2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
19 #include <linux/cache.h>
20 #include <linux/dma-mapping.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/swiotlb.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/ctype.h>
28 #include <linux/highmem.h>
32 #include <asm/scatterlist.h>
34 #include <linux/init.h>
35 #include <linux/bootmem.h>
36 #include <linux/iommu-helper.h>
38 #define OFFSET(val,align) ((unsigned long) \
39 ( (val) & ( (align) - 1)))
41 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
44 * Minimum IO TLB size to bother booting with. Systems with mainly
45 * 64bit capable cards will only lightly use the swiotlb. If we can't
46 * allocate a contiguous 1MB, we're probably in trouble anyway.
48 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
51 * Enumeration for sync targets
53 enum dma_sync_target
{
61 * Used to do a quick range check in swiotlb_unmap_single and
62 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
65 static char *io_tlb_start
, *io_tlb_end
;
68 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
69 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
71 static unsigned long io_tlb_nslabs
;
74 * When the IOMMU overflows we return a fallback buffer. This sets the size.
76 static unsigned long io_tlb_overflow
= 32*1024;
78 void *io_tlb_overflow_buffer
;
81 * This is a free list describing the number of free entries available from
84 static unsigned int *io_tlb_list
;
85 static unsigned int io_tlb_index
;
88 * We need to save away the original address corresponding to a mapped entry
89 * for the sync operations.
91 static struct swiotlb_phys_addr
{
97 * Protect the above data structures in the map and unmap calls
99 static DEFINE_SPINLOCK(io_tlb_lock
);
102 setup_io_tlb_npages(char *str
)
105 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
106 /* avoid tail segment of size < IO_TLB_SEGSIZE */
107 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
111 if (!strcmp(str
, "force"))
115 __setup("swiotlb=", setup_io_tlb_npages
);
116 /* make io_tlb_overflow tunable too? */
118 void * __weak __init
swiotlb_alloc_boot(size_t size
, unsigned long nslabs
)
120 return alloc_bootmem_low_pages(size
);
123 void * __weak
swiotlb_alloc(unsigned order
, unsigned long nslabs
)
125 return (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
, order
);
128 dma_addr_t __weak
swiotlb_phys_to_bus(phys_addr_t paddr
)
133 phys_addr_t __weak
swiotlb_bus_to_phys(dma_addr_t baddr
)
138 static dma_addr_t
swiotlb_virt_to_bus(volatile void *address
)
140 return swiotlb_phys_to_bus(virt_to_phys(address
));
143 static void *swiotlb_bus_to_virt(dma_addr_t address
)
145 return phys_to_virt(swiotlb_bus_to_phys(address
));
148 int __weak
swiotlb_arch_range_needs_mapping(void *ptr
, size_t size
)
153 static dma_addr_t
swiotlb_sg_to_bus(struct scatterlist
*sg
)
155 return swiotlb_phys_to_bus(page_to_phys(sg_page(sg
)) + sg
->offset
);
158 static void swiotlb_print_info(unsigned long bytes
)
160 phys_addr_t pstart
, pend
;
161 dma_addr_t bstart
, bend
;
163 pstart
= virt_to_phys(io_tlb_start
);
164 pend
= virt_to_phys(io_tlb_end
);
166 bstart
= swiotlb_phys_to_bus(pstart
);
167 bend
= swiotlb_phys_to_bus(pend
);
169 printk(KERN_INFO
"Placing %luMB software IO TLB between %p - %p\n",
170 bytes
>> 20, io_tlb_start
, io_tlb_end
);
171 if (pstart
!= bstart
|| pend
!= bend
)
172 printk(KERN_INFO
"software IO TLB at phys %#llx - %#llx"
173 " bus %#llx - %#llx\n",
174 (unsigned long long)pstart
,
175 (unsigned long long)pend
,
176 (unsigned long long)bstart
,
177 (unsigned long long)bend
);
179 printk(KERN_INFO
"software IO TLB at phys %#llx - %#llx\n",
180 (unsigned long long)pstart
,
181 (unsigned long long)pend
);
185 * Statically reserve bounce buffer space and initialize bounce buffer data
186 * structures for the software IO TLB used to implement the DMA API.
189 swiotlb_init_with_default_size(size_t default_size
)
191 unsigned long i
, bytes
;
193 if (!io_tlb_nslabs
) {
194 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
195 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
198 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
201 * Get IO TLB memory from the low pages
203 io_tlb_start
= swiotlb_alloc_boot(bytes
, io_tlb_nslabs
);
205 panic("Cannot allocate SWIOTLB buffer");
206 io_tlb_end
= io_tlb_start
+ bytes
;
209 * Allocate and initialize the free list array. This array is used
210 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
211 * between io_tlb_start and io_tlb_end.
213 io_tlb_list
= alloc_bootmem(io_tlb_nslabs
* sizeof(int));
214 for (i
= 0; i
< io_tlb_nslabs
; i
++)
215 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
217 io_tlb_orig_addr
= alloc_bootmem(io_tlb_nslabs
* sizeof(struct swiotlb_phys_addr
));
220 * Get the overflow emergency buffer
222 io_tlb_overflow_buffer
= alloc_bootmem_low(io_tlb_overflow
);
223 if (!io_tlb_overflow_buffer
)
224 panic("Cannot allocate SWIOTLB overflow buffer!\n");
226 swiotlb_print_info(bytes
);
232 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
236 * Systems with larger DMA zones (those that don't support ISA) can
237 * initialize the swiotlb later using the slab allocator if needed.
238 * This should be just like above, but with some error catching.
241 swiotlb_late_init_with_default_size(size_t default_size
)
243 unsigned long i
, bytes
, req_nslabs
= io_tlb_nslabs
;
246 if (!io_tlb_nslabs
) {
247 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
248 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
252 * Get IO TLB memory from the low pages
254 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
255 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
256 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
258 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
259 io_tlb_start
= swiotlb_alloc(order
, io_tlb_nslabs
);
268 if (order
!= get_order(bytes
)) {
269 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
270 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
271 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
272 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
274 io_tlb_end
= io_tlb_start
+ bytes
;
275 memset(io_tlb_start
, 0, bytes
);
278 * Allocate and initialize the free list array. This array is used
279 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
280 * between io_tlb_start and io_tlb_end.
282 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
283 get_order(io_tlb_nslabs
* sizeof(int)));
287 for (i
= 0; i
< io_tlb_nslabs
; i
++)
288 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
291 io_tlb_orig_addr
= (struct swiotlb_phys_addr
*)__get_free_pages(GFP_KERNEL
,
292 get_order(io_tlb_nslabs
* sizeof(struct swiotlb_phys_addr
)));
293 if (!io_tlb_orig_addr
)
296 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(struct swiotlb_phys_addr
));
299 * Get the overflow emergency buffer
301 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
302 get_order(io_tlb_overflow
));
303 if (!io_tlb_overflow_buffer
)
306 swiotlb_print_info(bytes
);
311 free_pages((unsigned long)io_tlb_orig_addr
, get_order(io_tlb_nslabs
*
313 io_tlb_orig_addr
= NULL
;
315 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
320 free_pages((unsigned long)io_tlb_start
, order
);
323 io_tlb_nslabs
= req_nslabs
;
328 address_needs_mapping(struct device
*hwdev
, dma_addr_t addr
, size_t size
)
330 return !is_buffer_dma_capable(dma_get_mask(hwdev
), addr
, size
);
333 static inline int range_needs_mapping(void *ptr
, size_t size
)
335 return swiotlb_force
|| swiotlb_arch_range_needs_mapping(ptr
, size
);
338 static int is_swiotlb_buffer(char *addr
)
340 return addr
>= io_tlb_start
&& addr
< io_tlb_end
;
343 static struct swiotlb_phys_addr
swiotlb_bus_to_phys_addr(char *dma_addr
)
345 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
346 struct swiotlb_phys_addr buffer
= io_tlb_orig_addr
[index
];
347 buffer
.offset
+= (long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1);
348 buffer
.page
+= buffer
.offset
>> PAGE_SHIFT
;
349 buffer
.offset
&= PAGE_SIZE
- 1;
354 __sync_single(struct swiotlb_phys_addr buffer
, char *dma_addr
, size_t size
, int dir
)
356 if (PageHighMem(buffer
.page
)) {
358 char *dev
, *host
, *kmp
;
365 if ((bytes
+ buffer
.offset
) > PAGE_SIZE
)
366 bytes
= PAGE_SIZE
- buffer
.offset
;
367 local_irq_save(flags
); /* protects KM_BOUNCE_READ */
368 kmp
= kmap_atomic(buffer
.page
, KM_BOUNCE_READ
);
369 dev
= dma_addr
+ size
- len
;
370 host
= kmp
+ buffer
.offset
;
371 if (dir
== DMA_FROM_DEVICE
)
372 memcpy(host
, dev
, bytes
);
374 memcpy(dev
, host
, bytes
);
375 kunmap_atomic(kmp
, KM_BOUNCE_READ
);
376 local_irq_restore(flags
);
382 void *v
= page_address(buffer
.page
) + buffer
.offset
;
384 if (dir
== DMA_TO_DEVICE
)
385 memcpy(dma_addr
, v
, size
);
387 memcpy(v
, dma_addr
, size
);
392 * Allocates bounce buffer and returns its kernel virtual address.
395 map_single(struct device
*hwdev
, struct swiotlb_phys_addr buffer
, size_t size
, int dir
)
399 unsigned int nslots
, stride
, index
, wrap
;
401 unsigned long start_dma_addr
;
403 unsigned long offset_slots
;
404 unsigned long max_slots
;
405 struct swiotlb_phys_addr slot_buf
;
407 mask
= dma_get_seg_boundary(hwdev
);
408 start_dma_addr
= swiotlb_virt_to_bus(io_tlb_start
) & mask
;
410 offset_slots
= ALIGN(start_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
413 * Carefully handle integer overflow which can occur when mask == ~0UL.
416 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
417 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
420 * For mappings greater than a page, we limit the stride (and
421 * hence alignment) to a page size.
423 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
424 if (size
> PAGE_SIZE
)
425 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
432 * Find suitable number of IO TLB entries size that will fit this
433 * request and allocate a buffer from that IO TLB pool.
435 spin_lock_irqsave(&io_tlb_lock
, flags
);
436 index
= ALIGN(io_tlb_index
, stride
);
437 if (index
>= io_tlb_nslabs
)
442 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
445 if (index
>= io_tlb_nslabs
)
452 * If we find a slot that indicates we have 'nslots' number of
453 * contiguous buffers, we allocate the buffers from that slot
454 * and mark the entries as '0' indicating unavailable.
456 if (io_tlb_list
[index
] >= nslots
) {
459 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
461 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
462 io_tlb_list
[i
] = ++count
;
463 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
466 * Update the indices to avoid searching in the next
469 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
470 ? (index
+ nslots
) : 0);
475 if (index
>= io_tlb_nslabs
)
477 } while (index
!= wrap
);
480 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
483 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
486 * Save away the mapping from the original address to the DMA address.
487 * This is needed when we sync the memory. Then we sync the buffer if
491 for (i
= 0; i
< nslots
; i
++) {
492 slot_buf
.page
+= slot_buf
.offset
>> PAGE_SHIFT
;
493 slot_buf
.offset
&= PAGE_SIZE
- 1;
494 io_tlb_orig_addr
[index
+i
] = slot_buf
;
495 slot_buf
.offset
+= 1 << IO_TLB_SHIFT
;
497 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
498 __sync_single(buffer
, dma_addr
, size
, DMA_TO_DEVICE
);
504 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
507 unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
, int dir
)
510 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
511 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
512 struct swiotlb_phys_addr buffer
= swiotlb_bus_to_phys_addr(dma_addr
);
515 * First, sync the memory before unmapping the entry
517 if ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
))
519 * bounce... copy the data back into the original buffer * and
520 * delete the bounce buffer.
522 __sync_single(buffer
, dma_addr
, size
, DMA_FROM_DEVICE
);
525 * Return the buffer to the free list by setting the corresponding
526 * entries to indicate the number of contigous entries available.
527 * While returning the entries to the free list, we merge the entries
528 * with slots below and above the pool being returned.
530 spin_lock_irqsave(&io_tlb_lock
, flags
);
532 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
533 io_tlb_list
[index
+ nslots
] : 0);
535 * Step 1: return the slots to the free list, merging the
536 * slots with superceeding slots
538 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
539 io_tlb_list
[i
] = ++count
;
541 * Step 2: merge the returned slots with the preceding slots,
542 * if available (non zero)
544 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
545 io_tlb_list
[i
] = ++count
;
547 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
551 sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
554 struct swiotlb_phys_addr buffer
= swiotlb_bus_to_phys_addr(dma_addr
);
558 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
559 __sync_single(buffer
, dma_addr
, size
, DMA_FROM_DEVICE
);
561 BUG_ON(dir
!= DMA_TO_DEVICE
);
563 case SYNC_FOR_DEVICE
:
564 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
565 __sync_single(buffer
, dma_addr
, size
, DMA_TO_DEVICE
);
567 BUG_ON(dir
!= DMA_FROM_DEVICE
);
575 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
576 dma_addr_t
*dma_handle
, gfp_t flags
)
580 int order
= get_order(size
);
581 u64 dma_mask
= DMA_32BIT_MASK
;
583 if (hwdev
&& hwdev
->coherent_dma_mask
)
584 dma_mask
= hwdev
->coherent_dma_mask
;
586 ret
= (void *)__get_free_pages(flags
, order
);
587 if (ret
&& !is_buffer_dma_capable(dma_mask
, swiotlb_virt_to_bus(ret
), size
)) {
589 * The allocated memory isn't reachable by the device.
590 * Fall back on swiotlb_map_single().
592 free_pages((unsigned long) ret
, order
);
597 * We are either out of memory or the device can't DMA
598 * to GFP_DMA memory; fall back on
599 * swiotlb_map_single(), which will grab memory from
600 * the lowest available address range.
602 struct swiotlb_phys_addr buffer
;
603 buffer
.page
= virt_to_page(NULL
);
605 ret
= map_single(hwdev
, buffer
, size
, DMA_FROM_DEVICE
);
610 memset(ret
, 0, size
);
611 dev_addr
= swiotlb_virt_to_bus(ret
);
613 /* Confirm address can be DMA'd by device */
614 if (!is_buffer_dma_capable(dma_mask
, dev_addr
, size
)) {
615 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
616 (unsigned long long)dma_mask
,
617 (unsigned long long)dev_addr
);
619 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
620 unmap_single(hwdev
, ret
, size
, DMA_TO_DEVICE
);
623 *dma_handle
= dev_addr
;
628 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
629 dma_addr_t dma_handle
)
631 WARN_ON(irqs_disabled());
632 if (!is_swiotlb_buffer(vaddr
))
633 free_pages((unsigned long) vaddr
, get_order(size
));
635 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
636 unmap_single(hwdev
, vaddr
, size
, DMA_TO_DEVICE
);
640 swiotlb_full(struct device
*dev
, size_t size
, int dir
, int do_panic
)
643 * Ran out of IOMMU space for this operation. This is very bad.
644 * Unfortunately the drivers cannot handle this operation properly.
645 * unless they check for dma_mapping_error (most don't)
646 * When the mapping is small enough return a static buffer to limit
647 * the damage, or panic when the transfer is too big.
649 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
650 "device %s\n", size
, dev
? dev
->bus_id
: "?");
652 if (size
> io_tlb_overflow
&& do_panic
) {
653 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
654 panic("DMA: Memory would be corrupted\n");
655 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
656 panic("DMA: Random memory would be DMAed\n");
661 * Map a single buffer of the indicated size for DMA in streaming mode. The
662 * physical address to use is returned.
664 * Once the device is given the dma address, the device owns this memory until
665 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
668 swiotlb_map_single_attrs(struct device
*hwdev
, void *ptr
, size_t size
,
669 int dir
, struct dma_attrs
*attrs
)
671 dma_addr_t dev_addr
= swiotlb_virt_to_bus(ptr
);
673 struct swiotlb_phys_addr buffer
;
675 BUG_ON(dir
== DMA_NONE
);
677 * If the pointer passed in happens to be in the device's DMA window,
678 * we can safely return the device addr and not worry about bounce
681 if (!address_needs_mapping(hwdev
, dev_addr
, size
) &&
682 !range_needs_mapping(ptr
, size
))
686 * Oh well, have to allocate and map a bounce buffer.
688 buffer
.page
= virt_to_page(ptr
);
689 buffer
.offset
= (unsigned long)ptr
& ~PAGE_MASK
;
690 map
= map_single(hwdev
, buffer
, size
, dir
);
692 swiotlb_full(hwdev
, size
, dir
, 1);
693 map
= io_tlb_overflow_buffer
;
696 dev_addr
= swiotlb_virt_to_bus(map
);
699 * Ensure that the address returned is DMA'ble
701 if (address_needs_mapping(hwdev
, dev_addr
, size
))
702 panic("map_single: bounce buffer is not DMA'ble");
706 EXPORT_SYMBOL(swiotlb_map_single_attrs
);
709 swiotlb_map_single(struct device
*hwdev
, void *ptr
, size_t size
, int dir
)
711 return swiotlb_map_single_attrs(hwdev
, ptr
, size
, dir
, NULL
);
715 * Unmap a single streaming mode DMA translation. The dma_addr and size must
716 * match what was provided for in a previous swiotlb_map_single call. All
717 * other usages are undefined.
719 * After this call, reads by the cpu to the buffer are guaranteed to see
720 * whatever the device wrote there.
723 swiotlb_unmap_single_attrs(struct device
*hwdev
, dma_addr_t dev_addr
,
724 size_t size
, int dir
, struct dma_attrs
*attrs
)
726 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
);
728 BUG_ON(dir
== DMA_NONE
);
729 if (is_swiotlb_buffer(dma_addr
))
730 unmap_single(hwdev
, dma_addr
, size
, dir
);
731 else if (dir
== DMA_FROM_DEVICE
)
732 dma_mark_clean(dma_addr
, size
);
734 EXPORT_SYMBOL(swiotlb_unmap_single_attrs
);
737 swiotlb_unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
, size_t size
,
740 return swiotlb_unmap_single_attrs(hwdev
, dev_addr
, size
, dir
, NULL
);
743 * Make physical memory consistent for a single streaming mode DMA translation
746 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
747 * using the cpu, yet do not wish to teardown the dma mapping, you must
748 * call this function before doing so. At the next point you give the dma
749 * address back to the card, you must first perform a
750 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
753 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
754 size_t size
, int dir
, int target
)
756 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
);
758 BUG_ON(dir
== DMA_NONE
);
759 if (is_swiotlb_buffer(dma_addr
))
760 sync_single(hwdev
, dma_addr
, size
, dir
, target
);
761 else if (dir
== DMA_FROM_DEVICE
)
762 dma_mark_clean(dma_addr
, size
);
766 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
767 size_t size
, int dir
)
769 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
773 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
774 size_t size
, int dir
)
776 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
780 * Same as above, but for a sub-range of the mapping.
783 swiotlb_sync_single_range(struct device
*hwdev
, dma_addr_t dev_addr
,
784 unsigned long offset
, size_t size
,
787 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
) + offset
;
789 BUG_ON(dir
== DMA_NONE
);
790 if (is_swiotlb_buffer(dma_addr
))
791 sync_single(hwdev
, dma_addr
, size
, dir
, target
);
792 else if (dir
== DMA_FROM_DEVICE
)
793 dma_mark_clean(dma_addr
, size
);
797 swiotlb_sync_single_range_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
798 unsigned long offset
, size_t size
, int dir
)
800 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
805 swiotlb_sync_single_range_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
806 unsigned long offset
, size_t size
, int dir
)
808 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
812 void swiotlb_unmap_sg_attrs(struct device
*, struct scatterlist
*, int, int,
815 * Map a set of buffers described by scatterlist in streaming mode for DMA.
816 * This is the scatter-gather version of the above swiotlb_map_single
817 * interface. Here the scatter gather list elements are each tagged with the
818 * appropriate dma address and length. They are obtained via
819 * sg_dma_{address,length}(SG).
821 * NOTE: An implementation may be able to use a smaller number of
822 * DMA address/length pairs than there are SG table elements.
823 * (for example via virtual mapping capabilities)
824 * The routine returns the number of addr/length pairs actually
825 * used, at most nents.
827 * Device ownership issues as mentioned above for swiotlb_map_single are the
831 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
832 int dir
, struct dma_attrs
*attrs
)
834 struct scatterlist
*sg
;
835 struct swiotlb_phys_addr buffer
;
839 BUG_ON(dir
== DMA_NONE
);
841 for_each_sg(sgl
, sg
, nelems
, i
) {
842 dev_addr
= swiotlb_sg_to_bus(sg
);
843 if (range_needs_mapping(sg_virt(sg
), sg
->length
) ||
844 address_needs_mapping(hwdev
, dev_addr
, sg
->length
)) {
846 buffer
.page
= sg_page(sg
);
847 buffer
.offset
= sg
->offset
;
848 map
= map_single(hwdev
, buffer
, sg
->length
, dir
);
850 /* Don't panic here, we expect map_sg users
851 to do proper error handling. */
852 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
853 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
855 sgl
[0].dma_length
= 0;
858 sg
->dma_address
= swiotlb_virt_to_bus(map
);
860 sg
->dma_address
= dev_addr
;
861 sg
->dma_length
= sg
->length
;
865 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
868 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
871 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
875 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
876 * concerning calls here are the same as for swiotlb_unmap_single() above.
879 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
880 int nelems
, int dir
, struct dma_attrs
*attrs
)
882 struct scatterlist
*sg
;
885 BUG_ON(dir
== DMA_NONE
);
887 for_each_sg(sgl
, sg
, nelems
, i
) {
888 if (sg
->dma_address
!= swiotlb_sg_to_bus(sg
))
889 unmap_single(hwdev
, swiotlb_bus_to_virt(sg
->dma_address
),
890 sg
->dma_length
, dir
);
891 else if (dir
== DMA_FROM_DEVICE
)
892 dma_mark_clean(swiotlb_bus_to_virt(sg
->dma_address
), sg
->dma_length
);
895 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
898 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
901 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
905 * Make physical memory consistent for a set of streaming mode DMA translations
908 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
912 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
913 int nelems
, int dir
, int target
)
915 struct scatterlist
*sg
;
918 BUG_ON(dir
== DMA_NONE
);
920 for_each_sg(sgl
, sg
, nelems
, i
) {
921 if (sg
->dma_address
!= swiotlb_sg_to_bus(sg
))
922 sync_single(hwdev
, swiotlb_bus_to_virt(sg
->dma_address
),
923 sg
->dma_length
, dir
, target
);
924 else if (dir
== DMA_FROM_DEVICE
)
925 dma_mark_clean(swiotlb_bus_to_virt(sg
->dma_address
), sg
->dma_length
);
930 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
933 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
937 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
940 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
944 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
946 return (dma_addr
== swiotlb_virt_to_bus(io_tlb_overflow_buffer
));
950 * Return whether the given device DMA address mask can be supported
951 * properly. For example, if your device can only drive the low 24-bits
952 * during bus mastering, then you would pass 0x00ffffff as the mask to
956 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
958 return swiotlb_virt_to_bus(io_tlb_end
- 1) <= mask
;
961 EXPORT_SYMBOL(swiotlb_map_single
);
962 EXPORT_SYMBOL(swiotlb_unmap_single
);
963 EXPORT_SYMBOL(swiotlb_map_sg
);
964 EXPORT_SYMBOL(swiotlb_unmap_sg
);
965 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
966 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
967 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu
);
968 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device
);
969 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
970 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
971 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
972 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
973 EXPORT_SYMBOL(swiotlb_free_coherent
);
974 EXPORT_SYMBOL(swiotlb_dma_supported
);