
2066 return EMULATE_DO_MMIO;
2068 if ((r || vcpu->mmio_is_write) && run) {
2069 run->exit_reason = KVM_EXIT_MMIO;
2070 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2071 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2072 run->mmio.len = vcpu->mmio_size;
2073 run->mmio.is_write = vcpu->mmio_is_write;
2076 if (r) {
2077 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2078 return EMULATE_DONE;
2079 if (!vcpu->mmio_needed) {
2080 kvm_report_emulation_failure(vcpu, "mmio");
2081 return EMULATE_FAIL;
2083 return EMULATE_DO_MMIO;
2086 kvm_x86_ops->decache_regs(vcpu);
2087 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2089 if (vcpu->mmio_is_write) {
2090 vcpu->mmio_needed = 0;
2091 return EMULATE_DO_MMIO;
2094 return EMULATE_DONE;
2096 EXPORT_SYMBOL_GPL(emulate_instruction);
2098 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2100 int i;
2102 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2103 if (vcpu->arch.pio.guest_pages[i]) {
2104 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2105 vcpu->arch.pio.guest_pages[i] = NULL;
2109 static int pio_copy_data(struct kvm_vcpu *vcpu)
2111 void *p = vcpu->arch.pio_data;
2112 void *q;
2113 unsigned bytes;
2114 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2116 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2117 PAGE_KERNEL);
2118 if (!q) {
2119 free_pio_guest_pages(vcpu);
2120 return -ENOMEM;
2122 q += vcpu->arch.pio.guest_page_offset;
2123 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2124 if (vcpu->arch.pio.in)
2125 memcpy(q, p, bytes);
2126 else
2127 memcpy(p, q, bytes);
2128 q -= vcpu->arch.pio.guest_page_offset;
2129 vunmap(q);
2130 free_pio_guest_pages(vcpu);
2131 return 0;
2134 int complete_pio(struct kvm_vcpu *vcpu)
2136 struct kvm_pio_request *io = &vcpu->arch.pio;
2137 long delta;
2138 int r;
2140 kvm_x86_ops->cache_regs(vcpu);
2142 if (!io->string) {
2143 if (io->in)
2144 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2145 io->size);
2146 } else {
2147 if (io->in) {
2148 r = pio_copy_data(vcpu);
2149 if (r) {
2150 kvm_x86_ops->cache_regs(vcpu);
2151 return r;
2155 delta = 1;
2156 if (io->rep) {
2157 delta *= io->cur_count;
2159 * The size of the register should really depend on
2160 * current address size.
2162 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2164 if (io->down)
2165 delta = -delta;
2166 delta *= io->size;
2167 if (io->in)
2168 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2169 else
2170 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2173 kvm_x86_ops->decache_regs(vcpu);
2175 io->count -= io->cur_count;
2176 io->cur_count = 0;
2178 return 0;
2181 static void kernel_pio(struct kvm_io_device *pio_dev,
2182 struct kvm_vcpu *vcpu,
2183 void *pd)
2185 /* TODO: String I/O for in kernel device */
2187 mutex_lock(&vcpu->kvm->lock);
2188 if (vcpu->arch.pio.in)
2189 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2190 vcpu->arch.pio.size,
2191 pd);
2192 else
2193 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2194 vcpu->arch.pio.size,
2195 pd);
2196 mutex_unlock(&vcpu->kvm->lock);
2199 static void pio_string_write(struct kvm_io_device *pio_dev,
2200 struct kvm_vcpu *vcpu)
2202 struct kvm_pio_request *io = &vcpu->arch.pio;
2203 void *pd = vcpu->arch.pio_data;
2204 int i;
2206 mutex_lock(&vcpu->kvm->lock);
2207 for (i = 0; i < io->cur_count; i++) {
2208 kvm_iodevice_write(pio_dev, io->port,
2209 io->size,
2210 pd);
2211 pd += io->size;
2213 mutex_unlock(&vcpu->kvm->lock);
2216 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2217 gpa_t addr)
2219 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2222 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2223 int size, unsigned port)
2225 struct kvm_io_device *pio_dev;
2227 vcpu->run->exit_reason = KVM_EXIT_IO;
2228 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2229 vcpu->run->io.size = vcpu->arch.pio.size = size;
2230 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2231 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2232 vcpu->run->io.port = vcpu->arch.pio.port = port;
2233 vcpu->arch.pio.in = in;
2234 vcpu->arch.pio.string = 0;
2235 vcpu->arch.pio.down = 0;
2236 vcpu->arch.pio.guest_page_offset = 0;
2237 vcpu->arch.pio.rep = 0;
2239 kvm_x86_ops->cache_regs(vcpu);
2240 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2241 kvm_x86_ops->decache_regs(vcpu);
2243 kvm_x86_ops->skip_emulated_instruction(vcpu);
2245 pio_dev = vcpu_find_pio_dev(vcpu, port);
2246 if (pio_dev) {
2247 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2248 complete_pio(vcpu);
2249 return 1;
2251 return 0;
2253 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2255 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2256 int size, unsigned long count, int down,
2257 gva_t address, int rep, unsigned port)
2259 unsigned now, in_page;
2260 int i, ret = 0;
2261 int nr_pages = 1;
2262 struct page *page;
2263 struct kvm_io_device *pio_dev;
2265 vcpu->run->exit_reason = KVM_EXIT_IO;
2266 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2267 vcpu->run->io.size = vcpu->arch.pio.size = size;
2268 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2269 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2270 vcpu->run->io.port = vcpu->arch.pio.port = port;
2271 vcpu->arch.pio.in = in;
2272 vcpu->arch.pio.string = 1;
2273 vcpu->arch.pio.down = down;
2274 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2275 vcpu->arch.pio.rep = rep;
2277 if (!count) {
2278 kvm_x86_ops->skip_emulated_instruction(vcpu);
2279 return 1;
2282 if (!down)
2283 in_page = PAGE_SIZE - offset_in_page(address);
2284 else
2285 in_page = offset_in_page(address) + size;
2286 now = min(count, (unsigned long)in_page / size);
2287 if (!now) {
2289 * String I/O straddles page boundary. Pin two guest pages
2290 * so that we satisfy atomicity constraints. Do just one
2291 * transaction to avoid complexity.
2293 nr_pages = 2;
2294 now = 1;
2296 if (down) {
2298 * String I/O in reverse. Yuck. Kill the guest, fix later.
2300 pr_unimpl(vcpu, "guest string pio down\n");
2301 kvm_inject_gp(vcpu, 0);
2302 return 1;
2304 vcpu->run->io.count = now;
2305 vcpu->arch.pio.cur_count = now;
2307 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2308 kvm_x86_ops->skip_emulated_instruction(vcpu);
2310 for (i = 0; i < nr_pages; ++i) {
2311 down_read(&vcpu->kvm->slots_lock);
2312 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2313 vcpu->arch.pio.guest_pages[i] = page;
2314 up_read(&vcpu->kvm->slots_lock);
2315 if (!page) {
2316 kvm_inject_gp(vcpu, 0);
2317 free_pio_guest_pages(vcpu);
2318 return 1;
2322 pio_dev = vcpu_find_pio_dev(vcpu, port);
2323 if (!vcpu->arch.pio.in) {
2324 /* string PIO write */
2325 ret = pio_copy_data(vcpu);
2326 if (ret >= 0 && pio_dev) {
2327 pio_string_write(pio_dev, vcpu);
2328 complete_pio(vcpu);
2329 if (vcpu->arch.pio.count == 0)
2330 ret = 1;
2332 } else if (pio_dev)
2333 pr_unimpl(vcpu, "no string pio read support yet, "
2334 "port %x size %d count %ld\n",
2335 port, size, count);
2337 return ret;
2339 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2341 int kvm_arch_init(void *opaque)
2343 int r;
2344 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2346 if (kvm_x86_ops) {
2347 printk(KERN_ERR "kvm: already loaded the other module\n");
2348 r = -EEXIST;
2349 goto out;
2352 if (!ops->cpu_has_kvm_support()) {
2353 printk(KERN_ERR "kvm: no hardware support\n");
2354 r = -EOPNOTSUPP;
2355 goto out;
2357 if (ops->disabled_by_bios()) {
2358 printk(KERN_ERR "kvm: disabled by bios\n");
2359 r = -EOPNOTSUPP;
2360 goto out;
2363 r = kvm_mmu_module_init();
2364 if (r)
2365 goto out;
2367 kvm_init_msr_list();
2369 kvm_x86_ops = ops;
2370 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2371 return 0;
2373 out:
2374 return r;
2377 void kvm_arch_exit(void)
2379 kvm_x86_ops = NULL;
2380 kvm_mmu_module_exit();
2383 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2385 ++vcpu->stat.halt_exits;
2386 if (irqchip_in_kernel(vcpu->kvm)) {
2387 vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2388 kvm_vcpu_block(vcpu);
2389 if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2390 return -EINTR;
2391 return 1;
2392 } else {
2393 vcpu->run->exit_reason = KVM_EXIT_HLT;
2394 return 0;
2397 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2399 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2401 unsigned long nr, a0, a1, a2, a3, ret;
2403 kvm_x86_ops->cache_regs(vcpu);
2405 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2406 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2407 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2408 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2409 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2411 if (!is_long_mode(vcpu)) {
2412 nr &= 0xFFFFFFFF;
2413 a0 &= 0xFFFFFFFF;
2414 a1 &= 0xFFFFFFFF;
2415 a2 &= 0xFFFFFFFF;
2416 a3 &= 0xFFFFFFFF;
2419 switch (nr) {
2420 case KVM_HC_VAPIC_POLL_IRQ:
2421 ret = 0;
2422 break;
2423 default:
2424 ret = -KVM_ENOSYS;
2425 break;
2427 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2428 kvm_x86_ops->decache_regs(vcpu);
2429 ++vcpu->stat.hypercalls;
2430 return 0;
2432 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2434 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2436 char instruction[3];
2437 int ret = 0;
2441 * Blow out the MMU to ensure that no other VCPU has an active mapping
2442 * to ensure that the updated hypercall appears atomically across all
2443 * VCPUs.
2445 kvm_mmu_zap_all(vcpu->kvm);
2447 kvm_x86_ops->cache_regs(vcpu);
2448 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2449 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2450 != X86EMUL_CONTINUE)
2451 ret = -EFAULT;
2453 return ret;
2456 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2458 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2461 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2463 struct descriptor_table dt = { limit, base };
2465 kvm_x86_ops->set_gdt(vcpu, &dt);
2468 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2470 struct descriptor_table dt = { limit, base };
2472 kvm_x86_ops->set_idt(vcpu, &dt);
2475 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2476 unsigned long *rflags)
2478 kvm_lmsw(vcpu, msw);
2479 *rflags = kvm_x86_ops->get_rflags(vcpu);
2482 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2484 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2485 switch (cr) {
2486 case 0:
2487 return vcpu->arch.cr0;
2488 case 2:
2489 return vcpu->arch.cr2;
2490 case 3:
2491 return vcpu->arch.cr3;
2492 case 4:
2493 return vcpu->arch.cr4;
2494 case 8:
2495 return kvm_get_cr8(vcpu);
2496 default:
2497 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2498 return 0;
2502 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2503 unsigned long *rflags)
2505 switch (cr) {
2506 case 0:
2507 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2508 *rflags = kvm_x86_ops->get_rflags(vcpu);
2509 break;
2510 case 2:
2511 vcpu->arch.cr2 = val;
2512 break;
2513 case 3:
2514 kvm_set_cr3(vcpu, val);
2515 break;
2516 case 4:
2517 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2518 break;
2519 case 8:
2520 kvm_set_cr8(vcpu, val & 0xfUL);
2521 break;
2522 default:
2523 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2527 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2529 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2530 int j, nent = vcpu->arch.cpuid_nent;
2532 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2533 /* when no next entry is found, the current entry[i] is reselected */
2534 for (j = i + 1; j == i; j = (j + 1) % nent) {
2535 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2536 if (ej->function == e->function) {
2537 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2538 return j;
2541 return 0; /* silence gcc, even though control never reaches here */
2544 /* find an entry with matching function, matching index (if needed), and that
2545 * should be read next (if it's stateful) */
2546 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2547 u32 function, u32 index)
2549 if (e->function != function)
2550 return 0;
2551 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2552 return 0;
2553 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2554 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2555 return 0;
2556 return 1;
2559 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2561 int i;
2562 u32 function, index;
2563 struct kvm_cpuid_entry2 *e, *best;
2565 kvm_x86_ops->cache_regs(vcpu);
2566 function = vcpu->arch.regs[VCPU_REGS_RAX];
2567 index = vcpu->arch.regs[VCPU_REGS_RCX];
2568 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2569 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2570 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2571 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2572 best = NULL;
2573 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2574 e = &vcpu->arch.cpuid_entries[i];
2575 if (is_matching_cpuid_entry(e, function, index)) {
2576 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2577 move_to_next_stateful_cpuid_entry(vcpu, i);
2578 best = e;
2579 break;
2582 * Both basic or both extended?
2584 if (((e->function ^ function) & 0x80000000) == 0)
2585 if (!best || e->function > best->function)
2586 best = e;
2588 if (best) {
2589 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2590 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2591 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2592 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2594 kvm_x86_ops->decache_regs(vcpu);
2595 kvm_x86_ops->skip_emulated_instruction(vcpu);
2597 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2600 * Check if userspace requested an interrupt window, and that the
2601 * interrupt window is open.
2603 * No need to exit to userspace if we already have an interrupt queued.
2605 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2606 struct kvm_run *kvm_run)
2608 return (!vcpu->arch.irq_summary &&
2609 kvm_run->request_interrupt_window &&
2610 vcpu->arch.interrupt_window_open &&
2611 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2614 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2615 struct kvm_run *kvm_run)
2617 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2618 kvm_run->cr8 = kvm_get_cr8(vcpu);
2619 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2620 if (irqchip_in_kernel(vcpu->kvm))
2621 kvm_run->ready_for_interrupt_injection = 1;
2622 else
2623 kvm_run->ready_for_interrupt_injection =
2624 (vcpu->arch.interrupt_window_open &&
2625 vcpu->arch.irq_summary == 0);
2628 static void vapic_enter(struct kvm_vcpu *vcpu)
2630 struct kvm_lapic *apic = vcpu->arch.apic;
2631 struct page *page;
2633 if (!apic || !apic->vapic_addr)
2634 return;
2636 down_read(&current->mm->mmap_sem);
2637 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2638 up_read(&current->mm->mmap_sem);
2640 vcpu->arch.apic->vapic_page = page;
2643 static void vapic_exit(struct kvm_vcpu *vcpu)
2645 struct kvm_lapic *apic = vcpu->arch.apic;
2647 if (!apic || !apic->vapic_addr)
2648 return;
2650 kvm_release_page_dirty(apic->vapic_page);
2651 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2654 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2656 int r;
2658 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2659 pr_debug("vcpu %d received sipi with vector # %x\n",
2660 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2661 kvm_lapic_reset(vcpu);
2662 r = kvm_x86_ops->vcpu_reset(vcpu);
2663 if (r)
2664 return r;
2665 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2668 vapic_enter(vcpu);
2670 preempted:
2671 if (vcpu->guest_debug.enabled)
2672 kvm_x86_ops->guest_debug_pre(vcpu);
2674 again:
2675 if (vcpu->requests)
2676 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2677 kvm_mmu_unload(vcpu);
2679 r = kvm_mmu_reload(vcpu);
2680 if (unlikely(r))
2681 goto out;
2683 if (vcpu->requests) {
2684 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2685 __kvm_migrate_apic_timer(vcpu);
2686 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2687 &vcpu->requests)) {
2688 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2689 r = 0;
2690 goto out;
2692 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2693 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2694 r = 0;
2695 goto out;
2699 kvm_inject_pending_timer_irqs(vcpu);
2701 preempt_disable();
2703 kvm_x86_ops->prepare_guest_switch(vcpu);
2704 kvm_load_guest_fpu(vcpu);
2706 local_irq_disable();
2708 if (need_resched()) {
2709 local_irq_enable();
2710 preempt_enable();
2711 r = 1;
2712 goto out;
2715 if (vcpu->requests)
2716 if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
2717 local_irq_enable();
2718 preempt_enable();
2719 r = 1;
2720 goto out;
2723 if (signal_pending(current)) {
2724 local_irq_enable();
2725 preempt_enable();
2726 r = -EINTR;
2727 kvm_run->exit_reason = KVM_EXIT_INTR;
2728 ++vcpu->stat.signal_exits;
2729 goto out;
2732 if (vcpu->arch.exception.pending)
2733 __queue_exception(vcpu);
2734 else if (irqchip_in_kernel(vcpu->kvm))
2735 kvm_x86_ops->inject_pending_irq(vcpu);
2736 else
2737 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2739 kvm_lapic_sync_to_vapic(vcpu);
2741 vcpu->guest_mode = 1;
2742 kvm_guest_enter();
2744 if (vcpu->requests)
2745 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2746 kvm_x86_ops->tlb_flush(vcpu);
2748 kvm_x86_ops->run(vcpu, kvm_run);
2750 vcpu->guest_mode = 0;
2751 local_irq_enable();
2753 ++vcpu->stat.exits;
2756 * We must have an instruction between local_irq_enable() and
2757 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2758 * the interrupt shadow. The stat.exits increment will do nicely.
2759 * But we need to prevent reordering, hence this barrier():
2761 barrier();
2763 kvm_guest_exit();
2765 preempt_enable();
2768 * Profile KVM exit RIPs:
2770 if (unlikely(prof_on == KVM_PROFILING)) {
2771 kvm_x86_ops->cache_regs(vcpu);
2772 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2775 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2776 vcpu->arch.exception.pending = false;
2778 kvm_lapic_sync_from_vapic(vcpu);
2780 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2782 if (r > 0) {
2783 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2784 r = -EINTR;
2785 kvm_run->exit_reason = KVM_EXIT_INTR;
2786 ++vcpu->stat.request_irq_exits;
2787 goto out;
2789 if (!need_resched())
2790 goto again;
2793 out:
2794 if (r > 0) {
2795 kvm_resched(vcpu);
2796 goto preempted;
2799 post_kvm_run_save(vcpu, kvm_run);
2801 vapic_exit(vcpu);
2803 return r;
2806 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2808 int r;
2809 sigset_t sigsaved;
2811 vcpu_load(vcpu);
2813 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2814 kvm_vcpu_block(vcpu);
2815 vcpu_put(vcpu);
2816 return -EAGAIN;
2819 if (vcpu->sigset_active)
2820 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2822 /* re-sync apic's tpr */
2823 if (!irqchip_in_kernel(vcpu->kvm))
2824 kvm_set_cr8(vcpu, kvm_run->cr8);
2826 if (vcpu->arch.pio.cur_count) {
2827 r = complete_pio(vcpu);
2828 if (r)
2829 goto out;
2831 #if CONFIG_HAS_IOMEM
2832 if (vcpu->mmio_needed) {
2833 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2834 vcpu->mmio_read_completed = 1;
2835 vcpu->mmio_needed = 0;
2836 r = emulate_instruction(vcpu, kvm_run,
2837 vcpu->arch.mmio_fault_cr2, 0,
2838 EMULTYPE_NO_DECODE);
2839 if (r == EMULATE_DO_MMIO) {
2841 * Read-modify-write. Back to userspace.
2843 r = 0;
2844 goto out;
2847 #endif
2848 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2849 kvm_x86_ops->cache_regs(vcpu);
2850 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2851 kvm_x86_ops->decache_regs(vcpu);
2854 r = __vcpu_run(vcpu, kvm_run);
2856 out:
2857 if (vcpu->sigset_active)
2858 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2860 vcpu_put(vcpu);
2861 return r;
2864 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2866 vcpu_load(vcpu);
2868 kvm_x86_ops->cache_regs(vcpu);
2870 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2871 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2872 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2873 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2874 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2875 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2876 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2877 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2878 #ifdef CONFIG_X86_64
2879 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2880 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2881 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2882 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2883 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2884 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2885 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2886 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2887 #endif
2889 regs->rip = vcpu->arch.rip;
2890 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2893 * Don't leak debug flags in case they were set for guest debugging
2895 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2896 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2898 vcpu_put(vcpu);
2900 return 0;
2903 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2905 vcpu_load(vcpu);
2907 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
2908 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
2909 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
2910 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
2911 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
2912 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
2913 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
2914 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2915 #ifdef CONFIG_X86_64
2916 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
2917 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
2918 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
2919 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
2920 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
2921 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
2922 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
2923 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2924 #endif
2926 vcpu->arch.rip = regs->rip;
2927 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2929 kvm_x86_ops->decache_regs(vcpu);
2931 vcpu_put(vcpu);
2933 return 0;
2936 static void get_segment(struct kvm_vcpu *vcpu,
2937 struct kvm_segment *var, int seg)
2939 kvm_x86_ops->get_segment(vcpu, var, seg);
2942 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2944 struct kvm_segment cs;
2946 get_segment(vcpu, &cs, VCPU_SREG_CS);
2947 *db = cs.db;
2948 *l = cs.l;
2950 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2952 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2953 struct kvm_sregs *sregs)
2955 struct descriptor_table dt;
2956 int pending_vec;
2958 vcpu_load(vcpu);
2960 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2961 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2962 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2963 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2964 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2965 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2967 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2968 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2970 kvm_x86_ops->get_idt(vcpu, &dt);
2971 sregs->idt.limit = dt.limit;
2972 sregs->idt.base = dt.base;
2973 kvm_x86_ops->get_gdt(vcpu, &dt);
2974 sregs->gdt.limit = dt.limit;
2975 sregs->gdt.base = dt.base;
2977 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2978 sregs->cr0 = vcpu->arch.cr0;
2979 sregs->cr2 = vcpu->arch.cr2;
2980 sregs->cr3 = vcpu->arch.cr3;
2981 sregs->cr4 = vcpu->arch.cr4;
2982 sregs->cr8 = kvm_get_cr8(vcpu);
2983 sregs->efer = vcpu->arch.shadow_efer;
2984 sregs->apic_base = kvm_get_apic_base(vcpu);
2986 if (irqchip_in_kernel(vcpu->kvm)) {
2987 memset(sregs->interrupt_bitmap, 0,
2988 sizeof sregs->interrupt_bitmap);
2989 pending_vec = kvm_x86_ops->get_irq(vcpu);
2990 if (pending_vec >= 0)
2991 set_bit(pending_vec,
2992 (unsigned long *)sregs->interrupt_bitmap);
2993 } else
2994 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
2995 sizeof sregs->interrupt_bitmap);
2997 vcpu_put(vcpu);
2999 return 0;
3002 static void set_segment(struct kvm_vcpu *vcpu,
3003 struct kvm_segment *var, int seg)
3005 kvm_x86_ops->set_segment(vcpu, var, seg);
3008 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3009 struct kvm_sregs *sregs)
3011 int mmu_reset_needed = 0;
3012 int i, pending_vec, max_bits;
3013 struct descriptor_table dt;
3015 vcpu_load(vcpu);
3017 dt.limit = sregs->idt.limit;
3018 dt.base = sregs->idt.base;
3019 kvm_x86_ops->set_idt(vcpu, &dt);
3020 dt.limit = sregs->gdt.limit;
3021 dt.base = sregs->gdt.base;
3022 kvm_x86_ops->set_gdt(vcpu, &dt);
3024 vcpu->arch.cr2 = sregs->cr2;
3025 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3026 vcpu->arch.cr3 = sregs->cr3;
3028 kvm_set_cr8(vcpu, sregs->cr8);
3030 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3031 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3032 kvm_set_apic_base(vcpu, sregs->apic_base);
3034 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3036 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3037 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3038 vcpu->arch.cr0 = sregs->cr0;
3040 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3041 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3042 if (!is_long_mode(vcpu) && is_pae(vcpu))
3043 load_pdptrs(vcpu, vcpu->arch.cr3);
3045 if (mmu_reset_needed)
3046 kvm_mmu_reset_context(vcpu);
3048 if (!irqchip_in_kernel(vcpu->kvm)) {
3049 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3050 sizeof vcpu->arch.irq_pending);
3051 vcpu->arch.irq_summary = 0;
3052 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3053 if (vcpu->arch.irq_pending[i])
3054 __set_bit(i, &vcpu->arch.irq_summary);
3055 } else {
3056 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3057 pending_vec = find_first_bit(
3058 (const unsigned long *)sregs->interrupt_bitmap,
3059 max_bits);
3060 /* Only pending external irq is handled here */
3061 if (pending_vec < max_bits) {
3062 kvm_x86_ops->set_irq(vcpu, pending_vec);
3063 pr_debug("Set back pending irq %d\n",
3064 pending_vec);
3068 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3069 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3070 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3071 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3072 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3073 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3075 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3076 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3078 vcpu_put(vcpu);
3080 return 0;
3083 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3084 struct kvm_debug_guest *dbg)
3086 int r;
3088 vcpu_load(vcpu);
3090 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3092 vcpu_put(vcpu);
3094 return r;
3098 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3099 * we have asm/x86/processor.h
3101 struct fxsave {
3102 u16 cwd;
3103 u16 swd;
3104 u16 twd;
3105 u16 fop;
3106 u64 rip;
3107 u64 rdp;
3108 u32 mxcsr;
3109 u32 mxcsr_mask;
3110 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3111 #ifdef CONFIG_X86_64
3112 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3113 #else
3114 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3115 #endif
3119 * Translate a guest virtual address to a guest physical address.
3121 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3122 struct kvm_translation *tr)
3124 unsigned long vaddr = tr->linear_address;
3125 gpa_t gpa;
3127 vcpu_load(vcpu);
3128 down_read(&vcpu->kvm->slots_lock);
3129 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3130 up_read(&vcpu->kvm->slots_lock);
3131 tr->physical_address = gpa;
3132 tr->valid = gpa != UNMAPPED_GVA;
3133 tr->writeable = 1;
3134 tr->usermode = 0;
3135 vcpu_put(vcpu);
3137 return 0;
3140 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3142 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3144 vcpu_load(vcpu);
3146 memcpy(fpu->fpr, fxsave->st_space, 128);
3147 fpu->fcw = fxsave->cwd;
3148 fpu->fsw = fxsave->swd;
3149 fpu->ftwx = fxsave->twd;
3150 fpu->last_opcode = fxsave->fop;
3151 fpu->last_ip = fxsave->rip;
3152 fpu->last_dp = fxsave->rdp;
3153 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3155 vcpu_put(vcpu);
3157 return 0;
3160 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3162 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3164 vcpu_load(vcpu);
3166 memcpy(fxsave->st_space, fpu->fpr, 128);
3167 fxsave->cwd = fpu->fcw;
3168 fxsave->swd = fpu->fsw;
3169 fxsave->twd = fpu->ftwx;
3170 fxsave->fop = fpu->last_opcode;
3171 fxsave->rip = fpu->last_ip;
3172 fxsave->rdp = fpu->last_dp;
3173 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3175 vcpu_put(vcpu);
3177 return 0;
3180 void fx_init(struct kvm_vcpu *vcpu)
3182 unsigned after_mxcsr_mask;
3184 /* Initialize guest FPU by resetting ours and saving into guest's */
3185 preempt_disable();
3186 fx_save(&vcpu->arch.host_fx_image);
3187 fpu_init();
3188 fx_save(&vcpu->arch.guest_fx_image);
3189 fx_restore(&vcpu->arch.host_fx_image);
3190 preempt_enable();
3192 vcpu->arch.cr0 |= X86_CR0_ET;
3193 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3194 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3195 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3196 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3198 EXPORT_SYMBOL_GPL(fx_init);
3200 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3202 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3203 return;
3205 vcpu->guest_fpu_loaded = 1;
3206 fx_save(&vcpu->arch.host_fx_image);
3207 fx_restore(&vcpu->arch.guest_fx_image);
3209 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3211 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3213 if (!vcpu->guest_fpu_loaded)
3214 return;
3216 vcpu->guest_fpu_loaded = 0;
3217 fx_save(&vcpu->arch.guest_fx_image);
3218 fx_restore(&vcpu->arch.host_fx_image);
3219 ++vcpu->stat.fpu_reload;
3221 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3223 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3225 kvm_x86_ops->vcpu_free(vcpu);
3228 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3229 unsigned int id)
3231 return kvm_x86_ops->vcpu_create(kvm, id);
3234 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3236 int r;
3238 /* We do fxsave: this must be aligned. */
3239 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3241 vcpu_load(vcpu);
3242 r = kvm_arch_vcpu_reset(vcpu);
3243 if (r == 0)
3244 r = kvm_mmu_setup(vcpu);
3245 vcpu_put(vcpu);
3246 if (r < 0)
3247 goto free_vcpu;
3249 return 0;
3250 free_vcpu:
3251 kvm_x86_ops->vcpu_free(vcpu);
3252 return r;
3255 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3257 vcpu_load(vcpu);
3258 kvm_mmu_unload(vcpu);
3259 vcpu_put(vcpu);
3261 kvm_x86_ops->vcpu_free(vcpu);
3264 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3266 return kvm_x86_ops->vcpu_reset(vcpu);
3269 void kvm_arch_hardware_enable(void *garbage)
3271 kvm_x86_ops->hardware_enable(garbage);
3274 void kvm_arch_hardware_disable(void *garbage)
3276 kvm_x86_ops->hardware_disable(garbage);
3279 int kvm_arch_hardware_setup(void)
3281 return kvm_x86_ops->hardware_setup();
3284 void kvm_arch_hardware_unsetup(void)
3286 kvm_x86_ops->hardware_unsetup();
3289 void kvm_arch_check_processor_compat(void *rtn)
3291 kvm_x86_ops->check_processor_compatibility(rtn);
3294 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3296 struct page *page;
3297 struct kvm *kvm;
3298 int r;
3300 BUG_ON(vcpu->kvm == NULL);
3301 kvm = vcpu->kvm;
3303 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3304 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3305 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3306 else
3307 vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3309 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3310 if (!page) {
3311 r = -ENOMEM;
3312 goto fail;
3314 vcpu->arch.pio_data = page_address(page);
3316 r = kvm_mmu_create(vcpu);
3317 if (r < 0)
3318 goto fail_free_pio_data;
3320 if (irqchip_in_kernel(kvm)) {
3321 r = kvm_create_lapic(vcpu);
3322 if (r < 0)
3323 goto fail_mmu_destroy;
3326 return 0;
3328 fail_mmu_destroy:
3329 kvm_mmu_destroy(vcpu);
3330 fail_free_pio_data:
3331 free_page((unsigned long)vcpu->arch.pio_data);
3332 fail:
3333 return r;
3336 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3338 kvm_free_lapic(vcpu);
3339 kvm_mmu_destroy(vcpu);
3340 free_page((unsigned long)vcpu->arch.pio_data);
3343 struct kvm *kvm_arch_create_vm(void)
3345 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3347 if (!kvm)
3348 return ERR_PTR(-ENOMEM);
3350 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3352 return kvm;
3355 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3357 vcpu_load(vcpu);
3358 kvm_mmu_unload(vcpu);
3359 vcpu_put(vcpu);
3362 static void kvm_free_vcpus(struct kvm *kvm)
3364 unsigned int i;
3367 * Unpin any mmu pages first.
3369 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3370 if (kvm->vcpus[i])
3371 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3372 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3373 if (kvm->vcpus[i]) {
3374 kvm_arch_vcpu_free(kvm->vcpus[i]);
3375 kvm->vcpus[i] = NULL;
3381 void kvm_arch_destroy_vm(struct kvm *kvm)
3383 kvm_free_pit(kvm);
3384 kfree(kvm->arch.vpic);
3385 kfree(kvm->arch.vioapic);
3386 kvm_free_vcpus(kvm);
3387 kvm_free_physmem(kvm);
3388 kfree(kvm);
3391 int kvm_arch_set_memory_region(struct kvm *kvm,
3392 struct kvm_userspace_memory_region *mem,
3393 struct kvm_memory_slot old,
3394 int user_alloc)
3396 int npages = mem->memory_size >> PAGE_SHIFT;
3397 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3399 /*To keep backward compatibility with older userspace,
3400 *x86 needs to hanlde !user_alloc case.
3402 if (!user_alloc) {
3403 if (npages && !old.rmap) {
3404 down_write(&current->mm->mmap_sem);
3405 memslot->userspace_addr = do_mmap(NULL, 0,
3406 npages * PAGE_SIZE,
3407 PROT_READ | PROT_WRITE,
3408 MAP_SHARED | MAP_ANONYMOUS,
3410 up_write(&current->mm->mmap_sem);
3412 if (IS_ERR((void *)memslot->userspace_addr))
3413 return PTR_ERR((void *)memslot->userspace_addr);
3414 } else {
3415 if (!old.user_alloc && old.rmap) {
3416 int ret;
3418 down_write(&current->mm->mmap_sem);
3419 ret = do_munmap(current->mm, old.userspace_addr,
3420 old.npages * PAGE_SIZE);
3421 up_write(&current->mm->mmap_sem);
3422 if (ret < 0)
3423 printk(KERN_WARNING
3424 "kvm_vm_ioctl_set_memory_region: "
3425 "failed to munmap memory\n");
3430 if (!kvm->arch.n_requested_mmu_pages) {
3431 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3432 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3435 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3436 kvm_flush_remote_tlbs(kvm);
3438 return 0;
3441 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3443 return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
3444 || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
3447 static void vcpu_kick_intr(void *info)
3449 #ifdef DEBUG
3450 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
3451 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
3452 #endif
3455 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3457 int ipi_pcpu = vcpu->cpu;
3459 if (waitqueue_active(&vcpu->wq)) {
3460 wake_up_interruptible(&vcpu->wq);
3461 ++vcpu->stat.halt_wakeup;
3463 if (vcpu->guest_mode)
3464 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);